
UC Irvine
UC Irvine Previously Published Works

Title
Graph metric learning quantifies morphological differences between two genotypes of 
shoot apical meristem cells in Arabidopsis.

Permalink
https://escholarship.org/uc/item/15p6b14d

Journal
in silico Plants, 5(1)

Authors
Braker Scott, Cory
Mjolsness, Eric
Oyen, Diane
et al.

Publication Date
2023

DOI
10.1093/insilicoplants/diad001

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/15p6b14d
https://escholarship.org/uc/item/15p6b14d#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Graph metric learning quantifies morphological differences 
between two genotypes of shoot apical meristem cells in 
Arabidopsis

Cory Braker Scott1,2,3,*, Eric Mjolsness2,3, Diane Oyen3, Chie Kodera4,5, Magalie 
Uyttewaal4, David Bouchez4

1Department of Mathematics and Computer Science, Colorado College, Colorado Springs, CO 
80903, USA

2Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA

3Los Alamos National Laboratory, Los Alamos, NM 87544, USA

4Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 
Versailles, France

5CryoCapCell, Inserm U1195, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France

Abstract

We present a method for learning ‘spectrally descriptive’ edge weights for graphs. We generalize a 

previously known distance measure on graphs (graph diffusion distance [GDD]), thereby allowing 

it to be tuned to minimize an arbitrary loss function. Because all steps involved in calculating this 

modified GDD are differentiable, we demonstrate that it is possible for a small neural network 

model to learn edge weights which minimize loss. We apply this method to discriminate between 

graphs constructed from shoot apical meristem images of two genotypes of Arabidopsis thaliana 
specimens: wild-type and trm678 triple mutants with cell division phenotype. Training edge 

weights and kernel parameters with contrastive loss produce a learned distance metric with large 

margins between these graph categories. We demonstrate this by showing improved performance 

of a simple k-nearest-neighbour classifier on the learned distance matrix. We also demonstrate a 

further application of this method to biological image analysis. Once trained, we use our model to 

compute the distance between the biological graphs and a set of graphs output by a cell division 

simulator. Comparing simulated cell division graphs to biological ones allows us to identify 

simulation parameter regimes which characterize mutant versus wild-type Arabidopsis cells. We 
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find that trm678 mutant cells are characterized by increased randomness of division planes and 

decreased ability to avoid previous vertices between cell walls.

Keywords

Cell morphology; graph metrics; morphodynamics; neural networks; spectral graph theory

1. Introduction

Plant organogenesis results in stereotypic patterning of cell shapes and cell wall networks. 

The Arabidopsis shoot apical meristem (SAM) is an organogenic, self-rejuvenating tissue 

that produces the primordia of aerial organs such as leaves and flowers. The morphogenetic 

activity of the SAM requires tight spatio-temporal control of the timing and orientation of 

cell divisions, as well as the direction and rate of cell growth. Cell wall networks resulting 

from SAM activity have been previously described by cell geometry approaches (Hamant 

et al. 2008; Stamm et al. 2017; Montenegro-Johnson et al. 2019). These methods can 

quantify local morphology and can be used to calculate tissue-scale topological statistics. 

However, previous graph metric approaches to quantifying SAM networks have been limited 

to using topological features to compare cell morphology. Here, we introduce a method for 

direct comparison of cell networks, using a trained distance metric that incorporates both 

topological and geometric information. The main scientific goal of the present work is to 

show that this type of distance metric, once learned, is able to (i) accurately classify plant 

cells by type, and (ii) can be interpreted to generate insight into the morphological properties 

of different cell genotypes. Our numerical experiments demonstrate that incorporating 

geometric information into a learned distance metric outperforms cell-type classifiers 

operating on topological features, as in Sahlin et al. (2009).

