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Abstract

Self Consistent Excited State Mean Field Theory: Development and Applications

by

Tarini S. Hardikar

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Eric Neuscamman, Chair

In the wide spectrum of excited state quantum chemistry methods, there is no direct ana-
logue to Hartree-Fock theory. This dissertation presents the theory and initial applications
for a self consistent framework for Excited State Mean Field (ESMF) theory. This method
presents a self consistent equation analogous to the Roothaan-Hall equation, that is con-
structed with mean-field one-electron operators. The convergence criteria is described by
a commutator condition between Fock-type operators and density operators, just like in
Hartree-Fock theory. Finally, this method is accelerated via direct inversion of the iterative
subspace (DIIS), akin to acceleration in the ground state theory. Futhermore, this work
discusses applications of ESMF to larger solvated systems, afforded by ESMF’s scaling –
the method costs roughly twice the cost of a Hartree-Fock calculation. Getting an accurate
physical picture of excited states in solvated systems is challenging, and the second half of
this dissertation focuses on a comparative analysis of various methods, their degree of cor-
relation, and their ability to qualitatively describe donor and acceptor regions for a charge
transfer excitation. This comparison shows that ESMF can accurately describe the degree of
participation of solvent water molecules in the excitation, unlike Density Functional Theory
(DFT) based methods. However, when there is minimal participation from the solvent, Re-
stricted Open-shell Kohn Sham methods fare better, indicating that the lack of correlation
in ESMF prevents the method from providing a more quantitatively accurate picture. Using
ESMF as a stepping rung for developing a hierarchy of excited state specific methods is a
promising platform to achieve affordable excited state specific calculations.
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Chapter 1

Introduction

1.1 Quantum Chemistry Fundamentals

The fundamental equation governing quantum chemistry is the time dependent Schrödinger
equation [1]. This equation determines how a wavefunction propagates in time, and various
mathematical properties of this equation explain various physical properties of the system.

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ|ψ(t)⟩ (1.1)

Of course, this equation assumes relativistic factors don’t play a huge role in the study of
systems of interest. In practice however, even without relativistic effects, this equation is far
too complex and unwieldy to be solved in its entirety [1], and quantum chemists make various
approximations to suit their needs and applications. This work is principally concerned with
the electronic structure of molecules, that is, how electrons behave in their ground state and
upon excitation. To think about the electronic structure theory, this work makes two key
simplifications:

The first is time independence. We work with the time independent Schrödinger equation,
where the equation is an eigenvalue problem

Ĥ|ψ⟩ = E|ψ⟩ (1.2)

where for a wavefunction, ψ, the time-independent Hamiltonian operator, Ĥ gives the energy
of the system as its eigenvalues. The eigenvectors here are stationary states, and are critically
important in studying spectroscopy [2]. The time independent equation focuses on solving
for these stationary states given their importance. So, this reduces the problem at hand to
an eigenvalue equation where the operator is the quantum mechanical Hamiltonian, given
as [1]:

Ĥ = −
N∑
i=1

1

2
∇2

i −
M∑

A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB

RAB

(1.3)
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where N is the number of electrons in the system, M the number of nuclei, lowercase indices
track electrons, uppercase indices track nuclei, MA is the ratio of mass of nucleus A to the
mass of an electron, ZA is the atomic number of nucleus A, and the Laplacian subscripts
determine what particle’s position the differentiation is with respect to. This equation (and
following equations in this work) is in atomic units, where electron charge, electron mass and
ℏ are set to 1. The first term represents the kinetic energy operator for electrons, the second
term is the kinetic energy of the nuclei, the third term is the Coulomb interaction between
electrons and nuclei, the fourth term is the repulsion between electrons, and the fifth term
is the repulsion between nuclei.

1.2 Born-Oppenheimer Approximation

The second simplification we make is the Born Oppenheimer approximation. In most appli-
cations of quantum chemistry, and in all of the research presented in this thesis, quantum
chemists employ the Born Oppenheimer approximation, which makes the eigenvalue problem
significantly more tractable. This approximation states that since the mass of the nuclei is
thousands of times greater than the mass of electrons, the timescale of the motion of nuclei is
much slower than that of electrons. Therefore, the nuclei can be taken to be stationary with
respect to electronic motion [1, 2]. This reduces the Hamiltonian to the following terms:

Ĥelec = −
N∑
i=1

1

2
∇2

i −
N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
(1.4)

Note that now, we are also looking at an electronic wavefunction that depends explicitly on
the position of the electrons, but only parametrically on the position of nuclei. The total
energy for a fixed geometry of the nuclei is then given by the semi-classical expression

Etot = Eelec +
M∑

A=1

M∑
B>A

ZAZB

RAB

(1.5)

where the nuclear kinetic energy is ignored and the nuclear-nuclear potential energy is given
by the classical Coulomb energy for point charges. A quantum mechanical Hamiltonian for
the nuclei is arrived at by taking an average of the electronic wavefunction to generate a
nuclear Hamiltonian.

Ĥnucl = −
M∑

A=1

1

2MA

∇2
A + Etot({RA}) (1.6)

where the total energy provides a potential energy for nuclear motion by considering averaged
electronic motion. Thus, the total energy of the system is described by the nuclear kinetic
energy, the electronic energy, and the point-charge nuclear repulsion energy. As stated above,
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Figure 1.1: A graphical depiction of vertical versus adiabatic excitation energies where R is the
distance coordinate. ∆Evertical refers to vertical excitation energies, ∆Eadiabatic refers to adiabatic
excitation energies. Image adapted from [3].

given the focus on the electronic structure of the molecule, this work will ignore the nuclear
energies and the translational, vibrational, and rotational degrees of freedom will not be
discussed. Instead, this work will discuss the electronic energy of the ground and excited
states of molecules based on the Hamiltonian in Eq 1.4.

1.3 Types of Excitations

Specifically, this work focuses on the vertical excitation energies of molecules. As described
in Fig. 1.1, this means that we are looking at the molecule instantaneously after excitation,
and not allowing it to relax to a favorable new geometry. Because of this constraint, the
vertical excitation energy is typically higher than the relaxed (adiabatic) excitation energy
[3].

While there are many types of electronic excitations, this work primarily focuses on
two: valence excitations and charge transfer excitations. Valence excitations are when both
the orbital the electron is excited out of and the orbital the electron is excited into are
valence orbitals and are nearby one another. An example of such as excitation would be
an electron moving from the highest occupied molecular orbital (HOMO) to the lowest
unoccupied molecular orbital (LUMO). The second type of excitation that’s of interest here
is a charge transfer excitation, where the electron moves from one set of orbitals spatially
separated set of orbitals [4, 5]. These are marked by a separation of charge, and could be
intermolecular or intramolecular charge transfers. While core excitations [6] and Rydberg
excitations [7] are briefly discussed, they are not the main subject of attention in this work.
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Note that in some molecules low-lying Rydberg excitations lie interspersed between valence
excitations [8].

Even after making the Born-Oppenheimer approximation, the electronic problem cannot
be solved analytically for multi-electron systems, even for the ground state, and requires
approximations [9]. There are a plethora of various methods that rely on various types and
levels of approximations. Broadly, methods can be sorted as wavefunction based or density
functional based methods. The latter methods fall under the broad umbrella of density
functional theory (DFT) and are by far the most commonly used methods in the wider
chemistry community [10]. However, density functionals are approximate in practice, and
results can be sensitive to the choice of which functional approximation is employed [11,
12]. One the other hand, DFT has the strong advantage of a relatively low computational
cost, with modern functionals’ costs growing as the third or fourth power of the system size
depending on the approximation and implementation details [13–15].

Wavefunction based methods, can offer higher accuracy than DFT but at increased com-
putational cost. In quantum chemistry, most wave function methods are built atop the
Hartree-Fock method.

1.4 Hartree-Fock Method

This method approximates the electron-electron coulomb interaction as an effective mean-
field interaction in which electrons feel a fermionic-antisymmetry-preserving average of the
repulsion from other electrons. Thus, the electron-electron interaction is reduced to an
averaged cloud felt by all electrons. The wavefunction is approximated as a single Slater
determinant, and the minimization follows the self consistent field procedure [1]. A brief
summary of the method is as follows. A Slater determinant is defined as

ψ(x1, . . . , xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) . . . χN(x1)
χ1(x2) χ2(x2) . . . χN(x2)

...
... . . . ...

χ1(xN) χ2(xN) . . . χN(xN)

∣∣∣∣∣∣∣∣∣ (1.7)

where the 1√
N !

is a normalization factor and the determinant placesN electrons with positions
x1, . . . , xN , in N spin orbitals χ1, . . . , χN , without specifying which electron is in which
orbital. The determinant properties ensure an overall antisymmetric form. One way to
motivate this wave function form is that it is the result of antisymmetrizing a Hartree
Product. Minimization of the energy of this Slater determinant with respect to varying the
shapes of the orbitals leads to a one-electron eigenvalue problem involving a mean field Fock
operator [1]

F (d) = h+
∑
b

Jb(d)−Kb(d) (1.8)
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Here, d is an N -electron density, the first term is the one-electron part of Eq 1.4, and
the second summation is over spin orbitals χ, describing the two-electron interactions, split
into the classic Coulomb term (J repulsive) and the strictly quantum “exchange” term (K
attractive).

Then, the Hartree-Fock equation can be represented as an eigenvalue equation

F |ψa⟩ = εa|ψa⟩ (1.9)

Approximating the orbitals as a linear combination of basis functions leads to the Roothaan-
Hall equation

FC = SCε (1.10)

where C is a matrix of molecular orbital coefficients, S is the overlap matrix between basis
functions, and ε is a diagonal matrix of orbital energies. While the task of minimizing the
energy of a Slater determinant with respect to the orbital coefficients C can be thought
of as a standard nonlinear minimization problem and can be treated as such [16], it is far
more common to find the Hartree-Fock state via a self-consistent procedure. With the self
consistent procedure, for a given choice of C, the pseudo-eigenvalue equation is solved, a
new C is generated, and this procedure is repeated until both sides of the equation match.

A self-consistent procedure is often preferred to a direct minimization, even though it can
occasionally lead to variational collapse, wherein a lower eigenstate than desired is found.
Methods such as variations on Hartree-Fock theory (Projected Hartree-Fock [17, 18]) as well
as DFT methods ([19–21]) are built on a self-consistent procedure. Its efficiency makes it
the default optimization choice in common quantum chemistry packages as well [22–24]. A
common method to accelerate SCF procedures is the direct inversion of the iterative subspace
(DIIS) method [25]. At any given SCF iteration, the residuals {e} from previous iterations
are calculated and a linear combination is constructed

em+1 =
m∑
i

ciei (1.11)

DIIS aims to minimize this residual norm with the constraint that the coefficients (c) are
normalized. These coefficients are calculated by solving the a Lagrangian equation with the
multiplier λ given by [25]

B11 B12 . . . B1m 1
B21 B22 . . . B2m 1
...

... . . . ... 1
Bm1 Bm2 . . . Bmm 1
1 1 . . . 1 0




c1
c2
...
cm
−λ

 =


0
0
...
0
1

 (1.12)

The coefficients obtained from solving this equation are then used to update the variable
value. DIIS has proven to be an incredible tool in speeding SCF convergence [26], and
quantum chemistry packages normally use it as a default accelerator [22].
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1.5 Direct optimization methods

When the SCF procedure fails to converge, direct optimization methods are needed. These
methods are also necessary for theories that might not have a SCF solution. In such cases,
methods such as gradient descent, Newton-Raphson, BFGS [27, 28], or Geometric Descent
Method [16] might be used. Two recent optimization techniques specific to electronic struc-
ture theory are described below.

1.5.1 Square gradient minimization

In this method, a extremization problem is converted to a minimization problem by focusing
on a slightly different objective function [29]

∆ = |∇θL|2 =
∑
ai

∣∣∣ ∂L
∂θai

∣∣∣2 (1.13)

where the Lagrangian is with respect to some orbital constraint described by θ. L, in
practice, is the total energy so this approach ultimately aims to zero out the energy gradient
by minimizing the square gradient norm. The resulting descent method safeguards against
variational collapse, and only requires Lagrangian gradients. However, it costs 3 times as
much as ground state optimization per iteration [29]. SGM has been used to converge ROKS
and TDDFT calculations, especially for core excitations and X-ray spectroscopy applications
[30–32].

1.5.2 Generalized Variational Principle

In this method, a generalized form of the variational principle is developed, that in principle
works with a wide range of electronic structure methods as long as they can be defined by a
list of property vectors [33]. This principle is given by

lim
µ→0

min
c⃗
(µ|d⃗|2 + (1− µ)|∇E| 2) (1.14)

where c⃗ is a list of wavefunction variables, and d⃗ is the list of property vectors (such as
Mulliken properties, symmetry, or charge). Here, µ is a “toggle” function that helps target a
specific state without variational collapse. Similar to SGM, GVP also aims to find the zero
point of the energy gradient, but by pushing the optimiziation towards the desired excited
state via the property vectors. In practice, this method allows the user to be within the
region of the solution with the ∇E term, and then hone in on the state with the property
vectors. This method provides a strong foundation on which other excited state specific
theories can be built [34–36].
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1.6 Electronic Correlation

Despite Hatree-Fock’s rather rudimentary approximation of the electronic field, this method
provides a robust starting point for more advanced methods, and already captures a large
fraction of the “true” energy of the system. The difference between the actual eigenvalues
of the Hamiltonian and the Hartree-Fock energy is described as the correlation energy [37].
Other wavefunction based methods (often described as post-Hartree-Fock methods) aim to
capture this correlation.

The correlation energy is divided into two main phenomena, static (or strong correlation)
and dynamic (or weak correlation) [38]. In strongly correlated systems, the underlying
assumption from Hartree-Fock theory that the electronic configuration can be described by
a single determinant is in itself incorrect. In such systems, this is known as having high multi-
reference character, a classic example being degenerate states with equal probability of an α
or β spin excitation. Dynamic correlation is when the Hartree-Fock electron configuration
is qualitatively sufficient, but requires corrections to capture the right quantitative measure
of electronic correlation.

1.7 Ground State Methods

Since the development of Hartree-Fock theory, there have been hundreds of methods trying
to capture different aspects of the correlation energy. The most widely used wavefunction-
based correlation methods rely on Hartree-Fock theory as a starting point in which mean-field
orbital relaxations have already been applied to the wavefunction [1]. Given the focus of this
work, only certain methods will be discussed.

1.7.1 Configuration Interaction

A straightforward method to add strong correlation is to consider the Configuration Interac-
tion method where in addition to the Aufbau Slater determinant, determinants with every
possible excitation are considered [1]:

|ψCI⟩ = C0|ψ0⟩+
∑
ia

Cia|ψa
i ⟩+

∑
ijab

Cab
ij |ψab

ij ⟩+ . . . (1.15)

where the various C reflect the coefficients of the wavefunction components, i, j refer to
occupied orbitals, and a, b refer to the virtual orbitals. In other words, the simple Aufbau
Slater determinant is supplemented by a weighted sum of every single, double, etc excitation
on this determinant. The space of considering all excitations is called Full Configuration
Interaction [39, 40]. Of course, this is incredibly computationally expensive, and scales
combinatorially with system size [2].

