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ER and Golgi Trafficking in Axons, Dendrites, and Glial 
Processes

Shahrnaz Kemal1,*, Hunter S. Richardson1,*, Eric D. Dyne1, Meng-meng Fu1,2

1 NINDS (National Institute of Neurological Disorders and Stroke), National Institutes of Health, 
Bethesda, MD 20893, USA

Abstract

Both neurons and glia in mammalian brains are highly ramified. Neurons form complex neural 

networks using axons and dendrites. Axons are long with few branches and form presynaptic 

boutons that connect to target neurons and effector tissues. Dendrites are shorter, highly branched, 

and form post-synaptic boutons. Astrocyte processes contact synapses and blood vessels in order 

to regulate neuronal activity and blood flow, respectively. Oligodendrocyte processes extend 

toward axons to make myelin sheaths. Microglia processes dynamically survey their environments. 

Here, we describe the local secretory system (ER and Golgi) in neuronal and glial processes. We 

focus on Golgi outpost functions in acentrosomal microtubule nucleation, cargo trafficking, and 

protein glycosylation. Thus, satellite ER and Golgi are critical for local structure and function.
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Introduction

Brain cells, including glia and neurons, are ramified in order to perform specific functions, 

such as the formation of synapses for electrical signaling by neurons, the ensheathment and 

wrapping of myelin sheaths around axons by oligodendrocytes, and association with blood 

vessels by astrocytes. Due to these specialized shapes and structures, these cells require 

special pathways for protein secretion.

The classic secretory pathway starts in the endoplasmic reticulum (ER) and proceeds 

through the Golgi network. Rough ER (RER) are sections of ER with attached ribosomes 

while smooth ER (SER) are sections without ribosomes. Ribosomes on the ER membrane 

can translate mRNA from the cytoplasm into proteins in the ER lumen. Transmembrane 
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proteins are similarly translated on RER, but intercalate through translocon channels before 

integrating into the ER membrane. Properly folded proteins leave the ER at ER exit-sites 

(ERES) via COPII (coat protein complex II) vesicles. COPII proteins soon fall off and these 

vesicles use SNAREs (Soluble NSF attachment protein receptors) to merge into vesicular 

tubular clusters called ER–Golgi intermediate compartments (ERGICs). At the same time, 

escaped ER proteins bud off in COPI vesicles that are transported back to the ER. Proteins 

from the ERGIC then head to the Golgi for further glycosylation and proteolysis, traversing 

multiple layers of the cis-Golgi network (CGN), the medial Golgi cisternae, and then the 

trans-Golgi network (TGN).

At the TGN, exiting proteins can diverge along several different processing pathways based 

on their function and localization. First, Golgi-derived vesicles containing secreted proteins 

or transmembrane proteins can bud off then fuse with the plasma membrane; this results in 

either releasing secreted proteins into the extracellular milieu or integrating transmembrane 

proteins into the plasma membrane. Second, secretory vesicles packed with secreted proteins 

can be stored near the plasma membrane or in endosomes until a stimulus arrives. Third, 

proteins destined for endosomes and lysosomes are modified with an oligosaccharide 

signal (mannose 6-phosphate), then exit the TGN in clathrin-coated vesicles. Thus, the 

secretory pathways that are taken through the ER and Golgi are determined by the function, 

destination, and fate of individual cargo proteins.

In the subsequent sections, we will describe specialized pathways in neuronal axons and 

dendrites for the delivery of specialized cargos. These pathways include somatodendritic 

sorting as well as diverse pathways involving satellite ER and Golgi organelles found 

outside the cell body.

Axonal versus somatodendritic targeting

Following secretion from the cell body TGN, neuronal proteins can be targeted toward 

one of two distinct compartments: the axonal region and the somatodendritic region 

(cell body and dendrites). These two regions are separated by the pre-axonal-exclusion 

zone (PAEZ), a region within the axon hillock where organelles or cargos destined for 

transport down the axon associate with distinct motor proteins specialized for long-distance 

transport (Figure 1) [1]. Past the PAEZ, the axon can be further divided into an immediate 

proximal region known as the axon initial segment (AIS). The AIS functions as a barrier 

for transport and somatodendritic cargos typically cannot penetrate the AIS due to their 

selective association with specific kinesins [2–4]. Interestingly, a new paper demonstrated 

that the somatodendritic cell-adhesion molecule neuroligin may transiently insert at the 

plasma membrane of the AIS [5], which suggests that the boundary between axonal and 

somatodendritic domains may be at distal end of the AIS rather than the PAEZ for certain 

cargos. Nevertheless, these studies indicate that the PAEZ and AIS functionally divide the 

neuron into axonal and somatodendritic domains.

