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Abstract

We present a computational model that can learn event tax-
onomies online from the continuous sensorimotor information
flow perceived by an agent while interacting with its environ-
ment. Our model implements two fundamental learning bi-
ases. First, it learns probabilistic event models as temporal sen-
sorimotor forward models and event transition models, which
predict event model transitions given particular perceptual cir-
cumstances. Second, learning is based on the principle of min-
imizing free energy, which is further biased towards the detec-
tion of free energy transients. As a result, the algorithm forms
conceptual structures that encode events and event boundaries.
We show that event taxonomies can emerge when the algo-
rithm is run on multiple levels of precision. Moreover, we
show that generally any type of forward model can be used,
as long as it learns sufficiently fast. Finally, we show that the
developed structures can be used to hierarchically plan goal-
directed behavior by means of active inference.
Keywords: event models; object interaction; predictive encod-
ing; event segmentation; free energy; active inference; event
taxonomy; concept learning

Introduction
Event segmentation theory (EST) (Zacks & Tversky, 2001;
Zacks, Speer, Swallow, Braver, & Reynolds, 2007) postulates
that humans automatically structure the stream of sensory and
sensorimotor information into meaningful events. Events are
defined as “a segment of time at a given location that is con-
ceived by an observer to have a beginning and an end” (Zacks
& Tversky, 2001, p. 3). This definition is formulated rather
broadly, containing long, abstract events (e.g. ‘going on a
vacation’), more concrete events (e.g. ‘taking a taxi to the
airport’), and very short events (e.g. ‘grasping something’).
Zacks and Tversky (2001) suggest that events can be orga-
nized in event taxonomies, where abstract events consist of
multiple, more concrete events.

In Gumbsch, Kneissler, and Butz (2016) we proposed a
system that learns events and event boundaries from the sen-
sorimotor stream an agent experiences while interacting with
its environment. Following EST, we defined predictive events
(Zacks et al., 2007) as sets of forward models, i.e. inter-
nal models that predict the sensorimotor consequence of an
agent’s actions. Moreover, event boundaries were defined as
the determining features of a situation that typically lead to
a transition between events, that is, between active forward
models (Butz, 2016). Events and event boundaries are en-
coded in a Bayesian fashion, whereby learning and updating
can be closely related to the free energy minimization princi-
ple (Friston, 2009). In addition, though, the detection of event

boundaries, and the consequent possible transition to another
event model, was biased towards the detection of transient
free energy signals. This is closely related to the transient er-
ror principle of Zacks et al. (2007), according to which event
boundaries are characterized by transient increases in the per-
ceptual prediction error. The result is an algorithm that learns
event boundaries from “surprising” perceptions. We have
shown that the algorithm learns a compositional conceptual
structure of the experienced environment. Algorithmically,
the system monitors the current prediction error of the active
forward models and registers surprise when the encountered
prediction error surpasses an adaptive confidence threshold.
As a result, the set of active models is changed, the relevant
features that characterize the encountered event boundary are
identified, the event model transitions are memorized, and
new event models may be learned. We have shown that the
developing model can be used to both predict sensorimotor
changes and plan in a goal-directed manner.

In this paper, we generalize the established mechanism,
making it more noise robust and more generally applicable
beyond linear models and recursive least squares updating.
Moreover, we show that the surprise signal and the noise level
determine the granularity of the event segmentation. As a
result, an event hierarchy can emerge naturally during this
process. Finally, we explicitly derive the goal-directed plan-
ning process from formalizations of active inference (Friston,
2009; Friston et al., 2015), showing that the developing event
and event boundary models are very well-suited for the invo-
cation of inverse, hierarchical, goal-directed behavior.

Architecture
The system architecture S consists of three continuously in-
teracting main components S = {M ,B,P}. The set of event
models M comprises all so-far learned temporal forward
models. At every point in time, a subset of forward models is
active, simulating and predicting the spatiotemporal changes
in the environment. These spatiotemporal simulations are de-
termined in the predicted perceptual space P . Event transi-
tions are detected based on statistical evaluations of the pre-
diction error, detecting free energy transients. They are stored
in the event boundary models B , where each model attempts
to identify the critical sensory features that allow the proba-
bilistic prediction of an event transition.