In practice, a truncated wavefunction may be considered, and the method is named ac-
cordingly: Configuration Interaction Singles (CIS) for only singles excitations, Configuration
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Interaction Singles Doubles (CISD) for single and double excitations, and so on. CIS scales
as O(N4) and CISD as O(N6) where N is the number of one-electron basis functions [2,
13]. Despite reasonable scaling, these truncated CI wavefunctions are not very compact, and
tend to converge slowly [41]. Additionally, CISD is not size consistent and therefore becomes
less accurate as system size increases [2].

1.7.2 Perturbation Theory

One of the most commonly used methods to add weak correlation to the Hartree-Fock
method is with second order perturbation theory, commonly referred to as the Möller Plesset
perturbation theory [2]. A perturbed Hamiltonian is considered as

Ĥ = F + V̂ (1.16)

where V̂ is the perturbative field accounting for correlation effects neglected in Hartree-Fock
theory. The second order energy correction is give by [1]

EMP2 =
∑
ijab

|⟨ab||ij⟩|2

εa + εb − εi − εj
(1.17)

where the numerator is ⟨ab||ij⟩ = ⟨ab|ij⟩ − ⟨ab|ji⟩ in physicist notation, and ε are the Fock
operator eigenvalues from Eq 1.10. Physicists’ notation is a common shorthand for expressing
two-electron interactions, where for spin orbitals i, j, k, l the notation is as follows [1]

⟨ij|kl⟩ =
∫

dx1dx2χ
∗
i (x1)χ

∗
j(x2)

1

r12
χk(x1)χl(x2) (1.18)

Of course, higher order perturbative theories can also be used, though this second order
method is used the most commonly. MP2, as it is colloquially referred to, scales as order
O(N5) where N referes to the number of basis functions [1]. Additionally, it also has the
advantage of being size consistent, and therefore maintains accuracy as system size increases
[41, 42].

1.7.3 Coupled Cluster

A more sophisticated approach to wavefunction-based many-body perturbation theory is the
coupled cluster (CC) method [43, 44]. This method, unlike CI, is size extensive, and therefore
maintains its accuracy as system size increases [45]. In CC methods, the exponential of an
excitation operator T̂ , called a cluster operator, is applied to the Hartree-Fock ground state
wavefunction.

|ψCC⟩ = exp (T̂ )|ψ0⟩ (1.19)

The cluster operator is broken down as

T̂ = T̂1 + T̂2 + T̂3 + . . . (1.20)
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where T̂1 is the operator for single excitations, T̂2 is the operator for double excitations and
so on. The general form of the cluster operator, in second quantized algebra, is given as

T̂n =
1

(n!)2

∑
ijkpqr...

tpqr...ijk...p
†iq†jr†k . . . (1.21)

where i, j, k, . . . are the occupied orbitals, p, q, r, . . . are the virtual orbitals [44]. So essen-
tially, the cluster operator is similar to a term in the CI wavefunction - a weighted sum of
excitations of each order. Then, CC inserts the exponential ansatz into the time-independent
Schrödinger equation [2]

Ĥ exp (T̂ )|ψ0⟩ = E exp (T̂ )|ψ0⟩ (1.22)

and then takes left projections with different Slater determinants to create a system of
equations for the energy and amplitudes.

Again, just as in CI, CC methods are named as CCS, CCSD, and so on, based on the
order of the excitations considered. CCSD scales as order of O(N6), where again, N is the
number of basis functions [2].

1.8 Excited State Methods

Given the approximations and challenges involved with ground state electronic structure the-
ory, it is no surprise that excited state electronic structure theory is more complicated, and
requires both new theory, and more nuance. While there is typically only one global ground
state, excited states are plentiful, with different spin and symmetry character, and they are
more difficult to optimize as they are not energy minima but instead typically exist as saddle
points [46]. One of the most straightforward approaches again, is to look at higher roots of
the CI equations. Depending on what order of excitations one includes in the CI, this can,
as for the ground state, be prohibitively expensive. Balancing computational costs, accu-
racy, and specific physics of a required calculation has driven much of excited state method
development. Again, while there are hundreds of possible methods to calculate excited state
quantum chemistry properties, we will focus here on methods that attempt to capture the
effects of post-excitation orbital relaxations as well as on some of the most commonly used
excited state methods. Orbital relaxations can be energetically consequential, especially for
CT states [29, 47–51], and are also necessary if a low-cost excited state method is to serve the
same role as Hartree-Fock theory does in the ground state by providing an orbital-relaxed
platform on which to build in correlation effects.

1.8.1 Orbital Optimized CIS

Developed by Subotnik et al, Orbital Optimized CIS (OO-CIS) [47] tries to overcome the
tendency of CIS to overestimate charge transfer excitation energies by performing a single
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orbital relaxation step after the CIS calculation [52]. The method uses a single Newton-
Raphson step to optimize orbitals in which the Hessian is approximated as the Hartree-Fock
orbital Hessian. This method also introduces Y as a metric to quantify the charge transfer
character of a given excitation

Yai =
∂ECIS

∂θai
(1.23)

where θ is a matrix of occupied-virtual orbital rotation parameters and Y is the matrix of CIS
energy derivatives with respect to these orbital parameters. Even with a single optimization
step, and at twice the computational cost of a regular CIS calculation, this method shows
significant correction to the energy overestimation. It puts the performance of CIS for
charge transfer states at par with its performance for valence and Rydberg excitations,
which previously was 1-2 eV higher. Naturally, this motivates the question whether a fully
optimized set of orbitals, can produce more meaningful orbitals, better excitation energies,
and whether this full relaxation can be had at a similar mean-field cost.

1.8.2 Maximum Overlap Method and ∆-SCF

The Maximum Overlap Method (MOM) modifies the standard SCF procedure by changing
the orbitals that are selected. Instead of choosing the Aufbau orbitals, one chooses the
orbitals that have the maximum overlap with the previous step [53–62]. In this manner,
excited state determinants can be targeted with relative ease with a few user choices. This
approach can target high energy states, such as core excitations [56], as well charge transfer
and double excitations [57]. In this method, first, an orbital overlap matrix is defined as

O = (Cold)†SCnew (1.24)

then Oij is the overlap between the ith old and jth new orbitals, and pj can be defined as
the projection of the jth new orbital on the old occupied orbital subspace

pj =
n∑
i

Oij =
N∑
ν

[ N∑
µ

( n∑
i

Cold
iµ

)
Sµν

]
Cnew

νj (1.25)

The full set of these projectors can be calculated at barely an additional cost compared
to the SCF cycle, and then the n orbitals with the highest pj are occupied [53]. It provides
a very reasonable first guess for excited states, especially the low lying ones [63]. In [53],
the authors show that MOM-based approaches to HF, MP2, and B3LYP gave competitive
excitation energies with the regular counterparts of CIS, CIS(D), and TDDFT respectively.

Despite the simplicity and elegance of this method, it suffers from two critical issues.
First, it relies heavily on the user knowing what orbitals are needed and which orbitals to
use. Secondly, in the absence of good virtuals, this method is susceptible to variational
collapse to a lower state than desired [64]. There are a number of variations to the basic
MOM method, such as IMOM [57], PIMOM [65], etc, which all make modifications to
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Figure 1.2: Graphical description of the ∆-SCF and ROKS orbital relaxation process. The former
requires two separate optimizations, followed by a spin purification. ROKS requires only one orbital
optimization. Image adapted from [64].

the definition of the projectors based on different properties and in some cases can aid in
preventing variational collapse.

The MOM, when it is stable, is an efficient, SCF-style approach to the more general
excited state theory known as ∆-SCF. In the ∆-SCF method, first, the ground state calcu-
lation is performed. Then, the non-Aufbau configuration is identified and a new SCF cycle
is converged in order to fully relax the orbital shapes for this excited configuration [66]. The
difference between these two cycles’ energy is the excitation energy. However, since only
a single determinant is used the excited state wavefunction is not spin-pure, and isn’t an
eigenstate of the spin operator. If spin purity is desired, a purification post processing step
is required. A similar ∆-DFT method can also be constructed, with the DFT SCF cycle
and energies used in place of HF [67]. Restricted Open-shell Kohn Sham (ROKS) theory is
one method to avoid the secondary spin purification step. In this method, a set of ROKS
orbitals are optimized such that the ROKS energy, given below, is stationary.

EROKS
S = 2Emix[(ϕROKS)]− ET [(ϕROKS)] (1.26)

In this equation, Emix is the energy of “mixed” state, which is intermediate between the singlet
and triplet. By directly minimizing an expression with the triplet energy fully projected out,
the secondary spin purification step is not needed. Fig. 1.2 describes this difference.

In a test set of large organic dyes [67], ∆-DFT showed, on average, < 1 eV root mean
square deviation (RMSD) for vertical excitation energies for most choice of functionals. The
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more spin contaminated the wavefunction was, the more exact exchange was required to
achieve an accurate excitation energy. A few years later, the same authors tested the same
set of chromophores with ROKS and found ROKS to perform similarly for some functionals,
but slightly worse for others [64]. It is important to note that the best performance (< 0.3
eV RMSD) was seen for functionals that incorporated long-range corrections (LRC family
of functionals), emphasizing the importance of accounting for delocalization in these large
chromophores. These works emphasize the importance of functional choice, as well demon-
strating that they worked the best for HOMO to LUMO excitations, falling short for higher
order excitations.

1.8.3 Time Dependent Density Functional Theory

TDDFT, just like DFT for ground states, is the most widely used method for calculating
excitation energies and properties [10]. A thorough derivation of TDDFT is presented here
[13], and the same authors have examined DFT’s shortcomings for charge transfer excitations
caused by over-delocalization because of DFT’s self interaction error [68, 69]. In brief,
TDDFT is a linear response method that starts from the ground state DFT equations and
leads to the following eigenvalue equation[

A B
B∗ A∗

] [
X
Y

]
= ω

[
1 0
0 −1

] [
X
Y

]
(1.27)

where X is the excitation amplitude, Y is the deexcitation amplitude, and A and B are
described as

A = (ϵa − ϵi)δijδab + (ia|jb)− cHF (ij|ab) + (1− cHF )(ij|fxc|ab) (1.28)

B = A− (ϵa − ϵi)δijδab (1.29)

where cHF is the percentage of exact Hartree-Fock exchange in the chosen potential, and the
fxc term is the response of the chosen xc potential.

The relationship between ground state methods, Hartree-Fock and DFT, and their linear
response equivalents is shown in Fig.1.3. It’s important to note that one can derive CIS
with the CI formalism from HF or by setting B = 0 in the linear response theory when
the density functional is chosen to be 100% HF exchange with no correlation. When the
density functional is more general, the CI formalism is no longer valid, but one can still
make the B = 0 approximation, known as the Tamm-Dancoff Approximation (TDA) [13].
TDA reduces the computational cost by roughly a factor of two, and provides a much more
straightforward algebraic path to getting excitation energies [70].

TDDFT provides a relatively robust pathway to calculating valence excitation energies,
on average having an error of 0.1 − 0.5 eV [13]. However, it often gets into trouble in
charge transfer excitations, where correct handling of long range exchange is crucial and
the spatially separated unpaired electrons are prone to over-delocalization due to DFT’s
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Figure 1.3: Relationship between various ground state and response state methods. Figure adapted
from [13].

self-interaction error. Despite corrections provided by long-range corrected functionals, the
inherent overestimation of charge separation predicted by TDDFT is well established [5, 68,
69, 71, 72].

1.8.4 Equation of Motion Coupled Cluster

This method is a response theory formulation to CCSD, and is a O(N6) scaling method.
Extensively benchmarked [73, 74], this method constructs a linear excitation operator as

R̂ = 1 +
∑
i

∑
a

riaa
†i+

1

4

∑
ij

∑
ab

rijaba
†b†ji (1.30)

The corresponding EOM-CCSD wavefunction is described as

|ψEOM−CCSD⟩ = exp (T̂1 + T̂2)(R̂|ψ⟩) = R̂(exp (T̂1 + T̂2)|ψ⟩) (1.31)

The linear excitation operator commutes with the exponential cluster operator, allow-
ing this formulation [75]. It has been noted that the cluster operator is still the operator
optimized for the ground state and so some effects are not fully excited-state-specific [2].
For single excitations, approximate orbital-relaxations can be included via the doubles op-
erator within R̂, but this only captures such orbital relaxations to linear order. Therefore,
the choice of the reference wavefunction is really critical for EOM-CCSD states [76]. As in
the ground state, accuracy can be improved through perturbative triples corrections, as in
EOM-CCSD(T), although these raise the cost to O(N7) [77].

In their landmark benchmarking paper, Thiel and coworkers showed that for single Con-
figuration State Function (CSF) dominated singlet excitation, the maximum mean error was
0.12eV [78]. In similar other large test sets, it was seen that for valence excitations, the
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absolute mean error was as low as 0.04 − 0.19 eV, while for charge transfer excitations it
was an average of 0.25 eV, indicating the orbtials being optimized for ground state and not
for the excited state starts having a larger impact [79]. In another work [44], the authors
showed that, for their test set, to get accuracy down to 0.1eV, EOMEE-CCSD(T) was neces-
sary. Without the perturbative triples, EOM-CCSD overestimated the energies of all types
of excitations by 0.1− 0.3 eV. In addition to the difficulties with charge transfer excitations,
EOM-CC methods present a big problem with regards to efficiency, with only calculations
on molecules with 1000 basis functions considered feasible [79].

1.9 Outlook

To varying degrees, most of the methods discussed in the previous section retain a reliance
on the ground state, either by staying "close" to it through linear response or by employing
a ground-state-inspired but spin-broken single-determinant form. One can instead imagine
methods that are more fully excited-state-specific and that recreate the ladder of increasingly
accurate correlation approaches that all start from a mean-field reference state. In the ground
state, HF is on the first rung, and MP2, CC, etc methods lie on higher rungs, with increasing
amounts of correlation. As outlined in the next section, this thesis focuses on developing
and applying SCF techniques to a possible first rung of an excited-state-specific ladder in
which the CIS wave function is improved with full orbital relaxations.

1.10 Outline

Chapter 2

This chapter introduces a self consistent framework for Excited State Mean Field (ESMF)
theory, an excited state-specific analogue to Hartree-Fock theory. Minimally correlated,
and based on solving an one-electron mean-field equation self-consistently, ESMF provides
excited state energies at roughly twice the cost of a HF calculation. Additionally, just like
HF, this excited state method has a commutator criteria for convergence, and is accelerated
via DIIS. This work has been published as [80]. Tarini S. Hardikar, Eric Neuscamman;
A self-consistent field formulation of excited state mean field theory. J. Chem. Phys. 28
October 2020; 153 (16): 164108. https://doi.org/10.1063/5.0019557

Chapter 3

Turning from theory to applications, this chapter focuses on improving our understanding of
how well different excited state methods predict the motion of charge in valence and charge
transfer excitations when molecules are treated under explicit solvation.

