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ABSTRACT OF THE DISSERTATION

There’s a Model for That: Memory, Propagation, and Prediction of

Time-Dependent Electronic Structure

by

Karnamohit Ranka

Doctor of Philosophy in Computational Chemistry

University of California Merced, 2023

Dr. Hrant P. Hratchian, Chair

Time-dependent electronic structure is an important means to understand the dy-

namics of electrons, and thus the associated time-dependent mechanisms, in chem-

ical systems of interest. A popular method to model and study electron dynamics

is real-time time-dependent density-functional theory, or RT-TDDFT. In practice,

the implementation of RT-TDDFT (as well as linear response TDDFT) makes

an approximation known as the adiabatic approximation, where the dependence

of electron density at the current moment of time on that at previous moments

in time (as well as the many-body interacting and non-interacting Kohn-Sham

wave-functions) is completely ignored. Maitra et al have shown that this approxi-

mation fails for model systems, but the effects of this approximation with varying

system-size are not known. We study electron dynamics of systems exhibiting

charge-transfer by resonantly perturbing them and conclude that size-dependent

errors, evaluated in terms of peak-shifting in linear absorption spectra and Rabi

cycle dynamics, get progressively smaller as the system-size increases. Statistical

learning methods have been shown to have an increasingly wide scope with respect

to property prediction in quantum chemical problems in recent times. However,

their use for predicting electron dynamics has been relatively underexplored. In

collaboration with Dr. Bhat and his group (Applied Math, UC Merced), with a

goal to train a Hamiltonian model for predicting accurate density evolution, we

xiii



demonstrate that one can use time-dependent density-matrix trajectories to learn

molecular electronic Hamiltonians which can be used to propagate density-matrices

under arbitrary electric-field perturbations. In an effort to apply such learning

methods to density-matrix data obtained from accurate wave-function methods

such as time-dependent configuration interaction (TDCI), we explore the amount

of memory required to reproduce accurate TDCI singles (TDCIS) density-matrix

evolution in some molecular systems for various perturbations. In doing so suc-

cessfully, we hope to explore the structure and application of statistical learning

methods for training Hamiltonian models on accurate time-dependent electron-

density data, predicting single reference density-matrix evolution and informing

the construction of memory-inclusive exchange-correlation functionals in TDDFT.

xiv



Chapter 1

Introduction

1.1 The Schrödinger Equation

Electronic motion and distribution play a crucial role in determining the phys-

ical and chemical properties of atoms, molecules, ions, and matter in general.

While negatively charged electrons have a low rest mass and can travel at speeds

approaching that of light, most commonly available materials have electrons bound

to relatively heavy, spatially small nuclear centers (comprised of neutrons and pos-

itively charged protons). Electronic and nuclear motion in most of these materials

can be described using the time-dependent Schrödinger equation (TDSE), given

as follows:

iℏ
∂

∂t
Ψ(x,X, t) = Ĥ(x,X, t)Ψ(x,X, t), (1.1)

where Ĥ is the molecular Hamiltonian made up of one- and two-particle operators,

and Ψ is the many-body molecular wave function, and x(≡ {ri, σi}) as well as

X(≡ {RA, IA}) represent the collective spin and spatial coordinates of all the

electrons and nuclei in the molecular system, respectively.

The externally unperturbed non-relativistic Hamiltonian used in Eq. (1.1) is:

Ĥ(x,X, t) ≡ Ĥ(r,R) = −
∑
A

ℏ2

2mA

∇2
R −

∑
i

ℏ2

2me

∇2
ri

+
e2

4πϵ0

(∑
A

∑
B

ZAZB

|RA −RB|
−
∑
A

∑
i

ZA

|ri −RA|
+
∑
i

∑
j<i

1

|ri − rj|

)
.

(1.2)

1



1.1. THE SCHRÖDINGER EQUATION CHAPTER 1. INTRODUCTION

Here, Ĥ is the molecular Hamiltonian, − ℏ2
2mη
∇2

η is the kinetic energy operator for

the particle whose spatial coordinates and mass are given by η andmη, respectively,

and the rest of the terms are two-body Coulomb operators describing nuclear-

nuclear, electron-nuclear and electron-electron interactions. ZA is the (positive)

nuclear charge on nucleus A, RA and ri are the coordinates of nucleus A and

electron i.

The molecular wave function is commonly factored into its nuclear and elec-

tronic parts, made possible by the fact that the electronic and nuclear motion

occur on different timescales and thus their equations of motion can be separated.

The Hamiltonian of the system becomes a sum of the separate nuclear and elec-

tronic one- and two-body terms and the two-body electron-nuclear interaction is

parametrized by the molecular geometry: the nuclei are assumed frozen. This is

known as the Born-Oppenheimer approximation, and it leads to factorization of

the molecular wave function:

Ψ(x,X, t) = Ψn(X, t)Ψe(x, t;X) (1.3)

This allows one to split the Hamiltonian into an electronic part and a nuclear

part. The relatively massive nuclei are often treated classically, and the problem

boils down to solving the electronic TDSE (presented in atomic units below, which

are used throughout the rest of this text):

i
∂

∂t
Ψe(x, t;R) = Ĥe(r, t;R)Ψe(x, t;R), (1.4)

where Ĥe is the electronic Hamiltonian. It is:

Ĥe(r, t;R) = −
∑
i

ℏ2

2me

∇2
ri
− e

4πϵ0

∑
A

∑
i

ZA

|ri −RA|
+

e2

4πϵ0

∑
i

∑
j<i

1

|ri − rj|
.

(1.5)

Eq. (1.4) is a partial differential equation. Its exact solution is often impractical

except for systems with a small number of electrons. However, one can proceed

towards an approximate solution by assuming that Ψe can be described by a single

Slater determinant built from a set of N one-electron wave functions or “orbitals”

in an N -electron system (this is the case in the Kohn-Sham and the Hartree-Fock

2



1.2. TIME-INDEPENDENT METHODS CHAPTER 1. INTRODUCTION

formalisms).[1, 2] Such an assumption may fail to adequately describe effects of

relatively stronger electron correlation in certain systems, but this can be recti-

fied by incorporating determinants built from other combinations of N orbitals

chosen from a larger set of one-electron functions.[3, 4] Furthermore, in the cases

presented in this dissertation, we will assume clamped nuclei. This is a fairly accu-

rate approximation for fast electronic processes on the attosecond and femtosecond

timescales.

The methods of propagation presented in this dissertation, time-dependent

configuration interaction singles (TDCIS) and real-time time-dependent Hartree-

Fock (RT-TDHF) theories, share the Hartree-Fock wavefunction as their ground

state. The two techniques have also been shown to exhibit similar time-dependent

behavior in some cases.[5] However, there are some key differences between the

two methods in terms of how they incorporate the time-dependence of electronic

motion, outlined in the proceeding sections.

1.2 Time-independent Methods

1.2.1 Hartree-Fock (HF) theory

The TDSE reduces to the time-independent version for stationary states, where

one assumes separation of the time and electronic position variables due to sta-

tionarity of the wave function:[6]

Ĥe,0(x,x
′)Ψk

e(x⃗) = Ek
eΨ

k
e(x⃗). (1.6)

Here, Ek
e corresponds to the energy of the k-th electronic state.

In the case of a mean-field theory like the Hartree-Fock approximation Eq. (1.6)

reduces to a set of self-consistent field (SCF) equations known as the HF equations:

f̂(x)ϕk(x) = εkϕk(x), (1.7)

with f̂ denoting the effective single-electron Fock operator, and ϕk being the k-th

molecular orbital (MO). The number of MOs must be at least equal to the number

of electrons and is usually greater, say M . The Hartree-Fock wave function, a

3



1.2. TIME-INDEPENDENT METHODS CHAPTER 1. INTRODUCTION

single Slater determinant, is built from the MOs corresponding to the N lowest

eigenvalues in Eq. (1.7), leading to a total of N occupied MOs and (N−M) virtual

MOs.

For the present case, the spatial parts of the electrons with α and β spins are

restricted to be the same (i.e., all the electrons in the system are spin-paired) .

This is known as the restricted HF (RHF) reference[7], and discussion pertains to

this special case for the rest of the text.

The Fock operator in Eq. (1.7) is given by the following in atomic units (used

throughout the rest of this text):

f̂(x) =

[
−∇

2
r

2
−
∑
A

ZA

|r−RA|
+ V̂ext(r)

]

+

N/2∑
j

[
2×

∫
dr′

ϕ∗
j(r

′)ϕj(r
′)

|r− r′|
−
∫
dr′

ϕ∗
j(r

′)P(r, r′)ϕj(r
′)

|r− r′|

]
,

(1.8)

where P is a two-electron permutation operator.

The HF wave function is constructed from the (N/2) doubly occupied MOs as:

ΦHF(x⃗) =
1√
N !
A(

occ.∏
i

ϕi), (1.9)

where A is an anti-symmetry operator. Eq. (1.9) is the starting point for both the

TDCIS (via the CIS method) and the RT-TDHF methods.

1.2.2 Configuration Interaction (CI) and Complete Active

Space SCF (CASSCF) methods

CI singles (CIS) A natural step towards incorporating excited states into the

electronic structure of the system is including the single-electron transitions be-

tween the occupied ({i, j, k}) and the unoccupied ({a, b, c}) orbitals obtained by

solving the HF equations

ΨK
CIS(x⃗) =

∑
i,a

cKiaΦ
a
i (1.10)

ΨK
CIS is the configuration interaction singles (CIS) ansatz[8] for the wave function

corresponding to the stationary state K of the system under consideration. It is

4



1.2. TIME-INDEPENDENT METHODS CHAPTER 1. INTRODUCTION

a linear combination of the singly-substituted, spin-adapted Slater determinants

built from the HF wave function (which represent the one-electron transitions).1

We assume the CI coefficients cKζ are normalized. In general, the CI wave func-

tions correspond to the eigenstates of the system’s field-free Hamiltonian and must

satisfy Eq. (1.6). In the case of CIS, the ground state is the state described by the

HF wave function. However, this is not generally true for a CI wave function if

one includes two-electron transitions (doubles) or beyond in the ansatz, which add

correlation to the ground state HF reference.[9]

Full CI Upon incorporating all possible N -tuply-substituted Slater determinants

into the CI wave function, we get for the state K (analogous to Eq. (1.10))

ΨK
FCI(x⃗) = cKHFΦHF +

∑
i,a

cKiaΦ
a
i +

∑
i,j,a,b

cKijabΦ
ab
ij +

∑
i,j,k,a,b,c

cKijkabcΦ
abc
ijk + . . . (1.11)

This gives us the full CI ansatz for the electronic wave function. Going beyond

CIS means incorporating at least the doubly-substituted determinants into the

wave function. In general, the ground state energy and wave function of an elec-

tronic system is determined variationally[7], which means the energy of the system

is minimized with respect to the wave function, yielding optimized ground state

and excited state wave functions (and, accordingly, a set of MO expansion co-

efficients, explained in Sec. 1.3.2, and CI coefficients). As this process involves

taking expectation values of the Hamiltonian, which contains at most two-body

operators, there are contributions from other N > 1-tuply substituted determi-

nants to the ground state energy and wave function of the system: directly from

the doubly-substituted determinants (via Slater-Condon rules[7] for integrals be-

tween the HF and doubly-substituted determinants), and indirectly from N > 2-

tuply substituted determinants (via Slater-Condon rules for integrals between the

doubly- and at most quadruply-substituted determinants, between triply- and at

most pentuply-substituted determinants, and so on).
1the Brillouin theorem[7] and the fact that eigenstates of the Hamiltonian are orthogonal to

each other ensure that the HF wave function does not have any contribution to the excited states
and the singly-substituted Slater determinants do not contribute to the ground state in the CIS
theory.
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CASSCF It is apparent that the number of determinants needed to be incor-

porated into a full CI wave function ansatz grows exponentially with the number

of electrons and the number of orbitals. This makes full CI a computationally

infeasible method for larger systems. However, not all determinants contribute

significantly towards improving the incorporation of electronic correlation, and

often it is the substituted determinants involving frontier orbitals or orbitals of

appropriate symmetry that are the most important for this purpose.[9, 10] In such

cases, the truncation of the full CI ansatz can be achieved by restricting the set

of orbitals (and indirectly the degree of substitution in the Slater determinants)

considered for the CI expansion. This is known as choosing a complete active space

(CAS). As is the case in full CI, the CAS coefficients (CI coefficients of the CAS

truncation) are optimized to yield the ground state and excited state wave func-

tions. If, in the process, the MO expansion coefficients from the SCF procedure

outlined in Sec. 1.2.1 are also optimized, the method is known as CASSCF.

ΨK
CASSCF(x⃗) = cKHF,CASΦHF,CAS +

∑
i,a∈CAS

cKiaΦ
a
i

+
∑

i,j,a,b∈CAS

cKijabΦ
ab
ij +

∑
i,j,k,a,b,c∈CAS

cKijkabcΦ
abc
ijk + . . .

(1.12)

The electronic energies and properties calculated from the CASSCF method

are typically not straightforward to converge and are sensitive to the choice of the

active space.[9, 10] However, a sufficiently large active space approaching the size

of the full CI wave function leads to accurate energies and properties within a given

finite basis set size.

1.3 Time-dependent methods

1.3.1 Time-dependent CI singles (TDCIS)

Building upon the stationary HF ground state and CIS excited states (Eqs. (1.9)

and (1.10)), and by using the superposition principle, we can further construct a

time-dependent electronic wave function as a linear combination of the CIS wave

6
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functions:

ΨTDCIS(x⃗, t) =
∑
K

aK(t)Φ
K
CIS(x⃗) (1.13)

Substituting Eq. (1.13) in Eq. (1.1) and using Eq. (1.6) gives a set of coupled

equations:[11]

i
∂

∂t
aM(t) =

∑
N

aN(t)⟨ΨM
CIS|Ĥe,0 + V̂ext|ΨN

CIS⟩(t)

=
∑
N

aN(t)⟨ΨM
CIS|Ĥe|ΨN

CIS⟩(t).
(1.14)

In matrix-form, we get:

i
∂

∂t
a⃗(t) = He(t)⃗a(t). (1.15)

Here, a⃗ is the time-dependent TDCIS wave function represented as a state-vector

in the basis of the stationary CIS states. One way to solve Eq. (1.15) is to use

the first order term of the Magnus expansion[12–14] as an approximation of the

differential equation’s solution:

a⃗(t+∆t) = exp(−i∆t(He,0 +Vext(t)))⃗a(t). (1.16)

One can obtain accurate electron dynamics by solving the TDCI equation of

motion, Eq. (1.14), for various higher-order CI ansatzes beyond CIS.[11, 15–19]

While the scaling of TDCI methods can be factorial in the number of electrons

within the molecular system when using full CI, truncated CI ansatzes can be used

to save computational costs, but are often still computationally more expensive

than TDHF and TDDFT methods.[20, 21]

The set of reference orbitals, obtained upon solving the HF equations in the

present case, and the subsequent CI states built from the corresponding Slater

determinants remain unchanged during the TDCI propagation of the system’s

electronic wave function for a given molecular geometry. The time-dependence

is incorporated entirely through the time-dependent expansion coefficients in the

many-body TDCI wave function in the case where an external field is not applied.

7
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1.3.2 Real-time time-dependent Hartree-Fock theory (RT-

TDHF)

Time-dependent Hartree-Fock (TDHF) theory[22] evolves the one-electron or-

bitals in the HF theory according to the time-dependent Schrodinger equation

for one particle. This results in a Liouville-von Neumann equation involving the

time-dependent Fock operator:[23]

i
∂

∂t
P′(t) = [F′(t),P′(t)]. (1.17)

where F is the Fock matrix, and the primes denote that the basis in which the

matrices are represented is orthogonal.

If the time-dependent HF orbitals, {ϕi}, are expanded as linear combinations

of a set of basis functions, ϕk(r, t) =
∑

µ cµk(t)χµ(r) ({cνi} being known as MO

expansion coefficients), then we can define the density-matrix and the Fock matrix

elements to be:

Pµν(t) = 2
occ∑
i

cµi(t)c
∗
νi(t), (1.18)

Fµν(t) =

∫
dr χ∗

µ(r)

[
− ∇

2
r

2
−
∑
A

ZA

|r− r′|
+ V̂ext(r, t)

]
χν(r)

+

∫ ∫
dr dr′ χ∗

µ(r)
∑
λ,σ

[
χ∗
λ(r

′)

|r− r′|
· [Pλσχσ(r

′)χν(r)− Pλνχν(r
′)χσ(r)]

]
. (1.19)

For the initial condition, Eq. (1.7) is solved and P(0) is formed from the occu-

pied orbitals, each corresponding to an eigenvector of the field-free Fock operator

F(0). F(0) and P(0) are transformed to an orthogonalized basis, {χ′
µ(r)}.

Eq. (1.17) can then solved discretely, where we here use the modified mid-point

unitary transformation (MMUT) algorithm. MMUT propagation involves two

steps: (1). building a unitary propagator, U, from F′; (2). using U to propagate

P′,[23–26]

Um = e−2iF′(m)∆t,

P′(m+ 1) = UmP
′(m− 1)U†

m.
(1.20)

8
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Here, m denotes the time-step and ∆t denotes the step-size. The matrix exponen-

tial term in Eq. (1.20) is evaluated by diagonalizing F′ and U can be constructed

using the eigenvectors and eigenvalues:

ε(m) = C(m)F′(m)C†(m);

Um = C†(m)e−2iε(m)∆tC(m),

P′(m+ 1) = UmP
′(m− 1)U†

m.

(1.21)

The MMUT propagation is restarted every 100 timesteps using what is called

the Magnus 2[27] or EM2[28] propagator, to correct for energy drift that is often

an artifact of leap-frog methods like MMUT:

U′′
kτ = e−iF′(kτ)∆t,

P′′(kτ + 1) = U′′
kτP

′(kτ)U
′′†
kτ ,

F′′(kτ + 1) ≡ F′′(P′′(kτ + 1), kτ + 1),

Favg(kτ, kτ + 1) =
1

2
[F′(kτ) + F′′(kτ + 1)];

Ukτ,EM2 = e−iFavg(kτ,kτ+1)∆t,

P′(kτ + 1) = Ukτ,EM2P
′(kτ)U†

kτ,EM2.

(1.22)

Here, τ(= 100) is the number of timesteps after which the MMUT propagation is

restarted, and k(= 0, 1, 2, 3...) is an integer.

1.3.3 Real-time time-dependent density functional theory

(RT-TDDFT)

Density-functional theory (DFT), a ground-state formulation, maps the one-

body electron density of a many-body, interacting wave function to an external pot-

ential.[29] The corresponding Kohn-Sham (KS) formalism uses a fictitious system

of non-interacting electrons to calculate the one-electron density in a self-consistent

manner (similar to the HF equations, Eq. (1.7)).[30–33] The time-dependent coun-

terpart of the KS formalism (TDKS), following from Eq. (1.1) and the Runge-Gross

theorem[34], is described by the following equation:[35, 36]

i
∂

∂t
ϕKS
i (x, t) = ĥS[n, {ϕKS

j }](x, t)ϕKS
i (x, t), (1.23)

9
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where ĥS is the KS Hamiltonian for a single electron, {ϕKS
i } are the KS orbitals

and n is the one-electron density of the restricted, closed-shell system under con-

sideration:

n(r, t) = 2
occ∑
i

|ϕKS
i (r, t)|2. (1.24)

Eq. (1.23) can be used to describe the evolution of the one-electron density,

n(r, t), which is considered a fundamental quantity in TDDFT. Equivalently, when

describing the evolution of the corresponding one-electron density-matrix, denoted

P, it takes the form of the Liouville-von Neumann equation:[37]

i
∂

∂t
P(t) = [HS(t),P(t)]. (1.25)

HS represents the Hamiltonian matrix in a chosen orthogonal basis (which can

be the KS orbitals or orthogonalized basis functions used to linearly expand the

KS orbitals) and P represents the density-matrix in the same basis. The square

brackets in Eq. (1.25) indicate the commutator between HS and the density-matrix

P.

The KS Hamiltonian, as any DFT Hamiltonian, is a functional of the time-

dependent one-electron density (and in particular of the KS orbitals). The de-

pendence of ĥS on n(r, t)(≡ nt) (equivalently, that of HS(t) on P(t)) results in a

nonlinear set of equations similar to the Hartree-Fock equations. The one-electron

density produced by evolving the KS orbitals must always be equal to the interact-

ing system’s evolving density given both Hamiltonians include the same external

potential.[38, 39] This poses some restrictions on the KS Hamiltonian, which is

ĥS[n, {ϕKS
j }](x, t) =−

∇2
r

2
−
∑
A

ZA

|r−RA|
+ V̂ext(r, t)

+

∫
dr′

n(r′, t)

|r− r′|
+ vXC[nt, nt′<t,Ψ0,Φ0](r, t).