Several distinct pathways allow cargos to be sorted either to the axon or to the 

somatodendritic domain. Cargos destined for the axon can either be directly delivered 

to the axon or undergo selective retention, which is also referred to as transcytosis. In 

Kemal et al. Page 2

Curr Opin Cell Biol. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcytosis, an axonally targeted protein, like VAMP2 or NgCAM, can first be sorted to the 

somatodendritic domain, then subsequently endocytosed so that it ultimately accumulates 

in axons [6–8]. For the transcytosed cargo TrkA, an NGF (nerve growth factor) receptor, 

somatodendritic sorting is essential for differentiating between activated phosphorylated 

TrkA and naive non-phosphorylated TrkA so that naive TrkA is selective transported down 

the axon [9]. On the other hand, cargos destined for the somatodendritic domain, like 

transferrin receptor, are excluded from vesicles bound for the axon via binding to the adaptor 

protein-1 (AP-1) complex. AP-1 is a clathrin adaptor and recognizes tyrosine-based and 

dileucine-based motifs in cytoplasmic domains of somatodendritic proteins. This interaction, 

likely at the level of the TGN, results in selective sorting of somatodendritic proteins [10]. 

Thus, direct sorting of axonal and somatodendritic proteins as well as transcytosis function 

together to maintain distinct axonal and somatodendritic domains.

Satellite ERs in axons and dendrites

Compared to a non-ramified cell, the neuron differs in its secretory pathways, because 

satellite organelles are distributed along axons and dendrites [11]. Specifically, satellite ER 

organelles are found in both axons and dendrites.

In axons, both SER and RER are present and may have important functions for protein 

folding and local translation. Early immunostaining studies in hippocampal neurons 

visualized SER present along both axons and dendrites using G6Pase and HMG-CoA 

reductase antibodies. Additional staining against protein disulfide isomerase (PDI), which 

can act as a chaperone, indicates that SER in the axon may be involved in protein folding 

[12]. In dorsal root ganglion (DRG) sensory neurons, axons contain RER that may be 

involved in local translation of transmembrane proteins. These RERs contain proteins 

that are part of the co-translation machinery for transmembrane proteins; these include 

SRP54, a component of the signal recognition particle, as well as translocon-associated 

protein (TRAP) and ribophorin II, which are components of the translocon. Examples of 

transmembrane proteins that may be locally translated in the axon include neural membrane 

protein 35 (NMP35), hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4), 

and calcium voltage-gated channel subunit alpha1 c (CACNA1c). These proteins were found 

along axons by immunostaining and their RNAs were detected by qPCR of axonal fractions 

[13]. Thus, in the axon, SER likely plays a role in local protein folding while RER may be 

important for local translation of transmembrane proteins.

Dendrites contain both RER and SER. Early studies in hippocampal neurons visualized RER 

present in dendrites using an antibody against signal sequence receptor (SSR); these RER 

localized near the cell body in proximal dendrites, but were not present in all dendrites 

[12]. RER in dendrites contain classic proteins that participate in co-translation, including 

the translocon protein Sec61, ribosomal protein S3, and KDEL-containing ER lumenal 

proteins, which were detected by immunogold labeling EM in the hippocampus and dentate 

gyrus [14]. In addition, cultured hippocampal neurons contain Sec23-positive ERES, which 

localize to dendritic branch points and cluster next to Golgi outposts [15]. Moreover, 

ERGICs ~200–400 nm in size are found in dendrites and dendritic spines and have been 

visualized using immunogold labeling of ERGIC53/58 [16]. A recent paper identified small 
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ribosome-associated vesicles (RAVs) in dendrites of primary neurons that are positive 

for ER markers and have diameter ~200–400 nm [17], which are consistent in size with 

dendritic ER from earlier EM studies [14].