Chapter 4

This chapter provides a brief review of this dissertation.
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Chapters 5 and 6

These chapters contain appendices with additional details in support of Chapters 3 and 4.
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Chapter 2

A Self Consistent Field Formulation of
Excited State Mean Field Theory

2.1 Abstract

We show that, as in Hartree Fock theory, the orbitals for excited state mean field theory can
be optimized via a self-consistent one-electron equation in which electron-electron repulsion
is accounted for through mean field operators. In addition to showing that this excited state
ansatz is sufficiently close to a mean field product state to admit a one-electron formulation,
this approach brings the orbital optimization speed to within roughly a factor of two of
ground state mean field theory. The approach parallels Hartree Fock theory in multiple
ways, including the presence of a commutator condition, a one-electron mean-field working
equation, and acceleration via direct inversion in the iterative subspace. When combined
with a configuration interaction singles Davidson solver for the excitation coefficients, the
self consistent field formulation dramatically reduces the cost of the theory compared to
previous approaches based on quasi-Newton descent.

2.2 Introduction

Hartree Fock (HF) theory [1, 2] is so immensely useful in large part due to the rigorous
and convenient link it provides between a qualitatively correct many-electron description
and an affordable and more intuitive one-electron equation. The link it makes is rigorous in
that, when solved, its one-electron equation guarantees that the many-electron description
underneath it is optimal in a variational sense, meaning that the energy is made stationary
with respect to changes in the wave function. The link is also convenient, because many-
electron properties like the energy can be evaluated in terms of inexpensive one-electron
quantities, and because solving a one-electron equation, even one with mean field operators
that must be brought to self-consistency, is in most cases easier and less expensive than a
direct minimization of the many-electron energy. The fact that this useful link is possible
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at all owes much to the simplicity of the Slater determinant many-electron wave function on
which HF theory is built. Essentially, the Slater determinant is as close as we can get to a
truly mean field, correlation-free Hartree product ansatz while still capturing the important
effects of Pauli correlation. Happily, this single step away from a product state does not
prevent a useful and intuitive formulation in terms of a self-consistent one-electron equation
in which mean field operators account for electron-electron coulomb repulsion.

We will show how excited state mean field (ESMF) theory [49] can also be formulated
in terms of a one-electron mean field equation that, when solved self consistently, produces
optimal orbitals. As in HF theory, this formulation is possible thanks to the ansatz hewing
closely to the mean field limit: ESMF takes only one additional step away from a truly mean
field product state by adding the open-shell correlation that arises in an excitation on top
of the Pauli correlations already present in the ground state. Perhaps most importantly, the
resulting one-electron equation that determines the optimal orbitals can, like the Roothaan
equations, be solved by iteratively updating a set of mean field operators until they are self-
consistent with the orbital shapes. As we will see, when accelerated by direct inversion in
the iterative subspace (DIIS) [25], this self consistent field (SCF) approach brings the orbital
optimization cost down to within a factor of two of HF theory, and significantly lowers the
overall cost of ESMF theory compared to previous approaches. Given that ESMF offers a
powerful platform upon which to construct excited-state-specific correlation theories [33, 34,
81] and that it has recently been shown to out-compete other low-cost methods like config-
uration interaction singles (CIS) and density functional theory in the prediction of charge
density changes [82], this acceleration of the theory and simplification of its implementation
should prove broadly useful.

While recent work has provided an improved ability to optimize the ESMF ansatz via the
nonlinear minimization of a generalized variational principle (GVP) [33, 82], the current lack
of an SCF formulation stands in sharp contrast to the general state of affairs for methods
based on Slater determinants. Even in contexts outside of standard HF for ground states,
SCF procedures are the norm rather than the exception when it comes to optimizing Slater
determinants’ orbitals. Indeed, among many others, the ∆SCF [83–86], restricted open-shell
Kohn Sham [64, 87], constrained density functional theory [88], ensemble density functional
theory [19, 20, 89], projected HF [18], and σ-SCF [90, 91] methods all favor SCF optimization
approaches. Although the direct minimization of a GVP or the norm of the energy gradient
[29] offers protection against a Slater determinant’s “variational collapse” to the ground state
or lower excited states, this rigorous safety comes at some cost to efficiency. It is not for
nothing that direct energy minimization methods, although available [16], are not the default
HF optimization methods in quantum chemistry codes. In cases where they prove stable,
SCF approaches are typically more efficient. In the case of the ESMF anstatz, an SCF
approach is also at risk of collapse to an undesired state, but, even in such troublesome
cases, a brief relaxation of the orbitals by SCF may still offer a low-cost head start for the
direct minimization of a GVP. In cases where an SCF approach to ESMF is stable, history
strongly suggests that it will be more efficient than nonlinear minimization. In short, our
preliminary data agree with history’s suggestion.
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2.3 Theory

2.3.1 Hartree-Fock Theory

To understand how an SCF formulation of ESMF theory comes about, it is useful to first
review the formulation of HF theory and in particular how its condition for optimal orbitals
can be written as a commutator between a mean field operator and a one-body reduced
density matrix (RDM). In HF theory, the energy of the Slater determinant ΨSD is made
stationary with respect to changes in the orbital variables, which is the Slater determinant’s
approximation of the more general condition that an exact energy eigenstate will have an
energy that is stationary with respect to any infinitesimal variation in the wave function.
For convenience, and without loss of generality, the molecular orbitals are constrained by
Lagrange multipliers to be orthonormal [1].

For Restricted Hartree Fock (RHF), the resulting Lagrangian

LRHF = ERHF + 2tr
[
(I −CTSC)ϵ

]
(2.1)

in which C is the matrix whose columns hold the molecular orbital coefficients, S is the
atomic orbital overlap matrix, I is the identity matrix, ϵ is the symmetric matrix of Lagrange
multipliers, tr[] is the matrix trace operation, and ERHF is the RHF energy (given below),
is then made stationary by setting derivatives with respect to C equal to zero. After some
rearrangement [1], this condition can be formulated into the famous Roothaan equations,(

h+W [A]
)
C = SCϵ (2.2)

in which h is the matrix representation of the one-electron components of the Hamiltonian
in the atomic orbital basis and W is interpreted as a mean field approximation for electron-
electron repulsions. Of course, this mean field repulsion depends on the orbital shapes,
causing the operator W to be a function of A, the Aufbau determinant’s 1-body α-spin
RDM. In what comes below we will consider RDMs and other matrices in both the atomic
orbital (AO) and molecular orbital (MO) bases, and will adopt the notation that a matrix
with no superscript (e.g. A) refers to the AO representation, while the MO representation
is explicitly denoted as such (e.g. A(MO)). The closed-shell Aufbau determinant’s RDM has
the form

A(MO) = Io A = CA(MO)CT (2.3)

where the matrix Io has ones on the first no elements of its diagonal and zeros elsewhere (no

is the number of occupied molecular orbitals).
Although in many contexts it is useful to separate the restricted HF (RHF) mean field

electron-electron repulsion operator W [A] = 2J [A]−K[A] into its “Coulomb” J and “ex-
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change” K components,

J [γ]pq =
∑
rs

γrs(rs|pq) (2.4)

K[γ]pq =
∑
rs

γrs(pr|qs), (2.5)

defined here using the two-electron integrals in 1122 order, this separation is not necessary
at present and so we will work instead in terms of the combined mean field operator W .

Now, while the Roothaan equation has both an intuitive appeal as a one-electron
Schrödinger equation and a practical appeal as a convenient setup for an SCF cycle based
on the efficient numerical diagonalization of a symmetric generalized eigenvalue problem, it
is not the only way to formulate HF theory’s central requirement of Lagrangian stationarity.
Noting that only the first no columns of C affect the ansatz, we can right-multiply Eq. (2.2)
by Io = A(MO) to focus our attention on them while at the same time left-multiplying by
CT to eliminate the overlap matrix, which results in

F (MO)A(MO) = CT
(
h+W

)
CA(MO) = ϵIo (2.6)

where we have made the usual definition of the Fock operator.

F (MO) = CTFC = CT
(
h+W

)
C (2.7)

If we ensure that we work in the canonical representation [1], the matrix ϵ will be diagonal,
and so Eq. (2.6) essentially says that the product F (MO)A(MO) must produce a symmetric
matrix. We may enforce this requirement by setting the difference between this product
and its transpose equal to zero, which leads to a commutator condition for Lagrangian
stationarity that can be used as an alternative to the Roothaan equation when optimizing
orbitals [25, 92]. [

CTFC, A(MO)
]
= 0 (2.8)

If we consider the HF energy expression

ERHF = tr
[
(2h+W )A

]
(2.9)

alongside the Fock operator definition F = h + W , we see a nice connection between the
commutator condition and the energy. Specifically, if one halves the one-electron component
of the mean field operator whose trace with the density yields the energy, the resulting
operator (F in this case) must, when put in the MO basis, commute with the MO basis
representation of the density matrix in order for the Lagrangian to be stationary. With this
connection pointed out, we now turn our attention to ESMF theory, where a generalization
of Eq. (2.8) yields a useful SCF formulation for orbital optimization.
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2.3.2 Excited State Mean Field Theory

Like HF theory, the energy expression for the ESMF ansatz for a singlet excited state can
be written in terms of traces between mean field operators and density-like matrices. In
particular, if we take the simple version of the singlet ESMF ansatz in which the Aufbau
coefficient is set to zero,

|ΨESMF ⟩ =
∑
ia

tia

∣∣∣a↑i↑ 〉+ tia

∣∣∣a↓i↓ 〉 , (2.10)

where t is the matrix of CIS-like configuration interaction coefficients and
∣∣∣a↑i↑〉 is the Slater

determinant resulting from an i→ a α-spin excitation out of the Aufbau determinant (note
we do not say the HF determinant, as we are not in the HF MO basis), then the ESMF
singlet energy amounts to four traces between mean field operators and density-like matrices.

EESMF = tr
[
(2h +W [A] ) γ

]
+ tr

[
W [D]A

]
+tr

[
W [T ]T T

]
+ tr

[
(W [T ])T T

]
(2.11)

Here γ is the one-body alpha-spin RDM for the ESMF ansatz.

γ(MO) = Io +

(
−ttT 0

0 tT t

)
γ = Cγ(MO)CT (2.12)

The matrix A is the Aufbau determinant’s one-body RDM, as in Eq. (2.3). The difference
between these density matrices we define as D = γ − A. Finally, T is the non-symmetric
matrix that, in its MO representation, has the α-spin transition density matrix between the
Aufbau determinant and the ESMF ansatz (which is as for CIS just t) in its upper-right
corner.

T (MO) =

(
0 t

0 0

)
T = CT (MO)CT (2.13)

With the ESMF energy written in terms of one-body mean field operators and density-
like matrices, we can now present our central result, in which the stationarity conditions for
the ESMF Lagrangian

LESMF = EESMF + 2tr
[
(I −CTSC)ϵ

]
(2.14)

with respect to orbital variations are written in a one-electron equation that admits an SCF-
style solution. We begin, as in HF theory, by setting the (somewhat messy) derivatives
∂LESMF/∂C equal to zero. With some care, this condition can be organized into(

h+W [A]
)
Cγ(MO) +W [D]CA(MO)

+W [T ]C(T (MO))T + (W [T ])TCT (MO) = SCϵ (2.15)
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whose structure is similar to but also notably different from the analogous HF expression in
Eq. (2.2). The formal difference is that there are now four terms on the left hand side, one
for each trace in the energy expression. The practical difference is that the ESMF equation
is not an eigenvalue problem, and it is not obvious that it can be reorganized into one due
to the incompatible kernels of the matrices γ(MO), A(MO), and T (MO).

Thus, it is at present not clear whether this ESMF equation can offer the same spectral
information that the Roothaan equation provides for HF. Nonetheless, for orbital optimiza-
tion, we have found a convenient alternative by transforming this stationary condition into
commutator form by following the same steps that took us from Eq. (2.2) to Eq. (2.8) in HF
theory. Defining FA = h+W [A], the result is that the Lagrangian stationary condition can
be written as

0 =
[
CTFAC, γ

(MO)
]

+
[
CTW [D]C, A(MO)

]
+
[
CTW [T ]C, (T (MO))T

]
+
[
CT (W [T ])TC, T (MO)

]
. (2.16)

It is interesting that the same pattern holds as in the HF case: the commutator condition
has one commutator per trace in the energy expression, and the mean field operators (with
any one-electron parts halved) are again paired with the same density-like matrices as in
the energy traces. We find this pattern especially interesting in light of the fact that it does
not simply follow that each trace produces one commutator. Instead, cancellations of terms
coming from derivatives on different traces are needed to arrive at the commutators above,
and so we do wonder whether this is a happy accident or whether there is an underlying
reason to expect such cancellations.

2.3.3 Self Consistent Solution

Either way, Eq. (2.16) forms the basis for an efficient SCF optimization of the ESMF orbitals.
Assuming that we are a small orbital rotation away from stationarity, we insert the rotation
C → Cexp(X) into our commutator condition and then expand the exponential and drop all
terms higher than linear order in the anti-symmetric matrix X. The result is a linear equation
for X (see Eq. (5.24) in the Appendix) which we solve via the iterative GMRES method.
Note that, if desired, one can control the maximum step size in X by simply stopping the
GMRES iterations early if the norm of X grows beyond a user-supplied threshold. This
may be desirable, as we did after all assume that only a small rotation was needed and
our linearization of the equation prevents us from trusting any proposed rotation that is
large in magnitude. In parallel to SCF HF theory, which holds F fixed while solving the
Roothaan equation for new orbitals, we hold FA, W [D], and W [T ] fixed while solving
our linear equation. Thus, although the modified GMRES solver is not as efficient as the
dense eigenvalue solvers used for HF theory, it remains relatively inexpensive as it does not
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does not involve any Fock builds and so does not have to access the two-electron integrals.
(Technical note: in practice, we can speed up the GMRES solver considerably by preconditioning it
with a diagonal approximation to the linear transformation that is set to one for X elements in the
occupied-occupied and virtual-virtual blocks (since these are expected to play little role in the orbital
relaxation) and, in the other blocks, replaces CTFAC with its diagonal, replaces γ(MO) with Io, and
neglects W [D] and W [T ] (see Appendix for the explicit form). DIIS is also effective when we take
Eq. (2.16) transformed into the AO basis as the error vector and the FA, W [D] and W [T ] matrices
as the DIIS parameters. We use both of these accelerations in all calculations.) Only after the
linear equation is solved and the orbitals are updated do we rebuild the three mean field
operators, and so each overall SCF iteration requires just three Fock builds, which, as they
can be done during the same loop over the two-electron integrals, come at a cost that is not
much different than HF theory’s single Fock build. This arrangement contrasts sharply with
the nine Fock builds and two integral loops that are necessary to form the analytic derivative
of the energy with respect to C that is used in descent-based orbital optimization [82]. In
summary, the ESMF orbitals, like the HF orbitals, can be optimized particularly efficiently
via the self-consistent solution of a one-electron mean field equation.