(1.26)

The fourth term in Eq. (1.26) is known as the Hartree potential, and corre-

sponds to the mean-field electron-electron interaction energy contribution from the

Coulomb operator, whereas vXC is known as the exchange-correlation (XC) poten-

tial and is defined as the functional derivative of the XC energy with respect to the

10
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one-electron density. As the TDKS Hamiltonian must reproduce the interacting

system’s one-electron density and as the other terms in the TDKS Hamiltonian

are only dependent on the instantaneous density distribution nt, vXC(r, t) must

incorporate the initial state dependence (on both the interacting system one, Ψ0,

and the Kohn-Sham one, Φ0) as well as the dependence on the intermediate TDKS

densities nt′<t, collectively known as “memory effects” (discussed further in Section

1.3.3.1).[38]

Such restriction on the XC potential of the Kohn-Sham Hamiltonian manifests

as several exact conditions the XC potential, the Kohn-Sham density, and related

quantities must satisfy in order for the density propagation to be exact, two of

which are relevant to this study: (1). the adiabatic theorem, which states that

the limit of a sufficiently slowly varying exact time-dependent XC potential is the

exact ground-state XC potential corresponding to the density at a given time, and

(2). the resonance condition, which implies that resonant frequencies of an exactly

evolving system must not change with time.[38–41]

While incorporating memory effects completely within the XC potential allows

one to propagate the one-electron density (or the corresponding density-matrix) ex-

actly as the interacting system’s using the TDKS method, the mathematical form

of the effects is often unknown except for very small model systems where it can be

numerically calculated. In practice, when using the real-time TDKS (RT-TDKS)

method, the memory effects are often ignored. This assumption leads to what is

known as the “adiabatic approximation”, where the XC potential used corresponds

to that of a system in its ground-state, with nt input as its ground-state density.

The adiabatic approximation does appear to work well in some instances, such as

ionization,[42–45] where the electron removal may keep the system closer to the

neutral reference state compared to electron excitation; however, it has been shown

to fail for small, model systems, for example, those exhibiting charge-transfer na-

ture in the excited state[38, 46]. While there are several proposed XC functionals

and time-dependent formulations that incorporate memory effects at least par-

tially, none of them satisfy the resonance condition, an important consideration

when modelling coherent electron dynamics accurately.[47–50]

11
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1.3.3.1 A note on memory effects

Hohenberg and Kohn, in 1964, proved that a unique map exists between a

ground-state density and the corresponding external potential for an interact-

ing system, effectively establishing the fundamental theorems of time-independent

density-functional theory (DFT).[29] Later, Kohn and Sham, in 1965, showed that,

if the density of an interacting system can be calculated in terms of a system of

non-interacting one-particle states, there exists an exchange-correlation (XC) po-

tential, vXC[ρKS(r⃗)](r⃗), that can reproduce the exact ground-state density of the

interacting system.[30]

Analogous to the time-independent case, Runge and Gross, in 1984, showed

that, for an interacting system evolving in time and given a particular initial state

of the system, there exists a unique map (up to a purely time-dependent function)

between the time-dependent external potential and the time-dependent density:

ρ(r⃗, t)
1-1←→ vext[Ψ(r⃗, 0)](r⃗, t){+C(t)}, (1.27)

where C(t) is a purely time-dependent function.[34, 51]

Within the Kohn-Sham (KS) formalism of non-interacting particles, this be-

comes the dependence of the exchange-correlation potential, vXC, on the initial

state, both interacting and non-interacting:

vs[ρ(r⃗, t),Φ(r⃗, t = 0)](r⃗, t) = vH[ρ(r⃗, t)](r⃗, t) + vXC[ρ(r⃗, t),Ψ(r⃗, 0),Φ(r⃗, 0)](r⃗, t).

(1.28)

Here, Ψ(r⃗, 0) and Φ(r⃗, 0) are the initial interacting and non-interacting (Kohn-

Sham) states of the system under consideration, respectively.

As the density-evolution is unique, it then follows that, if the evolving inter-

acting state is known at any point in time in the past (of the density-evolution)

and that state is chosen arbitrarily as the initial one, the evolving XC potential,

being a functional of the density, will depend on the corresponding time-dependent

density as well. This leads to the realization that vXC depends on the densities at

intermediate timesteps in the evolution, as well. Collectively, these dependencies

are known as memory effects.[38, 52, 53]
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In practice, however, the mathematical form of these memory effects isn’t easily

obtained. Maitra and co-workers (2018) have proposed multiple approximations

to the exact expression (obtained by equating the current-density-evolution of the

interacting and the non-interacting systems at a given time), but they are compu-

tationally resource-intensive. The exact expression itself involves knowledge of the

exact evolution of the interacting system, information which is almost never avail-

able in practical applications, or good approximations to which might be expensive

to evaluate, or even unstable.[50, 54, 55] There have been other, earlier approaches

at designing XC potentials that account for the temporal non-adiabaticity and

alleviate the errors due to the lack of memory effects. This is the case within

TDDFT[56] as well as within time-dependent current-density-functional theory

(TDCDFT)[57]. However, these approximations to the temporally non-adiabatic

XC potential have problems associated with either the exact conditions associated

with time-dependent XC functionals, or restrictions on the kinds of systems they

can be used to simulate.[38, 57–61]

As a result, most calculations on molecular systems of finite sizes use the adia-

batic approximation, arguments in favor of which include those application prob-

lems where the reference state of the system is not altered much (in other words,

where the external potential, vext, is weakly perturbative): post-ionization dynam-

ics, low-intensity scalar field potentials (e.g. when the density evolves in response

to a potential turned on only for a finite time), etc.[38, 62–64] On the other hand,

it has been shown by Maitra and co-workers that, for model systems, the adiabatic

approximation fails dramatically, even with the use of spatially exact (often termed

“adiabatically exact”) XC functionals.[38, 65] It appears that in some cases where

static correlation may play a dominant role the XC potential calculated using the

adiabatic approximation fails to capture important features of the exactly evolving

XC potentials.[66, 67] In cases of resonant frequency-driven dynamics, it has been

observed that TDDFT can introduce some spurious shifts in the resonant energy

of the system, an unphysical effect.[68, 69] It is interesting to note that, despite

their inability to accurately propagate the electronic density in certain systems,

some adiabatic XC potentials can still predict excitation energies of finite systems
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quite accurately within the linear response regime.[46]

1.3.4 TDHF and Kohn-Sham TDDFT

Time-dependent Hartree-Fock (TDHF) theory has developed independently

of Kohn-Sham TDDFT, but can be thought of as a special case of the general-

ized Kohn-Sham formalism.[70, 71] One can then choose the XC potential used

in Eq. (1.26) to be the exchange operator from the HF theory (the last term in

Eq. (1.8)). The TDHF method, owing to the nonlinear dependence of the Fock op-

erator on the electronic density, suffers from similar issues related to memory effects

as TDDFT methods (see Sec. 1.3.3).[72] TDHF theory does not formally account

for memory effects and thus its application is ideally restricted to the regime of

dynamics defined by the TDDFT adiabatic theorem. Conversely, many electronic

processes may occur outside this regime, particularly those driven by resonant fre-

quencies and high intensity external electric fields. It is therefore important to

understand the limitations and applicability of TDHF theory in comparison to

TDCIS, a method similar to TDHF in terms of spatial nonlocality but one that

has no artifacts due to memory effects.

Note that within the matrix formulation of TDDFT, solving for eigenvalues and

eigenvectors of the TDDFT equations within the Tamm-Dancoff approximation

(TDA)[73] leads to a set of matrix equations nearly identical to the CIS equations.

Both the TDA and CIS tend to overestimate excitation energies compared to their

full matrix equivalents of TDDFT (without TDA) and TDHF.[74–77]
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Chapter 2

Size-dependent errors

Real-time (RT) electron density propagation with time-dependent density func-

tional theory (TDDFT) or Hartree-Fock (TDHF) is one of the most popular meth-

ods to model the charge transfer in molecules and materials. However, both RT-

TDHF and RT-TDDFT within the adiabatic approximation are known to produce

inaccurate evolution of the electron density away from the ground state in model

systems, leading to large errors in charge transfer and erroneous shifting of peaks

in absorption spectra. Given the poor performance of these methods with small

model systems and the widespread use of the methods with larger molecular and

materials systems, here we bridge the gap in our understanding of these methods

and examine the size-dependence of errors in real-time density propagation. We

analyze the performance of real-time density propagation for systems of increas-

ing size during the application of a continuous resonant field to induce Rabi-like

oscillations, during charge-transfer dynamics, and for peak shifting in simulated

absorption spectra. We find that the errors in the electron dynamics are indeed

size dependent for these phenomena, with the largest system producing the results

most aligned with those expected from linear response theory. The results suggest

that although RT-TDHF and RT-TDDFT methods may produce severe errors for

model systems, the errors in charge transfer and resonantly driven electron dy-

namics may be much less significant for more realistic, large-scale molecules and

materials.

The work[78] introduced in the following sections (reproduced with permis-
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sion from the authors) has been published as: Ranka, K., Isborn, C.M. “Size-

Dependent Errors in Real-Time Electron Density Propagation,” The Journal of

Chemical Physics 158(17), 174102 (2023). DOI: 10.1063/5.0142515

2.1 Introduction

Simulating electronic dynamics is essential for developing improved understand-

ing of electronic processes in molecules and materials, including charge transfer and

the evolution of excited states. Real-time time-dependent density-functional the-

ory (TDDFT) (and time-dependent Hartree-Fock theory, TDHF) methods can be

utilized effectively in such cases, as a means of simulating electronic dynamics

at relatively affordable computational costs. Real-time TDDFT has been used

to study electron (and nuclear) dynamics in a myriad of cases: multinucleon

transfer reactions through molecular and atomic collisions[79, 80], molecules in

oscillating electromagnetic fields of varying strengths[27, 81–84], high-harmonic

generation[85, 86], resonant excitation dynamics (e.g. charge transfer[64, 87–90],

excitation-energy transfer[91], strong-field ionization[92], core excitations[93–95],

plasmonic excitations[96]), perturbations in organic,[97] bio-molecules[98], chiral

molecules[99, 100], metallic[101–103] systems, periodic[104, 105] systems, semi-

conductor materials[106], optical cavities[107], electronic stopping[108] etc. Runge

and Gross[34] proved that there exists a one-to-one mapping between the time-

dependent density of a system and the external potential, justifying the use of

TDDFT to simulate time-dependent electronic phenomena. This was further

shown by van Leeuwen to be a special case of a more fundamental theorem,

which states that the time-dependent density of a many-particle system can be

reproduced by a unique external potential in another many-particle system with a

differing two-particle interaction.[51]

Although formally exact, an extremely common approximation made when

using TDDFT in practice is the adiabatic approximation. One of the primary con-

ditions within the formalism of TDDFT is that the evolving density depends on the

initial state of the system and the history of its time-evolution. Within the Kohn-
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Sham formalism[30] of non-interacting particles, this dependence is incorporated

into the exchange-correlation (XC) potential of the time-dependent Kohn-Sham

Hamiltonian. Assuming that this potential only depends on the instantaneous

density, and not the density at previous points in time or the initial wave function

or initial Kohn-Sham state, is the widely employed adiabatic approximation. This

dependence on the initial state and the electron density at previous points in time

is termed the “memory” of the potential and in practice incorporation of memory

is rarely satisfied.[38, 39, 43, 44, 52, 109]

The adiabatic approximation leads to qualitative errors in electron dynamics[38,

39]: incorrect charge transfer dynamics[46], peak shifting in time-resolved absorp-

tion spectra[68, 69] due to violation of the resonance condition,[40] and incorrect

electron dynamics when driven at resonant frequencies[110]. The errors associated

with the adiabatic approximation are often referred to as memory effects; they

arise from the use of only the instantaneous density in the exchange-correlation

potential. The TDHF method, which can be considered a special case within

the generalized Kohn-Sham formalism of TDDFT,[70] suffers from similar issues

when used for real-time electron density propagation due to the dependence of

the Fock operator on the electronic density, creating a similar set of nonlinear

equations.[72, 111]

It has been shown in one-dimensional model systems (such as the asymmetric

Hubbard dimer and electron-Hydrogen atom scattering)[40, 46, 67, 69] as well as

three-dimensional systems[68, 112, 113] that adiabatic approximations made to

the time-dependent TDKS XC produce qualitative errors when used to simulate

coherent electron dynamics, especially in cases involving charge transfer. In vi-

olation of one of the exact conditions that the TDKS XC potential must follow,

some model systems[69] and small molecules[68] show frequency-shifts in peaks

in their absorption spectra upon being resonantly driven from stationary states.

The degree and direction of this shift is dependent on the amount of population

driven from the ground state and the transition frequencies between the higher-

lying states.[68] Because larger systems will have a smaller relative change in the

total electron density upon excitation of a single electron, the reference electron
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density input into the potential will be closer to that of the ground state com-

pared to small model systems. It is unclear how such large systems would behave

when driven resonantly starting in stationary states, one of the common applica-

tions for real-time TDDFT methods. Given the popularity of TDDFT methods

for large-scale chemical applications, understanding and mitigating any associated

systemic size-dependence (including errors due to memory effects) is an important

undertaking.

In this study we aim to analyze the system size dependence of errors due to

the adiabatic approximation. We restrict our analysis to electron dynamics gen-

erated with real-time TDHF and time-dependent configuration interaction singles

(TDCIS) methods. For both methods, the time-independent, ground-state wave

functions are exactly the same – the Hartree-Fock wave function. However, the TD-

CIS method is a wave function based method that does not suffer from errors due

to the dependence of the potential on the density that are found with TDHF and

TDDFT within the adiabatic approximation. By comparing TDHF and TDCIS,

any consideration of electron correlation effects is removed from our analysis. For

three molecules ((CH3)2N-(CH=CH)nH, n=1,2,3) with increasing π-conjugation,

we show that size-dependent effects do indeed exist due to the dependence of

the potential on the time-dependent density, specifically in the behavior with a

resonant field and in the shifting of peaks in the absorption spectrum. We exam-

ine the size-dependence of this qualitatively unphysical behavior to determine if

TDHF and TDDFT methods could be more confidently applied to larger chemical

systems.

2.2 Computational Details

The set of molecules chosen for the study are π-conjugated systems that increase

systematically in size, with 40, 54, and 68 electrons. The systems are characterized

by a dimethyl amide donor moiety, (CH3)2N, attached to a series of unsaturated,

π-conjugated hydrocarbon chains increasing in length, (CH = CH)nH (n=1, 2, 3),

acting as the electron-accepting moieties (Fig. 2.1). The amide group acts as
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an electron donor, overall increasing the excited state charge transfer character

compared to simple π-conjugated hydrocarbons and leading to a larger change in

the dipole moment between the ground state and excited state.
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Figure 2.1: Set of π-conjugated molecules with increasing size.
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Molecular geometries were optimized at the B3LYP/6-31+G* level of the-

ory.[114–116] Characterization of the excited states was performed with linear

response TDHF/STO-3G and CIS/STO-3G calculations using the GAUSSIAN

quantum chemistry program (Development Version i14+)[117]. The STO-3G ba-

sis set is chosen for the sake of ease of analysis of the composition of the excited

states and electron dynamics, with some results shown for the larger 6-31G basis

set in the SI. The main conclusions of this study are not affected by the choice of

basis set. We additionally show the results of using an unrestricted wave function

for propagation, which we find are identical to the closed-shell results presented

here.

To obtain an estimate of the energy of the doubly excited state, the S0, S1

and S2 states were computed using the state-averaged complete active space self-

consistent field (SA-CASSCF) method[118], with active spaces of (4,3), (6,5) and

(8,7) for Systems 1, 2 and 3, respectively. The active spaces were chosen to include

the frontier n- and π-type orbitals involved in the S0 → S1 and S1 →S2 transitions.

The state-averaging was carried out by assigning equal weights to the S0, S1 and

S2 states. Energies are discussed in the text and given in the SI.

The external perturbation chosen is the light-matter interaction described by a

sinusoidal electric field, coupled with the electrons under the dipole approximation

as[35, 36]

V̂ext(r, t) = E·r = Emax sin(ωt)·r, (2.1)

where Emax = Emax,xî + Emax,y ĵ + Emax,zk̂ is the amplitude vector and ω is the

frequency of the oscillatory electric field. The molecular axes align best with the

x-axis and the S0 → S1 transition possesses a large transition dipole moment along

this axis; hence the field is chosen to be linearly polarized along the x-axis. The

dipole moment matrices in the STO-3G basis, (µx,µy,µz) corresponding to the

dipole moment operators (x̂, ŷ, ẑ), are obtained from the GAUSSIAN program.

The time-dependent dipole moment along each axis is

µζ∈{x,y,z}(t) = Tr(Pχ(t)µχ
ζ ) (2.2)

where χ is the basis set used for the linear expansion of the MOs. The contribution
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of V̂ext to the Hamiltonian matrix is

Vχ
ext(t) = Emax,x sin(ωt)µ

χ
x . (2.3)

We use a propagation step size of 0.002 fs (∼0.08268 a.u.). Trajectories with an

applied sinusoidal external field have been generated by perturbing the molecules

from their ground states. Trajectories with a delta-kick perturbation are generated

by applying a constant electric field to the ground state self-consistent field calcu-

lation before beginning electron propagation. The TDHF trajectories have been

generated using the GAUSSIAN program and the TDCIS trajectories have been

generated using an in-house Python code that uses the GAUSSIAN generated CIS

energies and transition dipoles as input parameters.

The time-dependent MO occupations, Ni(t), plotted for RT-TDHF and TDCIS

are obtained by projecting the time-dependent MOs and wave functions onto the

initial set of Hartree-Fock MOs and the Hartree-Fock wave function,

NRT−TDHF
i (t) = C†

i (t)P(t)Ci(t); (2.4)

NTDCIS
i (t) = |ai(t)|2 ×NCIS

i (0). (2.5)

Here Ci(t) is the time-dependent MO coefficient vector for orbital i, and NCIS
i (0)

is the occupation number of the ith orbital calculated as a sum of its occupations

over all the determinants used for a given static CIS calculation.

Linear absorption spectra are generated using the time-dependent electron

density-matrices and Eq. (2.2). The total time-dependent electronic dipole mo-

ment, µ(t) =
√
µ2
x(t) + µ2

y(t) + µ2
z(t), is used to calculate the dipole moment time-

correlation function, which is Fourier-transformed to obtain the absorption cross-

section at 0 K in the frequency domain as [119]

α(ω) =
2πω

3

∫ ∞

−∞
dt⟨µ(0)µ(t)⟩e−iωt. (2.6)
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2.3 Results and Discussion

2.3.1 Stationary State Characterization

To determine stationary excited states of the molecules, CIS and LR-TDHF

calculations were performed. The resulting excitation energies, and x-axis compo-

nents of excited state and transition dipole moments are listed in Table 2.1 for state

S1 (total dipole moments are given in the SI). Given the same ground state, the S0

dipole moments for the three molecules are the same across the two methods. The

large difference in ground S0 and excited S1 state dipole moments (consistently > 1

debye across the set of molecules) indicates that S1 is a charge-transfer state. The

magnitude of the dipole moment of S1 increases as the system size increases. This

increase is, however, larger for excited state dipole moments calculated using CIS

compared to TDHF. The difference in discrepancy between excited state dipole

moments decreases as the system size increases. The charge-transfer excitation

energies calculated using the linear response methods decrease in value with in-

creasing system size with the corresponding S0 → S1 density-difference plots show

an increase in electron density in the π-cloud and a decrease around the N-center

in the molecules (Fig. A.1).
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Table 2.1: Transition energies, and x-axis components of state and transition dipole

moments calculated using linear response TDHF and CIS methods for Systems 1,

2 and 3.

LR-TDHF

∆E (eV) µx (D)

S0 → S1 S0 S1 S0 → S1

System 1 8.95 -1.12 -2.84 -4.13

System 2 7.05 -1.94 -4.29 -6.60

System 3 5.99 -2.58 -5.47 -8.65

CIS
∆E (eV) µx (D)

S0 → S1 S0 S1 S0 → S1

System 1 9.47 -1.12 -3.82 -4.52

System 2 7.51 -1.94 -5.09 -7.04

System 3 6.38 -2.58 -6.13 -9.33

Table A.3 lists the composition of the S0 → S1 transition for the three molecules

calculated in terms of one-electron transitions between orbitals. For System 1,

the transition is primarily characterized by a HOMO → LUMO transition, with

small contributions from other one-electron transitions. With increasing system

size the one-electron transitions involving the frontier orbitals beyond the HOMO

and LUMO contribute to slightly higher extents, but the electronic character of

the transition across the three molecules is primarily of a one-electron HOMO →
LUMO transition for both excited state methods. Corresponding density-difference

plots show similar nature of re-distribution of the electron density upon excitation

from the ground state S0 to S1.