Dendrites also contain SER and a subclass of SER found in synapses called the spine 

apparatus. 3D reconstructions of serial electron micrographs (SEM) of rat hippocampus 

visualized SER that can extend a protrusion into dendritic spines, then form a stacked ER 

structure called a spine apparatus [18,19]. The stabilization of ER in the spine followed by 

its subsequent conversion into a spine apparatus requires the calcium sensor caldendrin. In 

in vitro motility assays, caldendrin binding to myosin V slows or stops its motility. Thus, 

synaptic activity likely triggers an increase in calcium, which can activate caldendrin in 

order to stabilize the protruding ER for enough time to convert it into a spine apparatus [20]. 

Thus, a diverse array of ER components are found in dendrites and spines.

The complexity of ER structure and function may be interrelated. Dendrites with more 

synapses and dendritic branch points contain more complex ERs (as quantified by smaller 

ER segments and more reticulation). The generation of zones of higher ER complexity 

at branch points involves the phosphorylation of the ER-protein cytoskeleton-linking 

membrane protein 63 (CLIMP63). CLIMP63 is a transmembrane protein that links the ER to 

microtubules [15]. Recent work in the U2OS epithelial cell line demonstrates that starvation 

leads to increased CLIMP63 expression, which redistributes or contracts ER back to the 

perinuclear region [21]; it is unclear if dendritic ER also shifts its localization following 

nutrient deprivation. Therefore, ER complexity and localization may be intricately tied to 

local stimuli, like synaptic inputs and nutrient availability, but the precise mechanisms 

underlying this regulation remain unclear.

Axons and dendrites contain many subtypes of ER that form a complex system for 

local translation and protein trafficking and enable compartment-specific needs. These ER 

components then intercalate with local Golgi organelles that modify specific cargo proteins 

for subsequent delivery to their final destinations.

Golgi outposts in axons and dendrites

Satellite Golgi organelles are found in both glial cells (Box 1) and neurons [22]. In neurons, 

a vast and heterogeneous group of local Golgi organelles are found in both axons and 

dendrites.

In axons, satellite Golgi organelles may play roles in ion channel trafficking, local 

translation, and lysosomal enzyme delivery. In the PNS, rat sciatic nerves contain 

myelinated axons with both satellite ER and Golgi organelles. These satellite Golgi, which 

are positive for both cis/medial Golgi and TGN markers, preferentially localize in the node 

of Ranvier and the adjacent paranodal region [23]. In addition, in DRG axons, TRPM8 

(transient receptor potential melastatin 8) ion channels, which are involved in cold sensation, 

colocalize with Golgi markers as well as with Rab6, a marker for exocytic vesicles [24]. 

These studies suggest that ion channels can be shuttled from axonal Golgi to the axonal 

surface via exocytic vesicles.
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In addition, axonal Golgi organelles may also play a role in local translation. Golgi 

compartments are found in close proximity to axonal ER [13, 23]. Some of these axonal 

ER contain translocons and co-translation machinery [13], which indicates that axonal 

Golgi may further modify locally translated transmembrane proteins and traffick them to 

the axonal plasma membrane. However, some evidence suggests that locally translated 

transmembrane proteins may bypass Golgi entirely and directly shuttle to the cell surface 

via lysosomal or endosomal vesicles [25]. Thus, the role of axonal ER and Golgis in local 

translation of transmembrane proteins needs further confirmation and clarification.

Axonal Golgi organelles also interact with lysosomes. A recent paper found that TGN-

positive Golgi vesicles in the axon colocalize with the lysosomal enzyme cathepsin D. In 

addition, in live-cell experiments, motile organelles labeled with LAMP1, a marker for 

late endosomes and lysosomes, co-transport with a TGN marker. The authors suggest that 

TGN-positive Golgi vesicles may deliver lysosomal enzymes to LAMP1-positive organelles 

[26]. However, these experiments may also indicate that axons contain hybrid organelles of 

mixed lysosomal and Golgi identity. Thus, more mechanistic experiments on satellite Golgi 

organelles in the axon are needed to better understand their functions and interactions with 

other axonal organelles, like ER and lysosomes.