Although this exciting result makes clear that the ESMF ansatz really does hew closely
enough to the mean field product-state limit for one-electron mathematics to be of use, there
are a number of questions we should now address. First, and we will go into more detail
on this point in the next paragraph, is the SCF approach actually faster than descent? The
answer, at least in simple systems, is a resounding yes. Second, what of the configuration
interaction coefficients t? At present, we optimize them in a two-step approach, in which we
go back and forth between orbital SCF solutions and CIS calculations (taking care to include
the new terms that arise for CIS when not in the HF MO basis) until the energy stops chang-
ing. In future, more sophisticated approaches that provide approximate coupling between
these optimizations may be possible, as has long been true in multi-reference theory [93].
Third, what physical roles can we ascribe to the different mean field operators that appear
in the SCF approach to ESMF? The operator FA obviously carries the lion’s share of the
electron-electron repulsion, as it is the only mean field operator derived from a many-electron
density matrix. Indeed, W [D] and W [T ] represent repulsion from one-electron densities,
and so they cannot provide the bulk of the electron-electron repulsion. Thus, we suggest
that it is useful to view FA as a good starting point that includes the various repulsions
between electrons not involved in the excitation but that gets the repulsions affected by the
excitation wrong. W [D] and W [T ] then act as single-electron-density corrections to this
starting point. If one considers the simple case in which we ignore all electrons other than
the pair involved in the excitation (e.g. consider the HOMO/LUMO excitation in H2), then
a close inspection reveals that W [D] eliminates the spurious HOMO-HOMO repulsion that
is present in the first trace of the energy expression, while the W [T ] terms bring the excited
electron pair’s repulsion energy into alignment with the actual repulsion energy that results
from the singlet’s equal superposition of two open-shell determinants.
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Table 2.1: Convergence of SCF- and GVP-based ESMF for the HOMO/LUMO excitation of cc-
pVDZ H2O. Initial values for t and C are set to the two-determinant HOMO/LUMO open shell
singlet and the RHF orbitals, respectively. For SCF, the two-step method toggled between CIS
and SCF calculations, with CIS going first. As the guess is quite good in this system, the GVP
optimization set µ = 0 right away and so amounted to a BFGS minimization of the energy gradient
norm. At various points during each optimization (measured both by the cumulative number of
loops over the TEIs and by the wall time) we report the energy error ∆E compared to the fully
converged energy. Both calculations used a single core on a 2015 MacBook Air.

SCF ESMF GVP ESMF
TEI Loops Time (s) ∆E (a.u.) TEI Loops Time (s) ∆E (a.u.)

10 0.007 0.062605 76 0.397 0.003761
20 0.025 0.000032 150 0.783 0.000654
30 0.033 0.000004 226 1.187 0.000184
40 0.054 0.000000 300 1.579 0.000001

Table 2.2: Total time in seconds and number of iterations ni taken for the orbital optimization in
the ground state (for RHF) or the excited state (for SCF-based ESMF) to get within 5µEh of its
fully converged value. The RHF and ESMF methods rely on the same underlying Fock build code,
both use DIIS, and both used one core on a 2015 MacBook Air. For ESMF, only the orbitals are
optimized, with t set to the HOMO/LUMO open-shell singlet and the initial guess for C set to the
RHF orbitals. For RHF, the eigen-orbitals of the one-electron Hamiltonian were used as the initial
guess for C. Times do not include the generation of one- and two-electron AO integrals, which are
the same for both methods.

Molecule Basis RHF (s) ni ESMF (s) ni

water cc-pVTZ 0.087 8 0.185 6
formaldehyde cc-pVTZ 0.424 11 0.862 8
ethylene cc-pVTZ 0.903 8 1.735 6
toluene cc-pVDZ 4.366 19 6.835 11

2.4 Results

2.4.1 Efficiency Comparisons

Returning now to the question of practical efficiency, we report in Table 2.1 the convergence
of the energy for the HOMO/LUMO excitation in the water molecule for both SCF-based
and GVP descent-based ESMF (note all geometries can be found in the Appendix).
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Whether one measures by the number of times the expensive two-electron integral (TEI)
access must be performed or by the wall time, the two-step SCF approach is dramatically
more efficient than GVP-based descent in this case. (The keen-eyed observer will notice that
in the SCF case, the TEI loop count and the wall time do not increase at the same rate,
which is due to the CIS iterations having many fewer matrix operations to do as compared
to SCF in between each access of the TEIs.) If we focus in on just the orbital optimization,
as shown in Table 2.2, we find that the SCF approach for ESMF is almost as efficient as
ground state HF theory. In practice, of course, we also want to optimize t, and for now we
rely on the two-step approach, as used in Table 2.1.

While the SCF approach has clear advantages in simple cases, the GVP is still expected
to be essential for cases in which the SCF approach may not be stable. For example, without
implementing an interior root solver or freezing an open core (and we have not done either),
Davidson-based CIS would be problematic for a core excitation. However, as shown in Table
2.3, a combination of an initial SCF optimization of the orbitals followed by a full GVP
optimization of t and C together is quite effective. In this case, the SCF approach brings the
energy close to its final value, converging to an energy that is too low by 54 µEh (remember,
excited states do not have any upper bound guarantee, even when a variational principle
like energy stationarity or the GVP is in use). From this excellent starting point, the GVP’s
combined optimization of C and t converges quickly to the final energy, needing just ten
gradient evaluations to get within 1 µEh. In contrast, if the initial SCF orbital optimization
is omitted, the GVP coupled optimization requires hundreds of gradient evaluations (exactly
how many depends on the choice for ω and how µ is stepped down to zero) [33] to reach
the same level of convergence, and was only able to converge to the correct state at all by
setting µ to 0.5 and ω 0.08 Eh lower than the final energy for the initial iterations to avoid
converging to a higher-energy core excitation. Especially interesting is the fact that, if we
move to the aug-cc-pVTZ basis, the ESMF predictions for the two lowest core excitations in
H2O are 534.3 and 536.2 eV, which are quite close to the experimental values [94] of 534.0
and 535.9 eV and which match the delta between them even more closely. Thus, even in
cases where the SCF approach would be difficult to use on its own, it can offer significant
benefits in partnership with direct minimization.

2.4.2 PYCM

To verify that the benefits of the SCF approach are not confined to smaller molecules, we
exhibit its use on a charge transfer state in the PYCM molecule that Subotnik used to
demonstrate CIS’s bias against charge transfer states [52]. Working in a cc-pVDZ basis
for the heavy atoms and 6-31G for hydrogen, we consider the lowest charge transfer state,
for which we provide iteration-by-iteration convergence details in the Appendix. In Figure
2.1, we plot the ESMF prediction for the donor and acceptor orbitals, which in this case
are just the relaxed HOMO and LUMO orbitals as the t matrix coefficients are strongly
dominated by the HOMO→LUMO transition. We see that this state transfers charge from
the π bonding orbital on the methylated ethylene moiety to the π∗ orbital on the cyano-
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Table 2.3: Convergence of the energy for the lowest singlet core excited state of H2O in the
aug-cc-pVDZ basis. Initial values for t and C are set to the two-determinant 1s→LUMO open
shell singlet and the RHF orbitals, respectively. An initial SCF optimization converged after 10
iterations (involving one TEI loop each), after which GVP-based BFGS descent (again with µ set
immediately to zero) was started from the SCF result (the GVP requires 2 TEI loops per gradient
evaluation). We report the energy error ∆E compared to the fully converged energy as a function
of the cumulative wall time and the cumulative number of TEI loops. The calculation used a single
core on a 2015 MacBook Air.

TEI Loops Time (s) ∆E (a.u.)
Start with SCF:

5 0.163 0.008698
10 0.267 -0.000054

Switch to GVP:
20 0.435 0.000002
30 0.604 0.000001

(a) (b)

Figure 2.1: Donor (a) and acceptor (b) orbitals for the lowest charge transfer state in the PYCM
molecule as predicted by ESMF. The excited state SCF calculation took just two and a half times
as long as the RHF calculation.

substituted ethylene moiety. Aside from the efficiency of the SCF solver in this case (it
takes just two-and-a-half times as long as RHF when using the same Fock build code) it
is interesting to compare the prediction against that of CIS, which is the analogous theory
when orbital relaxation is ignored. CIS predicts a 7.30 eV excitation energy for the lowest
state in which this charge transfer transition plays a significant role, whereas ESMF predicts
a 4.82 eV excitation energy. This multiple-eV energy lowering after orbital relaxation serves
as a stark reminder of how important these relaxations are for charge transfer states.
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2.5 Conclusion

In conclusion, orbital optimization in ESMF theory can be formulated in terms of a one-
electron equation in which mean field operators provide electron-electron repulsion and which
is brought to self-consistency through an efficient iterative process that closely mirrors ground
state HF theory. In particular, it is possible to formulate the excited state many-electron
energy in terms of four traces between density matrices and mean field operators, and the
central commutator condition likewise contains four commutators between these density ma-
trices and their partner mean field operators. In a sense, this is a straightforward extension
of the HF case, where only one trace and one commutator are needed. As has long been
true for Slater determinants, the SCF approach to the ESMF orbitals appears to be signifi-
cantly more efficient than quasi-Newton methods, at least in cases where the SCF iteration
converges stably to the desired state. Looking forward, it will be interesting to see if, as in
the ground state case, the SCF approach admits Kohn-Sham-style density functionals and
whether the optimization of the excitation coefficients can be more tightly coupled to the
optimization of the orbitals.

Appendix

See Appendix for additional mathematical details, additional calculation details, and
molecular geometries.
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Chapter 3

Exploring Mulliken Population Changes
upon Excitation in Explicitly Solvated
Systems

3.1 Abstract

The abilities of excited state mean field theory, time dependent density functional theory, and
restricted open-shell Kohn-Sham theory to predict the motion of charge in molecular charge
transfer states are assessed in the presence of explicit solvent water molecules. Using equation
of motion coupled cluster theory as a reference, changes in Mulliken populations between the
ground and excited state reveal important differences between these methods. Much more
than the other two methods, time dependent density functional theory tends to overestimate
the amount of charge that moves. Restricted open-shell Kohn Sham (when used with a
range-separated hybrid) and excited state mean field theory are more accurate, and it varies
by system which of these two approaches best reproduces the charge motion predicted by
equation of motion coupled cluster theory. One noticeable difference between them is that
excited state mean field theory avoids density functional theory’s self-interaction-induced
tendency to artificially delocalize the hole orbital, which we confirm as an issue in one
system and see evidence for in another.

3.2 Introduction

How the electron charge density distribution within a molecule changes during chemical
processes offers significant chemical insight and provides clarity about how the electron cloud
participates in and responds to such processes. Many tools have been constructed to analyze
charge distributions, and one of the most widely used routes is population analysis [95–101].
Originally most widely used in ground states, these analyses have also been developed for
excited state methods [102–107], which allows a user to get, at a glance, a guide to the
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degree to which a given excitation transfers charge between different regions of a molecule
[108–113].

In ground states, it is well known that the incorporation of correlation effects through
methods like density functional theory (DFT) can significantly change orbital shapes and
Mulliken populations relative to the predictions of uncorrelated Hartree Fock (HF) theory.
[114] This effect is somewhat intuitive, in that electrons that can correlate their motion with
each other will incur less electron-electron repulsion as they try to squeeze in closer to the
nuclei, and so will manage to do so more effecvtively than in an uncorrelated theory. Beyond
Mulliken populations, the difference between DFT orbitals and HF orbitals has also been
noted in that employing the former increases accuracy in some correlation treatments like
third order Møller-Plesset perturbation theory and some coupled cluster methods. [115, 116]

In the excited state, one would expect a similar situation, with mostly uncorrelated
methods like the recently introduced excited state mean field theory [33, 49, 80, 82] (ESMF)
presumably producing different Mulliken populations than DFT-based methods such as time-
dependent density functional theory [13] (TDDFT) and restricted open-shell Kohn-Sham [67,
87, 117] (ROKS). However, the many differences between these theories make it somewhat
difficult to predict how exactly their Mulliken predictions should differ. ESMF and ROKS
relax all of the orbitals’ shapes following the excitation, but ROKS offers a DFT-based cor-
relation treatment while ESMF, by design, avoids treating most correlation effects. TDDFT,
on the other hand, incorporates correlation effects but is a linear response theory that in
practice cannot relax all of the orbital shapes post-excitation, [118, 119] although it is at
least able to reshape the hole and particle orbitals. Further, TDDFT’s well know tendency
to overestimate the stability of charge transfer (CT) states [120] suggests that it may be
prone to overestimating Mulliken population changes due to spuriously predicting too much
CT character. Finally, Mulliken populations in both TDDFT and ROKS could be negatively
affected by delocalization error, which is known to be more severe in systems with unpaired
electrons [121] and has been observed in ROKS. [82]

Although one can analyze CT states and their Mulliken population changes relative to
the ground state in the gas phase, the importance of CT processes in solvated environments
makes doing so under the influence of solvent molecules even more interesting. Indeed, it has
been widely recognized that gas-phase data is often not sufficient for understanding molecular
behavior in solvents. [122–124] As solvation effects can be complex and varied, [123] a variety
of quantum chemical approaches have been developed to address them. One category of
approach is continuum models, [125–136] which seek to avoid explicitly engaging with the
huge numbers of degrees of freedom introduced by even modest numbers solvent molecules
(for example, adding 200 octanol solvent molecules adds 16,200 degrees of freedom [131]).
However, many first-solvation-shell effects [137] like hydrogen bonding, π-stacking, and even
back-bonding interactions [138] are difficult or impossible to reproduce via continuum models.
Indeed, a large body of work has focused on understanding how to accurately simulate
these effects [139–145]. One route forward is the inclusion of at least some explicit solvent
molecules, [146] which in practice can be performed in tandem with continuum models and/or
QM/MM methods [147, 148].
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Of course, the downside to the explicit solvent approach is that it can greatly increase
the size of the system that one must treat quantum mechanically, although there seems to be
little choice in this regard since first-solvation effects are nonnegotiably quantum mechanical.
Thus, the challenge of simulating relatively large quantum systems is especially present
in this setting. As always, DFT and TDDFT are tempting choices due to their modest
computational cost, but extensive benchmarking of TDDFT’s performance for organic dyes
in isolation and in solvation shows a wide range of errors, [149–154] and improving the
solvation description sometimes leads to worse performance compared to experiment. [155]
Higher-level methods also face challenges, both because of their cost and sometimes due to
difficulties with accuracy. A recent study [155] combining equation of motion (EOM) coupled
cluster theory with singles and doubles (EOM-CCSD) with a polarizable continuum model
(PCM) showed that EOM-CCSD’s error was higher for the same molecule in solvation than
in isolation.