Graph diffusion distance (GDD) is a measure of similarity between graphs originally 

introduced by Hammond et al. (2013) and substantially generalized and scaled up by Scott 

et al. (Scott and Mjolsness 2021). This metric measures the similarity of two graphs by 

comparing their respective spectra (the eigenvalues of the graph Laplacian) as they evolve 

under graph diffusion. However, it is well-known that there exist pairs of cospectral graphs 

which are not isomorphic but have identical spectra. Furthermore, because even a small 

change to entries of a matrix may change its eigenvalues, another limitation of GDD is that 

it is sensitive to small changes in the topology of the graph (as well as small variations 

in edge weights). Finally, since GDD does not make use of edge or node attributes, it 

cannot distinguish between two different signals on the same source graph, diminishing its 

applicability in data science. In this work, we introduce several generalizations to GDD 

which resolve these issues and make it a powerful machine learning tool for data sets of 

graphs derived from biological microscope images.

1.1. Contributions

The first contribution of this paper is the development of a differentiable version of the GDD 

calculation. This allows us to backpropagate error through the GDD calculation to the edge 

weights of the graph, which in turn allows us to learn discriminative edge weights with 
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a neural network. We apply this method to a data set of graphs extracted from confocal 

microscope images of the L1 cell layer of SAMs of Arabidopsis thaliana. Our novel distance 

calculation method allows us to compare our real graphs with synthetic examples generated 

via model-derived simulation. On this basis we conclude that a specific genotype of mutant 

Arabidopsis is characterized by increased randomness in the direction of cell division and 

decreased ability to avoid previous vertices between cell walls.

2. GRAPH DIFFUSION DISTANCE

We use the definition of GDD first given by Hammond et al. and later expanded (to cover 

differently sized graphs) by Scott et al. This graph comparison metric makes use of the 

eigenvalues of each graph’s Laplacian matrix, which we define as follows: Let wij be the 

weight of the edge between the two vertices vi and vj. Then, the graph Laplacian is a matrix 

L = A − D, where A is the (weighted) adjacency matrix of the graph with wij as the i, j  th 

entry. D is a diagonal matrix where the ith entry on the diagonal is given by ∑k wik. See Fig. 

1 for an example of a graph and its Laplacian. Given two graphs G1 and G2, let L1 and L2

be their respective Laplacian matrices. Furthermore, let Li = UiΛiUi
T be the diagonalizations 

of each Laplacian, so that Λi is a diagonal matrix whose jth diagonal entry, λj
i , is the j th 

eigenvalue of Li. If L is a graph Laplacian, then the matrix etL (called the diffusion kernel 

of the graph) describes heat flow between vertices of that graph: the i, j th entry of the 

diffusion kernel describes the amount of heat that has flowed from node i to node j after t
time has passed. Then the GDD between two graphs of the same size is given by comparing 

the eigenvalues of their diffusion kernels:

D G1, G2 = sup
t

∥ e−tL1 − e−tL2 ∥ F = sup
t

∥ e−tΛ1 − e−tΛ2 ∥ F

= sup
t

∑
j = 1

n
e−tλj

1
− e−tλj

2 2 .

(1)

This equation compares the eigenvalues using the Frobenius norm, also known as the 

element-wise L2 norm. The maximization over t is because we want to compare the two 

kernels at the most informative time: at both very small and very large values of t, all graphs 

look identical (since, respectively, either no heat has diffused, or heat has spread evenly 

everywhere). See Fig. 2 for an example GDD calculation, evaluated at multiple values of 

t. The simplification in Equation (1) (which we will not detail here) relies on the rotation 

invariance of the Frobenius matrix norm ∥ ⋅ ∥F and the Taylor expansion of the exponential 

map. It is clear that this distance measure requires the two graphs to be the same size, since 

otherwise this matrix difference is not defined.

The generalization to different-sized graphs given by Scott et al. could also be modified in 

the way we discuss in Section 3, but we do not consider this version of GDD in this paper. 

Given two graphs G1,G2 of differing sizes n1 < n2, we can define GDD similarly to Equation 

(1):
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D G1, G2   = sup
t > 0

inf
α > 0

inf
P ∣ C P

Pe
−t

αL1 − e−t αL2P F

  = sup
t > 0

inf
α > 0

inf
P ∣ C P

Pe
−t

αΛ1 − e−t αΛ2P F

.