In dendrites, Golgi outposts can serve multiple local functions, including microtubule 

nucleation, protein secretion or trafficking, and protein modification or glycosylation. 

Dendritic Golgi outposts are heterogeneous in size, composition and compartmentalization, 

and therefore serve diverse roles depending on their components. For example, multi-

compartment Golgi outposts containing the cis-Golgi marker GM130 are more likely than 

single-compartment Golgi outposts to initiate microtubule growth [27]. Though it is unclear 

how multi-compartment Golgi outposts arise, in mammalian neurons, Golgi outposts can 

fission off the cell body Golgi then are transported along dendrites [28], where they are 

oriented with Golgi stacks in parallel to the dendrite [29].

In Drosophila da sensory neurons that lack centrosomes, Golgi outposts are important 

for local acentrosomal microtubule nucleation. This is a gamma-tubulin dependent 

process and important for dendritic branching [30]. In addition, the organization and 

compartmentalization of Golgi outposts may also be important to maintain microtubule 

polarity patterns in the dendrite [31].

There are at least three ways by which secretory cargo is transported in dendrites. Firstly, in 

the classical secretion pathway, proteins produced in the cell body ER and modified in the 

cell body Golgi can be directly transported along dendrites to their final destinations along 

dendrites or in synapses (Figure 1, Pathway 1). These cargos can be either transmembrane 

proteins or secreted proteins that are released extracellularly. Transmembrane proteins 

may also undergo transcytosis or somatodendritic sorting, which further ensures selective 

retention or rejection of axonal versus somatodendritic proteins.

Secondly, proteins emerging from dendritic ER, which can be locally translated, can be 

trafficked from dendritic ER to dendritic Golgi (Figure 1, Pathway 2) [11]. This has been 
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reported for integral membrane proteins such as VSV-G and the neuronal growth factor 

brain-derived neurotrophic factor (BDNF) [32].

Thirdly, cargo that is translated off cell body ER can bypass cell body Golgi and be targeted 

directly to dendritic Golgi outposts, where they can be modified then further transported in 

post-Golgi vesicles (Figure 1, Pathway 3). An important example of this is the N-methyl-D-

aspartate receptor (NMDAR). After exiting the cell body ER, NMDARs are trafficked via 

ER subcompartments to Golgi outposts, then subsequently exit Golgi outposts in a COPI-

dependent manner. The absence of adaptor proteins CASK and SAP97 causes mis-sorting of 

NMDARs through the cell body Golgi, resulting in fewer NMDARs at synapses [33].

Both Pathways 2 and 3 can further traffic cargo proteins from dendritic Golgi outposts to 

synapses via post-Golgi vesicles, which bud off Golgi outposts then fuse with nearby plasma 

membranes. An example cargo protein is the guanine nucleotide exchange factor (GEF) 

kalirin, which utilizes the adaptor protein X11α for post-Golgi vesicle trafficking to the 

synapse [34].

Dendritic Golgi dynamics may be important for cleavage and trafficking of the 

transmembrane protein amyloid precursor protein (APP). APP can be cleaved by beta-

secretase 1 (BACE1) and gamma-secretase into beta-amyloid peptides, which aggregate in 

Alzheimer’s disease. ADAM10, the alpha-secretase involved in non-amyloidogenic APP 

cleavage, can be trafficked from dendritic Golgi outposts to the postsynaptic plasma 

membrane [35]. In Drosophila da neuron dendrites, APP colocalizes with Golgi outposts 

that are positive for medial Golgi (mannosidase II) or trans-Golgi (galactosyltransferase) 

markers. In live-cell imaging experiments, these markers were used to define multi-

compartment Golgi outposts. Golgi outposts containing APP were less motile and 

preferentially distributed in the proximal dendrite. Results of a screen suggest that the 

adaptor protein Sunday driver (Syd), which is known as JIP3 in mammals, may be an 

adapter protein that links APP-positive Golgi outposts to motor proteins in dendrites. Loss 

of Syd affects dendrite morphology, leading to more branch points [36]. Interestingly, in 

axons, the adaptor JIP1, which can dimerize with JIP3 [37], regulates the directionality of 

APP-positive vesicle transport [38]. However, it is unclear if axonal APP-positive vesicles 

also share Golgi markers.