With the introduction of ESMF as a low-cost starting point for excited states upon which
wholly excited-state-specific correlation methods can be built, [34–36] it is interesting to ask
how it performs relative to other low-cost options like TDDFT and ROKS in predicting
how charge rearranges during electronic excitations, and in particular CT excitations, in the
presence of explicit water molecules. To study this topic, we have implemented a version
of ESMF that is connected to the integral engine and Fock build system within Q-Chem,
[22] which allows us to evaluate ESMF Mulliken population changes in settings with 20 or
more explicit water molecules surrounding a solute. As we will see, many of the expected
shortcomings of an uncorrelated method vs correlated methods are present, although we
do observe a case in which ESMF successfully avoids a DFT delocalization error. Broadly
speaking, we find that ROKS tends to offer more accurate excited state Mulliken populations
than ESMF for CT excitations, which are in turn more accurate than those of TDDFT.

3.3 Theory

3.3.1 Excited State Mean Field Theory

ESMF is a minimally correlated excited-state-specific theory that parallels many aspects of
HF theory, including a an effective one-electron working equation involving mean-field oper-
ators and self-consistent solutions. [80] ESMF begins with an ansatz similar to configuration
interaction singles (CIS) that consists of spin-preserving single excitations off the Aufbau
determinant,

|ΨESMF ⟩ =
∑
ia

tia

∣∣∣a↑i↑ 〉+ tia

∣∣∣a↓i↓ 〉 , (3.1)

where t is the matrix of CIS-like configuration interaction coefficients and
∣∣∣a↑i↑〉 is the Slater

determinant resulting from an i → a α-spin excitation out of the Aufbau determinant.
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Where ESMF departs from CIS is that it variationally relaxes all orbital shapes in the
presence of a specific excitation, meaning that its Aufbau determinant differs from the HF
Aufbau determinant. Note that, in this study, we explicitly withhold the Aufbau determinant
from the ESMF wave function, although in some other studies this has been included.

The energy of the ESMF excited state can be expressed as the sum of four traces between
mean-field operators and density-like matrices. [80]

EESMF = tr
[
(2h+W [A])γ

]
+ tr

[
W [D]A

]
+ tr

[
W [T ]T T

]
+ tr

[
(W [T ])TT

]
(3.2)

Here W [Z] = 2J [Z] − K[Z] is the “Coulomb minus exchange” mean-field operator built
from the one-body alpha-spin reduced density matrix (1-RDM) Z, γ is the ESMF 1-RDM,
and A, D = γ −A, and T are the Aufbau determinant 1-RDM, the difference density, and
the non-symmetric alpha-spin transition density matrix, respectively.

γ(MO) = Io +

(
−ttT 0

0 tT t

)
γ = Cγ(MO)CT (3.3)

T (MO) =

(
0 t

0 0

)
T = CT (MO)CT (3.4)

In a full ESMF optimization, the CIS coefficients T and the molecular orbital (MO) coef-
ficients C are optimized simultaneously so that the energy is made stationary with respect
to both. One approach to this optimization is a self-consistent field (SCF) method [80] that
oscillates between a CIS-like Davidson algorithm for finding T and an SCF orbital optimiza-
tion. This orbital optimization proceeds by micro-iterations in which the three mean-field
operators in Eq. 3.2 are held fixed but C is allowed to vary. These micro-iterations exist
within macro-iterations, at the beginning of which the mean-field operators are reevaluated
and which can be accelerated by DIIS. An alternative to this SCF approach is the direct
nonlinear minimization of of a generalized variational principle (GVP). [33] In the present
study, the SCF approach was used for all states except for the back-bonding to π∗ excitation
in formaldehyde and the 4-cyanopyridine states and the , which relied on the GVP approach.

3.3.2 Restricted Open-Shell Kohn Sham Method

The ROKS approach seeks to address the spin contamination inherent to single-determinant
descriptions of open-shell singlet excited states. To do so, ROKS uses a relationship between
the open-shell singlet energy and the energies of the corresponding Sz = 1 “high-spin” and
Sz = 0 “low-spin” single determinants.

EROKS
singlet = 2 Elow−spin − Ehigh−spin (3.5)

To achieve excited-state-specific orbital relaxations, ROKS then seeks to make this energy
stationary with respect to orbital rotations [22, 64] while using methods like the maximum-
overlap method, [53] square gradient minimization, [29, 156, 157] or state targeted energy
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projection [48] to help ensure convergence to the desired state. One can also view ROKS as
an extension of the vector-coupling approach to restricted open-shell Hartree-Fock (ROHF)
theory, as it was originally formulated. [87, 117]

It is worth noting that, in some limits, ROKS and ESMF can be very similar. Specif-
ically, if one chooses the “Hartree Fock” density functional within ROKS (no correlation,
100% exact exchange), then the ROKS ansatz becomes equivalent to an ESMF ansatz in
which exactly one CIS coefficient is non-zero. Noting this possibility, we have for each so-
lute molecule performed a transition orbital pair analysis [34] to determine the degree to
which this single-CIS-coefficient truncation is reasonable, and have found it to be such a
good approximation to the ESMF state in the cases with only a few solvent molecules that
we have enforced this condition for all systems, which dramatically accelerates the ESMF
optimization. Indeed, using this approach with our Q-Chem-based ESMF implementation
of the SCF ESMF optimizer [80] leads to ESMF calculations on PYCM with 20 waters (414
basis functions) that are 10 times faster than Q-Chem-based ROKS calculations that employ
a range-separated hybrid functional, with default settings.

3.3.3 Time Dependent Density Functional Theory

Given the many resources that construct, explain, and review TDDFT and its strengths and
weaknesses [13, 68, 69], we will only briefly highlight two key issues here. First, TDDFT fails
to produce the correct 1/r asymptotic behavior of the donor/acceptor interaction energy in
CT states when using jellium-based exchange functionals and simple hybrids.

This formal issue can be addressed by using range-separated hybrids, which smoothly
switch from a traditional hybrid’s exchange treatment at short range to 100% HF exchange
at long range. Second, an issue facing many simple hybrid functionals is the tendency to
underestimate the energies of CT states, often erroneously placing them below the first
optically bright state. [120] This issue can be mitigated by including high fractions of HF
exchange, although this can impede accuracy for other states. [120]

Figure 3.1: Lewis structures for formaldehyde (left), 4-cyanopyridine (center), and PYCM (right).
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3.4 Computational Details

We study the three solute molecules shown in Fig. 3.1. Geometries for these molecules
along with small numbers of explicit water molecules were produced using the Conformer-
Rotamer Ensemble Sampling Tool (CREST). Specifically, the Quantum Cluster Growth
(QCG) algorithm [158, 159] was used to create a solvation geometry, although for cases with
too few solvent molecules to create a proper solvation shell it may be more appropriate to
call these cluster geometries. These geometries were used in all excited state calculations.
CREST, with its QCG algorithm, provides a convenient tool to generate solvated geometries.
To produce solvated geometries, the QCG algorithm first applies two wall potentials, one
to the solute molecule to keep it centered and a second to the solvent molecules to help
prevent clustering and to encourage them to actually surround the solute. With these wall
potentials in place, the algorithm alternates between docking and geometry optimization,
one solvent molecule at a time, until the user-defined number of solvent molecules have been
added. More complete details of this QM and force-field (FF)-based hybrid solvation model
are provided by the method’s developers [147]. The calculated geometries for all systems
studied can be found below in Chapter 6.

Q-Chem was used to perform all EOM-CCSD, CIS, ROKS, and TDDFT calculations
[22]. SCF-based ESMF calculations were performed in a development branch of Q-Chem,
while GVP-based ESMF calculations were performed with our own standalone code that
extracts integrals from PySCF [23]. Three density functionals were tested for both ROKS
and TDDFT calculations: B3LYP [160, 161], PBE0 [162], and ωB97X-V [163]. B3LYP
and PBE0 were chosen due to their exceedingly wide use in the community. ωB97X-V was
chosen as an example of a range-separated hybrid that explicitly accounts for dispersion
effects. The 6-31G basis set [164–166] was used in all EOM-CCSD, ESMF, TDDFT, ROKS,
and CIS calculations. This modest basis both helps make EOM-CCSD reference calculations
affordable and avoids the well-known artifacts that arise for Mulliken populations in large
basis sets.

3.5 Results

3.5.1 Formaldehyde

Formaldehyde was studied both with 8 and with 12 waters. The lowest n-to-π∗ excitation was
analyzed in both cases, and an interesting back-bonding-to-π∗ intermolecular charge transfer
state was analyzed in the 12 water case. Beginning with the n-to-π∗ excitation, we found that
the relevant lone pair and anti-bonding orbital were the HOMO and LUMO, respectively, in
both HF theory and for all three density functionals. This excitation displays some shifting of
charge between one end of the formaldehyde and the other, which is to be expected because
this excitation moves an electron from the lone pair – which is predominantly localized on
the oxygen – into the π∗ orbital that is shared between the carbon and oxygen but favors
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the carbon (which it must do because the corresponding π orbital favors the oxygen as
electronegativity would predict). For our analysis, we have defined the “donor” region to be
formaldehyde’s oxygen atom, the “acceptor” to be the CH2 group, and the “water” region to
contain all atoms in the water molecules.

As seen in Table 3.1, the reference EOM-CCSD calculations predict that roughly 1/4
and 1/5 of an electron transfer from the donor to acceptor region in the 8 and 12 water
cases, respectively. This result reminds us that the presence of solvent really does matter,
and provides a basis of comparision for other methods. Regardless of functional, TDDFT
shows the anticipated behavior of shifting too much charge, overestimating the degree of
CT involved by about a factor of two in both the 8 and 12 water case. It also noticeably
overestimates the motion of charge onto the water molecules in the 8 water case, but this is
a less severe effect. CIS also overestimates the degree of charge motion, which is behavior
that has been seen before in other contexts [47, 52] and is likely due to the fact that it
cannot relax the orbital shapes of the other electrons following the excitation. ESMF proves
more accurate in its Mulliken population changes than TDDFT or CIS, but ROKS is more
accurate still. Both ESMF and ROKS can relax all orbital shapes following the excitation,
so the most likely explanation for the difference between them comes from ESMF ignoring
most correlation effects. It is also noteworthy that ROKS performs best when using the
most sophisticated density functional, although the effect is small for this excitation.

Table 3.1: Changes in the Mulliken charges of different regions for the formaldehyde n → π∗

excitation with 8 and 12 waters.

ROKS TDDFT
#

H2O
B3LYP PBE0 ωB97X-V B3LYP PBE0 ωB97X-V CIS ESMF EOM Region

8
-0.010 -0.012 -0.005 -0.059 -0.059 -0.057 -0.024 -0.006 -0.029 water
0.190 0.206 0.217 0.482 0.482 0.492 0.489 0.351 0.264 donor

-0.180 -0.193 -0.213 -0.424 -0.423 -0.434 -0.465 -0.346 -0.235 acceptor

12
0.018 0.012 0.008 0.027 0.018 0.001 0.003 0.005 0.000 water
0.133 0.146 0.163 0.369 0.376 0.403 0.432 0.290 0.187 donor

-0.151 -0.158 -0.171 -0.396 -0.395 -0.403 -0.435 -0.295 -0.187 acceptor

In the 12 water case, EOM-CCSD predicts that the next-lowest-energy singlet excitation
after the n → π∗ excitation is a somewhat curious back-bonding→ π∗ intermolecular CT
transition. The back-bonding orbital, seen most clearly in the left-hand image of Fig. 3.2,
results from a mixing of the out-of-plane lone pair orbital on the water molecule directly be-
low the formaldehyde and the unoccupied π∗ orbital. Although the π∗’s shape is somewhat
distorted by the interaction, the back-bonding orbital is essentially a constructively inter-
fering linear combination of these orbitals in which the lone pair’s upper lobe has same-sign
overlap with the π∗’s lower right lobe. Note that, if you ignore the bottom-most lobe of the
back-bonding orbital, the remaining lobes have the characteristic shape of a π∗ orbital, but
one that has been distorted and shifted off of the CO axis by its interaction with the water
orbital. As seen in the right-hand image of Fig. 3.2, the excitation in question moves the
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electron into an orbital that is more predominately π∗ in its character, although close inspec-
tion of the bottom-right part of this orbital shows that it has a small amount of destructively
interfering character between the π∗ and the water lone pair. So, roughly speaking, these
two orbitals, which in this CT excitation are the hole and particle orbitals, are constructive
and destructive linear combinations of the water lone pair and the π∗ orbital.

Figure 3.2: The hole (at left) and particle (at right) orbitals for the back-bonding to π∗ excitation
in formaldehyde with 12 waters as calculated by ESMF.

Figure 3.3: The hole (at left) and particle (at right) orbitals for the back-bonding to π∗ excitation
in formaldehyde with 12 waters as calculated by ROKS with the ωB97X-V functional.

Turning to Fig. 3.3, we see that ROKS with the ωB97X-V functional makes a similar
prediction for the hole and particle orbitals for this transition, except that it delocalizes the
hole orbital over additional water molecules. By defining the “donor” region for this transition
as the below-the-formaldehyde water molecule that is involved in the back-bonding, the
“acceptor” region as the formaldehyde, and the “bystander water” region as all of the other
water molecules, we can compare Mulliken changes to those of EOM-CCSD to find out if
this hole delocalization is physical or if it is an artificial delocalization driven by DFT’s
self-interaction error. As seen in Table 3.2, both EOM-CCSD and ESMF predict that the
charge on the bystander waters essentially does not change, which is consistent with the fact
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that the bystander waters show little to no participation in the hole and particle orbitals in
Fig. 3.2. ROKS, on the other hand, predicts that about 1/10 of an electron is removed from
the bystander waters during this excitation, which is consistent with its hole orbital being
visibly delocalized over multiple waters in Fig. 3.3. Thus, it appears that this delocalization
in ROKS is a spurious self-interaction error that ESMF avoids thanks to its exact, wave-
function-based treatment of exchange effects.

Overall, no low-level methods do particularly well at predicting the amount of donor-to-
acceptor charge transfer in this excitation. ESMF underestimates the charge transfer, while
ROKS with the the ωB97X-V functional overestimates it while also showing spurious hole
delocalization. Both of these methods dramatically out-perform PBE0 and B3LYP, however,
for which we were unable to converge ROKS calculations owing to the very poor initial orbital
shapes in the corresponding grounds states. Both PBE0 and B3LYP predict that the back-
bonding orbital is strongly mixed with the lone pair orbitals on all the waters, and their
TDDFT results show multiple spurious low-lying CT states that involve other waters. One
route that will be interesting to explore in future is whether a second order perturbation
theory treatment of correlation effects atop an ESMF starting point would produce natural
orbitals that more closely match the predictions of EOM-CCSD. This route is promising
because it would both provide correlation corrections to the orbital shapes, which is the key
missing effect in ESMF, while continuing to avoid the spurious delocalization brought on by
DFT’s self-interaction error.

Table 3.2: Changes in the Mulliken charges of different regions for the formaldehyde back-
bonding→ π∗ excitation with 12 waters.