Figure 1 and Figure 2 show the three components in in-
teraction with the outside environment and the internal moti-
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Figure 1: Illustration of the system during forward model-
ing. An active event model predicts the perception based on
the next action. The predictions are compared with the real
observations and the event model is updated based on the de-
viation. If this deviation exceeds a threshold, a surprise is
detected, the event boundary models are updated, and a tran-
sition in the event models may be triggered. Rewards ex-
perienced during transitions are registered in the motivational
system and are associated with the respective event boundary.

vational system during prediction and during planning mode,
respectively. While interacting with the environment, the ar-
chitecture generates temporal forward predictions and learns
from the registered errors (Figure 1). Inversely, the architec-
ture can generate active inference-driven probabilistic plan-
ning by activating event boundaries as goals and inversely
propagating these goals into P and M , leading to the gen-
eration of goal-directed actions based on the believed knowl-
edge about the environment (Figure 2). Due to the devel-
oping event-based predictive environmental model, hierarchi-
cal, conceptual planning becomes possible.

Model components and functionality
Event models m ∈M are encoded as sets of N forward mod-
els, given an N-dimensional observational space. At a cer-
tain point in time t one event model m(t) is active, with
m(t) = (mν

1,m
ν
2, . . . ,m

ν
N), where mν

i references the currently
active forward model component with respect to a particu-
lar dimension i. Each active forward model mν

i predicts the
changes in one dimension of the sensory observation ∆o′i(t),
given a particular action a(t). After executing a(t), the real
observation o(t +1) is compared with the predicted observa-
tion o′(t +1) = o(t)+∆o′(t). As a result, the active forward
models in m(t) are updated based on the error signal to im-
prove the respective forward models. To maintain minimal
additional statistics, each forward model mν

i stores the mov-
ing average (currently fixed over the last 100 steps) of its pre-
diction error ē(mν

i ), and the moving average of the variance
of that prediction error σ̄2(mν

i ), thus estimating the first three
moments of the model’s predictions.

Event boundaries b ∈ B are represented as top-down gen-
erative predictive models, which probabilistically predict the

perceptual features of the environment that are relevant for
enabling or causing the transition from one particular event ν

to another one µ, i.e. P(o|mν
i → mµ

i ). Thus, the models cur-
rently assume that all relevant information for the occurrence
of an event boundary is observable when an event model tran-
sition occurs. In our current implementation, we model these
event transitions by means of multivariate Gaussians.

As a result, at any point in time t the generative
model of the system is in a particular state s(t) =
{m(t),P(B),o(t),o′(t)}, where m(t) denotes the current vec-
tor of active forward models (winners take all), P(B) denotes
the probability mass over possible event boundaries, and o(t)
and o′(t) denote observation densities.

Simulation and inference-based learning
While interacting with the environment, the system develops
its predictive models M and B , which are updated and im-
proved based on the comparisons between predicted and ac-
tually encountered observations in P (illustrated in Figure 1).
Event models are updated by standard gradient descent tech-
niques, seeing that we face a self-supervised learning prob-
lem. We evaluate recursive least squares as well as delta-rule
based gradient descent-based event models.

Event boundaries are detected by a sudden, significant rise
of the prediction error above the tolerated uncertainty. The
prediction error ei(t) of sensory dimension i at time step t is
considered “surprising” when

ei(t)> ē(mν
i )+θσ̄(mν

i ), (1)

with mν
i denoting the active forward model of dimension i and

θ the confidence-dependent surprise threshold. This thresh-
old essentially determines when an error is considered sig-
nificant depending on the currently estimated standard devia-
tion, i.e. the inverse confidence or precision, of the respective
forward model. It modulates the granularity of the event seg-
mentation performed by our system, which in turn strongly
influences how accurately each ongoing event is predicted.

If a surprise-signal is detected, the system is allowed to
switch the active forward models m(t). The system enters a
searching period during which the next active models are de-
termined. To do so, all existing forward models mi of dimen-
sion i are taken into consideration. For a fixed number of time
steps (10 time steps in our simulations) each model predicts
the change in observation and is updated. After this search
period, if the prediction error is still considered “surprising”
by all existing forward models (determined by Eq. 1), a new
forward model is generated and added to the possible forward
models mi. On the other hand, if the prediction error is not
surprising for at least one existing model, the forward model
mµ

i with the smallest mean error is chosen as the new forward
model for dimension i.