(2)

In Equation (2), α is a time-dilation factor which dilates the passage of time in one graph 

with respect to the other. Dilating time in the two graphs with α allows us to fairly compare 

graphs that have radically different sizes. As an example, diffusion on a fine square grid 

and a coarse square grid look very similar, but with differing timescales. P  is a rectangular 

matrix which is optimized according to some set of constraints C. In the cited paper by 

Scott et al., the constraint C is taken to be orthogonality: PTP = I. The reason for requiring 

P  to be an orthogonal matrix is that optimization over this class of matrices is invariant to 

rotation of the two coordinate systems of each of the two graphs. Our optimization is then 

comparing the discrepancy between the two diffusion kernels, regardless of their individual 

coordinate systems. P = U2
TPU1 is a change of basis from graph-space to eigenspace, 

allowing us to again represent the equation for varying-size GDD as a comparison between 

lists of eigenvalues.

2.1. GDD is a differentiable function of t and edge weights

Once all of the eigenvalues λi and orthonormal eigenvectors vi  (of a matrix L) are computed, 

we may backpropagate through the eigendecomposition as described in Nelson (1976) and 

Andrew et al. (1993). If our edge weights A  (and therefore the values in the Laplacian 

matrix L) are parameterized by some parameter value θ, and our loss function ℒ is 

dependent on the eigenvalues of L, then we can collect the gradient ∂ℒ
∂θ  as:

∂ℒ
∂θ = ∑

k
∂ℒ
∂λk

∂λk
∂θ = ∑

k
∂ℒ
∂λk

vk
T ∂L

∂θ vk ,

(3)

where vk is the kth unit-length eigenvector of L. This derivation uses the fact that (since the 

eigenvectors vk are orthonormal)

∂λk
∂θ = ∂

∂θ vk
TLvk = ∂vk

T

∂θ Lvk + vk
T ∂L

∂θ vk + vk
TL∂vk

∂θ

(4)

= λk
∂

∂θ vk
Tvk + vk

T ∂L
∂θ vk = 0 + vk

T ∂L
∂θ vk

(5)
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If the entries of L are computed as a function of θ using an automatic differentiation 

package (such as PyTorch; Paszke et al. 2019) the gradient matrix ∂L
∂θ  is already known 

before eigendecomposition. We note here that for any fixed value of t, all of the operations 

needed to compute GDD are either simple linear algebra or continuous or both. Therefore, 

for any loss function ℒ which takes the GDD between two graphs as input, we may 

optimize ℒ by backpropagation through the calculation of GDD using Equation (3). We 

note here that although all numerical experiments in this paper use the same-sized version 

of GDD (Equation (1)), this backpropagation will work for the varying-sized version as 

well, allowing gradients to be used to adjust any of the inputs to the general GDD equation 

(Equation (2)).

3. LEARNING PARAMETERS FOR DIFFUSION KERNELS

In this section, we describe our method for learning edge weights for Laplacian diffusion 
kernels, beginning with our generalization of GDD to make it trainable, and then introducing 

a method for learning edge weights.

3.1. Diff2Dist: differentiable GDD

We make two main changes to GDD to make it capable of being tuned to specific graph 

data. First, we replace the real-valued optimization over t with a maximum over an explicit 

list of t values t1, t2, …tp. This removes the need for an optimization step inside the GDD 

calculation. We initialize ti to be exponentially distributed in the range e−3, e3 . The t values 

are updated via gradient descent during training. Second, we re-weight the Frobenius norm 

in the GDD calculation with a vector of weights βj which is the same length as the list of 

eigenvalues (these weights are normalized to sum to 1). The resulting GDD calculation is 

then:

D G1, G2 = max
t ∈ t1, t2, …tp

∑
j = 1

n
βj e−tλj

1
− e−tλj

2 2
.