Previous studies by one of the authors showed that higher lying excited states

that are not accessible by linear response TDHF can contribute to the electron

density evolved using the RT-TDHF method, and that the resonance energy is

affected by the superposition of the ground and excited states: the linear response
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of a superposition state composed of S0 and S2 states has been shown to yield a

resonant frequency that is an average of S0 → S1 and S2 → S1 transitions when

using the real-time TDHF method in H2 and HeH+ systems. Thus, the S2 state

is implicitly accounted for in real-time TDHF and the gap between S1 and S2

states can determine both the direction and the degree of the peak-shifts.[68, 72]

To determine the direction of the peak shifts, the excitation energies of S0 → S1

and S1 → S2 transitions were calculated using the SA-CASSCF method, where

the S2 state corresponds to a doubly excited state with nearly double occupation

of the LUMO. The resulting S0 → S1 excitation energies show a similar trend as

with CIS and LR-TDHF: decreasing excitation energies with increasing system size

(∆ES0→S1 = 9.24, 7.23, 5.92 eV). The energies for the next transition are smaller:

∆ES1→S2 = 3.97, 1.18, 1.29 eV, respectively. Given the energetically lower-lying

S1 → S2 transition compared to the S0 → S1 transition, the resonance peaks are

expected to shift towards lower energies as the population of the LUMO increases

and the contribution of the doubly excited configuration increases.

2.3.2 Electron Dynamics

Moving to the time-domain, we can use both RT-TDHF and TDCIS methods

to propagate the electrons in the presence of an applied field. For RT-TDHF, the

linear absorption spectra of the three systems perturbed with a δ-pulse shows peaks

at expected positions, corresponding to energies calculated with the linear response

methods. To force the evolving TDHF electronic structure away from the regime

where the adiabatic approximation holds, the molecules are significantly perturbed

from their initial ground states using applied fields with the field-frequencies res-

onant with the linear response S0 → S1 transitions. We first excite the systems

using a continuous field with frequency resonant with the S0 → S1 transition for

each molecule to induce Rabi-like oscillations, and then later examine population

and peak shifting trends with finite-time applied fields.
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2.3.2.1 Continuous resonant field : Rabi oscillation

The external field with resonant frequency can be used to drive the system

significantly away from its reference state (the Hartree-Fock state in the current

study). With the application of a resonant field to a two-level system, the popula-

tion of the S0 and S1 states should undergo Rabi oscillation, inverting at a frequency

directly proportional to the field amplitude and the transition dipole moment be-

tween the two states, calculated as Ωcalc. = |µx,S0→S1|×Emax,x. Previous studies on

two-level systems have shown that Rabi cycle-like oscillatory behavior of the elec-

tron density propagated using RT-TDHF can deviate significantly from the exact

electron dynamics.[111, 120] The difference in electron dynamics is attributed to

detuning of the resonant frequency due to the dependence of the XC potential on

the instantaneous electron density.[120] This effect can be significant depending

on the fraction of electron density rearranged with respect to the total electron

density.[38] Understanding the potential errors of a given methodology in model-

ing a system in the presence of a resonant field is important for simulating many

varieties of pump-probe and nonlinear spectroscopy.

To examine the differences between the electron dynamics calculated using TD-

CIS and RT-TDHF methods for the three systems of interest in the presence of a

resonant field, we apply a sinusoidal driving field for the entire duration of propa-

gation with a field-frequency equal to the S0 → S1 transition energy at maximum

field strengths of 0.001, 0.003, and 0.005 a.u. The molecules are not formally two-

level systems, so some deviation from ideal Rabi oscillation behavior is expected.

As the populations of electronic states cannot be directly quantified with TDHF,

we use the occupation of the virtual orbital space as a quantifier of the deviation of

TDHF electron dynamics from ideal behavior. Because the S0 → S1 transition is

primarily HOMO→ LUMO in character, we monitor the occupation of the LUMO

as a metric for population of the S1 state. See Fig. 2.2 for population oscillation

with an applied field of Emax = 0.003 a.u. Plots with Emax = 0.001 and 0.005 a.u.

are shown in Figs. A.5.
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Figure 2.2: Time-dependent LUMO occupations for Systems 1-3 with the field

turned on, with applied field frequencies resonant with the S0 → S1 linear response

transition energies and field-amplitude of 0.003 a.u. The degree of electron density

transferred to the LUMO changes with system size.

The TDCIS behavior is as expected, with population oscillating between the

S0 and S1 states as seen by near single occupation of the LUMO for each system;

the maximum population of the LUMO is 0.95, 0.95 and 0.94 e for Systems 1,

2, and 3, respectively. The maximum value remains consistent throughout the

duration of the applied field, over many Rabi cycles. Additionally, the frequency

of the population oscillation is well within the numerical error (O(10−5 a.u.)) of

the expected Rabi frequency for all three systems.

In contrast, deviation from Rabi oscillation behavior is observed for TDHF

propagation. The maximum LUMO population is 0.31, 0.58, and 0.76 for System

1, for fields with strengths of 0.001, 0.003, and 0.005 a.u. applied for 100, 60,
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and 20 fs, respectively. Systems 2 and 3 have closer to full population of the

LUMO, with maximum occupation values of 0.84 and 0.99 for field-strength of

0.003 a.u. However, all systems also show an additional high frequency oscillation

of the population when the LUMO is maximally occupied, indicative of a mixed

state rather than being purely in the S1 state[72, 110], and System 3 also no longer

undergoes full population inversion after three Rabi cycles, which is presumably

due to occupation of higher lying states as we see increased occupation of the

virtual space, see discussion below.

Table 2.2: Rabi frequencies (in ×10−3 a.u.) for field resonant with the S0 → S1

transition, calculated using linear response values for the transition dipole moment

(Ωcalc.) and observed from the real-time electron dynamics (Ωobs.) for Systems 1, 2

and 3, for field-amplitudes of Emax = 0.001, 0.003, and 0.005 a.u.

TDHF
0.001 a.u. 0.003 a.u. 0.005 a.u.

Ωcalc. Ωobs. Ωcalc. Ωobs. Ωcalc. Ωobs.

System 1 1.6 4.6 4.9 9.9 8.1 14.2

System 2 2.6 5.9 7.8 12.4 13.0 17.6

System 3 3.4 6.8 10.2 14.5 17.0 21.1

Another obvious discrepancy in the TDHF electron dynamics from the ideal

Rabi behavior is in the frequency of oscillation and here we find a strong size-

dependent trend. We can quantify the trend by computing the Rabi frequencies

using linear response transition dipole moments (Table 2.1), and comparing this

calculated Rabi oscillation frequency to those deduced from the oscillations of time-

dependent LUMO occupations for applied electric fields with differing amplitudes,

where we extract the Rabi oscillation time by taking the time for LUMO occu-

pation to reach a minimum within the electron dynamics. Comparison of the LR

calculated and RT observed Rabi oscillation frequencies are reported in Table 2.2.

For System 1 in the presence of the weakest field applied here, Emax=0.001 a.u.,

the observed population oscillation has a frequency of 4.6 × 10−3, whereas that

calculated is 1.6×10−3, yielding a deviation of ∼180%. The deviation decreases to
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∼75% with the stronger field of Emax=0.005 a.u. The agreement in the oscillation

frequency is improved with increasing system size, going to deviations of ∼125%

and ∼100% for Systems 2 and 3 with Emax=0.001 a.u. and ∼35% and ∼25% for

Systems 2 and 3 with Emax=0.005 a.u. Overall, the trend suggests that the errors

in transfer of electron density between S0 and S1 in the presence of a resonant

field tend to decrease with increasing system size, implying potentially a similar

increase in accuracy in charge-transfer dynamics.

For a two-level system, increasing the intensity of the applied resonant field in-

creases the frequency of population oscillation. With the three systems propagated

with the TDCIS method, we indeed see the population driven at a faster rate be-

tween S0 and S1, with little population of other states. To directly compare TDCIS

and TDHF maximum populations, we next scan the time for which the external

resonant sinusoidal field is turned on as well as scan the field strength. The range

of field-strengths is between 0.005 and 0.075 a.u., and the number of field-cycles is

between 1 and 10. In Fig. 2.3 the map of maximum virtual MO occupations during

the resonant field application is shown for a range of field strengths and number

of field cycles. The TDCIS method produces nearly uniform maximum occupation

of one electron as long as the field is on long enough and is intense enough.
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Figure 2.3: Maximum virtual MO occupations (sum of LUMO, LUMO+1 and

LUMO+2) within the duration of the applied field obtained from TDCIS (top)

and RT-TDHF (bottom) propagation methods, plotted as a function of field-on

time and field amplitude for Systems 1-3 perturbed with a sinusoidal electric field

using CIS and linear response TDHF S0 → S1 transition-resonant frequencies.

However, this behavior does not hold for the TDHF electron density propaga-

tion, where we instead see much different maximum virtual populations and much

higher populations of the virtual orbital space. For all three systems, we see that

a more intense field leads to higher occupation of the virtual space, well beyond

the single electron occupation of the LUMO. With the field parameters explored,

System 1 approaches nearly double occupation of the LUMO, System 2 has three

electrons in the virtual MOs, and System 3 has five to six electrons in the virtual

space for the more intense fields. The greater population of System 3 could be

expected, given that there are many more excited states that could be occupied

for a larger system. Overall, this population map suggests that for TDHF electron

propagation, applying a field resonant with the S0 → S1 transition populates states

much higher lying than the S1 state, and that the resonant field does not lead to

well-behaved population oscillation between S0 and S1.
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2.3.2.2 Single electron occupation of LUMO: Charge transfer

In this and the next section we analyze the behavior of TDHF electron dy-

namics when the electron occupation is close to that expected for the S1 state. In

order to drive the system away from the initial S0 reference state the molecules

considered were again perturbed with fields using the linear response resonant

frequencies. Field-strengths and durations were chosen by picking trajectories

from the set used to plot Fig. 2.3 that, when the field was removed, had aver-

age HOMO and LUMO occupations close to one for a “clean” S0 → S1 transition

(HOMO→LUMO transition being the major contributor to the S1 state, cf. Table

A.3). Then the field-parameters corresponding to the most stationary evolution

(constant MO occupation(s) with time) were chosen to induce the transition. In

Fig. 2.4 we show the TDHF MO occupations with the chosen field parameters.

For the three molecules, the final occupation is close to one electron in the HOMO

and one electron in the LUMO, as expected for the S1 state (see Fig. A.7 for the

corresponding TDCIS MO occupation and S1 state population plot).

31



2.3. RESULTS AND DISCUSSION CHAPTER 2. SIZE-DEPENDENT ERRORS

Figure 2.4: Time-dependent occupations obtained by projecting evolving molecular

orbitals (MOs) onto the initial set of MOs, plotted for different perturbations with

systems initialized in S0. The amplitudes of the perturbing fields are 0.01, 0.005,

0.005 a.u. and the fields are turned on for 8, 8, 5 cycles (gray area in the plot) for

Systems 1, 2 and 3, respectively.

We next analyze the degree of charge transfer during this population change

by monitoring the time-dependent dipole moment for each molecule. Based on

the stationary state characterization in Table 2.1, we expect the dipole moment

to increase as the population is driven from S0 to S1, with the change in dipole

moment increasing with increasing system size. This is indeed what we see with

both TDCIS and TDHF methods, as shown in Fig. 2.5. For all systems, the

initial dipole moment is identical for both methods as both TDCIS and RT-TDHF

have the same initial HF ground state. The stationary state S1 dipoles are shown

with dashed lines, and we see that the TDCIS time-dependent dipole moment
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approaches this value and remains centered around the S1 dipole moment. There

is very little oscillation for System 1 and System 2, and a small amount of oscillation

for System 3.

Using the dipole moments along the x-axis, we see that the RT-TDHF time-

dependent dipole moment for System 1 approaches the LR-TDHF dipole moment

of -2.84 D, but does not complete the full charge transfer. We can quantify the

extent of charge transferred as (µRT
x,avg−µHF

x,S0
)/(µLR

x,S1
−µHF

x,S0
), where µHF

x,S0
is the HF

ground state dipole moment, µLR
x,S1

is the LR-TDHF S1 state dipole moment and

µRT
x,avg is the average RT-TDHF dipole moment (see Fig. A.6). We find that System

1 completes ∼48% of the charge transfer when starting at -1.12 D and ending at

an average value of ∼-1.97 D. The RT-TDHF dipole moment for System 2 also

approaches the LR-TDHF S1 dipole moment, but again falls short, obtaining an

average value of ∼-3.44 D and completing only ∼64% of the expected charge trans-

fer. Additionally, System 2 shows significant dipole oscillations that are larger in

magnitude than the total change in dipole moment from the ground state. Sim-

ilarly, System 3 does not quite get to the LR-TDHF S1 dipole moment, but the

average dipole moment of ∼-4.57 D yields ∼69% of the charge transfer, so com-

pletes the most of all three molecules. Similar to System 2, the dipole oscillations

of System 3 are very large. These large dipole oscillations suggest a mixed state for

RT-TDHF, whereas nearly identical MO occupations with TDCIS produce very

little dipole oscillations, suggesting a near-stationary state.
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Figure 2.5: Moving-averaged time-dependent dipole moments (along the x-axis)

of the three molecules, obtained from the resonant-frequency field perturbed RT-

TDHF and TDCIS trajectories. The systems are initialized in the state S0. The

dipole moments plotted are averaged over a window of 1 fs, or 500 timesteps, as a

moving average.

Overall, driving the RT-TDHF MO occupation to what would be expected for

the S1 state produces an electron density indicative of some charge transfer, but

not as much as would be expected from the LR-TDHF S1 dipole moments. In

all cases, the RT-TDHF average dipole moment is smaller than the corresponding

LR-TDHF value, showing that the charge transfer is incomplete. There is a size-

dependent trend in the degree of charge transfer, with System 1 showing the largest

disagreement in the dipole moment charge compared to linear response theory, with

some improvement with increasing system size. However, the improvement in the

average dipole moment change for Systems 2 and 3 comes with a large dipole
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oscillation, supporting that the systems are in a mixed state. A mixed state at

equal population of the HOMO and LUMO agrees with the finding in some previous

work by one of the authors that suggests that single electron occupation of the

HOMO and LUMO with single determinant RT-TDHF may be more representative

of a mixed state composed half of the S0 state and half of the doubly excited S2

state, rather than the S1 state.

2.3.2.3 Single electron occupation of LUMO: Peak shifting in absorp-

tion spectra

Peak shifting in absorption spectra when simulating time-dependent electron

dynamics is a violation of the resonance condition. We physically expect that

peaks in the spectrum will have changes in intensity as the population evolves, but

that the energy of the peaks will remain constant rather than shifting in energy.

The unphysical peak shifting phenomenon has been observed when using real-time

TDDFT methods with the adiabatic approximation as the density is perturbed

far from the reference ground state.[38, 39, 68, 69] To determine if there are size-

dependent trends in peak shifting, the chosen molecules are driven from their

initial ground states using frequencies resonant with S0 → S1 transition energies

calculated from LR-TDHF as described in the previous section, resulting in single

occupation of the HOMO and LUMO. The system is then propagated with the

field off for 40 fs, and the resulting field-off dipole moment is Fourier-transformed

to produce the absorption spectrum for each system.
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Figure 2.6: Peak shifts observed in the linear absorption spectra, calculated from

time-dependent dipole moments obtained using RT-TDHF propagation, obtained

from the resonant-frequency-perturbed systems in comparison to those obtained

from the weak delta-pulse-perturbed systems. The frequency used for perturbing

the molecules is resonant with the LR-TDHF S0 → S1 transition.

The resulting spectra are shown in Fig. 2.6, with comparison given to the

spectra computed from a trajectory with the electron density perturbed with a

delta-kick electric field. The LR-TDHF S0 → S1 excitation energies are also shown

in the spectra for reference, with the LR-TDHF energies being in excellent agree-
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ment with the delta-kick absorption spectra peaks. For all three molecules, the

spectra generated from the single electron occupation show significant shifts from

that obtained with the delta-kick pulse, in violation of the resonance condition.

The peak shifts to lower energies by 0.85 eV, 0.62 eV, and 0.57 eV for Systems

1, 2, and 3, respectively, showing a decreasing shift with larger system size. If

the amount of the peak shift is determined as a percentage of the linear response

excitation energy, then both System 1 and 3 show a shift of 9.5% and System 2 a

shift of 8.8%, suggesting no size-dependent trend when examining percentage (See

Table S5 in the SI).

In previous studies of TDDFT peak shifting in small model molecular systems,

the direction and magnitude of the peak shift was found to be directly related

to the S1 → S2 transition energy, where the S0 → S2 transition was dark and

the S2 state was predominantly a doubly occupied LUMO. As the LUMO became

populated, the total electron density became a mixture of the S0 and the S2 states,

with the peak frequency corresponding to the relative mixture of the S0 → S1

transition and the S2 → S1 transition. Thus, the S1 → S2 peak became coupled

to the S0 → S1 peak as the LUMO occupation grew. With the relatively larger

systems considered here it is difficult to characterize a similar S2 state, but with

an estimate of the energies given by the SA-CASSCF method, we know that the

energy of the S1 → S2 transition is likely smaller than the energy of the S0 → S1

transition, causing a shift to lower energies. Additionally, just based on the relative

energies of the SA-CASSCF S0 → S1 and S1 → S2 transitions, we would also expect

a decrease in the degree of peak shifting with increasing system size. Overall, we

find that the magnitude of the peak shift is significant, but it does indeed decrease

as the system size increases, which may be due to the relative energies in the chosen

molecules or due to larger systems being less subject to errors due to the adiabatic

approximation.

2.3.2.4 Basis set size

We also simulated the electron dynamics of the three Systems using the larger

6-31G basis set. The dynamics are generated by keeping the same field-amplitudes
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from the STO-3G calculations, the resonant S0 → S1 frequencies are obtained

from the corresponding linear response TDHF calculations (7.2, 5.8, 4.9 eV for

Systems 1, 2, 3, respectively). The field-times are adjusted to be turned off at the

point where both HOMO and LUMO populations first reach a value close to 1

(see Fig. 2.7). As can be seen by the MO populations at this point, multiple MOs

become occupied, leading to additional complexity in analyzing the composition of

the excited state S1 compared to the STO-3G basis. There is also significantly more

MO occupation oscillation, showing that a stationary S1 state for the three Systems

could not be obtained based on tuning just the HOMO and LUMO occupations.

The peak-shifting is still observed to loosely follow a similar size-dependent trend

of decreasing peak-shifts with increasing system-size (see Fig. 2.8), but it is difficult

to directly compare the degree of shift because the MO occupations vary more for

each system.
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Figure 2.7: TDHF/6-31G time-dependent occupations obtained by projecting

evolving molecular orbitals (MOs) onto the initial set of MOs, plotted for different

perturbations with systems initialized in S0. The amplitudes of the perturbing

fields are 0.01, 0.005, 0.005 a.u. and the fields are turned on for 3.3, 4.1, 3.1 fs

(gray area in the plot) for Systems 1, 2 and 3, respectively.
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Figure 2.8: Peak shifts observed in the linear absorption spectra, calculated from

time-dependent dipole moments obtained using RT-TDHF propagation, obtained

from the linear response S0 → S1 transition resonant-frequency-perturbed Systems

using the 6-31G basis set.

2.3.2.5 Reference wave function

The molecules considered in this study display a strong closed shell character

as seen by the same linear response excitation energy values for the unrestricted

LR-TDHF calculations. The spectrum as the system is driven from the ground
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state also matches with the closed-shell results, with the peak-shifts observed in

spectra obtained from the unrestricted RT-TDHF electron dynamics are of nearly

the same magnitude (within numerical errors) as the restricted case (see Fig. 2.9).

Figure 2.9: Peak shifts observed in the linear absorption spectra, calculated from

time-dependent dipole moments obtained using unrestricted RT-TDHF propaga-

tion, obtained from the unrestricted linear response S0 → S1 transition resonant-

frequency-perturbed Systems using the STO-3G basis set.
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2.4 Conclusions

In this study we simulate the electron dynamics for conjugated molecules of

increasing size with 40, 54, and 68 electrons, which exhibit charge-transfer na-

ture in the S1 state, using both TDCIS and RT-TDHF methods. Both methods

have the same ground state, with TDCIS having correct physical behavior during

field driven processes, whereas the RT-TDHF method has a density-dependent po-

tential, as in RT-TDDFT, and exhibits similar errors as RT-TDDFT within the

adiabatic approximation as the electron density is driven from the ground state.

We here demonstrate for the first time that if the electron density is driven be-

yond the ground state using real time electron density propagation, significant

size-dependent errors are observed.

We resonantly drive electron dynamics to induce Rabi-like oscillatory behavior

in the three molecules, showing that as the system size increases we observe better

agreement between the linear response Rabi frequency and the Rabi frequency

calculated from real-time TDHF dynamics. For the case of resonant excitation

from the S0 state to a population consistent with the S1 state, we find that the

shifts in peaks of the absorption spectra and the degree of charge transfer obtained

from RT-TDHF dynamics show better agreement with the expected LR result with

increasing system size.