To summarize, our generative model space essentially con-
sists of a set of temporal forward models M and a set of prob-
abilistic transition models B , that is, event boundary models.
To minimize free energy, the validity of each temporal for-
ward model is optimized by gradient descent – maximizing
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Figure 2: Illustration of the system during planning. Based
on the system’s goal, an event boundary is chosen. The re-
quired perception to reach this boundary is compared with the
currently predicted perception and the necessary perceptual
change is computed. If this change can be achieved by the
active event model, a suitable motor command is determined.
Otherwise, a new model to fulfill this change is chosen and
the event boundary to reach this new model is determined,
proceeding recursively.

its predictive accuracy in its applicable subspace. Combined
with its current minimal statistics (first three moments), the
temporal forward models can be viewed as Gaussian den-
sities, which are optimized approximately optimally based
on the incoming sensory feedback (Kneissler, Drugowitsch,
Friston, & Butz, 2015). Additionally, the approach has – as a
structural prior – the assumption that temporal forward mod-
els will be typically applicable during an extended period of
time and that transitions between forward models can be char-
acterized by event boundaries (Butz, 2016). As a result, event
boundaries are optimized such that free energy can be mini-
mized equally well in all subspaces of the environment.

Goal-directed behavior
To invoke goal-directed behavior, we add a simple “motiva-
tional” system to the architecture, which associates model
states with changes in its internal motivational state (Butz,
Shirinov, & Reif, 2010). In the current implementation, we
simplify this part by associating particular motivations with
particular event boundaries, such as the disappearance of food
due to its consumption. Thus, when goal-directed planning is
invoked, a desired event boundary is activated and inversely
propagated through the system’s generative model.

Formally, we can infer the optimal behavioral policy π by
assigning a value to all imaginable policies given the current
beliefs of the model and choosing the best one:

Qτ(π,st) =−Eπ [H(P(oτ|sτ))]−
DKL [P(oτ|sτ)||P(oτ|sG)] , (2)

which is based on (Friston et al., 2015). This formulation es-
sentially states that a policy π, starting at believed situational

system state st , will result in the minimization of free energy
by minimizing (i) predicted uncertainty over the expected un-
folding successive states up to a certain temporal horizon T
into the future τ = {t, t + 1, ...,T} measured by the entropy
H(P(oτ|sτ)) over expected states sτ when pursuing policy π

and (ii) the divergence, formulated as the Kullback-Leibler
divergence DKL, between expected future observations and
desired future observations given a goal state distribution sG,
i.e. P(oτ|sG).

When we fully focus behavior on maximizing reward out-
comes, ignoring uncertainties in our expected progression
through the environment, it is possible to cancel out the term
Eπ [H(P(oτ|sτ))] in DKL, yielding:

Q′τ(π,st) = P(oτ|sτ) lnP(oτ|sG). (3)

As a result, the goal is to maximize the overlap between these
two probability densities.

In our model’s case, P(oτ|sG) will correspond to a particu-
lar model transition mν

g → mµ
g and all other model transitions

will be set to zero for all future points in time τ. As a conse-
quence, the model essentially “wants” to maximize

P(mν
i → mµ

i |sτ), (4)

i.e. the probability of the model transition mν
i → mµ

i . This
corresponds to first maximizing P(mν

i |sτ), that is, being in
model mν

i and then maximizing the likelihood of the transi-
tion, which, in turn, corresponds to maximizing the probabil-
ity of the observation that characterizes the transition, that is,
P(oτ|mν

i → mµ
i ). Thus, given the current state of the model

s(t), the inference process may directly yield motor actions
that attempt to maximize P(oτ|mν

i → mµ
i ) if this seems pos-

sible given the current event model state. However, when
the event model mν

i is currently not active, then a recur-
sive process must start that selects another model transition
P(mν′

i → mν
i ) in order to reach the goal transition by first in-

voking an intermediate transition (illustrated in Figure 2).
As a result, hierarchical, conceptual goal-directed proba-

bilistic inference-based planning is implemented, which in-
vokes event boundaries as subgoals, given the final goal can-
not be reached by the currently available control options. For
example, the model can infer that if it wants to drink out of
a mug but the mug is not in the hands, the mug first needs
to be approached and grasped before it can be transported to
the mouth. Note that the recursive planning procedure, in
principle, can find any sequence of events and event bound-
aries, which are believed to lead to the goal. However, time
and space as well as precision limitations may generally ap-
ply when propagating the active inference signals through the
system architecture S .