(6)

We call this version of GDD Differentiable Graph Diffusion Distance, or Diff2Dist. Because 

this distance calculation is comprised entirely of differentiable components and linear 

algebra, it may be explicitly included in the computation graph (e.g. in PyTorch) of a 

machine learning model, without needing to invoke some external optimizer to find the 

supremum over all t. We note here that although the max  function is not differentiable 

everywhere, PyTorch has logic for backpropagating through the max  operation. This 

is accomplished by masking the reverse-mode gradient to only apply to the maximum 

entry of a given tensor, and breaking ties with the subgradient method—see the PyTorch 

documentation for more details. tn and βj may be tuned by gradient descent or some other 

optimization algorithm to minimize a loss function which takes D G1, G2  as input. Tuning 

the tn values results in a list of values of t for which GDD is most informative for a given 

data set, while tuning βj re-weights GDD to pay most attention to the eigenvalues which are 
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most discriminative. In the experiments in Section 4.2 we demonstrate the efficacy of tuning 

these parameters using contrastive loss.

3.2. Learning edge weighting functions

Here, we note that if graph edge weights are determined by some differentiable function 

f parameterized by parameters θ, we may still apply all of the machinery of Sections 2.1 

and 3.1. A common edge weighting function for graphs embedded in Euclidean space is the 

Gaussian Distance Kernel, wij = exp −dij
2

2σ2 , where dij is the distance between nodes i and j in 

the embedding. σ is the standard deviation of the distance kernel and can be chosen a priori 
or tuned in the same way as β and t, using a numerical optimization procedure. However, 

the Gaussian distance kernel, while mathematically well-motivated for embedded graphs, 

is a somewhat arbitrary choice of edge weight, especially in cases where the edges of our 

graphs have more complicated edge labels. In cases like the data discussed in this paper, our 

edge labels are vector-valued, and it is therefore advantageous to replace this hand-picked 

edge weight with weights chosen by a general function approximator, e.g. an artificial neural 

network (ANN; Fukushima and Miyake 1982), with inputs defined geometrically. As before, 

the parameters of this ANN can be tuned using gradients backpropagated through the GDD 

calculation and eigendecomposition.

4. NUMERICAL EXPERIMENTS

4.1. Data description

4.1.1 Arabidopsis SAM data set.—The species A. thaliana is of high interest in plant 

morphology studies, since it is a standard genetic model organism whose genome was fully 

sequenced in 1996, relatively early (Kaul et al. 2000). Additionally its structure makes it 

relatively easy to capture images of the aerial stem cell niche with active cell division: the 

SAM. Recent work (Schaefer et al. 2017) has found that mutant Arabidopsis specimens 

with a simultaneous loss of function of genes TRM6, TRM7 and TRM8 demonstrate more 

variance in the placement of new cell walls during cell division. This is thought to be the 

result of the trm678 triple mutants having abnormal or absent pre-prophase bands (PPBs) 

before cell division. The PBB is a microtubule cytoskeleton array which is hypothesized to 

fine-tune the placement of new cell walls before division (Schaefer et al. 2017).

The data set used in this paper was prepared as follows:

1. Two genotypes of Arabidopsis (wild-type and trm678 mutants: mutants with 

loss of function of all three of TRM6, TRM7 and TRM8) expressing the 

PDF1::mCITRINE-KA1 reporter (Stanislas et al. 2018) were sown and kept in 

short-day conditions (8h of light, 16 h of dark) for 6 weeks.

2. Plants were transferred to long-day conditions (16 h of light, 8h of dark) and kept 

there until the inflorescence meristem (SAM) had formed. This took 2 weeks for 

wild-type plants and 3 weeks for trm678 mutants.
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3. The SAM of each plant was then dissected and observed with a confocal 

microscope, Leica SP8 upright scanning confocal microscope equipped with a 

water immersion objective (HC FLUOTAR L 25x/0.95 W VISIR).

4. This resulted in 3D stacks of the SAM imaged from above, collected for both 

types of specimens.

5. Each 3D image was converted to a 2D image showing only the cell wall of the 

top layer of cells in the SAM. In total we used 20 confocal microscope images 

(13 from wild-type plants and 7 from trm678 mutants).