Overall, the RT-TDHF propagation of the electron density for the largest of the

three molecules shows the smallest errors from the expected behavior. However,

the errors are still significant for a system with 68 electrons, and it is unclear if the

errors will continue to decrease with increasing system size. Although the larger

system shows more significant state mixing as seen in the large dipole oscillations

and large population of the virtual orbital space, it may be that for charge transfer

and resonantly driven electron dynamics that there is indeed smaller errors in real-

time electron dynamics for large molecular and materials systems. This finding

provides key insight and guidance when performing simulations of the electron

transfer pathways in molecules and materials.
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2.5 Supplemental Materials

Further details presented in the supplementary material (see Appendix A) in-

clude Cartesian coordinates of the three systems studied here, ground and excited

state dipole moments, MO transition coefficients, density differences, and time-

dependent MO occupations.
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Chapter 3

Predicting TDHF dynamics

The failure of the adiabatic approximation in some systems as outlined in Chap-

ters 1, 2 demonstrates that inclusion of memory effects can be important for accu-

rate calculation of time-dependent electronic structure. While complete inclusion

of memory effects can be possible in some small systems[46] it is often a compu-

tationally intensive task. It is near-impossible to achieve in systems of realistic

interest even with rapid expansion of computational capabilities and consequently

the scales at which electronic structure theories can be applied. As a result, the

more affordable single-reference-based time-dependent methods[27, 64, 81–84, 87–

108] and statistical/machine learning models of electronic structure[121–147] have

witnessed ever-expanding applications within quantum chemistry. Statistical mod-

eling of time-dependent propagators have proven effective in learning potential en-

ergy surfaces[148–159], However, statistical modeling of time-dependent electronic

structure remains a relatively unexplored prospect. The Kohn-Sham formalism

of time-dependent density-functional theory (TDDFT) and a special case of gen-

eralized Kohn-Sham TDDFT, the time-dependent Hartree-Fock theory (TDHF),

are commonly used single-reference methods because of their relative affordability

for practical applications. This chapter outlines a computational framework de-

veloped to learn a statistical model of the TDHF Hamiltonian. The performance

of the model in predicting the electron density-matrix dynamics is tested on small

molecular systems, with the low propagation test errors highlighting its transfer-

ability to arbitrary applied electric-field perturbations of the TDHF Hamiltonian.
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The model is shown to propagate the density-matrix well under field-on condi-

tions after learning the field-independent part of the Hamiltonian. The chapter

also briefly outlines the extension of this framework to larger molecular systems,

demonstrating the feasibility of application of such statistical Hamiltonian models

for prediction of electron dynamics in realistic systems.

Author contributions. Sec. 3.1: Karnamohit Ranka was responsible for data-

generation (using a custom-developed version of the GAUSSIAN electronic struc-

ture code[117]); Dr. Harish S. Bhat was responsible for the development (equations

pertaining to the model and model training) and implementation (see Sec. 3.3) of

the statistical learning model. Sec. 3.2: Dr. Prachi Gupta and Karnamohit Ranka

were responsible for data-generation; Drs. Prachi Gupta and Harish S. Bhat were

responsible for the implementation of the statistical learning model.

3.1 Modeling the Hamiltonian

The work[160] introduced in the following sections (reproduced with permis-

sion from the authors) has been carried out in collaboration with Dr. Harish

S. Bhat (Applied Mathematics, UC Merced) and has been published as: Bhat,

H.S., Ranka, K., Isborn, C.M. “Machine Learning a Molecular Hamiltonian for

Predicting Electron Dynamics,” International Journal of Dynamics and Control

8, 1089-1101 (2020). DOI: 10.1007/s40435-020-00699-8.

3.1.1 Introduction

An intriguing new application of machine learning is to predict the dynamical

electronic properties of a molecular system [124, 125, 127], which is essential to

understanding phenomena such as charge transfer and response to an applied laser

field. When discussing such electron dynamics predictions, we must start with the

electronic TDSE:

i
∂Ψ(r, t)

∂t
= Ĥ(r, t)Ψ(r, t). (3.1)
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Here Ĥ(r, t) is the electronic Hamiltonian operator that operates on the time-

dependent many-body electronic wave function Ψ(r, t), where r represents the

spatial and spin coordinates of all electrons. One can derive from Eq. (3.1) an

evolution equation for the time-dependent density operator. This operator equa-

tion can be represented in a finite-dimensional basis, yielding a matrix system of

ordinary differential equations:

i
∂P′(t)

∂t
=

[
H′(t),P′(t)

]
. (3.2)

We call this the quantum Liouville-von Neumann equation. Boldface capital let-

ters denote matrices, representations of operators in particular bases. Primes de-

note representations of operators in an orthonormal basis. Here P′(t) and H′(t)

are time-dependent density and Hamiltonian matrices, respectively. The square

brackets on the right-hand side denote a commutator; for matrices A and B, the

commutator is [A,B] = AB−BA.

Inspecting a particular molecular system, one determines and writes the sys-

tem’s Hamiltonian, a sum of kinetic and potential energy operators. As the Hamil-

tonian includes spatial derivatives within the kinetic energy operator, Eq. (3.1) will

be a partial differential equation (PDE). For an N -electron system, ignoring spin,

the PDE Eq. (3.1) will feature 3N spatial degrees of freedom. As N increases

beyond N = 1, it becomes intractable to solve Eq. (3.1) directly for the time-

dependent many-body wave function Ψ(r, t), even with modern numerical analysis

and high-performance computing. For this reason, molecular electronic structure

and dynamics calculations typically use simplified, mean-field approaches. One

such approach is time-dependent Hartree-Fock (TDHF)[161, 162] theory, which

solves Eq. (3.2) based on a simplified form of the wave function. In HF theory, we

approximate the many-body wave function using a Slater determinant, an anti-

symmetrized product of single-particle orbitals ϕi(r, t), where r now represents the

spatial and spin coordinates of one electron. This approximation leads to a modi-

fied form of the Hamiltonian Ĥ that appears in Eq. (3.1). Within HF theory, we

then call Eq. (3.2) the TDHF equation.

Eq. (3.2), used within TDHF theory or an alternative, similar approach called

time-dependent density functional theory, is used in atomic, molecular, and ma-
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terials calculations to simulate the dynamic electronic response to a perturbation,

including predicting charge transfer and spectroscopic properties [23, 37, 64, 163–

166]. In these physical science settings, one starts with a system of interest, e.g., a

molecule in an applied electric field. The system’s atomic configuration completely

determines the Hamiltonian H′ and therefore the right-hand side of Eq. (3.2).

Starting from an initial condition, the typical workflow is then to numerically

solve Eq. (3.2) forward in time to generate simulations of interest, i.e., to generate

P′(t) for t > 0 for a given perturbation.

Note that we write H′(t) to encapsulate two types of dependence on time t.

First, H′ can depend explicitly on time, through Vext, an external, time-dependent

potential detailed below. Second, within HF theory, even if H′ does not depend

explicitly on time, it is in general a function of the density P′(t). In summary,

H′(t) is shorthand for H′(t,P′(t)). This implies that Eq. (3.2) is in fact a nonlinear

system.

In this work, we address a system identification problem for Eq. (3.2). Our

main contribution is a computational method to estimate the molecular field-free

matrix Hamiltonian H′(t) from time series observations of density-matrices P′(t).

By building a data-driven model of H′, we identify the right-hand side of Eq. (3.2).

We use a linear model for H′, formulate a quadratic loss function that stems from

discretizing Eq. (3.2) in time, and eliminate unnecessary degrees of freedom. Thus

we reduce model training to a least-squares problem. We demonstrate this method

using training data consisting of density-matrices P(t) for three small molecules.

Among other tests, we use the machine-learned (ML) Hamiltonian to propa-

gate, i.e., to solve Eq. (3.2) forward in time. We find that using the ML Hamil-

tonian instead of the exact Hamiltonian results in a small, acceptable level of

propagation error, even on a time interval that is twice the length of the time

interval used for training. We then add a time-dependent external potential to our

machine-learned, field-free Hamiltonian; we propagate forward in time using this

augmented Hamiltonian. For each of the three molecules we consider, the resulting

solutions are in close quantitative agreement with simulations that use the exact

Hamiltonian. In short, our machine-learned Hamiltonian extrapolates well to a
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dynamical setting that differs from that of the training data.

To our knowledge, despite the surge of interest in applying machine learning

to molecular simulation [121–123, 126, 129–144], there are no other procedures

in the literature to estimate molecular Hamiltonians from density-matrix time

series. Our work shares goals with other efforts to learn Hamiltonians, or energy

functions and functionals that are ingredients in Hamiltonians. In this space, we

primarily see efforts to learn classical Hamiltonians from time series [167–175] as

well as efforts to learn quantum Hamiltonians or potentials for time-independent

problems [128, 149, 176–178]. Recently, a neural network method to learn the

exchange-correlation functional in time-dependent density functional theory has

been developed [179]; solutions of the corresponding TDSE are used to train the

networks.

We consider small molecular systems modeled with a small basis set in order to

focus on methodological development and careful analysis of errors. The present

work forms a foundation on which we can build towards studying systems and

theories (such as time-dependent density functional theory) in which the underlying

potentials and functionals have yet to be completely determined. This is the

overarching motivation for pursuing the present work.

We view the task of (i) training with field-off data and (ii) predicting for field-

on systems as an extrapolation task, and we aim to learn the molecular potential

of the TDHF Hamiltonian in Eq. (3.2), and use the learned potential to accurately

predict the dynamics with the field on.

3.1.2 Physical Considerations

3.1.2.1 Time-Dependent Hartree-Fock

In Sec. 3.1.1, we provided a highly summarized conceptual overview of deriving

the TDHF equation from the TDSE. Here we expand on this overview and give

more mathematical details. All equations use atomic units, with e2 = ℏ = me = 1.

An external perturbation, such as an applied electric field, within the Hamiltonian

will give rise to the time-evolution of the wave function that dictates all properties

of a quantum electronic system.
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The details of the TDHF method, including the time-dependent Fock operator,

are provided in Chapter 1, in Sec. 1.3.2. In this work, the external perturbation

to the TDHF Hamiltonian (denoted as H here instead of F) is an electric field

treated classically within the dipole approximation V̂ext(r, t) = E(t) · µ̂(r).
Using the HF orbitals, {ϕi} introduced in Chapter 1 we next define a (reduced

one-body) density operator, ρ̂, that allows us to represent the total density of

electrons[180]:

ρ̂(r, t) =
∑
p

fpϕp(r, t)ϕ
∗
p(r, t) =

∑
p

fp|ϕp⟩⟨ϕp|, (3.3)

where fp is the occupation of orbital ϕp: in a restricted, closed-shell system, fp =

2 (if ϕp is occupied) or 0 (if ϕp is unoccupied). The corresponding density-matrix

(P) is represented in the basis of {ϕi} as:

Pij(t) =

∫
drϕ∗

i (r, t)ρ̂(r, t)ϕj(r, t) = ⟨ϕi|ρ̂|ϕj⟩. (3.4)

We can now write down the Liouville-von Neumann equation in operator form:

i
∂ρ̂(r, t)

∂t
= [Ĥ(r, t), ρ̂(r, t)]. (3.5)

This is an operator equation for the evolution of ρ̂. The time-dependent molecular

orbitals ϕi are often created from a linear combination of basis functions {χµ}, as

ϕi =
∑

µ cµ,i(t)χµ, where cµ,i(t) are the time-dependent coefficients. The elements

of the density-matrix P are given in this basis by (see Eq. (1.18))

Pµν(t) =
∑
p

fpcµ,p(t)c
∗
ν,p(t). (3.6)

We transform P to an orthonormal basis, yielding P′ (see Appendix B). We then

use the Liouville equation for the density operator to write the TDHF equation in

matrix form

i
∂P′(t)

∂t
=

[
H′(t),P′(t)

]
, (3.7)

where H′(t) is the Hamiltonian (or Fock) matrix (cf. Eq. (1.19)). In this work,

primed notations (e.g., H′,P′) are used for matrices in the orthonormal basis and

unprimed notations for matrices (e.g., H,P) in the atomic orbital (AO) basis.
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Although it is straightforward to write down the molecular Hamiltonian if the

atomic positions are known, integration of the Hamiltonian within a given basis

is more challenging and encodes ground and excited state information about the

molecule within that basis. Learning the integrated form of the molecular matrix

Hamiltonian is thus key to determining the electron dynamics.

3.1.2.2 Molecules and Exact Hamiltonian

Here we study three diatomic molecules: H2, HeH+, and LiH. The atoms in

each of these diatomic systems are placed along the z-axis, equidistant from the

origin. The interatomic separations for H2, HeH+ and LiH are 0.74 Å, 0.772 Å,

and 1.53 Å, respectively. These simple molecular systems increase in complexity,

going from a symmetric two-electron homonuclear diatomic, to a two-electron het-

eronuclear diatomic, to a four-electron heteronuclear diatomic. The basis set used

for these calculations is STO-3G, a minimal basis set made of s and p AOs. For H2

and HeH+, this results in two basis functions (a 2 × 2 matrix for P and H), and

for LiH this results in six basis functions (a 6 × 6 matrix for P and H, although

some elements of the matrices are zero due to the linear symmetry of the molecule,

as discussed later).

For each molecule, the electronic structure code (GAUSSIAN[117] in the present

case) provides the integrals that are the components of the exact Hamiltonian ma-

trix H, expressed in the same AO basis set as the density-matrices. Specifically,

we obtain real, symmetric, constant-in-time matrices for the kinetic energy and

electron-nuclear potential energy. We also obtain a 4-index tensor of evaluated

integrals, which we use together with the time-dependent density-matrices P(t) to

compute the electron-electron potential energy term. These ingredients allow us to

compute, for each molecule, the exact Hamiltonian. Electron density propagation

with this exact Hamiltonian, both within the electronic structure code and within

our propagation code, is compared to that from our ML model Hamiltonian.
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3.1.3 Electron density-matrix Data

There are two steps involved in generating the training and test sets of the time

series of density-matrix data:

1. Generating an initial condition (the initial density-matrix).

2. Generating a trajectory using the initial condition and the differential equa-

tion Eq. (3.2) for propagation.

For the first step, the HF stationary state solution is determined self-consistently

within the electronic structure code. The density-matrix corresponding to the

α spin part of the solution, represented in the AO basis, is used as the initial

condition. The second step involves propagating the initial density-matrix using

the TDHF equation.

We performed each of these steps with the GAUSSIAN electronic structure

program[117], using a locally modified development version.

3.1.3.1 Initial Conditions

We have calculated initial density-matrices for field-free and static field condi-

tions. For the field-free calculations, we set the Vext term to 0. For the static field,

Ez = 0.05 a.u. (atomic units). Applying a static field creates an initial electron

density that is not a stationary state of the field-free Hamiltonian and is often

referred to as a delta-kick perturbation.

3.1.3.2 Trajectory Data

The density-matrix from the initial condition calculation is used as the starting

point for generating the real-time TDHF electron dynamics trajectory, i.e. P(t).

For the field-free trajectories, we set Vext to zero during propagation; we use

the density-matrix with the delta-kick perturbation as the initial condition. These

trajectories serve as the training data for the ML Hamiltonian. A perturbation

that is localized at one point in time is, via Fourier transform, maximally spread

out in frequency space. Hence such a perturbation necessarily excites all modes of
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the system. Therefore, by choosing a delta-kick trajectory that excites all modes,

we ensure that it is at least possible in principle to learn the full potential/Hamil-

tonian.

For the field-on trajectories, the field-free initial density-matrix is used and

Vext takes the following form during propagation:

Vext(t) =
∑

i∈{x,y,z}

Ei sin (ωt)µi = 0.05 sin (0.0428t)µz, (3.8)

where the time t, the field-intensity Ei along axis i, and the field-frequency ω are

expressed in a.u. Here the field is applied only along the z-direction and µz is the

z-component of the dipole moment matrix in the AO basis. The sinusoidal field

is switched on for one full cycle (around 3.55 fs) starting at t = 0. These field-

on trajectories test the ML Hamiltonian in a regime quite outside the field-free

training regime.

Using a propagation step-size of 0.002 fs, the total length of each trajectory is

20000 timesteps (thus, each trajectory is 40 fs long). The real-time TDHF imple-

mentation in GAUSSIAN uses as its propagation scheme the modified midpoint

unitary transformation (MMUT) algorithm[23] (see Sec. 1.3.2).

3.1.4 Learning the Molecular Hamiltonian

For a particular molecule, suppose we are given time series {P′(tj)}Nj=0 sampled

on an equispaced temporal grid tj = j∆t. We assume that P′(t), the continuous-

time trajectory corresponding to our time series, satisfies Eq. (3.2). Our goal is

to learn the Hamiltonian H′. Assume that the Hamiltonian contains no explicit

time-dependence - this can be ensured by generating training data with no external

applied field. Then H′ is a Hermitian matrix of functions of P′, the density-matrix.

Our strategy therefore consists of three steps: (i) develop a model of H′ with a

finite-dimensional set of parameters β, (ii) derive from Eq. (3.2) a statistical model,

and (iii) use the model with available data to estimate β.

Note that in order to obtain P′,H′ from P,H, we transform from the AO basis

to its canonical orthogonalization [7]. We do this because the TDHF equation
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Eq. (3.2) holds in an orthonormal basis; the AO basis by itself is not orthonormal

(see Appendix B for details).

Let us split H′ into its real and imaginary parts: H′ = H′
R+iH

′
I . By Hermitian

symmetry, H′ is determined completely by the upper-triangular component of

H′
R (including the diagonal) and by the upper-triangular component of H′

I (not

including the diagonal). If H′ has size M ×M , there are M(M + 1)/2 elements

of H′
R and M(M − 1)/2 elements of H′

I that we must model. Hence there are a

total of M2 real degrees of freedom, which we can represent as an M2 × 1 vector

h′. Note that we can apply this same real and imaginary splitting to P′; since

it is also Hermitian, it can also be determined completely by a real vector p′ of

dimension M2 × 1. Then we formulate the following linear model for h′(p′) - in

what follows, we use ˜ to denote either statistical models or their parameters:

h̃′ = β̃0 + β̃1p
′ (3.9)

Here β̃0 has size M2 × 1, while β̃1 has maximal size M2 ×M2. For the smaller

molecules in our study (H2 and HeH+), where the STO-3G basis set leads to a

dimension of M = 2, we use Eq. (3.9) with no modifications. For LiH, a larger

molecule, we recognize entries of p′ that are identically zero and, to help reduce

the computational effort required for training, modify the basic model Eq. (3.9).

Note: we have explored higher-order polynomial models that, while remaining

linear in the parameters β̃, allow h̃′ to depend nonlinearly on p′. We have also

explored models in which h̃′ is allowed to depend explicitly on time t, including

through Fourier terms such as sin(ωt) and cos(ωt). None of these choices led to any

improvement in validation or test error, so we focus on the linear model Eq. (3.9).

Now that we have Eq. (3.9), we turn our attention to Eq. (3.2). Then we use

a centered-difference approximation to derive from Eq. (3.2) the statistical model

i
P′(tj+1)−P′(tj−1)

2∆t
=

[
H̃′(P′(tj)),P

′(tj)

]
+ ϵj, (3.10)

with ϵj denoting error. With ∥A∥2F =
∑

i,j A
2
ij, the squared Frobenius norm, we

form the sum of squared errors loss function

L(β̃) =
N−1∑
j=1

∥∥∥∥iP′(tj+1)−P′(tj−1)

2∆t
−
[
H̃′(P′(tj)),P

′(tj)

]∥∥∥∥2
F

. (3.11)
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gradient

Hessian

least squares solution

with loss function 

from Eq. (12), compute:

Model Training:

training data: complex, 

self-adjoint density matrices

Input:

flatten complex matrices                

into vectors            , retaining only 

unique, real, nontrivial entries;

form Hamiltonian model:

Model:

trained Hamiltonian

Figure 3.1: Overall training procedure for learning the molecular, field-free Hamil-

tonian. In this paper, for each molecule, we train using time series with N = 1000.

We use this field-free Hamiltonian to propagate for 2N = 2000 steps; see Figs. 3.2

and 3.3. We augment the learned Hamiltonian with an external potential (an elec-

tric field), yielding a field-on Hamiltonian that we use to propagate for 2N = 2000

steps; see Figs. 3.5 and 3.6. Figure courtesy of H.S. Bhat.

3.1.4.1 Reduction to Least Squares

The dependence of L on β̃ = (β̃0, β̃1) is entirely through H̃′. We estimate β̃ by

solving the optimization problem β̃∗ = argminβ L(β̃). Because Eq. (3.9) is linear

in the parameters β̃, we observe that Eq. (3.11) must be quadratic in β̃. So, there

exist constants Q (matrix), c (vector), and L0 (scalar) such that

L(β̃) = 1

2
β̃TQβ̃ + cT β̃ +

L0

2
. (3.12)

Here we can identify c as the gradient of L with respect to β̃ evaluated at β̃ ≡ 0,

and Q as the Hessian of L with respect to β̃. We compute this gradient and Hessian

via automatic differentiation of L. When Q is full rank, we have an exact minimizer

−Q−1c. As Q is typically rank deficient, we replace Q−1 with the Moore-Penrose
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pseudoinverse Q+:

β̃∗ = −Q+c = argmin
β
∥Qβ + c∥2. (3.13)

When (I − QQ+)c = 0, the loss L achieves its global minimum at β̃∗. For each

of our molecules, we find that ∥(I − QQ+)c∥ is small but non-zero. Still, we find

empirically that Eq. (3.13) yields a nearly zero-norm gradient of L, as good as

what can be achieved via other numerical optimization methods.