Evaluation
To investigate the event segmentation and hierarchical plan-
ning capabilities of our system, we have chosen a testing sce-
nario, in which a simulated agent, operating in continuous
space, can interact with different objects in multiple ways
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Figure 3: The evaluation scenario: Objects (here a sticky ob-
ject) are generated in the white area and vanish when they
enter the black, rectangular mouth area. The blue hand is
able to grasp or attach objects. They are detached from the
hand once they are inside the red “release-area” cube.

(Figure 3). The agent consists of a hand with three shovel-
like fingers and a stationary “mouth”. The hand is able to
move freely through a limited 3-dimensional workspace with
a “release-area”. Three types of differently colored objects
appear in our simulation (two types of “sticky objects” and
one type of “marble”). Sticky objects are big and spiky.
They automatically attach to the hand upon contact. Once
attached they are dragged alongside the hand until they en-
ter the release-area, wherein they detach and drop into the
mouth. We use two types of sticky objects in our simulation:
light objects do not alter the hand movement when attached
to it; heavy ones slow down the hand movement by a factor
of 1

4 . Marbles are small spheres that need to be grasped to be
transported by the hand. To grasp a marble the hand has to
be positioned directly over a marble for a grasping reflex to
activate. The fingers open again when the marble is inside the
release-area. Carrying a marble is usually far more difficult to
predict than dragging a sticky object, since marbles sit loosely
between the fingers and shake while being transported. If an
object is dropped into the mouth, it is consumed and a new
object is generated. In our scenario the system is rewarded
once an object is consumed. Thus, to receive rewards, the
agent has to attach or grasp the present object, transport it to
the release-area, and drop it into the mouth.

In every time step t, a motoric action a(t) is performed
and a sensory observation o(t) is perceived. In particular o(t)
consists of the position of the hand xh,yh,zh ∈ [−100,100],
the position of the object xo,yo,zo ∈ [−100,100], and the po-
sition of the object in a hand-centered frame of reference
xo,h,yo,h,zo,h ∈ [−200,200]. Additionally o(t) contains the
color of the object and boolean information whether the ob-
ject has spikes or not. The motor command a(t) determines
the change in hand position ∆xh,∆yh,∆zh ∈ [−1,1]. Further-
more, a(t) contains the velocity of the object to enable com-
putation of the object’s next position even while it is falling.

To evaluate the system, we investigate how the learning ca-
pabilities depend on the underlying learning rule. Therefore,

we learn the forward models, currently linear prediction mod-
els, both by means of delta rule based gradient descent (learn-
ing rate η = 0.1, momentum term α = 0.9, linear activation
function) as well as by means of recursive least squares (RLS)
(forgetting factor λ = 0.99). RLS essentially implements an
adaptive filter that minimizes the sum of squared residuals re-
cursively in an optimal online fashion. Furthermore, we show
that both the threshold θ and sensory noise influence the gran-
ularity of the determined event segmentations – allowing the
formation of event taxonomies. We performed every simula-
tion 10 times with a different random initialization.

Results
In a first test we analyzed how the underlying learning rule
of the forward models influences the event segmentation and
learning accuracy of the system, comparing stochastic gradi-
ent descent with RLS. During learning, the motoric action
a(t) was determined by an external algorithm, which per-
formed a mixture of random movements and behaviors lead-
ing to a new event. Every simulation consisted of 10 training
and 10 test epochs, during which no forward model updates
took place. In every epoch all three objects were generated
once and manipulated by the agent until they were consumed.

The system was able to identify all existing events in
the simulation (hand moving normally/slowly, object lying,
light/heavy sticky object dragged, marble carried, object
dropped) for both types of forward models used. The average
prediction error of all active forward models for three dif-
ferent events is shown in Figure 4a. For both learning rules
the system improves the prediction accuracy over the train-
ing epochs, but RLS-based learning quickly reaches a much
better prediction. While this result shows that both forward
model learning approaches can be applied, further tests were
conducted using RLS-based learning to speed-up the process.