#
H2O

ROKS ESMF EOM Region

12
0.096 -0.010 -0.012 bystander waters
0.388 0.161 0.341 donor

-0.484 -0.151 -0.329 acceptor

3.5.2 4-cyanopyridine

For the 4-cyanopyridine charge analysis, we define the “donor” region to be the in-ring
nitrogen atom, its two adjacent carbons, and their hydrogens. The remaining four carbons,
two hydrogens, and one nitrogen in the solute are defined as the “acceptor” region, while the
atoms in water molecules are defined as the “water” region. As seen in Fig. 3.4, the excitation
in question is a HOMO-to-LUMO n→ π∗ transition. Although TDDFT found this transition
to have significant CT character with all three functionals, EOM-CCSD, ESMF, CIS, and
ROKS find no significant net transfer of charge, as seen in Table 3.3. Compared to EOM-
CCSD, ESMF and ROKS are much more accurate than TDDFT, with CIS more accurate
still. This makes the 4-cyanopyridine system interesting in that it is the only system in which
CIS does not over-estimate the degree of CT. The reason is likely that this state, despite
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what TDDFT says, is not in fact a CT state and so CIS’s inability to relax the rest of the
orbital shapes has little to no effect on Mulliken populations, unlike in a real CT state like
the one we will see in the next section. Thus, 4-cyanopyridine continues the narrative that
TDDFT tends to over-estimate the motion of charge, an issue that ROKS and ESMF are
less prone to.

Table 3.3: Changes in Mulliken charges during the 4-cyanopyridine n → π∗ excitation in gas phase
and with 4 explicit waters. Note that ROKS PBE0 did not converge for the latter case.

ROKS TDDFT
#

H2O
B3LYP PBE0 ωB97X-V B3LYP PBE0 ωB97X-V CIS ESMF EOM Region

0
N/A N/A N/A N/A N/A N/A N/A N/A N/A water
0.033 0.045 0.045 0.404 0.375 0.246 0.032 0.093 -0.004 donor

-0.061 -0.076 -0.074 -0.155 -0.140 -0.068 -0.065 -0.065 -0.040 acceptor

4
-0.005 - -0.005 -0.007 -0.006 -0.002 0.000 -0.006 0.002 water
0.097 - 0.089 0.477 0.447 0.303 0.051 0.077 0.023 donor

-0.092 - -0.084 -0.470 -0.441 -0.301 -0.051 -0.071 -0.024 acceptor

Figure 3.4: Participating HOMO and LUMO orbitals for ROKS and TDDFT for the ωB97X-V
functional for 4-cyanopyridine with a 4 water solvation shell. Top left: HOMO calculated by ROKS.
Top right: LUMO calculated by ROKS. Bottom left: HOMO calculated by TDDFT. Bottom right:
LUMO calculated by TDDFT.

3.5.3 PYCM

The lowest-lying CT state in PYCM was analyzed in the presence of 4, 10, and 20 water
molecules. For illustration, the most relevant HF orbitals are shown for the 10 water case in
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HOMO−1,  CN end 𝜋

methyl end (donor)

CN end (acceptor)

LUMO, CN end 𝜋∗

HOMO,  methyl end 𝜋

Figure 3.5: Relevant HF orbitals in PYCM with 10 water molecules.
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Table 3.4: Changes in Mulliken charges for the PYCM CT state with 4, 10, and 20 water molecules.
Note that ROKS PBE0 did not converge for the largest case. The Ref. data is EOM-CCSD in the
4 water case and CASSCF in the 10 water case.

ROKS TDDFT
#

H2O
B3LYP PBE0 ωB97X-V B3LYP PBE0 ωB97X-V CIS ESMF Ref. Region

4
0.004 0.003 -0.014 0.010 0.009 0.031 0.002 -0.014 -0.003 water
0.122 0.127 0.502 0.905 0.902 0.605 0.725 0.536 0.578 donor

-0.126 -0.130 -0.488 -0.914 -0.911 -0.636 -0.727 -0.522 -0.575 acceptor

10
0.142 0.027 -0.008 0.024 0.022 0.028 0.007 -0.014 -0.010 water

-0.004 -0.001 0.388 0.907 0.906 0.461 0.691 0.534 0.708 donor
-0.138 -0.026 -0.380 -0.932 -0.928 -0.488 -0.698 -0.519 -0.698 acceptor

20
-0.020 - -0.054 0.000 0.000 0.009 -0.004 -0.041 - water
0.171 - 0.503 0.921 0.919 0.693 0.810 0.537 - donor

-0.151 - -0.449 -0.922 -0.919 -0.701 -0.806 -0.496 - acceptor

Fig. 3.5. In the 4 water case, EOM-CCSD, ESMF, and PBE0- and B3LYP-based TDDFT
all agree that this state is a simple HOMO to LUMO transition in which the methyl-bearing
end’s ethyl π orbital (the HOMO) acts as the donor and the CN-bearing end’s ethyl π∗ orbital
(the LUMO) acts as the acceptor. In the 10 water case, ESMF and the PBE0- and B3LYP-
based TDDFT calculations continue to predict the same HOMO-to-LUMO character. EOM-
CCSD calculations were not feasible at this system size, but we did compare to a (4e,4o) state-
averaged CASSCF calculation in which all 4 of the ethyl π/π∗ orbitals are in the active space,
the results of which (see Fig. 3.6) matched the simple HOMO-to-LUMO picture predicted by
ESMF. In contrast, when run with the ωB97X-V functional, TDDFT predicts that this CT
excitation is a superposition of the HOMO-to-LUMO and HOMO-1-to-LUMO transitions.
In other words, it has delocalized the hole orbital across both ends of the molecule. In the 10
water case, ROKS with the ωB97X-V functional shows the same hole orbital delocalization,
as seen in Fig. 3.6. Given that ESMF and CASSCF both show clean HOMO-to-LUMO
excitations in this 10 water case and that ROKS/ωB97X-V already showed propensity for
spurious hole delocalization in formaldehyde, this hole delocalization in 10 water PYCM
appears to be another artifact of self-interaction error.

For the Mulliken charge analysis, we define the “donor” region as the six carbon atoms
nearest the methyl end of the molecule as well as their hydrogen atoms. The “acceptor”
region is defined as the six carbon atoms nearest the CN-bearing end of the molecule along
with their hydrogen atoms and the two nitrogen atoms. The “water” region is defined as all
oxygen and hydrogen atoms in the water molecules. Using these definitions, Table 3.4 shows
this CT excitation’s effects on Mulliken charges as predicted by the different methods. ESMF
consistently predicts that just over half an electron is transferred between the two ends of the
molecule, which closely matches the EOM-CCSD prediction in the 4 water case. ROKS with
ωB97X-V predicts less charge transfer, especially in the 10 water case, which is explained by
its seemingly spurious hole delocalization discussed above. TDDFT with PBE0 and B3LYP
overestimates the degree of charge transfer the same way that it did in formaldehyde, again
presumably due to its inability to relax the other orbitals’ shapes after the excitation. ROKS
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ROKS 𝜔b97X-V particle orbital

ROKS 𝜔b97X-V  hole orbitalCASSCF hole orbital

CASSCF  particle orbital

Figure 3.6: Comparison of hole and particle orbitals in PYCM with 10 water molecules.
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with PBE0 and B3LYP predicts essentially no CT at all, and inspection of the final wave
functions reveals that the optimizations collapse onto a spurious non-CT stationary point.
This is quite surprising, as the initial guess for these ROKS calculations is the HOMO-to-
LUMO transition, and the PBE0 and B3LYP HOMO and LUMO orbitals in all three cases
are quite similar to those shown in Fig. 3.5 and so should be an excellent guess for this CT
state. Overall, ESMF closely matches EOM-CCSD in the 4 water case and shows the least
concerning behavior in the larger cases where we do not have EOM-CCSD data to compare
against.

3.6 Conclusion

Having analyzed changes in Mulliken populations for excitations in formaldehyde,
4-cyanopyridine, and PYCM with varying numbers of explicit water molecules present, we
find clear differences in the behavior of TDDFT, ROKS, and ESMF. Compared to EOM-
CCSD reference data, TDDFT, even when using a range-separated hybrid functional, is by
far the worst performer with a strong tendency to overestimate the degree of CT. This is
true even in the 4-cyanopyridine state that EOM-CCSD reveals to not have any significant
CT character at all. ESMF and ROKS, thanks to their ability to perform full orbital re-
laxations after the excitation, are noticeably more accurate than TDDFT, provided that
ROKS employs a range-separated hybrid functional. ROKS results with regular hybrids
were significantly less accurate. Range-separated ROKS proved more accurate than ESMF
in formaldehyde’s n→ π∗ state, but showed a clearly spurious delocalization of the hole onto
the waters in the back-bonding→ π∗ state and evidence of similar delocalization troubles in
PYCM, although that case is harder to analyze due to the lack of EOM-CCSD reference data
in the 10 and 20 water cases. Thus, it is system dependent whether ESMF or ROKS is pre-
ferrable for predicting charge motion, although it is worth noting that range-separated hybrid
functionals are significantly more expensive to evaluate and optimize with than ESMF.

Looking forward, it would be desirable to address the fact that ESMF’s orbital shapes
do not take account of a proper electron correlation treatment. Were this possible, it may
offer similar or better accuracies than ROKS across the board while still avoiding spurious
hole delocalization. One approach to this goal would be to evaluate natural orbitals for the
second order perturbation theory (ESMP2) that has recently been introduced as a post-
ESMF correlation correction. That theory has an N5 cost scaling, although the success
of local correlation theories for MP2 suggest that this may not remain true indefinitely.
At present, it remains difficult to find a mean-field cost excited state method that can
consistently reproduce the excited state Mulliken populations of higher level theories.
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Chapter 4

Conclusion

A self consistent framework for ESMF was developed and introduced as an excited state
analogue to Hartree-Fock theory. The formulation provides an one-electron equation with
mean-field operators that can be solved self consistently, can be accelerated by DIIS, and has
a commutator convergence criteria. At the cost of roughly two Hartree-Fock calculations,
the method provides a robust and an economical preliminary calculation to optimize excited
state orbitals before introducing higher levels of correlation for higher accuracy. This method
serves well for an array of excitations, including valence, core, and charge transfer states.
ESMF’s performance was also tested for larger solvated molcular systems, and compared to
TDDFT, ROKS, CIS, and EOM-CCSD. The method was consistently correct in calculating
if and when the solvent water molecules participated in the charge transfer excitation, unlike
TDDFT and ROKS. However, for excitations that did not involve the water molecules, ROKS
provided a much more accurate quantitative picture of the HOMO to LUMO excitation,
indicating that the ESMF, as a minimally correlated theory, does miss crucial physics and
overestimates charge transfer. This suggests that higher correlated theories built atop the
ESMF framework, such as ESMP2 and ES-CC, provide an excellent pathway to getting
correct qualitative and quantitave pictures for charge transfer excitations in solvated systems.
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Chapter 5

Appendix 1: A Self Consistent Field
Formulation of Excited State Mean Field
Theory

5.1 Mathematical Detail

First, let’s rewrite the ESMF ansatz in Eq. (2.10) as

|ΨESMF ⟩ =
∑
ia

tiaa
†
↑i↑|ΦA⟩+ tiaa

†
↓i↓|ΦA⟩ (5.1)

where ΦA refers to the Aufbau determinant and a†↑ and i†↑ are ↑-spin creation operators for
virtual and occupied orbitals, respectively, in the ESMF molecular orbital basis. We define
the Hamiltonian in chemist’s notation as

Ĥ =
∑
pq

h(MO)
pq

(
p†↑q↑ + p†↓q↓

)
+

1

2

∑
pqrs

{pq|rs}
(
p†↑r

†
↑s↑q↑ + p†↓r

†
↓s↓q↓

+ p†↑r
†
↓s↓q↑ + p†↓r

†
↑s↑q↓

)
(5.2)

where h(MO) and {pq|rs} are the one- and two-electron integrals in the ESMF orbital basis.
The ESMF energy is

EESMF = ⟨ΨESMF |Ĥ|ΨESMF ⟩. (5.3)

From here on out, we adopt a summation convention in which a sum is implied over any
index that appears more than once in the same term. Using this convention, and working
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through the second-quantized algebra, the ESMF energy becomes

EESMF = 2 tiatibh
(MO)
ab − 2 tiatjah

(MO)
ij + 4 tiatiah

(MO)
kk

+ 4 tiatib{ab|kk} − 2 tiatib{ak|bk}
− 4 tiatja{ij|kk}+ 2 tiatja{ik|jk}
+ 4 tiatia{kk|ll} − 2 tiatia{kl|kl}
+ 4 tiatjb{ia|jb} − 2 tiatjb{ij|ab} (5.4)

where a, b, c, d are virtual orbitals, i, j, k, l,m are occupied orbitals, and we will use
p, q, r, s, w, x, y, z for general orbitals. Note the pattern in the terms: first, the one electron
integrals are contracted and summed over, then the two electron integrals. The two electron
integral terms come in pairs, one part of each pair corresponding to the conventional coulomb
operator and the other to the conventional exchange operator. As in RHF theory, the
coulomb terms have an extra factor of two compared to the exchange terms, which is what
produces the general pattern of 2J −K in the final mean field operators.

To derive Eq. (2.15), we start with the Lagrangian in Eq. (2.14), take derivatives with
respect to the elements of the orbital coefficient matrix C, and then set these derivatives
equal to zero. Derivatives of the Lagrange multiplier term in Eq. (2.14) lead to the right
hand side of Eq. (2.15) in the same way that they do for the HF Roothaan equation, and so
we will not work through them explicitly. For the derivatives of the ESMF energy, we need
to remember that the one- and two-electron integrals in the ESMF molecular orbital basis
are transformed from the atomic orbital basis as

h(MO)
pq = CrphrsCsq (5.5)

{pq|rs} = CwpCxqCyrCzs(wx|yz) (5.6)

where h and (wx|yz) are the one- and two-electron integrals (again in chemists’ notation)
in the atomic orbital basis. Noting that C contains an “occupied” block C(o) (the first no

columns) and a “virtual” block C(v) (the remaining columns), we can consider the derivatives
with respect to the elements of these blocks separately. As an example, the occupied block
derivative of the first two-electron integral term in Eq. (5.4) is (here m is an occupied index
and x is a general index)

∂

∂Cxm

(
tiatib{ab|kk}

)
= 2 tiatibCpaCqbCsm(pq|xs). (5.7)

The analogous virtual block derivative is

∂

∂Cxc

(
tiatib{ab|kk}

)
= 2 tictiaCqaCrkCsk(xq|rs). (5.8)
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We now define

Acoul
pq = CrkCsk(pq|rs) (5.9)

Bcoul
pq = CsbtibtiaCra(pq|rs) (5.10)

Ccoul
pq = CritiatjaCsj(pq|rs) (5.11)

Dcoul
pq = CritiaCsa(pq|rs) (5.12)

as well as Aexch, Bexch, Cexch, and Dexch, which are the same except for having q and r
swapped in the two-electron integral. With these definitions, we can combine Eqs. (5.7) and
(5.8) and write the derivative in matrix form.

∂

∂C

(
tiatib{ab|kk}

)
=

[
2 BcoulC(o)

∣∣∣∣ 0

]
+

[
0

∣∣∣∣ 2AcoulC(v)tT t

]
(5.13)

where on the right hand side we have placed a vertical bar to separate the occupied and
virtual blocks of the matrices. Note that we have kept the two matrices on the right hand
side here separate, as they will end up contributing to different terms within Eq. (2.15),
which we enumerate as follows.