Finally, recent studies show that Golgi satellites are involved in local protein modification 

or glycosylation in dendrites. Golgi satellites are relatively immobile, range in size from 

~250–1000 nm, and are smaller than Golgi outposts. They contain glycosylation enzymes 

but lack GM130. They are found in close proximity to ERGICs and retromer-associated 

endosomes, which indicates that local trafficking of cargos likely proceeds from ERGICs to 

Golgi satellites then to the dendritic plasma membrane [39]. Consistent with early studies 

demonstrating that dendrites exhibit glycosyltransferase activity [40], recent proteomic 

studies have identified glycosylation sites on a number of synaptic transmembrane proteins 

that are modified in response in neuronal excitation [41]. The functional consequence of 

this is that neuronal activity can result in the incorporation of sialylated glycoproteins 

to the dendritic plasma membrane, thereby impacting subsequent signaling and neuronal 

activity. Indeed, neuronal excitation leads to the formation of dispersed Golgi satellites 
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that contain glycosylation enzymes and are closely associated with ERESs and endosomes. 

These modifications have been suggested to be present on both newly synthesized locally 

translated proteins and pre-existing dendritic membrane proteins that can be endocytosed, 

modified by Golgi satellites, and then returned to the plasma membrane [42]. Thus, Golgi 

satellites serve an important function to link neuronal activity and glycosylation of dendritic 

transmembrane proteins.

Conclusion

Both satellite ER and Golgi organelles are present in neuronal axons and dendrites, where 

they are critical in maintaining neuronal function. Local ERs are important not only for 

local trafficking, but also for local translation. Local Golgis include Golgi outposts, which 

are important for microtubule nucleation and secretion, as well as Golgi satellites, which 

are important for protein glycosylation. Though less is known functionally about satellite 

ERs and Golgis in glial cells (Box 1), they likely also play important roles in compartment-

specific and cell-specific functions.

In a quickly changing landscape of terms for these specialized organelles (Box 2), it can 

be difficult to segregate the properties of diverse satellite ER and Golgi organelles among 

different species, cell types, and cell compartments. Importantly, functional markers can be 

used to distinguish subclasses of organelles, for example RER versus SER and multi-stack 

versus single-stack Golgis using cis-, medial-, or trans-Golgi specific markers. As we learn 

more about these enigmatic but important organelles, future studies will need to clearly 

define the relationships between nomenclature, markers, and functions.
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Box 1.

Golgi outposts in glia

Golgi outposts have also been observed in glia, the non-neuronal cells of the central 

nervous system (Figure 2). In oligodendrocytes and microglia, Golgi outposts play a role 

in microtubule organization and establishment of branching morphology. In astrocytes, 

Golgi outposts are found in endfeet that contact blood vessels, but their specific function 

remains unclear.

Oligodendrocytes

Oligodendrocytes dynamically extend their processes toward axons and are capable 

of forming as many as 50 myelin sheaths per cell. They contain two populations 

of microtubules — radial microtubules that reach toward axons and lamellar 

microtubules that spiral around the myelin sheath from outer to inner layers [43]. 

Recently, Golgi outposts were demonstrated to function as acentrosomal microtubule 

organizing centers (MTOCs) in oligodendrocytes. The Golgi-outpost marker TPPP is a 

microtubule-associated protein that is sufficient in in vitro cell-free assays to nucleate 

microtubules. Additionally, Tppp KO oligodendrocytes displayed aberrant branching, 

mixed microtubule polarity (instead of uniform polarity), and shorter and thinner myelin 

sheaths [44]. In vivo, Tppp KO mice display aberrant learned and innate fear responses 

[45]. Thus, Golgi outposts are crucial for oligodendrocyte morphology and myelin 

formation.