In a second test we analyzed how the surprise threshold θ

influences the granularity of the event segmentation. Thus
we performed this test with three different surprise thresh-
olds (θ ∈ {10,50,100}). Since we hypothesized that sen-
sory noise also alters the granularity of segmentation, we
additionally varied the amount of Gaussian distributed noise
(σ ∈ {0.001,0.01,0.05,0.1}) that was added to each obser-
vation o(t). Additionally, a small amount of Gaussian dis-
tributed noise (σ = 0.01) was added to each action a(t).

The average prediction error for different events at the low-
est level of noise tested (σ = 0.001) is shown in Figure 4b.
The prediction error of the system greatly varies for the dif-
ferent surprise thresholds. After only a few training epochs,
the prediction accuracy of the active forward models for the
smallest tested surprise threshold is close to the level of sen-
sory noise. In contrast, the mean prediction error of the sys-
tem for the largest threshold is only slightly below 1. For
θ = 50 the prediction error varies among the different events.

To further analyze this difference in prediction accuracy we
examined the number of forward models generated for the
different surprise thresholds and determined which forward
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Figure 4: Mean prediction error of all active forward models
for different events for (a) different forward models without
sensory noise; (b) different surprise thresholds θ using RLS-
based forward models and Gaussian distributed sensory noise
(σ = 0.001). Three events are shown: object lying (♦), light
object dragging (�), and heavy object dragging (◦).

models were most active for which event. In the following,
we first refer to the case with the lowest level of sensory noise
(σ = 0.001). Later, we analyze how a variation in sensory
noise influences the number of event models. All identified
event models are shown taxonomically structured in Figure 5.

For θ = 100 two forward models developed for predicting
object positions. One of these models was active when the
object was lying, the other one was active for the rest of the
time. Thus the system differentiated between a moving and
a still object in terms of object position. For θ = 50 three
models were predicting xo and zo−position. Here the sys-
tem further differentiated between slowly carrying a heavy
object or transporting a light object at normal speed. For
the yo−position one additional model was generated, which
was active when an object was falling. For θ = 10 every
type of transportation was represented by a different forward
model. Hence, for the smallest surprise threshold, the sys-
tem even differentiated between slow and normal hand move-
ments, while for larger values of θ this was not the case.

Sensory noise additionally influences the granularity of the
performed event segmentation. While for low noise levels
(σ = 0.01 and σ = 0.001) the identified events did not dif-
fer, an increase in noise results in a coarser event segmenta-
tion. For σ = 0.05 and θ = 10 the system used one forward
model for every sensory dimension describing hand position
and three forward models to predict changes in object posi-
tion: one for a lying object, one for a transported object, and
one for a falling object. The segmentation further coarsened
for σ = 0.1, where the system only distinguished between
lying and moving objects. If both noise level and surprise
threshold were too large (σ ≥ 0.05, θ ≥ 50) the system did
not detect event transitions at all, such that only one forward
model was generated per sensory dimension.

object moves

object exists

object is
lying

object moves
alongside hand

object moves with
hand normally object is

dragged
slowly

object is
falling

object is
carried

object is
dragged

θ = 10

θ = 10
θ = 100

θ≥ 50
θ≥ 50

θ = 50

θ = 10

Real
Events

Sensory noise levels: σ = 0.1, σ = 0.05, σ≤ 0.01

Figure 5: The event models regarding object position identi-
fied by the system for different surprise thresholds and sen-
sory noise levels. The column on the left states the surprise
threshold θ. The associated sensory noise ∈ [−σ,σ] is illus-
trated by color, as explained by the color legend below the
table. Each row shows the identified event model for this sur-
prise threshold and noise level. The bottom row illustrates the
real, underlying interactions found in our scenario.