Term 1
(
h+W [A]

)
Cγ(MO) (5.14)

Term 2 W [D]CA(MO) (5.15)

Term 3 W [T ]C(T (MO))T (5.16)

Term 4 (W [T ])TCT (MO) (5.17)

We will explicitly work through to Terms 1 and 2. Terms 3 and 4 are derived similarly. Now,
each of the first nine terms in Eq. (5.4) makes a contribution to Terms 1 or 2. We have
already worked out the C-derivatives for one of these terms (the fourth one) in Eq. (5.13).

All the others are listed here. Note that the last two derivatives do not make a contribu-
tion to Terms 1 or 2, but are listed for completeness.



CHAPTER 5. APPENDIX 1: A SELF CONSISTENT FIELD FORMULATION OF
EXCITED STATE MEAN FIELD THEORY 59

∂

∂C

(
tiatibh

(MO)
ab

)
=

[
0

∣∣∣∣ 2 hC(v)tT t

]
∂

∂C

(
tiatjah

(MO)
ij

)
=

[
2 hC(o)ttT

∣∣∣∣ 0

]
∂

∂C

(
tiatiah

(MO)
kk

)
=

[
h C(o)

∣∣∣∣ 0

]
∂

∂C

(
tiatib{ak|bk}

)
=

[
2 BexchC(o)

∣∣∣∣ 0

]
+

[
0

∣∣∣∣ 2AexchC(v)tT t

]
∂

∂C

(
tiatja{ij|kk}

)
=

[
2 CcoulC(o)

∣∣∣∣ 0

]
+

[
2AcoulC(o)ttT

∣∣∣∣ 0

]
∂

∂C

(
tiatja{ik|jk}

)
=

[
2 CexchC(o)

∣∣∣∣ 0

]
+

[
2AexchC(o)ttT

∣∣∣∣ 0

]
∂

∂C

(
tiatia{kk|ll}

)
=

[
2AcoulC(o)

∣∣∣∣ 0

]
∂

∂C

(
tiatia{kl|kl}

)
=

[
2AexchC(o)

∣∣∣∣ 0

]
∂

∂C

(
tiatjb{ia|jb}

)
=

[
2 DcoulC(o)t

∣∣∣∣ 2 DcoulC(v) tT
]

∂

∂C

(
tiatjb{ij|ab}

)
=

[
2 DexchT

C(o)t

∣∣∣∣ 2 DexchC(v) tT
]

Using these C-derivatives, we get to Term 1 by adding up all the pieces from the derivatives
of the terms in Eq. (5.4) that involve h, Acoul, or Aexch. If we make the definition A =
2Acoul −Aexch, then this addition comes out to

4

[
(h+A)C(o)(I(o) − ttT )

∣∣∣∣ (h+A)C(v)tT t

]
(5.18)
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where I(o) is the first no columns of Io (which was defined immediately after Eq. (2.3)). This
can be rearranged as

4 (h+A)

[
C(o)

∣∣∣∣ C(v)

] [
I − ttT 0

0 tT t

]
(5.19)

Now, use the fact that

Apq = 2Acoul
pq −Aexch

pq

= CrkCsk

[
2(pq|rs)− (pr|qs)

]
= Ars

[
2(pq|rs)− (pr|qs)

]
= W [A]pq

to rewrite Eq. (5.19) as

4
(
h+W [A]

)
C γ(MO)

which is just Term 1 multiplied by 4. This factor of 4 cancels with the factor of 4 that
appears in front of the SCϵ term when differentiating the Lagrange multiplier term from
Eq. (2.14), thus delivering Term 1 of Eq. (2.15). Term 2 is gotten similarly by collecting the
terms that involve Bcoul, Bexch, Ccoul, or Cexch. Defining B and C analogous to A, we get:

4(B − C)
[

C(o)

∣∣∣∣ 0

]
(5.20)

However, recall that

(B − C)pq = 2Bcoul
pq − Bexch

pq − 2Ccoul
pq + Cexch

pq

= CsbtibtiaCra

[
2(pq|rs)− (pr|qs)

]
− CritiatjaCsj

[
2(pq|rs)− (pr|qs)

]
=

([
C(o)

∣∣∣∣C(v)

][
−ttT 0

0 tT t

][
C(o)

∣∣∣∣C(v)

]T)
rs

·
[
2(pq|rs)− (pr|qs)

]
= W [D]pq

Then, Eq. (5.20) can be written as

4(B − C)
[

C(o)

∣∣∣∣ 0

]
= 4W [D]CA(MO)

which, again cancelling the factor of 4, is Term 2. Terms 3 and 4 work similarly, this time
collecting the terms involving Dcoul and Dexch.
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Note that Eq. (2.11) can be obtained by rearranging Eq. (5.4). This follows from re-
grouping terms the same way as during the derivation of Eq. (2.15).

The commutator relation given in Eq. (2.16) can be derived from Eq. (2.15), analogous
to how Eq. (2.8) is derived from Eq. (2.2). First, multiply the left hand side of Eq. (2.15)
by CT on the left. Then, transpose the left hand side of Eq. (2.15) and multiply C on the
right. Finally, take the difference.

CT
(
Eq.(2.15) LHS

)
−
(
Eq.(2.15) LHS

)T
C (5.21)

Because ϵ is symmetric and CTSC = I, the equivalent manipulations of the right hand sides
of Eq. (2.15) subtract to give zero. Thus, Eq. (5.21) must be equal to zero, giving us

CTFACγ
(MO) − (γ(MO))TCTF T

AC

+ CTW [D]CA(MO) − (A(MO))TCT (W [D])TC

+ CTW [T ]C(T (MO))T − T (MO)CT (W [T ])TC

+ CT (W [T ])TCT (MO) − (T (MO))TCTW [T ]C = 0. (5.22)

Recall that FA is the regular RHF Fock matrix, W [D] is a mean-field operator defined on a
difference of density matrices, and γ(MO), A(MO) are 1-body RDMs, making these matrices
symmetric. For terms with W [T ] and T , the transposes are part of the expression already.
Therefore, this simplifies to the commutator relation as given in Eq. (2.16).

Now, starting with Eq. (2.16), which may not be satisfied for the C matrix we have,
we seek to make an improvement by rotating C as CeX , where X is an anti-symmetric
matrix. Assuming that the rotation will be small, we approximate eX = I +X. Inserting
this approximation into Eq. (2.16) gives

0 =
[
(C + CX)TFA(C + CX), γ(MO)

]
+
[
(C + CX)TW [D](C + CX), A(MO)

]
+
[
(C + CX)TW [T ](C + CX), (T (MO))T

]
+
[
(C + CX)T (W [T ])T (C + CX), T (MO)

]
. (5.23)

Dropping any terms that have more than one power of X in them and rearranging into the
form of a linear equation for X, we arrive at the working linear equation that we solve with
GMRES to find a new X and then update C.
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−
[
F

(MO)
A , γ(MO)

]
−

[
W [D](MO), A(MO)

]
−

[
W [T ](MO), (T (MO))T

]
−

[
(W [T ](MO))T , T (MO)

]
=

(
F

(MO)
A X −XF

(MO)
A

)
γ(MO)

− γ(MO)
(
F

(MO)
A X −XF

(MO)
A

)
+

(
W [D](MO)X −XW [D](MO)

)
A(MO)

− A(MO)
(
W [D](MO)X −XW [D](MO)

)
+

(
W [T ](MO)X −XW [T ](MO)

)
(T (MO))T

− (T (MO))T
(
W [T ](MO)X −XW [T ](MO)

)
+

(
(W [T ](MO))TX −X(W [T ](MO))T

)
T (MO)

− T (MO)
(
(W [T ](MO))TX −X(W [T ](MO))T

)
. (5.24)

Note that, once we use X to update C, we reevaluate the mean-field operators FA, W [D],
and W [T ]. Once multiple SCF orbital optimization iterations are complete and the error
in Eq. (2.16) is small (as measured for example by by ∆, see next section), we perform a
new CIS calculation in the new orbital basis to update t, and then start in again on orbital

Table 5.1: ESMF details in PYCM charge transfer state.

Iteration Type Energy (a.u.) ∆ (a.u.) DIIS?
ORB OPT -571.178433339545 3.5554e-01 NO
ORB OPT -571.246925619201 2.0214e-01 NO
ORB OPT -571.262163759189 1.6952e-01 YES
ORB OPT -571.277606357895 2.7521e-02 YES
ORB OPT -571.278746939584 9.0729e-03 YES
ORB OPT -571.278998781297 3.9852e-03 YES
ORB OPT -571.279081935162 2.5653e-03 YES
ORB OPT -571.279097212426 8.7319e-04 YES
ORB OPT -571.279100065342 4.2506e-04 YES
ORB OPT -571.279100566347 1.9735e-04 YES
ORB OPT -571.279100661748 8.8807e-05 YES

CIS -571.279215755055 N/A N/A
ORB OPT -571.279215755013 4.9659e-04 NO
ORB OPT -571.279216054833 2.4730e-04 NO
ORB OPT -571.279216098757 1.8869e-04 YES
ORB OPT -571.279216133376 5.1892e-05 YES

CIS -571.279216139390 N/A N/A
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optimization via our linear equation. As a final note, we use a diagonal preconditioner to
approximate the inverse of the linear transformation and accelerate the GMRES solution of
the linear equation. For elements of X in the occupied-occupied or virtual-virtual blocks,
the preconditioner’s diagonal element is just one. For elements of X in the occupied-virtual
or virtual-occupied blocks, i.e. Xia or Xai, the preconditioner’s diagonal element is([

F
(MO)
A

]
aa

−
[
F

(MO)
A

]
ii

)−1

(5.25)

5.2 Charge Transfer Iteration Details

For the charge transfer optimization in PYCM, we show in Table 5.1 the total energy as well
as ∆, the Frobenius norm of the error in the commutator matrix equation in the molecular
orbital basis, at each stage of ESMF’s SCF optimization. Each “ORB OPT” iteration corre-
sponds to one solution of the linear equation for X. The “DIIS?” column labels which orbital
optimization steps employed DIIS. After optimal orbitals for the current t coefficients are
found, a CIS calculation is performed in the new molecular orbital basis in order to update
t. Note that the initial guess in this case was to set the C and t matrices to correspond
to a HOMO→LUMO transition in the RHF orbital basis, which corresponds to the charge
transfer state in question. The orbitals were then optimized by our SCF procedure, after
which a CIS calculation updated t, after which the orbitals were optimized again, after which
another CIS calculation shows that the energy has converged.

5.3 Geometries

Molecular geometries (some in Angstrom and some in Bohr, see table labels) are given in
the following tables. Note that the PYCM geometry is on the next page.

Molecule: Water Units: Angstrom
O 0.0000000 0.0000000 0.1157190
H 0.0000000 0.7487850 -0.4628770
H 0.0000000 -0.7487850 -0.4628770
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Molecule: Ethylene Units: Angstrom
C 0.0000000000 0.0000000000 0.6727698502
C 0.0000000000 0.0000000000 -0.6727698502
H 0.0000000000 -0.9347680531 1.2426974978
H 0.0000000000 0.9347680530 1.2426974980
H 0.0000000000 -0.9347680532 -1.2426974978
H 0.0000000000 0.9347680530 -1.2426974980

Molecule: Formaldehyde Units: Angstrom
C -0.0910041349 0.1032665042 -0.6906844847
O -0.7161280585 0.7732151716 0.1085248268
H -0.2415602237 0.1918899655 -1.7934092839
H 0.6751090789 -0.6449677992 -0.3749139325

Molecule: Toluene Units: Angstrom
C 0.0865862990 0.7410453762 0.0688914923
C -0.1345668535 -0.6531059507 0.0602786905
C -1.4505649626 -1.1603576134 -0.0093490679
C -2.5405851883 -0.2644802090 -0.0661246831
C -2.3124601785 1.1285606766 -0.0571533440
C -0.9977830949 1.6502417205 0.0134992344
C -0.7535284502 3.1540596435 -0.0111519475
H 1.1079021258 1.1261067270 0.1292876906
H 0.7134665908 -1.3382132205 0.1093728295
H -1.6243218250 -2.2374292057 -0.0134283434
H -3.5611922298 -0.6477509085 -0.1151906890
H -3.1617587236 1.8157708718 -0.0950213452
H -0.6369699217 3.5271815420 -1.0399480108
H 0.1595927745 3.4107593481 0.5443343618
H -1.5935598619 3.6938717021 0.4484031317
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Molecule: PYCM Units: Bohr
C 7.48914118998055 -2.05146035486422 -1.28980829449057
C 5.98770398368311 0.04915735478248 -0.06865458045111
C 7.61081607331134 2.27669871460533 0.67560530219819
C 3.46706532904223 -0.09116628967473 0.30637708021880
C 1.92647158203893 -2.41958847844936 -0.43805415580348
C -0.75455162629890 -2.43014371114785 0.69884575028668
C -2.18486749739264 -0.06198337612267 0.06973201498199
C -0.64398578220618 2.33392846576440 0.05840028021288
C 1.88958084771184 2.01941654524793 1.44673369015458
C -4.70904737992718 -0.06309418170513 -0.46180929064412
C -6.17576878134698 -2.34798184267961 -0.48999098912292
N -7.35364877360203 -4.20620382240250 -0.50945688691185
C -6.03132613865057 2.24217192107952 -1.01894902061744
N -7.06517180189986 4.13250579177077 -1.46439337259584
H 8.54937612247998 -1.31872561024836 -2.93252209992581
H 6.33486664187961 -3.64092303587743 -1.95285217876895
H 8.91885629767513 -2.80382984977844 0.03384049526409
H 9.17826984585370 1.64141995115378 1.89968164549696
H 6.59508025455693 3.76874545170370 1.69452668746078
H 8.50253869488760 3.13726625417923 -1.00559579441233
H 2.88064720049037 -4.16472134045315 0.16752333485011
H 1.76036799956004 -2.54566120290402 -2.51696904366760
H -0.60805363262071 -2.53086096937472 2.78367809044349
H -1.80585658070689 -4.12167616649262 0.11092207863213
H -1.74995920022716 3.90829005165278 0.85174533709869
H -0.27696758321317 2.85096221165140 -1.93484378989024
H 1.49786269333475 1.62230247974489 3.46233841913685
H 2.89384261982421 3.83106450894856 1.40264023881446
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Chapter 6

Appendix 2: Exploring Mulliken
Population Changes upon Excitation in
Explicitly Solvated Systems

6.1 Geometries

All solvated geometries were generated by CREST and are given in Angstrom.