We have summarized the overall procedure in Fig. 3.1. Eq. (3.13) constitutes

the end of the training procedure. In particular, we use a method in NumPy,

linalg.lstsq, to compute Eq. (3.13), and so we avoid the full computation of

Q+.

3.1.4.2 Error Metrics

Inserting Eq. (3.13) into Eq. (3.12) and using properties of the pseudoinverse,

(Q+)T = (QT )+ = Q+ together with Q+QQ+ = Q+, we obtain the training error

L(β̃∗) = −1

2

[
cTQ+c+ L0

]
,

the value of the loss function at the optimal set of parameters. The training error

measures a local-in-time error, essentially equivalent to starting at the training data

point P′(tj), propagating one step forward in time with our learned Hamiltonian

Eq. (3.9) and comparing with the very next training data point P′(tj+1). Aggre-

gating these one-step errors - squaring and summing their magnitudes - yields the

training error L(β̃∗).

We contrast the training error with the propagation error. Once we have solved

for the optimal parameter values β̃∗, the model Hamiltonian Eq. (3.9) is completely

determined. Using this estimated Hamiltonian with the initial condition P′(0)

from our training time series, we solve Eq. (3.2) forward in time using a Runge-

Kutta scheme, generating our statistical estimates of P̃′(tj) from j = 1 up to

j = 2N = 2000, twice the length of the training data. For the Runge-Kutta

integration, we set absolute and relative tolerances to 10−12. We then define the
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propagation error to be

E =
1

2N

2N∑
j=1

∥∥∥P(tj)− P̃(tj)
∥∥∥
F
. (3.14)

In contrast to the training error, Eq. (3.14) measures the divergence between two

trajectories - P (training) and P̃ (propagation of ML Hamiltonian) - over many

timesteps. Both trajectories have exactly the same initial condition, and hence

j = 0 is excluded from the sum. For j > 0, the two trajectories are computed

using different numerical schemes (modified midpoint for the training data and

Runge-Kutta for the ML Hamiltonian propagation) and different Hamiltonians.

To control for scheme-related error, we compute

ESch =
1

2N

2N∑
j=1

∥∥P(tj)−P(tj)
∥∥
F
, (3.15)

where P(tj) is the result of propagating forward in time using the same Runge-

Kutta scheme with the exact Hamiltonian H′. This exact Hamiltonian is built by

(i) extracting the Hamiltonian H in the AO basis from the electronic structure out-

put and then (ii) transforming H to H′ using the procedure described in Appendix

B. In Eq. (3.15), the two trajectories being compared have the same Hamiltonian

and differ only in the numerical propagation schemes used to generate them. As a

final error metric, we compute

EHam =
1

2N

2N∑
j=1

∥∥∥P̃(tj)−P(tj)
∥∥∥
F
. (3.16)

The two trajectories compared here are computed using the same Runge-Kutta

scheme, but with different Hamiltonians. By the triangle inequality, we have E ≤
ESch + EHam. We may conceptualize this as breaking down the total error into the

error due to different schemes (ESch) and the error due to different Hamiltonians

(EHam).
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3.1.5 Results

Table 3.1: After training, we report the training loss and the norm of its gradient,

along with three forms of propagation error. All results are for the field-free case.

Note that the training error is a sum of squared errors; for each molecule, if we

divide by the training data length N = 103, we obtain mean-squared training

errors that are all on the order of 10−9, indicating approximately 4 decimal places

of accuracy. The propagation errors show a roughly even breakdown into error due

to different schemes versus error due to different Hamiltonians. Data courtesy of

H.S. Bhat.

HeH+ H2 LiH

L(β̃∗) 4.75× 10−6 5.77× 10−6 2.30× 10−6

∥∇L(β̃∗)∥ 4.17× 10−11 3.44× 10−11 6.47× 10−11

E 4.37× 10−3 4.89× 10−3 6.51× 10−3

ESch 2.57× 10−3 2.50× 10−3 2.15× 10−3

EHam 1.81× 10−3 2.40× 10−3 5.41× 10−3
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Gaussian (black), exact-H (blue), and ML-H (red) propagation results

Figure 3.2: HeH+ , (left) and H2 (right) propagation with no field. For both

molecules, we have plotted all unique real and imaginary parts of the time-

dependent density-matrices: actual training data (black), exact Hamiltonian prop-

agation (blue), and ML Hamiltonian propagation (red). Note the close agreement

of all three curves, on a time interval that is twice the length used for training.

Figure courtesy of H.S. Bhat.
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Figure 3.3: LiH propagation with no field. We have plotted all unique real

and imaginary parts of the time-dependent density-matrices: actual training data

(black), exact Hamiltonian propagation (blue), and ML Hamiltonian propagation

(red). For density-matrix elements with small variance, we discern slight disagree-

ment especially at large times. For large-variance density-matrix elements, the

curves are in close agreement. Figure courtesy of H.S. Bhat.
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Figure 3.4: Time-dependent propagation errors in which we compare the train-

ing data against either P̃, the result of propagating the ML Hamiltonian, or P,

the result of propagating the exact Hamiltonian. All calculations on the top (re-

spectively, bottom) are for the field-free (respectively, field-on) problem. For each

molecule, the error incurred by propagating with the ML Hamiltonian is within a

constant factor of the error incurred by propagating with the exact Hamiltonian.

At the final time, all errors are on the order of 10−3, except for the field-on cal-

culations with LiH. The average values of these curves over all time correspond

precisely to E and ESch - see Eqs. (3.14), (3.15), and Table 3.1 for further details.

Figure courtesy of H.S. Bhat.
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3.1.5.1 Training and Propagation Tests

We apply the procedure described in Sec. 3.1.4 to training time series of length

N = 1000 for each of the three molecules HeH+, H2, and LiH. See Sec. 3.1.3

for details on the generation of training data. The only additional pre-processing

step here was to omit the first two timesteps, for each molecule, and to take the

subsequent 1000 timesteps as training data. This was carried out purely to avoid

large numerical time-derivatives ∂P′/∂t associated with the delta-kick perturbation

at t = 0; these time-derivatives form a critical part of our loss function Eq. (3.11).

We emphasize that these training trajectories were generated with no external

potential/field, using delta-kick initial conditions described in Sec. 3.1.3.1.

We report the value of the loss and the norm of its gradient, after training, in

the first two rows of Table 3.1. For each molecule, the training loss is of the order

of 10−6, which corresponds to an accuracy of roughly 4 decimal places. In order to

visualize this accuracy, see Figs. 3.2 and 3.3. For each molecule, we have plotted

each of the non-zero real and imaginary components (note the y-axis labels) that

fully determine the Hermitian density-matrices P′(tj) at each time step tj = j∆t.

In fact, in each panel, there are three curves: in black, we have plotted the actual

training data produced by the electronic structure code; in blue, we have plotted

P(tj), the result of propagating the exact Hamiltonian; and in red, we have plotted

P̃(tj), the result of propagating the ML Hamiltonian.

For HeH+ and H2, (Fig. 3.2), the curves agree to a degree where they can

hardly be distinguished. As we described above, due to the fact that in HF theory

H′ depends on P′, the TDHF equation Eq. (3.2) is nonlinear, and hence all of

these oscillations are nonlinear oscillations. For LiH , (Fig. 3.3), we can discern

some divergence between the result of ML Hamiltonian propagation (red) and

the other two curves, but only for those density-matrix elements with relatively

small variance. The sum of squares loss function Eq. (3.11) is biased in favor

of fitting large-variance components; to avoid this, one could modify Eq. (3.11)

to include weights that are inversely proportional to density element variances.

The errors in Fig. 3.3 consist primarily of oscillations about the black curve; the

magnitudes of these oscillations are small and do not increase dramatically over
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time. The machine-learned Hamiltonian performs well when used to propagate for

2N = 2000 steps, twice the length of the training data used. This hints at being

able to use the machine-learned Hamiltonian to extrapolate beyond the field-free

system used for training.

To understand the different sources of error, we refer to the final three rows of

Table 3.1 together with the left panel of Fig. 3.4. We think of E as the overall RMS

error between the training data P′ and our predicted trajectory P̃, broken down

into two components Esch and EHam as explained above. If our goal is to track the

training data, we incur errors of the same order of magnitude when we use either

the ML Hamiltonian or the exact Hamiltonian. Consistent with Fig. 3.3, we find

the largest gap between exact and ML Hamiltonian propagation for LiH.

Table 3.2: For the field-on problem, we report three forms of propagation error cor-

responding to field-on versions of Eqs. (3.14), (3.15), and (3.16). Here E measures

the difference between (i) propagation of the ML Hamiltonian plus Vext and (ii)

the output of an electronic structure code for the field-on problem; ESch measures

the difference between (ii) and (iii) propagation of the exact Hamiltonian plus

Vext. Finally, EHam measures the difference between (i) and (iii). Overall, we find

that the errors are lower than in Table 3.1, indicating that the ML Hamiltonian

succeeds in solving the field-on problem. Data courtesy of H.S. Bhat.

HeH+ H2 LiH

E 3.59× 10−4 4.97× 10−4 4.86× 10−3

ESch 2.94× 10−4 4.10× 10−4 4.87× 10−3

EHam 7.22× 10−5 1.01× 10−4 1.33× 10−4
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Figure 3.5: HeH+ (left) and H2 (right) propagation with field. The top panel

of each plot gives the applied electric field Eq. (3.8). In subsequent panels, for

both molecules, we plot all unique real and imaginary parts of the time-dependent

density-matrices: actual training data (black), exact Hamiltonian propagation

(blue), and ML Hamiltonian propagation (red). By ML Hamiltonian, we mean

the Hamiltonian trained on the field-free data plus Vext given by Eq. (3.8). Note

the close agreement of all three curves, on a time interval that is twice the length

used for training. This is a true test of whether the learned Hamiltonian can ex-

trapolate to problem settings beyond the one used for training. Figure courtesy of

H.S. Bhat.
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Figure 3.6: LiH propagation with field. We plot all unique real and imaginary

parts of the time-dependent density-matrices: actual training data (black), exact

Hamiltonian propagation (blue), and ML Hamiltonian propagation (red). By ML

Hamiltonian, we mean the Hamiltonian trained on the field-free LiH data plus

Vext given by Eq. (3.8). Note the close agreement of all curves, on a time interval

that is twice the length used for training. This is a true test of whether the learned

Hamiltonian can extrapolate to problem settings beyond the one used for training.

Figure courtesy of H.S. Bhat.
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Figure 3.7: Time-dependent propagation errors in which we compare P̃, the result

of propagating the ML Hamiltonian, with P, the result of propagating the exact

Hamiltonian. All results were computed using the same Runge-Kutta scheme,

isolating the error due to the different Hamiltonians. We include both field-free

and field-on calculations. Note that all results are plotted on a log scale. The

results show that when we propagate both the ML and exact Hamiltonians using

the same scheme, the errors between the two resulting trajectories remain small

even as we take hundreds of timesteps. The average values of these curves over all

time correspond precisely to EHam - see Eq. (3.16) and Table 3.1 for further details.

Figure courtesy of H.S. Bhat.

3.1.5.2 Electric Field Tests

Upon comparing the values of H′(t) and H̃′(t) along the training trajectories,

we find that the ML Hamiltonian does not equal the exact Hamiltonian. To test

whether the ML Hamiltonian can predict dynamics outside the training regime

we augment the ML Hamiltonian with an applied electric field, i.e., the time-

dependent external potential Vext given in Eq. (3.8). Using the same Runge-Kutta
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scheme and tolerances described earlier, we propagate for 2N = 2000 steps and

compare these results with test data produced by an electronic structure code, and

also the results of propagating the exact Hamiltonian, augmented with Vext, via

our Runge-Kutta method.

For a first view of the field-on results, see Table 3.2 and Figs. 3.5 and 3.6. In

particular, the top panels of Fig. 3.5 show the applied electric field; note that it is

switched off after one period. We can immediately discern that the applied field

substantially alters the electron density from the field-off case. Still, in each panel,

we see excellent agreement between all three curves in each plot: the ground truth

solution produced by an electronic structure code (black), the result of propagating

the exact Hamiltonian plus Vext (blue), and the result of propagating the ML

Hamiltonian plus Vext (red). Table 3.2, in which we find errors that are roughly

an order of magnitude lower than those in Table 3.1, confirms that all computed

densities are in close quantitative agreement. All the field-on results are for a time

interval that is twice the length used for training, and training has been conducted

using field-off data only. Overall, we take these results to indicate that the ML

Hamiltonian can indeed extrapolate to conditions beyond the one used for training.

For a deeper understanding of the field-on results, we focus on the right panel

of Fig. 3.4 and Fig. 3.7. In the right panel of Fig. 3.4, we compare (i) the result of

propagating the ML Hamiltonian plus Vext against (ii) the ground truth solution,

the output of the electronic structure code for the field-on problem. We also

compare (ii) with (iii) the result of propagating the exact Hamiltonian plus Vext.

The plots indicate that, for all three molecules and especially for LiH, the error

between (i) and (ii) is almost identical to that between (ii) and (iii). This indicates

that the bulk of the error is due to our use of a Runge-Kutta scheme instead of the

MMUT scheme used in the electronic structure code. To confirm this, we consult

Fig. 3.7, in which we compare (i) and (iii) directly. All solutions here are computed

using the same Runge-Kutta scheme. For each molecule, we see that the errors for

the field-on problems are consistently smaller than those for the field-off problems.

We conclude from these results that the ML Hamiltonian can be used to compute

the electronic response to an applied electric field.
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A short derivation will show that it is not automatic to expect the augmented

ML Hamiltonian to propagate correctly. Let us work in continuous time, to elimi-

nate error due to discrete-time propagation; in this idealized setting, we start with

the statement that both of our field-free Hamiltonians, H′(t) (exact) and H̃′(t)

(ML), satisfy the TDHF equation:

i
∂P′(t)

∂t
= [H′(t),P′(t)]

i
∂P′(t)

∂t
= [H̃′(t),P′(t)].

Subtracting these equations, and defining the error ϵ(t) = H′(t)−H̃′(t), we obtain

[ϵ(t),P′(t)] = 0. (3.17)

Now we augment both Hamiltonians with an external field Vext(t). Let P′′(t)

denote the true density for the problem with the external field. It must satisfy

i
∂P′′(t)

∂t
= [H′(t) +Vext(t),P

′′(t)].

Via H′(t) = ϵ(t) + H̃′(t), we obtain

i
∂P′′(t)

∂t
= [H̃′(t) +Vext(t),P

′′(t)] + [ϵ(t),P′′(t)]︸ ︷︷ ︸
∗

.

As Eq. (3.17) does not in general imply that the starred term vanishes, we can-

not conclude that the true density P′′(t) satisfies the TDHF equation with the

augmented ML Hamiltonian H̃′(t) + Vext(t). Based on the above derivation, if

we solve the TDHF equation using the augmented ML Hamiltonian, we expect to

obtain a time-dependent density that differs from P′′(t). As we are able to use

the ML Hamiltonian successfully on the problem with an applied electric field, we

hypothesize that the error ϵ(t) is structured in a way that enables us to extrapolate

to new external field conditions.

3.1.6 Discussion

Our current work demonstrates that, from a single time series consisting of

time-dependent density-matrices, we can effectively learn an integrated Hamil-

tonian matrix. This ML Hamiltonian can be used for propagation in both the
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field-off and field-on settings. Importantly, training with a single field-free trajec-

tory, our ML Hamiltonian has the potential to predict the electronic response to

a large variety of field pulse perturbations, opening the door to laser-field con-

trolled chemistry. The present work leads to two main areas of future work. The

first area concerns technical improvements to the procedure itself, including (i) to

replace Eq. (3.11) with a weighted loss function, to account for density elements

that oscillate on different vertical scales, (ii) to propagate our ML Hamiltonian

using the MMUT scheme, thus eliminating the kind of error quantified by ESch,

and (iii) to further explore reducing the number of degrees of freedom in the ML

Hamiltonian. The second area concerns improving our overall understanding of

the procedure, and applying it to systems of greater chemical and physical inter-

est. In this area, further work is needed to understand the difference between the

exact and ML Hamiltonians, whether this difference can be decreased by training

on multiple trajectories, and how far outside the training regime we can push the

ML Hamiltonian. We can also seek to learn the Ĥ operator rather than the H

matrix representation, which is of interest for determining the unknown exchange-

correlation potential within time-dependent density functional theory. In this way,

we can push this procedure beyond known physics (as explored here) to systems

where the underlying potential energy terms are not known with sufficient accuracy

or precision.
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3.2 Larger Hamiltonians

The statistical model and methodology developed in the previous work in

Sec. 3.1 has been extended to larger systems, employing regularization and dimen-

sionality reduction techniques to efficiently find the optimal solution, β̃. Summa-

rized details and results of the extended work[181] are described in the proceeding

sections (reproduced with permission from the authors), carried out in collabo-

ration with Drs. Prachi Gupta and Harish S. Bhat (Applied Mathematics, UC

Merced) and published as: Gupta, P., Bhat, H.S., Ranka, K., Isborn, C.M. “Statis-

tical Learning for Predicting Density-Matrix Based Electron Dynamics,” Stat 11,

e439 (2021). DOI: 10.1002/sta4.439

3.2.1 Scaling up the model

Our previous work[160] demonstrated that a statistical model (Eq. (3.9)) could

be optimized using second-order optimization methods, yielding very low propa-

gation errors for molecular systems with up to N = 6 degrees of freedom (DOFs).

However, with increasing number of DOFs (up to N = 29 in the present case),

using second-order methods can become infeasible. The molecules used for scaled

up application of the previous model are H2 (6-31G basis set; 2 electrons with

N = 4 basis functions), HeH+ (6-31G and 6-311++G** basis sets; 2 electrons

with 4 and 14 basis functions, respectively), LiH (6-31G and 6-311++G** basis

sets; 4 electrons with 11 and 29 basis functions, respectively), and C2H4 (STO-3G

basis set; 16 electrons with 14 basis functions).

Using automatic differentiation as in Sec. 3.1 to calculate the Hessian matri-

ces of larger systems results in large computational times for obtaining optimized

models, and the propagation errors are observed to be unacceptably high. These

problems have been overcome by efficient calculation of the gradients and Hessians

of the loss function Eq. (3.11), and using the techniques of ridge regression and

dimensionality reduction (see Appendix B).

69

https://doi.org/10.1002/sta4.439


3.2. LARGER HAMILTONIANS CHAPTER 3. PREDICTING TDHF DYNAMICS

3.2.1.1 Generating Data

For each molecular system, we apply standard electronic structure methods

to compute the ground truth field-free Hamiltonian/Fock matrix H(P) and vari-

ationally determine the ground state electron density-matrix P(t = 0) = P0.

Using H(P) and an initial condition P(0), we compute the system’s trajectory

by numerically solving Eq. (3.7). To numerically solve Eq. (3.7), we use the

MMUT method[11, 23] (see Sec. 1.3.2) and record the data at temporal resolution

∆t = 0.08268 a.u. To determine the Hamiltonian, compute the ground state, and

propagate with the MMUT method, we used a modified version of the GAUSSIAN

electronic structure code [117].

A trajectory is defined as the time series P(t) obtained under a specific set

of conditions; aside from the initial condition, it is determined primarily by the

system’s field-free Hamiltonian H(P), and the an external applied electric field.

1. Field-free trajectory: For the field-free trajectory, we use as an initial

condition a density-matrix for the system perturbed by a Dirac delta at

t = 0. This delta-kick perturbation, perfectly localized in time, is delocalized

in Fourier space; it is designed to excite all oscillatory modes of the system

that couple to the z-direction. With this initial condition, we use an ordinary

differential equation (ODE) solver to numerically integrate Eq. (3.7) forward

in time for M ′ timesteps with fixed time step ∆t. This yields a trajectory on

the time interval [0,M ′∆t]. We refer to this trajectory as field-free because

there is no external forcing for t > 0. We use the first M < M ′ steps of the

trajectory for training, and the subsequent M ′ −M steps for validation.

2. Field-on trajectory: For the field-on trajectory, we set the initial condition

equal to the ground state density-matrix with no perturbations, P(0) =

P0. Now when we numerically solve Eq. (3.7), we use a time-dependent

Hamiltonian H(P, t) = H(P)+Vext(t); this consists of a sum of the true field-

free Hamiltonian and an external, time-dependent potential. This external

forcing term is Vext(t) = Ezsin(ωt)µz, where Ez is the applied electric field

in the z direction (along the main molecular bond axis), ω is the electric field
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frequency, and µz is the z component of the molecular dipole moment. For

this study, the electric field is turned on for one cycle (3.55fs = 147a.u.) at

t = 0, with ω = 0.0428 a.u (an off-resonant frequency corresponding to the

neodymium-YAG laser) and Ez = 0.05 a.u. We use field-on trajectories to

test our learned Hamiltonian.