6. Each image was segmented into individual cells, by finding connected 

components separated by cell walls. This step was performed with the watershed 

algorithm, as implemented in the Python package scikit-learn (with default 

parameters).

7. We construct a graph from the resulting segmented image. In this graph, two 

cells are connected by an edge if they share a boundary and their centres of mass 

(approximated as the mean coordinate of the corresponding region of pixels) are 

closer than 100 pixels.

8. Finally, we extracted multiple subgraphs from each of these graphs. Each 

subgraph consists of a cell and its 63 closest neighbours 63 was chosen so that 

each of the graphs in our data set had 64 nodes total; we picked this size of graph 

because it was the largest power of 2 size for which we could fit reasonable 

batches in memory. Cell neighbourhood selection was limited to the central 

region of each SAM image, since the primordia (secondary growths surrounding 

the SAM) are known to have different morphological properties. For each cell 

neighbourhood, we produce a graph by connecting two cells if and only if their 

shared boundary is 30 pixels or longer (pixel size: 1 px = 0.1818 μm. For each 

edge, we save the length of this shared boundary, the angle of the edge from 

horizontal, and the edge length, as the three geometric attributes input to the 

ANN that computes graph edge weight.

We extracted 1200 cell neighbourhoods in this way, resulting in a data set of 600 

graphs from each Arabidopsis genotype. See Fig. 3 for an example of cell segmentations 

and extracted graphs. The data set of labelled graphs is available in Code Repository 

accompanying this paper.

4.1.2 Replum cell data set.—To further validate our proposed approach, we also 

demonstrate our model’s ability to learn a distance function on a different cell graph data 

set, also derived from Arabidopsis cells. This data set consists of confocal microscope 

images of the replum of the gynoecium of Arabidopsis plants in two varieties: wild-type 

and mutants with loss of function in all four of the genes TRM1, TRM2, TRM3 and 

TRM4 (‘trm1234 mutants’). Cellular descriptions in terms of the orientation of cell divisions 

and directions of cell growth during Arabidopsis gynoecium development are still lacking; 

however, we took advantage of the organization of the replum epidermis into pseudocells 

to compare the orientation of cell divisions and the direction of cell growth in the trm1234 
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mutants compared to the wild type. We detected cell outlines with the membrane marker 

PDF1::TdTOMATO-29–1 (adapted from pUBQ::TdTO-MATO-29–1, as in Shapiro et al. 
(2015)). Images of marked cell outlines were processed and turned into graphs with an 

identical pipeline to the one described in the previous section, with the exception that for this 

data set we had to take subgraphs of size 32 rather than 64 (since there are fewer cells per 

image, a 64-cell subgraph would be the entire tissue sample in some cases).

4.2. Evaluation of Diff2Dist variants

We test each of the GDD generalizations proposed, on the task of classifying wild-type 

versus mutant morphological graphs. We split our data set 85%/15% train/test; all metrics we 

report are calculated on the test set. We compare the following four methods:

1. Original GDD of unweighted graphs, with t chosen as the arg max of D over the 

values t1…tk;

2. Weighted norm version of Diff2Dist, using graphs with Gaussian kernel edge 

weights (with σ fixed at 10−3 ⋅ wmax, where wmax is the largest edge weight over all 

graphs in the training data set), with t1…tk and βi tuned via backpropagation;

3. Weighted norm version of Diff2Dist using graphs with Gaussian kernel edge 

weights, with t, σ and βi all tuned via backprop;

4. Weighted norm version Diff2Dist of graphs with general edge weights 

parameterized by a small neural network (see below for network specification). 

Input to this neural network was a vector of all three edge attributes.

For methods 2 and 3, the input to the distance kernel was the distance between nodes in 

the original image. All parameters were tuned using ADAMOpt (Kingma and Ba 2014) 

(with default PyTorch hyperparameters and batch size 256) to minimize the contrastive loss 

function (Hadsell et al. 2006):

ℒ Gi, Gj = 1
2 yijmax 0, D Gi, Gj − ρlower 

2

+ 1 − yij max 0, ρupper  − D Gi, Gj
2

.