Microglia

Microglia, the resident immune cells of the brain, can transition from a ramified 

surveillance state to an amoeboid phagocytic state [43] in response to inflammatory 

signals [46]. Ramified homeostatic microglia in culture contain Golgi outposts along 

microtubules in proximal processes, but microglia cultured in the presence of pro-

inflammatory or anti-inflammatory signals are not ramified and do not contain Golgi 

outposts. After nocodazole treatment to depolymerize microtubules, microtubules 

nucleated out of gamma-tubulin-positive Golgi outposts [47]. Thus, microglial Golgi 

outposts likely function to nucleate microtubules in the ramified surveillance state.

Astrocytes

Astrocytes are large stellate cells critical for synaptogenesis, synapse elimination 

during development, and blood-brain barrier maintenance [48]. In recent TEM and 

immunostaining experiments, astrocytic endfeet that contact blood vessels contain both 

SER and RER as well as Golgi outposts. An assay using a methionine analog to 

label newly translated proteins in ex vivo blood vessels indicated that local translation 

occurs at distal astrocytic perivascular processes [49]. Thus, local ER and Golgi outposts 

likely play a role in local translation in astrocytes. Future studies should address how 

this affects endfeet functions, like regulating blood flow and hindering immune cell 

infiltration.
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Box 2.

Nomenclature of satellite ER and Golgi organelles

ERGICs (ER-Golgi intermediate compartments) - small ~200–400-nm vesicles found 

in dendrites that share markers with the ER [16] and are frequently found near Golgi 

satellites [39]; also refers to ERGICs in the cell body

Golgi elements – another name for Golgi outposts that was initially used in the 1980’s 

to describe tubular Golgi along proximal dendrites in rodent brain immunostaining 

experiments [50]; also refers to Golgi outposts in muscle cells [51]

Golgi outposts - large multi-compartment satellite Golgi organelles typically several μm 

in size that can function as acentrosomal microtubule nucleators in neuronal dendrites, 

oligodendrocytes, and muscle cells [22]

Golgi satellites – organelles in dendrites ~250–1000 nm (generally smaller than Golgi 

outposts) that function as an intermediate local secretory compartment between ERGICs 

and endosomes and that mediate local transmembrane protein glycosylation [39,42]

Post-Golgi vesicles - small vesicles that traffic locally from larger Golgi outposts or 

smaller Golgi satellites to the dendritic or synaptic plasma membrane [33,35]

RAVs (ribosome-associated vesicles) - small ER vesicles with diameter ~200–400 nm 

that are motile along dendrites and may be involved in local translation [17]

Spine apparatus - small, stacked smooth ER found inside dendritic spines [18–20]
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Figure 1. Secretory pathways and satellite organelles in neuronal dendrites.
Three potential pathways for dendritic cargo transport. 1) Classical secretion: Protein 

translation occurs in the neuronal cell body on ribosomes associated with the ER. These 

proteins exit the cell body ER, then merge with ER-Golgi intermediate compartments 

(ERGICs), are further processed through the cell body Golgi, and finally are trafficked via 

vesicles to dendrites or elsewhere in the neuron. 2) Local dendritic translation: Proteins may 

be locally translated off dendritic ER then trafficked to dendritic Golgi outposts, where they 

can be modified. After leaving the Golgi outpost in post-Golgi vesicles, these proteins can 

Kemal et al. Page 13

Curr Opin Cell Biol. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be further transported along dendrites or targeted for fusion with dendritic plasma membrane 

or synaptic spines. 3) Golgi bypass: Cargo translated off cell body ER can bypass cell 

body Golgi and be directly transported to dendrites, where they may be modified by Golgi 

outposts and subsequently transported in post-Golgi vesicles destined for synapses or the 

plasma membrane.
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Figure 2. Glial cells have Golgi outposts.
In oligodendrocytes, Golgi outposts are present in processes and in the myelin sheath. They 

are found along both radial microtubules that contact axons and along lamellar microtubules 

that spiral around the myelin sheath. These Golgi outposts use TPPP to nucleate or form new 

microtubules. In microglia, Golgi outposts also function to nucleate new microtubules and to 

establish branched processes. In astrocytes, endfeet that contact blood vessels contain Golgi 

outposts by EM, but their function remains unclear.
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