3.2.2 Results

For the molecular systems listed in Table 3.3, we learn β and determine H̃: for

smaller molecular systems, we train using time series with 2000 points. For larger

systems, we increase the training set size; we determine the number of points by

computing a learning curve, plotting test set propagation error against the number

of training points.[181]

For propagation, we use RK45 ([182]) to solve Eq. (3.7) numerically with the

learned Hamiltonian H̃ for 2000 steps. We do this both for the case of a delta-kick

perturbation (the same as the training data, a field-off perturbation) and for the

case of a sinusoidal electric field perturbation (a field-on perturbation). The field-

on perturbation tests the learned Hamiltonian in a regime that is outside that of

the training set.
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Table 3.3: Molecule, number of elements in the density-matrix, training loss, field-

free and field-on propagation error. The systems (and basis sets) studied are

H2 (with STO-3G), HeH+ (with STO-3G, 6-311++G**), LiH (with 6-31G and

6-311++G**) and C2H4 (with STO-3G). N indicates the dimension of the basis

set. Data courtesy of P. Gupta.

System Training
λ

Training Error

(N2) set size Loss field-free field-on

H2 (16) 1000 0 7.15× 10−6 3.09× 10−3 6.31× 10−4

HeH+ (16) 2000 0 8.99× 10−5 6.50× 10−3 2.53× 10−4

LiH (121) 2000 1.0× 10−8 1.39× 10−5 6.82× 10−3 6.01× 10−3

C2H4 (196) 2000 1.1× 10−6 2.72× 10−2 5.22× 10−2 1.38× 10−3

HeH+ (196) 4000 5.2× 10−12 4.68× 10−5 8.84× 10−3 3.02× 10−4

LiH (841) 9000 5.0× 10−6 4.79× 10−5 1.52× 10−2 1.71× 10−1

The training loss, field-free, and field-on propagation error for six molecular sys-

tems are presented in Table 3.3. The training loss reported here is calculated as

L(β∗) using Eq. (3.11). This training loss measures the squared Frobenius norm

of one-step errors, i.e., the error in propagating to the next time step using the

learned Hamiltonian (via Eq. (B.4) in Appendix B). The small values of the field-

free error, for all molecules, indicate that the Hamiltonian learned by minimizing

Eq. (3.11) can be used for long-term propagation. Even with an applied field,

which is outside the training regime, we obtain propagation errors comparable to

if not less than those in the field-free case, implying that the learned Hamiltonian

generalizes well beyond the training regime.
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Figure 3.8: Propagation error compares ground truth density-matrices against

those computed by numerically solving Eq. (3.7) using the learned Hamiltonian

H̃. The solid lines are for field-off propagation and the dashed lines are with the

field on. Molecules are listed with corresponding size of N2. Figure courtesy of P.

Gupta.

In what follows, we use the phrase propagating the electron density with a

Hamiltonian H to mean solving Eq. (3.7) numerically with that particular H. Let

P′ denote the density-matrices obtained by propagating the electron density with

the learned Hamiltonian - we think of P′ as the prediction that follows from the

learned model. We define the time-dependent propagation error as

E(tj) = ∥P′(tj)−P(tj)∥F , (3.18)

where E(tj) measures the error (at time tj) between P′, the predicted trajectory

obtained by propagating the electron density with the learned Hamiltonian, and

P, the ground truth trajectory. We calculate the mean propagation error for the

propagation interval as

E =
1

Mprop

Mprop∑
j=1

E(tj), (3.19)

where Mprop is the number of timesteps for which we propagate with the learned

Hamiltonian. For this study, Mprop = 2000. In Fig. 3.8 we plot the time-dependent
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propagation errors E(tj) for all molecular systems in both the field-free and field-

on cases. We see that that errors for both cases remain reasonably small for all

molecular systems even after propagating for 150 a.u., which is equivalent to 2000

timesteps.

In Fig. 3.9, we plot, as a function of time, selected nonzero elements of the

density-matrix obtained by propagating the electron density with the learned

Hamiltonian (red), and the ground truth (blue) obtained from a widely-used elec-

tronic structure code[117]. We observe good agreement between predicted and

ground truth trajectories.

Figure 3.9: Real parts of selected elements of ground truth density-matrices (blue)

and density-matrices computed using the learned Hamiltonian H̃ (red) for HeH+ in

the 6-311++G∗∗ basis for the field-free (left) and field-on (right) cases. Note the

close agreement between all curves. Figures courtesy of P. Gupta.
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3.2.3 Outlook

This work achieves the goal of learning a known, approximate, density-depen-

dent TDHF Hamiltonian[36–38, 183] for more realistic molecular systems than we

studied previously[160]. It provides the methodological development for a frame-

work that seeks to model the Hamiltonian and use it to predict the electron dy-

namics. It makes conceptual and practical progress towards developing novel sta-

tistical/machine learning methods for more complex and more realistic theories for

predicting electron dynamics, with a future goal of going beyond the HF theory to

learn new, more accurate density-dependent Hamiltonians.
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Chapter 4

Memory in TDCI methods

From Chapter 1 we know that the time-dependent Kohn-Sham formalism can

produce a single-reference one-electron density corresponding to the exact one-

electron density of an interacting system using an exact XC potential. We also

know that the XC potential depends on not only the history of the system’s evo-

lution but also its initial state. Therefore, to build a Hamiltonian model capable

of propagating a single-reference one-electron density correctly it is necessary to

incorporate history of the density (or density-matrix) evolution. As we use more

accurate TDCI methods to generate time-dependent densities to train the time-

dependent Hamiltonian model it is necessary to understand the amount of history

required under certain conditions of external perturbation and the differences be-

tween different TDCI approximations in terms of history. In this chapter, we aim

to quantify the history required for the TDCIS and TDCASSCF methods to ac-

curately reproduce one-electron density-matrix propagation. This work has been

carried out in collaboration with Dr. Harish S. Bhat (Applied Math, UC Merced)

and Hardeep Bassi (Applied Math, UC Merced; worked on TDCASSCF results).

4.1 Introduction

Time-dependent configuration interaction (TDCI), a set of methods that use

the configuration interaction (CI) ansatz for the wave function in the time-depen-

dent Schrodinger equation (TDSE) (see Chapter 1), can be used to calculate
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accurate excited state as well as time-dependent dynamical properties of multi-

electronic systems, which may be induced externally (e.g. through interaction

with an applied electric field). In particular, TDCI methods have been previously

used to calculate molecular response in intense laser fields[11, 16, 17], to drive

electronic dynamics by applying laser pulses[15, 18], to simulate intramolecular

charge-transfer dynamics[19], etc. One of the desirable properties of this set of

methods is that they can be systematically improved to converge to the exact an-

swer within a finite basis set of one-body electronic wave functions. The accuracy

of TDCI methods depends on the number of electronic configurations (substituted,

spin-adapted determinants, built from a set of one-body electronic spin-orbitals)

used in the wave function ansatz, which scales exponentially as the number of elec-

trons and the corresponding set of one-body orbitals increases. Truncated TDCI

methods can be used to save computational costs, but often a priori information

about the molecular system to be simulated must be used to make such trunca-

tions. The caveats involved in application of truncated TDCI methods, and the

prohibitive cost of generally accurate TDCI methods, eliminate the possibility of

studying electronic systems that might be relevant to large-scale chemical applica-

tions.

TDDFT and TDHF methods can be utilized effectively in such cost-prohibitive

cases, as a means of simulating electronic dynamics at reduced computational

costs[64, 87–89]. Because of the popularity of using these methods for large-scale

chemical applications, mitigating any errors associated with these methods (includ-

ing memory effects) is an important undertaking. Although TDDFT is formally

exact, one very common approximation within TDDFT is the adiabatic approx-

imation. Errors associated with the adiabatic approximation are often termed

memory effects (see section 1.3.3.1); these effects arise from nonlinearity of the

Hamiltonian/Kohn-Sham matrix (with respect to either the propagated density or,

equivalently, the one-body electronic spin-orbitals) used in time-dependent density-

functional theory (TDDFT) methods, and can affect the accuracy of the computed

electronic dynamics[38, 68, 110].

Runge and Gross[34] proved that there exists a one-to-one mapping between
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the time-dependent density of a system and the external potential, justifying the

use of TDDFT to simulate time-dependent electronic phenomena. One of the

primary conditions implied within the formalism of TDDFT is that the evolv-

ing density depends on the initial state of the system and the evolution of the

density. Within the Kohn-Sham formalism[30] of non-interacting particles, this

dependence is incorporated into the exchange-correlation (XC) potential of the

time-dependent Kohn-Sham Hamiltonian. This dependence on the initial state

and the electron density at previous points in time is termed the “memory” of the

potential and in practice this condition is rarely satisfied. Most TDDFT calcula-

tions instead use ground-state XC functionals, which only depend on the instan-

taneous time-dependent density (this is known as the adiabatic approximation).

The adiabatic approximation leads to qualitative errors in the behavior of electron

dynamics: incorrect charge transfer dynamics[46], peak-shifting in time-resolved

absorption spectra[68], and incorrect electron dynamics when driven at resonant

frequencies[110]. Time-dependent Hartree-Fock (TDHF) theory, which can be con-

sidered a special case within the generalized Kohn-Sham formalism of TDDFT[70],

suffers from similar issues related to memory effects. It is worth noting, however,

that TDHF theory in principle does not account for memory, and thus its applica-

tion is restricted to the regime of the adiabatic approximation. On the other hand,

many electronic processes may occur outside this regime, particularly those driven

by resonant frequencies and high intensity external electric fields. It is therefore

important to account for memory effects to yield qualitatively and quantitatively

accurate electron dynamics.

4.2 Density-matrix and memory

In our previous work[160, 181] (see Chapter 3), we used statistical learning

methods to learn a molecular Hamiltonian/Fock matrix as a linear function of the

density-matrix using a time-dependent density-matrix generated from a TDHF

trajectory. This Hamiltonian model accurately predicts electron dynamics for

molecules of varying sizes compared to the ground-truth TDHF trajectories. The
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model is expected to do well for electron dynamics in systems where the electron

density does not change significantly from the reference initial density (e.g. off-

resonant and weak-strength perturbations[38]). However, owing to the drawbacks

of TDHF, used for generating the training data itself, the Hamiltonian trained

using TDHF propagation is prone to similar errors in the regime of resonantly

driven processes. It is thus highly desirable to use propagation data from accu-

rate many-body methods to train Hamiltonian models to predict accurate electron

density-matrices.

However, it is known that different CI ansatzes and different CI methods of

propagation can give quantitatively and qualitatively different dynamics depend-

ing on the level of truncation.[11, 17, 185] Thus, while TDCI methods may not

suffer from the artifacts of memory effects, the accuracy of electron dynamics

itself is still dependent on the extent of electronic correlation recovered by the

method of choice. The memory effects are thus implicitly present in TDCI prop-

agation methods, but the accuracy of reproducing the exact memory effects de-

pends on the level of truncation. One must incorporate memory effects into the

exchange-correlation (XC) potential in the time-dependent Kohn-Sham formalism.

The memory effects comprise initial-state dependence and history dependence.[53]

The initial-state comprises the initial non-interacting Kohn-Sham (KS) wave func-

tion and the initial many-body interacting wave function. The many-body wave

functions, while necessary for memory effects, can be computationally expensive

to calculate. It is thus desirable to model memory effects from just the history of

the evolution of electron density (or density-matrix) evolution, but the dependence

of the Hamiltonian on previous time-steps is not known. However, in the present

case of density-matrix evolution, one can use the fact that the quantity of interest,

the one-electron density-matrix (1-RDM), can be constructed from a many-body

density-matrix, represented in the basis of stationary states of the chosen method’s

time-independent Hamiltonian, using the superposition principle. We propose a

method that takes advantage of this loss of information to measure the “history”

of a TDCI method, which will help inform the construction of the Hamiltonian

model that will learn to predict one-electron density-matrices accurately. In the
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next section we look at how an accurate 1-RDM is calculated, and then introduce

the method to model propagation of TDCI using history of 1-RDM evolution.

4.3 The time-dependent 1-RDM

In order to understand how a 1-RDM accurately evolves in a TDCI method, it

is important to understand the relation between the full many-body density-matrix

as represented in a stationary state basis and the 1-RDM represented in a basis

of one-body functions (atomic orbitals, or AOs, in our case). This relationship is

explained using an example of a 2-electron, 2-orbital system, such as that found

in the hydrogen molecule using a minimal basis set, STO-3G.

4.3.1 The Hartree-Fock (HF) one-electron density-matrix:

2-electron, 2-orbital case

For a 2-electron, 2-orbital system, the restricted HF wave function (formed

using the eigenfunctions of the Fock operator, also called molecular orbitals or

MOs, {ϕ1, ϕ2}, see section 1.2.1) is given by a Slater determinant built from doubly

occupied MOs:

|ψRHF⟩(≡ |ψHF⟩) = Â(ϕ1(r⃗1)α(σ1)ϕ1(r⃗2)β(σ2))

=
1√
2!
· (ϕ1(r⃗1)α(σ1)ϕ1(r⃗2)β(σ2)

− ϕ1(r⃗1)β(σ1)ϕ1(r⃗2)α(σ2)).

(4.1)

The one-electron reduced density (1-RD) for the Hartree-Fock wave function is

defined as:1

ρHF = 2 ·
∫
V

dσ1 · dr⃗2 · dσ2 · |ψHF⟩⟨ψHF| = 2 · |ψHF⟩⟨ψHF|1. (4.2)

The MOs, {ϕi}, are given by a linear expansion of AOs (centered on the nuclei

of respective “atoms” which form the molecule):

|ϕi⟩ = Ci
1 · χ1 + Ci

2 · χ2. (4.3)
1the subscript 1 implies that the integral is performed over all non-spatial variables, and all

the spatial variables but one, thus yielding a one-particle quantity.
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Here {χγ} is a set of AO functions which acts as the basis for matrix representa-

tions of the target 1-RD (HF 1-RD in the current case), and {Ci
γ} is the set of

corresponding linear expansion coefficients of MOs in terms of {χγ} (more com-

monly known as MO coefficients). In a vector representation using the AO basis,

the MO in Eq. (4.3) may be represented as a (row-)vector:

|ϕi⟩ =
[
Ci

1 Ci
2

]
. (4.4)

To get the total one-particle density, ρHF
total(r⃗), corresponding to 2 electrons,

we simply multiply the one-particle reduced density in Eq. (4.2) by the number

of electrons, 2. Upon substituting and integrating (and expanding MOs as linear

combinations of AO basis functions, {χγ}), we get

ρHF = 2 · ϕ1(r⃗1) · ϕ∗
1(r⃗1)

= 2 · ϕ1 · ϕ∗
1

= 2 · (C1
1 · χ1 + C1

2 · χ2) · (C1∗
1 · χ∗

1 + C1∗
2 · χ∗

2).

The Hartree-Fock 1-RDM is defined as follows:

[PHF
AO]γη =

occ. MOs∑
i

ni
occ · Ci

γ · Ci∗
η , (4.5)

where, ni
occ is the occupancy of the ith occupied MO. For solutions of the restricted

HF equations for a closed-shell system, ni
occ is equal to 2 (and either 2 or 1 for

configurations formed using these solutions, cf. Fig. 4.1).

Thus, assuming the MO coefficients are real, we have

ρHF = [PHF
AO]11 · |χ1|2 + [PHF

AO]22 · |χ2|2

+ [PHF
AO]12 · χ1χ

∗
2 + [PHF

AO]21 · χ2χ
∗
1

=
AOs∑
γη

[PHF
AO]γη · χγχ

∗
η.

The one-electron density-matrix formed from the restricted HF wave function

satisfies the following properties:

• Idempotence:

PHFSPHF = 2 · PHF. (4.6)
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where, S2 is the overlap matrix of the basis in which PHF is represented

(usually this is an overlap matrix of the AO basis, SAO).

• The trace of the density-matrix is equal to the number of electrons in the

system, N :

Tr[PHFS] = N. (4.7)

The properties above are also satisfied by the one-electron density-matrices of the

configurations built by substituting occupied MOs with the unoccupied MOs (both

obtained together as a set of solutions to the HF equations).

4.3.1.1 Example: HeH+/STO-3G

The two nuclei are separated by a distance of 0.772 Å. There are two AO basis

functions, both spherically symmetric 1s orbitals with an associated electronic

angular momentum of l = 0. The function χ1(r⃗) is centered on the hydrogen

nucleus, whereas χ2(r⃗) is centered on the helium nucleus.

The MO-coefficient (row-)vectors are

C1 =
[
0.000365(= C1

1) 0.999803(= C1
2)
]

C2 =
[
1.186690(= C2

1) −0.639239(= C2
2)
]
.

(4.8)

The corresponding one-particle reduced HF density-matrix for 2 electrons in

the AO basis, PHF
AO, is

PHF
AO = 2 · C†1C1 = 2 ·

0.000365
0.999803

 · [0.000365 0.999803
]

=

 0.000 0.0008

0.0008 1.9992

 .
The overlap matrix for the AO basis functions used in this case is

SAO =

1.000000 0.538415

0.538415 1.000000

 . (4.9)

2the elements of the overlap matrix, Sχ, for a basis set {χi} are given by [Sχ]ab =
∫
V
dr⃗ ·

χ∗
a(r⃗)χb(r⃗) = ⟨χa|χb⟩.

82



4.3. THE TIME-DEPENDENT 1-RDM CHAPTER 4. MEMORY IN TDCI METHODS

This implies that

Tr[PHF
AOSAO] = 1.999998 ≈ 2,

and

PHF
AOSAOPHF

AO =

 0.000 0.0008

0.0008 1.9992

 ·
1.000000 0.538415

0.538415 1.000000

 ·
 0.000 0.0008

0.0008 1.9992


=

5.32899540× 10−07 1.45971112× 10−3

1.45971112× 10−3 3.99842071

 ≈ 2 · PHF
AO.

4.3.2 The CI one-electron density-matrices: 2-electron, 2-

orbital case

4.3.2.1 CI wave functions

One can, using a reference calculation of a set of occupied and unoccupied

MOs (the set of solutions to Eq. (1.7)), build different configurations, like those

presented in Figs. 4.1.

Figure 4.1: Configurations obtained from the restricted Hartree-Fock solution of a

2-electron, 2-orbital system.

The set of configurations thus obtained can be used as an orthonormal and

complete basis for building the wave function of a stationary state of the system’s

electronic Hamiltonian in the following way:

ΨCI
n = crefn · |ref⟩+

dets.∑
ξ

cξn · |ξ⟩ (4.10)
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where, |ref⟩ is a reference determinant (the Hartree-Fock Slater determinant from

Eq. (4.1) in the current case), and {|ξ⟩} is the set of obtained configurations

(which are substituted determinants built from the reference determinant). If all

such possible substituted determinants are used in the linear expansion given in

Eq. (4.10), the corresponding wave function is referred to as the full CI solution

for state n, given a particular finite basis set of AOs.

Some points need to be considered:

• We consider a set of normalized CI wave functions. Thus,
∑dets.

ξ |cξA|2 = 1

• If we consider the singly-substituted/excited determinants |ψ2β
1β⟩ and |ψ2α

1α⟩,
they are energetically degenerate in absence of a magnetic field. However,

they do not represent a physical wave function as they are not eigenfunctions

of the spin multiplicity operator, Ŝ2, which shares a set of eigenfunctions with

the system’s Hamiltonian. To make them so, one can take a positive linear

combination of them, and a negative linear combination. Upon normalizing

these linear combinations, we get the following expression:

ψ± =
1√
2!
· (|ψ2β

1β⟩ ± |ψ
2α
1α⟩) (4.11)

The wave functions above are said to be spin-adapted, as, being acted upon

by the pure spin-operator Ŝ2, we find that ψ− is a triplet spin eigenfunc-

tion (eigenvalue of 3), and ψ+ is a singlet spin eigenfunction (eigenvalue

of 1). Since we are interested in wave functions of the same multiplicity

as our ground state (singlet), we have no contribution from the negative,

spin-adapted linear combination, ψ−. This also means that the individual

coefficients of |ψ2β
1β⟩ and |ψ2α

1α⟩ are the same (in accordance with the expression

for ψ+, the spin-adapted wave function of singlet multiplicity).