(7)

This loss function encourages Gi and Gj to be closer than ρlower  if they have the same label, 

and further apart than ρupper if they differ yij is a binary indicator of label agreement). These 

margins were set ρlower = 0.001, ρupper = 0.33  by trial-and-error on the training set. Training 

took 600 epochs. For the neural network approach, edge weights were chosen as the final 

output of a neural network with seven layers of sizes {3,128,32,32,32,32,1} with sigmoid 

linear unit (SiLU) activations on the first six layers and no activation function on the last 

layer. We observed that the benefit of our approach was consistent across a variety of 

neural network architectures; we leave a more thorough evaluation of how network capacity 

influences this method for future work.

Braker Scott et al. Page 8

In Silico Plants. Author manuscript; available in PMC 2024 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results of these experiments are presented in Table 1. In this table, we compare the 

performance of a simple K-nearest-neighbour (KNN) classifier trained on the distance 

matrix produced by each variant method of calculating the distance. Reported values are 

the accuracy of the classifier on the test data set, and each KNN classifier uses the value 

of K that achieved the highest accuracy on the training data set. We see that the learned 

distance matrix, using neural network weights, yields a classifier with 95% accuracy on the 

test set. This observation demonstrates that our method is able to learn a distance metric 

that separates the two categories of graph more effectively than the diffusion distance metric 

alone.

We also compare our model to a baseline classifier: a neural net trained on per-graph 

histogram feature vectors. Sahlin et al. (2009) demonstrate that wild-type and mutant tissues 

in Arabidopsis are well-characterized by histograms of per-cell neighbour counts. We train a 

neural network (with SiLU activations and layer sizes [16,32,32,32,32,128,64,1]) to predict 

cell type from histograms of neighbour counts for each graph in each data set. On the SAM 

data set, this simple classifier outperforms regular GDD. However, our distance variants 

with learned components (approaches 2, 3 and 4) outperform this baseline classifier by 

a substantial margin. For the Replum data set, all four of our approaches outperform the 

baseline, but the full neural net enabled distance measure performs best (98% accuracy).

We also present distance matrices for each approach on the SAM data set, as well as 

Isomap (Tenenbaum et al. 2000) embeddings of each (we used the scikit-learn (Pedregosa 

et al. 2011) implementation of Isomap with 15 neighbours and default hyperparameters). 

The distance matrices developed using the ANN approach clearly show better separation 

between the two categories. See Figs 4, 5, 6,7. In each of these figures we show the 

distance matrix for that graph distance method, as well as the result of embedding the 

distance using Isomap. In the Isomap embeddings, the points are coloured by cell type, 

with semitransparent points representing the training data set and opaque points representing 

the test data set. The distance matrices and resulting embeddings for methods 1 and 2 

do not result in a clear separation between the two categories, whereas methods 3 and 4 

do. The Isomap embeddings demonstrate that methods 1 and 2 all result in overlapping 

clusters, since some within-category distances are higher than some inter-category distances. 

In contrast, methods 3 and 4 (learning weights with a neural network model) both have two 

distinct clusters. Furthermore, method 4 (Diff2Dist) demonstrates a dramatic improvement 

over method 3, showing that this version of GDD can be tuned so that the resulting graph 

distance minimizes an arbitrary loss function (e.g. separates classes of graphs). This shows 

that our neural network is learning an edge weighting function which highlights some 

difference between morphological properties of the two classes of graphs. We note that these 

results are consistent across both of the Arabidopsis data sets considered in this paper.

5. ANALYSIS OF SIMULATION PARAMETERS

The previous section demonstrates that our modified version of GDD is able to reliably find 

structural features which distinguish wild type from mutant. In this section, we use the best 

trained model (the model with neural network chosen weights, referred to in the previous 

section as ‘approach 4’) as a tool to interpret which morphological features contribute the 
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most to this discrimination. We use the distance metric trained in the previous section to 

characterize the differences in cell growth between the two types of cells, by comparing 

the biological graphs to graphs generated by a simulation that incorporates hypothesized 

mechanisms of growth control.