In a third test we evaluated the planning capabilities of our
system, using its representation of events and event bound-
aries to generate goal-directed behavior. Furthermore we ana-
lyzed how the granularity of the underlying event representa-
tions influences planning. Thus, we varied granularity by us-
ing three values of the surprise threshold (θ ∈ {10,50,100})
under the low noise condition σ = .001. Every simulation
consisted of 30 training and 30 testing epochs. During each
training epoch one sticky object and one marble were gen-
erated. The goal of the system was to consume the objects.
The system was given a fixed time interval (500 simulation
steps) to interact with each object. If the system failed to re-
move an object in the given time period, an external algorithm
performed the required movements. During testing, we intro-
duced a new object that closely resembled the marble in its
visual characteristics (small, similar color, no spikes). Once
grasped, however, the new object behaved like a sticky object
and attached to the hand. The challenge of successfully in-
teracting with the new object is thus to grasp the object like a
marble (by means of the appropriate event boundary models)
but to then transport the object like a sticky object (with the
help of the appropriate event models).

Already after the first training epoch, the system consumed
50% of the novel objects correctly when a fine-grained event
segmentation was used (θ = 10). From 25 training epochs
onward, the system managed to successfully interact with ev-
ery new object. For θ = 50, the system on average only in-
teracted with 70% of the new objects correctly after all 30
training epochs. For θ = 100, the system did not manage
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to interact with any test object successfully. The difference
in performance can be explained by examining the identified
events (see Figure 5). For θ = 100 the system does not distin-
guish between transporting and dropping an object, such that
the ‘detachment’ event boundary was not learned and thus
could not be used as a subgoal. Similarly, for θ = 50 the sys-
tem does not distinguish between transporting a marble or a
sticky object, such that the ‘grasp’ and ‘attach’ event bound-
aries were mixed – often leading to unsuccessful grasps.

Conclusion
Based on event segmentation theory (Zacks et al., 2007) and
the principle of free energy minimization (Friston, 2009),
we have developed a computational model of hierarchical,
behavior-grounded event segmentation. Our system uses a
strictly statistical measure of “surprise” to segment the sen-
sorimotor stream, which an agent experiences while interact-
ing with its environment, into events encoded by temporal
forward models. In a continuous, noisy simulation, our sys-
tem was able to identify event models characterizing particu-
lar object interactions, e.g. ‘carrying an object’ or ‘dropping
an object’. Furthermore, the environment was structured into
conceptual event and event boundary encodings, which dis-
criminate the critical features that are crucial for the occur-
rence of an event, e.g., ’hand contact’ is required to manipu-
late an object. Due to the event-based architecture, the sys-
tem accomplished to plan hierarchical behavior consisting of
multiple subroutines to reach desired goal states.

We showed that a change in the confidence-threshold,
which determines when a transient free energy signal is con-
sidered “surprising”, affects the granularity of the event seg-
mentation. Depending on this threshold, the system accom-
plished to identify events for concrete object interactions,
e.g. ‘carrying a marble’, or abstract representations of in-
teractions, which subsume several more concrete events, e.g.
‘moving an object’. Similarly, an increase in sensory noise
entailed a coarser segmentation. Thus, based on these simple
statistical principles, a hierarchy can emerge, similar to the
event taxonomy proposed by Zacks and Tversky (2001), in
which abstract events comprise several more concrete events.

The developing hierarchical organization of event models
and consequent event-oriented behavior is closely related to
hierarchical reinforcement learning (Botvinick & Weinstein,
2014; Sutton, Precup, & Singh, 1999). Similar to our event
models, options predict changes in the system’s state when
performing a sequence of behavior without considering low-
level steps. While the composition of options has been shown
to enable the learning of complex behavior when using a pre-
defined set of goals (Kulkarni, Narasimhan, Saeedi, & Tenen-
baum, 2016), our system determines subgoals by itself by the
principle of surprise-detection.

In sum the proposed model offers a general algorithm for
online, hierarchical event segmentation learning given con-
tinuous sensorimotor experiences. Two main learning biases
lead to successful segmentations: first, the partition of the de-

veloping generative model into probabilistic models of events
and transitions between events; second, the focused learning
of event transitions based on transient free energy signals. Be-
sides the emergence of event taxonomies, we also showed that
the developing conceptual structures can be learned to invoke
hierarchical, goal-directed planning and behavioral control.

Our current research aims at integrating boundedly com-
plex, non-linear forwards models and recurrent context in-
formation. Such enhancements will be necessary to handle
non-uniform motion patterns and partially only indirectly ob-
servable causes of event transitions robustly. As a result, we
hope to be able to show the more general and more scalable
applicability of the principles we have introduced herein.
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