If we have two MOs in a restricted Hartree-Fock (RHF) reference state (both

of which can be doubly occupied), {ϕ1, ϕ2}, the CI wave functions are

|ΨCI
n ⟩ = cHF

n |ψHF⟩+ c2β1βn |ψ2β
1β⟩+ c2α1αn |ψ2α

1α⟩+ c2211n |ψ22
11⟩ (4.12)
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4.3.2.2 CI one-electron density-matrices

Using the ansatz in Eq. (4.10) for a 2-electron system (and representing spin

and spatial variables {(r⃗i, σi)} collectively as {xi}), the 1-RD for, say, CI state n,

is given by

ρCI
nn = 2 · |ΨCI

n ⟩⟨ΨCI
n |1

= 2 ·
∫
V

dσ1 · dx2 ·ΨCI
n (x1,x2)(Ψ

CI
n (x1,x2))

∗.
(4.13)

Similarly, for the transition 1-RD between two CI states, say m and n, we can

write down

ρCI
mn = 2 · |ΨCI

m ⟩⟨ΨCI
n |1

= 2 ·
∫
V

dσ1 · dx2 ·ΨCI
m (x1,x2)(Ψ

CI
n (x1,x2))

∗.
(4.14)

In terms of the one-electron density-matrices and transition density-matrices, the

1-RD (transition or otherwise) can be expressed as

ρCI
nn =

AOs∑
γη

[Pnn,CI
AO ]γη · χγχ

∗
η; (4.15a)

ρCI
mn =

AOs∑
γη

[Pmn,CI
AO ]γη · χγχ

∗
η. (4.15b)

We can get the one-electron density-matrices (calculated for given CI states or

the transition ones calculated between pairs of CI states) as outlined in the next

section.

4.3.2.3 Calculating 1-RDM for a CI state, Pnn,CI
AO , using CI expansion

coefficients and MO-coefficient vectors

From Eq. (4.13), using the fact that the wave functions of any CI state consist

of a linear combination of Slater determinants, we obtain the following expression
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in terms of MO functions (recall notation from Eq. (4.2)):

ρCI
nn = 2 · (|cHF

n |2|ψHF⟩⟨ψHF|1 + |c2α1αn |2|ψ2α
1α⟩⟨ψ2α

1α|1

+ |c2β1βn |2|ψ2β
1β⟩⟨ψ

2β
1β⟩|1 + |c

2211
n |2|ψ22

11⟩⟨ψ22
11|1

+ [cHF
n (c2α1αn )∗|ψHF⟩⟨ψ2α

1α|1 + c.c.]

+ [cHF
n (c2β1βn )∗|ψHF⟩⟨ψ2β

1β |1 + c.c.]

+ [cHF
n (c2211n )∗|ψHF⟩⟨ψ22

11|1 + c.c.]

+ [c2α1αn (c2β1βn )∗|ψ2α
1α⟩⟨ψ

2β
1β |1 + c.c.]

+ [c2α1αn (c2211n )∗|ψ2α
1α⟩⟨ψ22

11|1 + c.c.]

+ [c2β1βn (c2211n )∗|ψ2β
1β⟩⟨ψ

22
11|1 + c.c.]).

(4.16)

An example of evaluation of one of the terms in Eq. (4.16) follows:

|ψHF⟩⟨ψ2α
1α|1 =

∫
V

dσ1 · dx2 · (ψHF(x1,x2))(ψ
2α
1α(x1,x2))

∗

=
1√
2!
· 1√

2!
·
∫
V

dσ1 · dr⃗2 · dσ2 · [(ϕ1(r⃗1)α(σ1)ϕ1(r⃗2)β(σ2)

− (ϕ1(r⃗1)β(σ1)ϕ1(r⃗2)α(σ2)] · [ϕ∗
1(r⃗1)β

∗(σ1)ϕ
∗
2(r⃗2)α

∗(σ2)

− ϕ∗
2(r⃗1)α

∗(σ1)ϕ
∗
1(r⃗2)β

∗(σ2)]

=
1

2
·
∫
V

dσ1 · dr⃗2 · dσ2 · [ϕ1(r⃗1)α(σ1)ϕ
∗
1(r⃗1)β

∗(σ1)

ϕ1(r⃗2)β(σ2)ϕ
∗
2(r⃗2)α

∗(σ2)

− ϕ1(r⃗1)α(σ1)ϕ
∗
2(r⃗1)α

∗(σ1)ϕ1(r⃗2)β(σ2)ϕ
∗
1(r⃗2)β

∗(σ2)

− ϕ1(r⃗1)β(σ1)ϕ
∗
1(r⃗1)β

∗(σ1)ϕ1(r⃗2)α(σ2)ϕ
∗
2(r⃗2)α

∗(σ2)

+ ϕ1(r⃗1)β(σ1)ϕ
∗
2(r⃗1)α

∗(σ1)ϕ1(r⃗2)α(σ2)ϕ
∗
1(r⃗2)β

∗(σ2)].

(4.17)

Due to the orthonormality of the MOs and that of the spin functions, α(σ) and

β(σ), the following identities hold (with V denoting spatial and spin phase-spaces
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below): ∫
V

dr⃗ · ϕi(r⃗)ϕ
∗
j(r⃗) = δij (4.18a)∫

V

dσ · α(σ)β∗(σ) = 0∫
V

dσ · α(σ)α∗(σ) = 1∫
V

dσ · β(σ)β∗(σ) = 1.

(4.18b)

Using Eqs. (4.17), (4.18a) and (4.18b) and integrating the spin-coordinates first,

we find

|ψHF⟩⟨ψ2α
1α|1 =

1

2
·
∫
V

dr⃗2 · [−ϕ1(r⃗1)ϕ
∗
2(r⃗1)ϕ1(r⃗2)ϕ

∗
1(r⃗2)

− ϕ1(r⃗1)ϕ
∗
1(r⃗1)ϕ1(r⃗2)ϕ

∗
2(r⃗2)].

Upon integrating further over r⃗2, we get the following expression:

|ψHF⟩⟨ψ2α
1α|1 = −

1

2
· |ϕ1⟩⟨ϕ2|

= −1

2
· |ϕ2⟩⟨ϕ1|† = |ψ2α

1α⟩⟨ψHF|†1.
(4.19)

Similarly, one can arrive at the following identities:

|ψHF⟩⟨ψHF|1 =
1

2
· (|ϕ1⟩⟨ϕ1|+ |ϕ1⟩⟨ϕ1|) = |ϕ1⟩⟨ϕ1| (4.20a)

|ψ2α
1α⟩⟨ψ2α

1α|1 =
1

2
· (|ϕ1⟩⟨ϕ1|+ |ϕ2⟩⟨ϕ2|) (4.20b)

|ψ2β
1β⟩⟨ψ

2β
1β |1 =

1

2
· (|ϕ1⟩⟨ϕ1|+ |ϕ2⟩⟨ϕ2|) (4.20c)

|ψ22
11⟩⟨ψ22

11|1 = |ϕ2⟩⟨ϕ2| (4.20d)

|ψHF⟩⟨ψ2β
1β |1 =

1

2
· |ϕ1⟩⟨ϕ2| (4.20e)

|ψ2α
1α⟩⟨ψ22

11|1 = −
1

2
· |ϕ1⟩⟨ϕ2| (4.20f)

|ψ2β
1β⟩⟨ψ

22
11|1 =

1

2
· |ϕ1⟩⟨ϕ2| (4.20g)

|ψHF⟩⟨ψ22
11|1 = |ψ22

11⟩⟨ψHF|1 = 0 (4.20h)

|ψ2α
1α⟩⟨ψ

2β
1β |1 = |ψ

2β
1β⟩⟨ψ

2α
1α|1 = 0. (4.20i)
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Substituting using Eqs. (4.19), (4.20), expanding Eq. (4.16), and assuming

{cξi} ∈ R, we get

ρCI
nn = 2 · (|cHF

n |2|ϕ1⟩⟨ϕ1|+
1

2
· |c2α1αn |2(|ϕ1⟩⟨ϕ1|+ |ϕ2⟩⟨ϕ2|)

+
1

2
· |c2β1βn |2(|ϕ1⟩⟨ϕ1|+ |ϕ2⟩⟨ϕ2|) + |c2211n |2|ϕ2⟩⟨ϕ2|

+
1

2
· cHF

n c2α1αn [|ϕ1⟩⟨ϕ2|+ c.c.]

− 1

2
· cHF

n c2β1βn [|ϕ1⟩⟨ϕ2|+ c.c.]

− 1

2
· c2α1αn c2211n [|ϕ1⟩⟨ϕ2|+ c.c.]

+
1

2
· c2β1βn c2211n [|ϕ1⟩⟨ϕ2|+ c.c.]).

(4.21)

Using Eqs. (4.3) and (4.15a), we can write down the following expression for Pnn,CI
AO

in terms of MO-coefficient vectors:

Pnn,CI
AO = 2 · (|cHF

n |2(C
†
1C1) +

1

2
· |c2α1αn |2(C†1C1 + C

†
2C2)

+
1

2
· |c2β1βn |2(C†1C1 + C

†
2C2) + |c2211n |2(C†2C2)

+
1

2
· cHF

n c2α1αn [C†1C2 + C
†
2C1]

− 1

2
· cHF

n c2β1βn [C†1C2 + C
†
2C1]

− 1

2
· c2α1αn c2211n [C†1C2 + C

†
2C1]

+
1

2
· c2β1βn c2211n [C†1C2 + C

†
2C1]).

(4.22)

We obtain the transition density-matrices in a similar manner:

Pmn,CI
AO = cHF

m cHF
n (C†1C1) +

1

2
· c2α1αm c2α1αn (C†1C1 + C

†
2C2)

+
1

2
· c2β1βm c2β1βn (C†1C1 + C

†
2C2) + c2211m c2211n (C†2C2)

+
1

2
· [cHF

m c2α1αn C†1C2 + c2α1αm cHF
n C

†
2C1]

− 1

2
· [cHF

m c2β1βn C†1C2 + c2β1βm cHF
n C

†
2C1]

− 1

2
· [c2α1αm c2211n C†1C2 + c2211m c2α1αn C†2C1]

+
1

2
· [c2β1βm c2211n C†1C2 + c2211m c2β1βn C†2C1].

(4.23)
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4.3.3 TDCI: 1-RDM of an evolving system, Ψ(t)

The time-dependent 1-RD of the system is obtained from the total wave func-

tion propagated using the time-dependent configuration-interaction (TDCI) method.

For a 2-electron system it is given by:

ρ(r⃗1, t) = 2 ·
∫
τ

dσ1 · dx2 · |Ψ⟩⟨Ψ|(x1,x2, t)

= 2 · |Ψ⟩⟨Ψ|1(t).
(4.24)

|Ψ⟩(x1,x2, t) is expressed in terms of the CI wave functions, {|ΨCI
n ⟩}, as a linear

superposition:

|Ψ⟩(x1,x2, t) =
CI states∑

n

an(t) · |ΨCI
n ⟩(x1,x2, t). (4.25)

Here, {an(t)} is a set of time-dependent coefficients, and |ΨCI
n ⟩ is the wave function

for the stationary CI state n. The equation of motion for {an(t)} is given by[11]:

i · ∂an(t)
∂t

=
∑
m

⟨ΨCI
n |Ĥ|ΨCI

m ⟩am(t). (4.26)

Upon expansion of the expression for ρ(r⃗1, t) in terms of the CI densities, two kinds

of terms are obtained:

ρ(r⃗1, t) = ρdiag(r⃗1, t) + ρoff(r⃗1, t) + ρoff(r⃗1, t)
†. (4.27)

where

ρdiag(r⃗1, t) = 2 ·
CI states∑

n

|an(t)|2 · |ΨCI
n ⟩⟨ΨCI

n |1

=
∑
n

|an(t)|2 · ρCI
nn.

(4.28a)

ρoff(r⃗1, t) = 2 ·
CI states∑
m<n

(am(t) · a∗n(t)) · |ΨCI
m ⟩⟨ΨCI

n |1

=
CI states∑
m<n

(am(t) · a∗n(t)) · ρCI
mn.

(4.28b)
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Thus, we obtain our one-electron density-matrix for the evolving system using the

above expressions, and Eqs. (4.15a), (4.15b):

PTDCI
AO,α (t) =

∑
n

|an(t)|2 · Pnn,CI
AO,α +

∑
m<n

(am(t) · a∗n(t)) · P
mn,CI
AO,α

+
∑
m<n

(an(t) · a∗m(t)) · P
mn,CI†
AO,α .

(4.29)

In Eq. (4.29), we have used the direct integration of the TDCI wave function

over all but one of the electronic spatial variables to obtain the 1-RD and the

corresponding density-matrix.

4.4 Measuring memory

The TDCI wave function satisfies the TDSE (see Eq. (1.16), Appendix C).

It can be shown that the matrix form of this equation satisfies the Liouville-von

Neumann equation in the CI basis. Defining the TDCI matrix as P(t) = a⃗(t)⃗a†(t)

(see Appendix C), taking the time derivative of the density-matrix in the CI basis,

and using Eq. (1.15) gives:

i
∂

∂t
P(t) =

∂

∂t
(⃗a(t)⃗a†(t))

= i
∂a⃗(t)

∂t
a⃗†(t) + a⃗(t)i

∂a⃗†(t)

∂t

= He(t)⃗a(t)⃗a
†(t)− a⃗(t)⃗a†(t)He(t)

= [He(t),P(t)] .

Thus, provided we know the CI basis Hamiltonian, He(t), we can employ a unitary

propagation method on the full, CI basis density-matrix, P(t), to get the TDCI-

propagated trajectory.

It has been shown in the preceding section that the time-dependent 1-RDM

can be evaluated in terms of the 1-RDMs between stationary CI states, and P(t):

PCI
ab,AO(t) =

∑
m,n

Pmn(t)Bmnab,AO. (4.30)

Here B is a 4-tensor comprised of AO basis density-matrix elements for the density-

matrix between CI states m and n. We can represent quantities in Eq. (4.30) as a
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matrix equation by vectorizing PCI
AO(t) as vec(PAO)(t) (N2×1, N being the number

of AO basis functions) and P(t) as vec(P)(t) (M2 × 1, M being the number of CI

states), and representing B as a matrix B̃ (N2 ×M2). Then Eq. (4.30) becomes:

B̃Tvec(P)(t) = vec(PAO)(t). (4.31)

The goal here is to solve for vec(P)(t) given vec(PAO)(t). However, Eq. (4.31)

is an underdetermined linear equation as B̃ has more columns than rows, owing to

the general case where a reasonably accurate CI method has many more stationary

states than one-body basis functions (alternatively, linear dependencies between

the rows or columns of B̃ may also yield it rank deficient). One way to solve this

linear system of equations is to add rows to B̃ and use past 1-RDMs:
B̃T

B1
...

Bl

 vec(P)(t) =


vec(PAO)(t)

vec(PAO)(t−∆t)
...

vec(PAO)(t− l∆t)

 . (4.32)

If we call the block matrix on the left-most side M, then for sufficiently large l, M

will have more rows than columns. We can form the Moore-Penrose pseudoinverse

matrix of M:

M+ = (M†M)−1M†. (4.33)

M+ is the left inverse of M. Multiplying both sides by M+ transforms Eq. (4.32)

to

vec(P)(t) = M+


vec(PAO)(t)

vec(PAO)(t−∆t)
...

vec(PAO)(t− l∆t)

 . (4.34)

Thus, given the current and past 1-RDMs and the TDCI Hamiltonian (comprised

of a diagonal matrix containing eigenvalues of the stationary CI states and a CI

basis dipole moment matrix-dependent field term), there is a way to form P(t),

propagate it forward, and then calculate the next 1-RDM in the AO basis.
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To form M, we first evaluate Eq. (4.34) at time (t−∆t):

B̃Tvec(P)(t−∆t) = vec(PAO)(t−∆t). (4.35)

We know that vec(P)(t−∆t) is related to vec(P)(t) via the solution of the Liouville-

von Neumann equation:

P(t) = exp (−iHe(t−∆t)∆t)P(t−∆t) exp (iHe(t−∆t)∆t);

P(t−∆t) = exp (iHe(t−∆t)∆t)P(t) exp (−iHe(t−∆t)∆t).
(4.36)

Vectorizing Eq. (4.36) gives

vec(P)(t−∆t) = (exp (−iHe(t−∆t)∆t)T ⊗ exp (iHe(t−∆t)∆t))vec(P)(t).

where⊗ denotes the Kronecker product of matrices. In conjunction with Eq. (4.35),

we get

B̃T (exp (−iHe(t−∆t)∆t)T ⊗ exp (iHe(t−∆t)∆t))vec(P)(t) = vec(PAO)(t−∆t).

We can define B1 as

B1 = B̃T (exp (−iHe(t−∆t)∆t)T ⊗ exp (iHe(t−∆t)∆t)).

Going back j timesteps gives us:

Bj = B̃T (CT
j ⊗ Aj)

where

Cj = exp (−iHe(t−∆t)∆t) exp (−iHe(t− 2∆t)∆t) . . . exp (−iHe(t− j∆t)∆t),

Aj = exp (iHe(t− j∆t)∆t) exp (iHe(t− (j − 1)∆t)∆t) . . . exp (iHe(t−∆t)∆t).

Thus, matrix M can be built as

M =


B̃T

B̃T (CT
1 ⊗ A1)
...

B̃T (CT
l ⊗ Al))

 . (4.37)
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Once the TDCI density-matrix is built it can be propagated one step ahead

in time using Eq. (4.36), from t to (t + ∆t). The TDCI Hamiltonian, He(t), is

the sum of a diagonal matrix with the eigenvalues of the stationary CI states, and

a field-term, consisting of the electric-field vector dotted with the respective CI

dipole moment matrix (see Appendix C).

The minimum value of l that achieves accurate propagation compared to the

TDCI density-matrix trajectory is considered to be a metric for the amount of

history dependence in the system. This value is expected to change for different CI

ansatzes, and possibly for cases where the adiabatic approximation in RT-TDDFT

is expected to fail (i.e. resonantly driven electron dynamics).

4.5 Preliminary results

Using the method to reconstruct the full TDCI density-matrix in the CI basis

described in the preceding section, the memory content of TDCIS propagation

is measured in terms of the number of previous time-steps needed to propagate

the systems accurately with respect to the TDCIS propagation, termed “memory-

steps”. Molecules examined in the present study include HeH+, H2 (using two

basis sets each, STO-3G and 6-31G), and LiH using the STO-3G basis set. The

dependence on field-frequency of the memory-steps is tested, while fixing other

field-parameters: field-strength, fixed at 0.5 a.u., and duration of applied sinusoidal

field, fixed at 5 cycles. The frequencies chosen for this analysis are 0.1, 0.3, 0.5, 0.7,

0.9, 1.1, 1.3, 1.5, 1.7 1.9 and 2.1 a.u.. For LiH, as only 0.1 a.u. is reasonably close to

being near-resonant, we additionally perform calculations for resonant (0.17 a.u.),

half of the resonant (“offresonant_low”, 0.085 a.u. a.u.) and double the resonant

(“offresonant_high”, 0.34 a.u.) frequencies.

4.5.1 H2, HeH+

For H2 and HeH+ in the case of a restricted reference, the dimensions of the

1-RDM are equal to the dimensions of the CIS basis (which consists of the Hartree-

Fock ground-state wave function and excited states formed from singly substituted
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Slater determinants). Therefore the number of memory-steps, l, is not expected to

be high.3 This is seen for both the STO-3G (which has one singlet excited state

each) and the 6-31G (which has three singlet excited states each) basis sets, for all

the frequency regimes. This is seen for the STO-3G basis set in Figs. 4.2 and 4.3

where the results for near-resonant perturbations are plotted, and the results are

identical for TDCIS/6-31G.
3for l = 0, even when the dimensions of the density-matrices in the two different bases, CIS

and AO, agree, the propagation error is observed to be multiple orders of magnitude higher in
error. This implies that the matrix M is rank deficient and l needs to be at least equal to 1.
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Figure 4.2: Time-dependent density-matrix elements plotted for H2 (with the STO-

3G basis set), perturbed from a Hartree-Fock ground state with field-frequencies

of 0.9 a.u. (top four panels) and 1.1 a.u. (bottom four panels), field-strength of

0.5 a.u. and a duration of 5 sinusoidal cycles. The amount of previous AO basis

1-RDMs used to build the TDCIS density-matrices is 1 yet yields highly accurate

TDCIS propagation.
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Figure 4.3: Time-dependent density-matrix elements plotted for HeH+ (with

the STO-3G basis set), perturbed from a Hartree-Fock ground state with field-

frequencies of 0.9 a.u. (top four panels) and 1.1 a.u. (bottom four panels), field-

strength of 0.5 a.u. and a duration of 5 sinusoidal cycles. The amount of previous

AO basis 1-RDMs used to build the TDCIS density-matrices is 1 yet yields highly

accurate TDCIS propagation like in the H2 case.

96



4.5. PRELIMINARY RESULTS CHAPTER 4. MEMORY IN TDCI METHODS

In contrast, for TDCASSCF(2,2), the history-dependence of propagation er-

ror increases dramatically in comparison to TDCIS for H2 and HeH+ molecules

with the STO-3G basis set. CASSCF contains more than singly-substituted Slater

determinants (in this case, one spin-adapted singly- and one doubly-substituted

determinant) and thus allows for determination of more stationary states (two sin-

glet excited states in total in addition to the ground state), making the dimensions

of the density-matrix in the CASSCF basis bigger than those of the density-matrix

in the CIS basis.