We generated a population of artificial morphological graphs using the simulation code 

‘Tissue’ (Hamant et al. 2008). Tissue uses including finite element mechanical models to 

simulate growing collections of cells (represented as sets vertices). See the Tissue Gitlab 

(Jönsson 2018) for instructions on how to use this software. For all of these experiments, 

we started from the meristem.init file which is packaged with Tissue. In a typical Tissue 

simulation, cell walls act like springs with a fixed spring constant, and all cells grow 

isotropically at a fixed linear rate. Cell division can be triggered by cell size, shape, or 

randomly—we configured Tissue so that cells divide when they reach a volume of 40 

arbitrary units, with a small random chance rdiv  of dividing at any timestep if they are larger 

than 20 units (see the included configuration file for details). These numbers (40 and 20) 

were chosen so that the final mesh produced by each simulation had the same distribution of 

cell volumes as the data set mention in Section 4.1.1.

By default, Tissue places new cell division planes along the shortest path which divides the 

two daughter cells into roughly equal volume, following the well-known Errera’s rule(Errera 

1886; Besson and Dumais 2011). The shortest path is found by enumerating each possible 

path and measuring their lengths. We modified this behaviour so that, with probability rangle, 

one of the less optimal paths was chosen instead. These parameters were implemented 

in a new division rule we contributed to the Tissue simulator (our modified version of 

Tissue’s source code is available in Code Repository of this manuscript). We also varied 

two parameters from the original version of Tissue, representing the spring constant of each 

cell wall and the exclusion radius around each vertex (where new vertices are not allowed 

to be placed during division). A summary of the values swept over for each parameter is in 

Table 2. There were 4 × 3 × 4 × 6 = 288 combinations of parameters, resulting in that many 

simulations.

Each simulation resulted in a mesh file representing the final positions of cell vertices and 

cell walls after 10 000 timesteps. Each mesh was converted into an image and processed into 

a set of graphs (one centred on each cell) exactly as described in Section 4.1.1. This yielded 

a large secondary data set of synthetically constructed morphological graphs.

We used the Diff2Dist model (trained on the biological graphs only) to compute the distance 

between each biological graph and all of the graphs which originated from a simulation. 

Each biological graph can then be assigned a numerical label for each parameter, by taking 

the mean of the parameters for the 100 closest simulations. This gives us an estimate of 

which parameter values a given biological graph is most similar to (under our learned 

distance estimate, which is shown to separate trm678 and wild-type graphs).

The results of this experiment can be seen in Fig. 8. Comparing biologically derived graphs 

to synthetically generated ones in this way allows us to see that wild-type graphs are 

characterized by higher vertex avoidance (upper right panel) and lower rate of random cell 
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division direction (lower right panel), whereas trm678 graphs are more likely to have cell 

divisions in random directions.

6. CODE REPOSITORY

Code for all of the experiments in this paper is available as an Open Science Framework 

repository at https://osf.io/h2fzp/?view_only=02bf54a68eef469baa68721430c8c77f.

7. CONCLUSION AND FUTURE WORK

This paper presents a method to compute distance metrics between edge-labelled graphs, in 

such a way as to respect class labels. This approach is flexible and can be implemented 

entirely in PyTorch, making it possible to automatically differentiate the distance 

computation and thereby learn a distance metric between graphs that were previously 

not able to be discriminated by GDD. We demonstrate that our learned distance metric 

both (i) enables more accurate classification of cell types, and also (ii) allows us to use 

simulated data to interrogate the trained distance model, to determine what parameters 

characterize different types. We also demonstrate that our learned distance metric and 

associated classifier outperform previous classifiers based on topological features, indicating 

that geometric information is necessary to distinguish cell type.

In the future we hope to apply this method to more heterogeneous graph data sets by 

including the varying-size version of GDD. Additionally, we aim to apply this approach 

to data sets representing 3D cell topologies and data from more perturbed mutant plants. 