To demonstrate and contrast the history-dependence of TDCASSCF vs TD-

CIS, a plot of mean-squared propagation error between ground-truth and predicted

density-matrices, averaged over the matrix elements, vs memory-steps is presented

in Fig. 4.4 for H2 and Fig. 4.5 for HeH+. The CASSCF method includes electronic

correlation in the ground state compared to the CIS method, which has no corre-

lation in the ground state. This is due to the inclusion of the doubly-substituted

Slater determinant in the manifold of determinants used in linear combinations to

describe the wave functions of the stationary states of the system.[7] Thus, when

a interacting system whose dynamics are governed by the TDCASSCF method

is mapped onto a single-reference system of non-interacting electrons (as is done

in the Kohn-Sham DFT formalism), the time-dependent Hamiltonian of such a

system will include more memory effects into the XC potential than when map-

ping a system described by TDCIS onto a system of non-interacting electrons

described by the Kohn-Sham formalism. This effect is displayed in the increasing

history-dependence when going from TDCIS to TDCASSCF, where the AO ba-

sis density-matrices, while not single-reference, act as proxy for observing memory

effects in a one-particle description of a many-body system of interacting electrons.
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Figure 4.4: Propagation MSE vs memory-steps, plotted for H2/STO-3G prop-

agation data. The amount of history required, l, is much more in the case of

TDCASSCF propagation than in the case of TDCIS propagation to obtain accu-

rate propagation.
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Figure 4.5: Propagation MSE vs memory-steps, plotted for HeH+/STO-3G prop-

agation data. The amount of history required is much more in the case of TD-

CASSCF propagation than in the case of TDCIS propagation to get a low propa-

gation error, just as for H2.

4.5.2 LiH

LiH, being a larger system than H2 and HeH+, has 6 basis functions and 4

electrons. Accordingly, the TDCIS density-matrix in the CIS basis is a 9 × 9

matrix, whereas the 1-RDM in the STO-3G basis is of size 6 × 6. The linear

system of Eq. (4.31) is thus underdetermined for the LiH/STO-3G system within

the TDCIS theory. Consequently, LiH shows more history-dependence relative

to H2 and HeH+ based on the amount of memory-steps required to give accurate

propagation using the TDCIS Hamiltonian. This can be attributed primarily to the

dimension of the CIS basis, which exceeds the number of one-body basis functions

in the STO-3G basis set, while the history also shows some dependence on the

field-parameters. For LiH, three further frequencies were tested: the (S0 → S1)
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resonant frequency of 0.17 a.u., 0.085 a.u., and 0.34 a.u.. Preliminary analysis (see

Fig. 4.6) shows that lower frequency trajectories require much more memory to

describe the dynamics with the field on than higher frequency trajectories to give

accurate propagation, suggesting frequency-dependence of the amount of memory

required to describe electron dynamics accurately.

Figure 4.6: History, in previous time-steps, plotted against the mean-squared prop-

agation error (with the field on) with respect to the time-dependent 1-RDM ob-

tained from TDCIS propagation for the LiH/STO-3G system. Low frequency

trajectory requires a higher amount of history to get accurate propagation.

To explore the field-frequency and field-amplitude dependence of the history,

the total propagation MSEs for different memory-steps were plotted (Figs. 4.7

and 4.8). For exploring the frequency-dependence, a field-amplitude of 0.5 a.u.

and duration of 5 field-cycles were chosen, whereas for propagation MSE vs field-

amplitude plots a field-frequency of 0.1515 a.u. (near-resonant frequency, S0 → S1

gap being 0.16836 Ha for LiH/STO-3G system at the CIS level of linear response)

and field-duration of 5 cycles was chosen. To calculate the propagation MSE, the
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number of timesteps included in the trajectory with the field switched on, Non is

the minimum of either 0.8 fs (Noff = 4000 timesteps) or the duration for which the

field is turned on (Noff = (toff/Deltat)). A further 10000 timesteps are included

with the field turned off.

Fig. 4.7 shows that the general trend is that the propagation error decreases as

the number of memory-steps are increased, and the errors tend to decrease as field-

frequency increases. While the history of l = 10 shows inconsistent results with

respect to this trend, showing much better propagation for field-frequencies near

0.25 a.u. and 0.35 a.u., these are still achieved at a higher-than-resonant field-

frequencies. Fig. 4.8 illustrates that, when it comes to amplitude-dependence,

propagation errors are the least for high-magnitude field-amplitudes in the near-

resonant case. It is possible that the field-dependent terms corresponding to the

low-amplitude near-resonant applied fields are of a comparable magnitude as the

field-independent terms of the Hamiltonian, causing a greater dynamic response

in the density-matrix elements than that due to a high-amplitude near-resonant

field, where the field-dependent term is expected to dominate the dynamics.
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Figure 4.7: Total propagation MSE vs field-frequency, plotted for LiH

TDCIS/STO-3G. The field-duration is 5 cycles, the field-amplitude is 0.5 a.u. and

the propagation MSE is measured from up to 0.8 fs before the field is turned off

(the starting point in the dynamics) to 2 fs after the field is turned off.
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Figure 4.8: Total propagation MSE vs field-amplitude, plotted for LiH

TDCIS/STO-3G. The field-duration is 5 cycles, the field-frequency is 0.1515 a.u.

and the propagation MSE is measured from up to 0.8 fs before the field is turned

off (the starting point in the dynamics) to 2 fs after the field is turned off.

4.6 Future work and outlook

The preliminary results indicate that a history of at least 1 timestep is required

to reproduce accurate electron dynamics (and more for larger systems than H2 and

HeH+). The dependence of history on field-frequency, field-strength, field duration

as well as basis set size, which correlates with how much dynamic electron corre-

lation is incorporated into the electronic structure of the chemical system being

studied, needs to be explored further for the systems mentioned above, and LiH in

particular. Some preliminary findings for the LiH/STO-3G system suggest that

lower field-amplitudes require more history to accurately reproduce the 1-RDM

dynamics, whereas as field-frequency increases, less history is required for accurate
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1-RDM propagation.

This insight will be used together with statistical modeling of the time-depen-

dent Hamiltonian to build better Hamiltonian models that can incorporate history

dependence and to help inform construction of better approximated exchange-

correlation functionals in the future.
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Excited state characterization

Table A.1: Transition energies between S0, S1 and S2 states, calculated using the

state-averaged CASSCF (SA-CASSCF) method for Systems 1, 2, and 3.

SA-CASSCF
∆E (eV)

S0 → S1 S0 → S2 S1 → S2

System 1 9.24 13.21 3.97

System 2 7.23 8.41 1.18

System 3 5.92 7.21 1.29
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Table A.2: Total state and transition dipole moments calculated using linear re-

sponse TDHF and CIS methods for Systems 1, 2, and 3.

LR-TDHF
µ (D)

S0 S1 S0 → S1

System 1 1.23 2.97 4.18

System 2 2.04 4.32 6.72

System 3 2.66 5.50 8.90

CIS
µ (D)

S0 S1 S0 → S1

System 1 1.23 4.02 4.58

System 2 2.04 5.11 7.34

System 3 2.66 6.14 9.62

Table A.3: Coefficients indicating the one-particle excitation MO contributions to

the S0 → S1 transition, calculated using linear response TDHF and CIS methods

for Systems 1, 2, and 3.

LR-TDHF
HOMO HOMO (HOMO-1) (HOMO-1)

→ LUMO → (LUMO+1) → LUMO → (LUMO+1)

System 1 0.698 0.003 -0.028 0.016

System 2 0.695 0.043 0.002 0.094

System 3 0.690 -0.050 -0.008 -0.122

CIS
HOMO HOMO (HOMO-1) (HOMO-1)

→ LUMO → (LUMO+1) → LUMO → (LUMO+1)

System 1 0.685 0.011 0.040 0.019

System 2 0.687 0.032 0.035 0.085

System 3 0.685 -0.039 0.015 -0.116
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Figure A.1: Isodensity surface plots of density-difference between the S1 and S0

states. Isodensity values of ±0.02 (Systems 1, 2) and ±0.01 (System 3) have been

chosen to visually emphasize the density-differences. One can see decreased density

(red) at the nitrogen-center and increased density (blue) along the π-conjugated

carbon-centers.
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Table A.4: Molecular geometries: Cartesian coordinates in Å.
System 1 System 2

C 0.80047 -0.66509 -0.11827
C 2.00688 -0.11078 0.11778
N -0.42044 -0.02054 -0.25877
H 0.72728 -1.74301 -0.25651
H 2.88973 -0.74049 0.12699
H 2.15580 0.95118 0.28205
C -0.46614 1.40700 -0.00277
C -1.60885 -0.76328 0.13660
H 0.28052 1.91830 -0.61906
H -0.26928 1.65331 1.05622
H -1.45497 1.79021 -0.27221
H -1.76538 -0.76587 1.23004
H -1.52099 -1.80168 -0.19844
H -2.49378 -0.32528 -0.33773

C 0.37660 -0.15531 -0.05180
C 1.50144 0.57537 0.08036
C -0.97813 0.36227 -0.02032
H 0.47343 -1.23402 -0.19311
H 2.48410 0.11402 0.05261
H 1.46960 1.65440 0.22000
H -1.09658 1.43430 0.12154
C -2.06288 -0.44237 -0.16982
H -1.91028 -1.51513 -0.28397
N -3.39100 -0.07100 -0.24466
C -3.73854 1.32029 -0.01837
C -4.38724 -1.04687 0.17495
H -3.14914 1.96374 -0.67934
H -3.55937 1.63523 1.02473
H -4.79728 1.46829 -0.25026
H -4.52016 -1.07120 1.27062
H -4.08484 -2.04527 -0.15574
H -5.35254 -0.81147 -0.28573

System 3

C 1.55032 -0.08117 -0.02431
C 2.70292 0.61171 0.07626
C 0.22121 0.49275 0.01714
H 1.60138 -1.16488 -0.14791
H 3.66932 0.11769 0.03696
H 2.70907 1.69304 0.20057
H 0.15369 1.57527 0.13999
C -0.92269 -0.23357 -0.08723
H 0.83280 -1.31531 -0.21347
C 2.26215 0.29895 -0.04219
H -2.36690 1.37438 0.08325
C -3.36380 -0.49404 -0.15776
H -3.22897 -1.57064 -0.25443
N -4.68396 -0.10246 -0.21462
C -5.01069 1.29759 -0.01120
C -5.69630 -1.06006 0.20846
H -4.42155 1.92079 -0.69152
H -4.81439 1.62891 1.02333
H -6.07017 1.45476 -0.23270
H -5.83394 -1.07142 1.30343
H -5.40646 -2.06557 -0.11126
H -6.65587 -0.81510 -0.25893
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Electron dynamics

TDCIS propagation

Figure A.2: Linear absorption spectra corresponding to the TDCIS dipole moments

obtained with weak (pseudo-)delta-kick perturbations, with the systems starting

in states S0 and S1 (CIS stationary states). The spectra show prominent peaks at

the S0 → S1 transition frequency in both cases.
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Figure A.3: Linear absorption spectra corresponding to the TDCIS dipole moments

obtained with strong (pseudo-)delta-kick perturbations, with the systems starting

in states S0 and S1 (CIS stationary states). The peaks at the S0 → S1 transition

frequency remain unshifted as expected.
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Figure A.4: Linear absorption spectra corresponding to the TDCIS dipole moments

obtained with the CIS S0 → S1 transition-resonant field perturbations, with the

systems starting in states S0 and S1 (CIS stationary states). The spectra show

prominent peaks at the field frequency in both cases.
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Real-time TDHF propagation

Figure A.5: Time-dependent LUMO occupations for Systems 1-3 with the field

turned on, with S0 → S1 transition (LR-TDHF) resonant field-frequencies and

field-amplitudes of 0.001 a.u. (top) and 0.005 a.u. (bottom).
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Figure A.6: Moving averaged time-dependent dipole difference, between the linear

response TDHF and real-time TDHF dipole moment values of the S1 state, plotted

as a function of time for S0 → S1 excitation. These values are used to estimate the

final average values of the real-time TDHF S1 dipole moments to quantify charge

transfer. The average RT-TDHF dipole moment is calculated as ∆µx,avg + µHF
x,S0

.
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Figure A.7: TDCIS time-dependent occupations, obtained by projecting evolving

MOs onto the initial set of MOs, and S1 populations for TDCIS propagation plotted

for different perturbations with systems initialized in S0. The amplitudes of the

perturbing fields are 0.01, 0.01, 0.01 a.u. and the fields are turned on for 10, 10, 6

cycles (gray area in the plot) for Systems 1, 2, and 3, respectively.

Table A.5: Peak-shifts, calculated as a percentage of the LR-TDHF S0 → S1

transition energies, obtained as the difference between the RT-TDHF and LR-

TDHF resonant peaks for Systems 1, 2, and 3. The percentage peak-shift value is

unaffected by the system size within a numerical error of ± ∼ 0.05 eV.

TDHF
(eV)

%
ωLR ∆ω

System 1 8.95 0.85 ∼9.5

System 2 7.05 0.62 ∼8.8

System 3 5.99 0.57 ∼9.5
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Modeling the TDHF Hamiltonian

Canonical Orthogonalization

Let S be the overlap matrix with Sµν = ⟨χµ|χν⟩. Because it is real and sym-

metric, we have S = UsUT where s is diagonal and real, and U is a real orthogonal

matrix. Now we form X = Us−1/2. Then, we go from P to P′ via

P′ = s1/2UTPUs1/2.

If H is the Hamiltonian in the AO basis, the Hamiltonian in the orthogonalized

basis is

H′ = s−1/2UTHUs−1/2.

Modeling TDHF Hamiltonian of large systems

Dimensionality Reduction

We consider diatomic molecules in the 6-31G and 6-311++G** bases and the

larger molecule C2H4 in the small STO-3G basis. Let N denote the dimension

of the density and Hamiltonian matrices for each molecule in a given basis set.

For larger basis sets or larger molecules, N2 increases dramatically. We employ
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two tactics to reduce the dimensionality of β. First, we split Eq. (3.9) into two

separate models, such that the parts of h̃ that correspond to real (respectively,

imaginary) components of H̃ depend only on the real (respectively, imaginary)

components of P. This splitting, which can be justified based on physical properties

of the Hartree-Fock Hamiltonian, was not present in our prior work [160]. At time

tj = j∆t, the true field-free Hamiltonian in the AO basis is,

Hj = K −N + V(Pj). (B.1)

Here K is the kinetic energy matrix, N is the electron-nuclear energy matrix, and

V is the density-dependent combination of Coulomb and exchange matrices. Let

Vj = V(P j), then for u ≤ v,

Vj
u,v =

∑
l,s

2Pj
l,s

(
Eu,v,l,s −

1

2
Eu,l,v,s

)
, (B.2)

where E is a four-index tensor in the Coulomb and exchange calculations. Because

this tensor is real, the real elements of the Hamiltonian depend on the real elements

of the density-matrix and the imaginary elements of the Hamiltonian depend on

the imaginary elements of the density-matrix. The second tactic used to reduce

dimensionality is that when forming the flattened vector representation h, we retain

only those entries of H where the corresponding entries of P are not identically

zero [160]. For these linear or flat molecular systems, elements are identically zero

due to molecular symmetry, e.g., if they are constructed from orthogonal basis

functions. In this way, for the largest problem under consideration, we reduce β

from 842×841 to 226×225, reducing the number of coefficients by a factor > 13.9.

Ridge Regression

When we scale our method to molecular systems with large N , we also notice

multicollinearity, e.g., numerous zero eigenvalues in the Hessian of the loss L.

With multicollinear data, the least squares estimator predicts poorly. We eliminate

this problem by using ridge regression, for which we can write the penalized loss

function as Lλ(β) = L(β) + λ∥β∥22; note the use of the 2-norm, as opposed to the
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1-norm in the penalty term for Lasso, i.e., λ∥β∥1 [186]. In this work, we train our

model by computing the ridge regression solution:

βridge = −
(
Q+ 2λI

)−1
cT , (B.3)

where Q is the Hessian of L with respect to β and c is the gradient of L with

respect to β computed at β = 0. For a grid of λ values, we compute βridge on the

training set, and then compute the loss on a validation set that is disjoint from

but equal in size to the training set.

The values of optimal λ are small (O(10−5) to O(10−2)) but the propagation

errors can be significantly lower depending on the λ value. This is rationalized in

terms of accumulation and magnification of small one-step prediction errors (from

Eq. (B.4)) in P(t) over thousands of timesteps used to calculate the propagation

errors, as the commutator term in the Liouville-von Neumann equation depends

quadratically on elements of P(t).

P̃j+1 = Pj−1 − 2i∆t
[
H̃(Pj),Pj

]
(B.4)
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The CI Basis

Time-propagation using stationary CI states

The time-dependent configuration interaction (TDCI) wave-function is given

by the superposition of stationary eigenstates of the exact Hamiltonian (denoted by

Ĥ, from Eq. (2.10) in [7]), a set of CI states (Eq. (4.10)) evaluated such that every

element of this set of wave-functions satisfies the time-independent Schrödinger

equation:

HΨCI
n = EnΨ

CI
n (C.1)

where En is the energy of the nth stationary state, the wave-function for which is

given by ΨCI
n .

The TDCI wave-function can be thus written as (cf. Eq. (4.25)):

Ψ(x1,x2, . . . , t) =
CI states∑

A

aA(t) ·ΨCI
A (x1,x2, . . . ) (C.2)

The density corresponding to the multi-body wave-function above is given as:

ρ(x1,x2, . . . , t) = Ψ(x1,x2, . . . , t)×Ψ†(x1,x2, . . . , t) (C.3)

If we take the set of CI wave-functions as basis functions to represent the TDCI
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wave-function, we can represent Ψ(x1,x2, . . . , t) as a state-vector, Ψ⃗(t):

Ψ⃗(t) =



a0(t)

a1(t)
...

ai(t)
...

af (t)
...


(C.4)

The corresponding density matrix (matrix representation of ρ(x1,x2, . . . , t)) is

given as an outer product of the state-vector:

PTDCI
CI (t) = Ψ⃗(t)× Ψ⃗†(t)

=



|a0|2(t) a0(t)a
∗
1(t) . . . a0(t)a

∗
i (t) . . . a0(t)a

∗
f (t) . . .

a1(t)a
∗
0(t) |a1|2(t) . . . a1(t)a

∗
i (t) . . . a1(t)a

∗
f (t) . . .

...
... . . . ... . . . ... . . .

ai(t)a
∗
0(t) ai(t)a

∗
1(t) . . . |ai|2(t) . . . ai(t)a

∗
f (t) . . .

...
... . . . ... . . . ... . . .

af (t)a
∗
0(t) af (t)a

∗
1(t) . . . af (t)a

∗
i (t) . . . |af |2(t) . . .

...
... . . . ... . . . ... . . .


(C.5)

We may choose to initiate the system by setting one of the CI state-coefficients,

{aA(t)}, equal to 1. In the example of the HeH+ TDCASSCF(2,2)/STO-3G system

used above, we have three singlet CI states in the set of the CI basis functions. We

choose to initiate the system in the S0 state, and is perturbed at a frequency of the

energy difference between S0 and S1. Thus, a0(0) = 1, and the initial state-vector

of the system is given by:

Ψ⃗(0) =


1.0

0.0

0.0

 (C.6)
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The corresponding density matrix in the CI basis is:

PTDCI
CI (0) =


1.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

 (C.7)

The TDCI wave-function satisfies the time-dependent Schrödinger equation

(TDSE) employing the dipole approximation for coupling of the electronic dipole

operator with the applied electric field:

i
∂

∂t
Ψ(x1,x2, . . . , t) =

Ĥ +

{x,y,z}∑
k

Ek(t)× µ̂k

Ψ(x1,x2, . . . , t) (C.8)

We use atomic units here. In matrix representation, the TDSE above can be

re-written as:

i
∂

∂t
Ψ⃗(t) =

(
H+

∑
k

Ek(t)µk

)
Ψ⃗(t) ≡ H̃(t)Ψ⃗(t) (C.9)

where dk is the dipole moment matrix along axis k. It is important to note that the

Hamiltonian matrix, H, is a diagonal matrix in the CI basis, owing to Eq. (C.1).

The solution (first-order term in the Magnus expansion[13]) to Eq. (C.9), for a

discretized time-scale with a time-step ∆t, is given by:

Ψ⃗(t+ 1) = exp (−i∆tH̃(t))Ψ⃗(t) (C.10)

Calculation of the elements of the dipole moment matrix

The ijthe element of µk,CI is defined as:

[µk,CI]ij =
〈
ΨCI

i |µ̂k|ΨCI
j

〉
(C.11)

This quantity can be calculated using matrices (represented in the AO basis) as

follows:

[µk,CI]ij = Tr
(
Pij,CI

AO µk,AO

)
(C.12)

(for a restricted reference, Pij,CI
AO = Pij,CI

AO,α + Pij,CI
AO,β = 2Pij,CI

AO,α.)
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