Our neural network approach, as described, is not a Graph Neural Network in the sense 

described by prior works such as (Kipf and Welling 2016; Bacciu et al. 2020), as there is 

no message-passing step. We expect message-passing layers to directly improve these results 

and hope to include them in a future version of differentiable GDD.
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Figure 1. 
From left to right: a small graph, its adjacency matrix and its graph Laplacian.
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Figure 2. 
This figure shows the result of evaluating the norm in Equation (1) with eigenvalues of two 

random graphs on 32 nodes, for varying values of t. This demonstrates why we take the 

diffusion distance to be the peak of this norm; since at early and late times the difference 

between the eigenvalues of the two diffusion kernels vanishes.
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Figure 3. 
Left: an image of the SAM of a mutant Arabidopsis specimen. The original 3D confocal 

microscope image is here represented as a 2D skeleton. Right: a zoomed-in view of the same 

specimen, with separate cells false-coloured and an example extracted cell neighbourhood 

graph overlaid.
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Figure 4. 
Top: distance matrix for morphological graphs, generated with method 1 (GDD on 

unweighted graphs). Bottom: Isomap embedding of this distance matrix, which ensures that 

points with small distance are placed near each other. Blue points represent the wild type, 

and orange points represent the mutant. Transparent points represent training set graphs; 

solid points represent those from the test set. We see that naive GDD leads to an embedding 

where the two categories of graph overlap, indicating that GDD by itself is not capturing the 

distinction between these two classes of graph.
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Figure 5. 
As in Fig. 4, but for method 2 (weighted norm GDD on graphs with fixed Gaussian kernel 

edge weights.). This distance matrix and embedding have the same flaws as those in Fig. 4.

Braker Scott et al. Page 17

In Silico Plants. Author manuscript; available in PMC 2024 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
As in Fig. 4, but for method 3 (weighted norm GDD with Gaussian kernel weights with 

tuned). σ We see that using a Gaussian distance kernel for edge weights, with radius tuned 

by gradient descent, results in a graph distance metric which better separates the two 

categories.
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Figure 7. 
As in Fig. 4, but for the ANN-determined edge weights. Replacing the arbitrary Gaussian 

distance kernel with weights chosen by a machine learning model makes this approach fully 

general and produces a distance metric which fully separates the two graph categories. Blue 

points (left lobe): wild type. Orange points (right lobe): mutant.
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Figure 8. 
Visualizing simulation parameters using Diff2Dist. Each plot shows one point for each 

morphological graph in our Arabidopsis data set. Points are placed in 2D using Isomap, 

exactly as in Fig. 7. Points are coloured according to the parameter values of the nearest 

simulationderived graphs, where means in the sense of our trained distance metric.
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Table 1.

Validation set accuracy for a simple KNN classifier for all four methods, as well as a simple classifier as 

baseline. The test set was the same for each of these tests. For KNN-based methods, the value reported is the 

highest value of accuracy over all K in the range [3..50].

Method Accuracy % (SAM cells) Accuracy % (replum cells)

Histogram classifier 79.4 79.1

GDD only 75.6 85.1

t-tuning and β-weights 82.2 86.5

t and σ-tuning, β-weights 90.0 87.8

ANN parameterization 97.2 98.6

Bold values indicate the best-performing model on each dataset.
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Table 2.

Summary of input parameters and values used during comparison of simulations to biologically derived 

graphs. Spring constant controls the stiffness of cell walls during the simulation. Vertex exclusion size is the 

proportional size of an envelop around each vertex where new vertices may not be placed during division. rdiv 

is the random chance of a cell dividing at a given timestep even when it has not reached 40 units of volume. 

rangle  is the probability (given that division has occurred) that the placement of the new cell wall will be random 

instead of optimal.

Parameter name Values used

Spring constant 0.1, 0.3, 1.0, 3.0

Vertex exclusion size 0.1, 0.3, 0.6

Random division frequency rdiv 0.0, 0.00001, 0.00003, 0.0001

Random division direction frequency 0.0, 0.01, 0.03, 0.1, 0.5, 1.0

rangle
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