Molecule: 4-cyano pyridine
C -1.49744 -1.138724 0.000002
C -0.11206 -1.19872 -0.000001
N -2.18409 0.00000 0.000004
C 0.59178 -0.00000 -0.000001
C 2.02889 -0.00000 -0.000004
C -0.11206 1.19872 0.000001
N 3.17532 0.00000 -0.000006
C -1.49743 1.13872 0.000004
H -2.08043 -2.05147 0.000002
H 0.40608 -2.14628 -0.000002
H 0.40609 2.14628 0.000001
H -2.08042 2.05147 0.000005
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Molecule: 4-cyano pyridine with 4 water molecules
C -1.801128098 -1.290734633 -0.4654940286
C -0.4851121286 -1.058933353 -0.1063815834
N -2.661347471 -0.3274273664 -0.7534783871
C -0.05326584067 0.2656315468 -0.04781416424
C 1.275478818 0.5690617655 0.3219550328
C -0.955849155 1.287590078 -0.3378175283
N 2.350379598 0.8092194752 0.6408307312
C -2.246415263 0.926795677 -0.68377957
H -2.189798909 -2.298584413 -0.531815833
H 0.1860781161 -1.872252536 0.1196867883
H -0.6531944963 2.321799272 -0.2950239895
H -2.988213791 1.677789432 -0.9227792934
O -0.08264179493 0.2079520454 2.978208179
H 0.4938381521 -0.5796100264 2.969122382
H -0.6554565861 0.1056958461 3.740313751
O 2.000049501 -1.596341709 3.089508798
H 2.517324175 -1.869400943 2.330003306
H 2.430329161 -0.7824043776 3.424170679
O 2.632862429 1.020442947 3.498119612
H 2.981817551 1.225741854 2.622616075
H 1.675895317 1.144574815 3.427538465
O -0.9799442892 -0.3269699952 -3.42529592
H -0.9539056324 -0.4215284982 -4.380017342
H -1.892680225 -0.4580071409 -3.154803188
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Molecule: formaldehyde with 8 waters
H -0.26208813043283 1.52324614836254 -1.44055149046130
H -0.96531439110153 -0.17757703807398 -1.35476471452980
C -0.08425203974286 0.46237891114631 -1.22190908685695
O 1.04969753994279 -0.01716777045278 -1.29549206383906
O 2.80743859152177 0.47266954043778 2.23013473386229
H 2.29202936847883 -0.32803172728579 2.06048468382088
H 3.21224817462003 0.70616200514085 1.38051427430079
O -3.00918953173046 -0.09451696122368 1.25756841672731
H -2.18021862530018 0.34291700867676 0.99366461265194
H -2.96790615146923 -0.19641081009137 2.21033520652050
O 1.06466672939600 -1.42741915569149 1.07754430681112
H 0.51363364353834 -2.24005402482116 1.10035773632174
H 1.32746960215150 -1.30583245097695 0.15073305926862
O 1.20138893004835 2.48537968952001 1.49927657041952
H 1.74160409113634 1.87369755920882 2.04870430280640
H 1.77465258697489 2.67453705823828 0.74562638359037
O -0.44315345966638 0.68075014419933 0.65463597487236
H 0.11617274838525 1.46594223030995 0.97403351347724
H 0.04810674784033 -0.12904042082709 0.98031188160275
O 3.07958166329960 1.48360553972951 -0.39201237702588
H 3.78808450251042 1.49942555211271 -1.03535846421318
H 2.36227149830573 0.93419501536525 -0.78646865940856
O -2.81487626938565 -2.37631276180632 -0.17798353682149
H -3.65426157351825 -2.83475115340114 -0.11346847000282
H -2.93172550568819 -1.52454941727453 0.29519693300871
O -0.58782394451866 -3.52264108584505 0.82271058742592
H -1.40641426824753 -3.11840562236029 0.46157750596076
H -0.31663167482658 -4.18939899737191 0.19016597833379
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Molecule: formaldehyde with 12 waters
H -1.16269866942290 0.77631511092895 -0.36316067486297
H -1.13238792574785 -0.99070149660763 0.21850662170440
C -0.57975553117158 -0.07801934456137 -0.01767948496467
O 0.60982780775428 0.00361654737168 0.18486638707656
O 1.83110782618584 -1.37829632519190 -2.16007706908093
H 1.94394562338012 -1.89840084549036 -1.34652555373311
H 2.16659956653851 -0.49028212056156 -1.94005474333315
O -3.04813479779155 -1.73822370408430 -1.05150199966519
H -2.57499543784558 -2.47230338584032 -0.63388189010981
H -2.40122018098032 -1.37138883303994 -1.67355532147404
O 1.81685292265675 -2.36402237914590 0.45501663537034
H 2.61615007475824 -2.34949327791775 0.98354818053873
H 1.44529914120449 -1.45585054127107 0.53014828299043
O -0.71253862359885 -0.72230925077242 -2.24476414359052
H 0.22642243783891 -1.05526624938753 -2.27429917039334
H -0.70693926936362 0.10388197208886 -2.73175933304922
O 3.13978947823343 0.40982813764292 1.26125076072088
H 2.89764390540416 0.57570490717349 0.33082610856288
H 3.88026006104896 0.98645958782117 1.45437848196078
O -3.66945793447644 0.36793090125472 0.50374149408856
H -4.62011864761215 0.36452493197348 0.62411174476769
H -3.46774674916890 -0.40613059338687 -0.07667107890937
O 2.59464669906497 1.18029558045133 -1.38082359465105
H 3.17889967838460 1.75274757465412 -1.87935483695947
H 1.83111067933097 1.74901090421173 -1.10410502885324
O -1.57482421072450 0.74882823435084 2.30905456602972
H -2.36544351824897 0.62630756312049 1.75573953432519
H -1.56131922315078 0.02361838791197 2.93535796748758
O -0.75093596914161 -3.33156606269529 -0.37828571677333
H 0.09243494665995 -3.16229034948223 0.06589601189635
H -0.53710844091085 -3.36696128824453 -1.31378122224078
O 1.00776188871252 2.11428977962467 2.04947647661754
H 1.66561552755088 1.41439976978572 1.89117178029758
H 0.16745140028172 1.66216864655864 2.19641281789235
O 0.76249615385269 2.91238144144145 -0.53296617303457
H 0.89097437703151 2.74640224952556 0.42731584275961
H -0.19449321134686 2.94037863829591 -0.65174303077249
O -2.13562312378373 2.78213472946622 0.00197480718130
H -1.86734928080620 2.95347319054349 0.90888957408378
H -2.80972927188136 2.09026549518273 0.05398696739749
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Molecule: PYCM with 4 waters
C 4.01488288 -1.558054041 0.3665908313
C 3.150015763 -0.4486937012 -0.1730868674
C 3.762898725 0.3061556324 -1.320537643
C 1.955165273 -0.1527549779 0.3396047192
C 1.35380166 -0.8890724934 1.507412913
C -0.05167370397 -1.377981695 1.156762174
C -0.8874069876 -0.2954934183 0.5844950186
C -0.2591061265 1.050394911 0.5341641473
C 1.078485874 0.9487609694 -0.2105883583
C -2.128811587 -0.5305372259 0.08615794019
C -2.725174927 -1.811975523 0.08784854881
N -3.227478802 -2.84220879 0.06834669772
C -2.88989431 0.4717380645 -0.5392457119
N -3.492007598 1.277682942 -1.096103325
H 4.955008188 -1.600296903 -0.1765527559
H 3.517079479 -2.521133883 0.260053332
H 4.241092942 -1.406683393 1.420839628
H 4.159916501 -0.3876287276 -2.061468728
H 4.600348099 0.9023443971 -0.9557518448
H 3.060804689 0.974648103 -1.809003009
H 1.314330544 -0.2169342723 2.371205371
H 1.96073154 -1.746704135 1.78442198
H -0.5399862318 -1.803790007 2.038962374
H 0.02985771023 -2.201454934 0.4343482183
H -0.07832493414 1.391285503 1.55805939
H -0.903981754 1.779409669 0.04085056213
H 1.590278856 1.912130146 -0.1443254008
H 0.8554264972 0.7637145599 -1.264478995
O -0.850354741 -0.2474718796 -2.889468459
H -1.128924352 0.656866941 -3.120067675
H -1.540050179 -0.8289140699 -3.215835871
O -2.092991677 2.169669035 -3.373059023
H -2.6053965 2.466458809 -4.12727798
H -2.710432326 2.094624076 -2.626848932
O 1.409377006 -1.853951672 -2.728768982
H 2.039807088 -1.374696377 -2.184725746
H 0.6459826137 -1.262992045 -2.839517971
O 0.5314044435 -3.652106867 -0.8749576694
H -0.07391957999 -4.282254908 -1.268532212
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H 0.8839989547 -3.109919657 -1.608556003
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Molecule: PYCM with 10 waters
C 4.080816988 -1.100115929 -0.2671534111
C 3.059566859 -0.004744586007 -0.1640159479
C 3.612674582 1.371771349 -0.4256703721
C 1.769567026 -0.1703039039 0.139580355
C 1.093991372 -1.49038409 0.3939567508
C -0.2343044469 -1.561135348 -0.3583754869
C -1.141515702 -0.4477791169 0.008841788208
C -0.5400308404 0.6697530316 0.7700130031
C 0.8453110043 1.018208427 0.2223527236
C -2.451837853 -0.4516309518 -0.3569908345
C -3.009258706 -1.505344523 -1.10839661
N -3.446726409 -2.362754234 -1.733117529
C -3.334816 0.5847465549 -0.02572321401
N -4.082912319 1.407518759 0.2647448859
H 4.555573929 -1.074979018 -1.248232699
H 3.664519185 -2.089654027 -0.1121484933
H 4.860001217 -0.9402277762 0.4782347536
H 4.657602681 1.315501894 -0.7171880042
H 3.540936648 1.995006899 0.4659226168
H 3.059674818 1.871643811 -1.220110293
H 0.9114584225 -1.602599678 1.467679517
H 1.7134221 -2.326178792 0.07587595355
H -0.7195007432 -2.52737135 -0.1961545426
H -0.04052220415 -1.495108189 -1.434526019
H -0.4562682369 0.3605511929 1.817256888
H -1.179121764 1.551578033 0.74329061
H 1.284717488 1.790578452 0.8572686987
H 0.7200398501 1.456024474 -0.7723695618
O -0.8541258791 0.1246054986 -3.056998763
H 0.1083312126 0.09958479351 -3.217167381
H -1.052830488 1.019848494 -2.748483555
O -1.517214497 -2.325693825 -4.047900656
H -2.258222732 -2.624572099 -3.510135532
H -1.403520123 -1.380764827 -3.837951957
O 1.831574494 -0.4350317057 -3.184245239
H 2.240525921 -0.352244362 -2.31769603
H 1.622183362 -1.386097872 -3.288969992
O -2.052639767 0.737135006 3.615120191
H -1.819540177 0.70642238 4.54484803
H -3.029083704 0.6526120476 3.584323738
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O 0.9754847425 -3.014734385 -3.346331621
H 1.341691843 -3.521851378 -4.072090239
H 0.03883035867 -2.833394099 -3.598561881
O -4.759476567 0.7641893987 3.49707809
H -4.913019874 1.675730203 3.195198162
H -5.165147063 0.1944618806 2.840835043
O -4.907750456 3.168062694 2.14110612
H -4.666236165 2.663063028 1.336710985
H -5.476441385 3.885949123 1.860814125
O -2.180923273 3.371649833 2.78435463
H -2.000279902 2.447796996 3.038128513
H -3.145189366 3.433297329 2.706386072
O -1.342347664 4.063577447 0.3452029877
H -0.6308721594 4.693350446 0.4669973585
H -1.645813535 3.818727883 1.250347495
O -1.4147519 2.655524957 -2.000534397
H -1.365352629 3.115134203 -1.142181381
H -2.10149944 3.102350662 -2.497250579
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Molecule: PYCM with 20 waters
C 4.13850615504417 -1.33284491194929 -0.15010572959486
C 3.25101651055397 -0.13021595275574 -0.31026328716862
C 3.91727330143164 1.05430530242872 -0.95800846535663
C 1.98619821732314 -0.04234545113392 0.10540546874085
C 1.19383824964747 -1.14094530940111 0.74995581681216
C -0.16639813038528 -1.26549636578067 0.05916552581602
C -0.95028367420526 -0.02004073051146 0.18290259797686
C -0.19043221831510 1.19611307022487 0.52321749954555
C 1.20801671401723 1.23176603338170 -0.09129081184978
C -2.30633153275588 -0.00493413573503 0.04213501354185
C -3.03765711166430 -1.19052592743294 -0.10343885565704
N -3.62840436247943 -2.17696971065598 -0.15129735863001
C -3.05604179199583 1.18649613887011 0.11389102246169
N -3.65961940707909 2.16082570544558 0.18155217086477
H 4.67427084978300 -1.53567072530011 -1.07807424168597
H 3.59966367044726 -2.22949418673379 0.14034565476456
H 4.88665606983544 -1.13042767754264 0.61699116114807
H 4.92369456730810 0.80406055515147 -1.28191240274444
H 3.98073235062740 1.88685825313015 -0.25775097987798
H 3.34925790289473 1.40063775645676 -1.82094090121602
H 1.04351745195394 -0.90474835487219 1.80567962892544
H 1.70899732762576 -2.09577333147833 0.70104289674386
H -0.72406898470153 -2.11668658749896 0.44338067640352
H -0.00287702688847 -1.45064240644626 -1.00638967134507
H -0.08327360566230 1.18859708057712 1.61353390714711
H -0.74651979212313 2.09422952033767 0.26210015676191
H 1.75420415470457 2.06400706378677 0.35497083032353
H 1.12720666714902 1.43918712441672 -1.15827129226663
O -2.39540863179645 -1.53865062915854 -3.47030630109002
H -3.10887076061239 -1.00931063002024 -3.08533713780795
H -1.62961734461891 -0.95230190172090 -3.54659058271202
O 0.00858966827482 -0.04578061532063 -3.23052233039125
H 0.58364735977838 0.72569055556700 -3.36974927393834
H 0.59677110903194 -0.78968536748894 -3.02220447808196
O -2.00175905838663 1.81010933837159 -2.57088462155450
H -1.54998356906521 2.56543589509414 -2.16362021004255
H -1.31067418911412 1.16331720133276 -2.77662139331967
O -1.00562948404437 -3.70946198715759 -2.63876644213076
H -0.14149480592715 -3.36692291105089 -2.88522759782850
H -1.64086187189276 -3.04181780028234 -2.96380112472441



CHAPTER 6. APPENDIX 2: EXPLORING MULLIKEN POPULATION CHANGES
UPON EXCITATION IN EXPLICITLY SOLVATED SYSTEMS 75

O -0.41253856715069 3.92286240956508 -1.60587312066326
H -0.21008897065638 4.05395029389021 -0.64108323783834
H -0.74106371868348 4.77090873516136 -1.90817712340097
O -2.32190207398710 3.57859362239483 2.27218292629903
H -2.34468332849683 2.67747122204283 2.63136540352755
H -3.02034846026705 3.59469328578920 1.60797458100954
O -1.36172784837051 -1.65261362621088 3.09040328642225
H -0.89354565584972 -2.37148116327409 2.64260385836555
H -2.27916356283461 -1.98025888811801 3.18163083514148
O -5.19290467341859 0.04606647568291 2.19967568802656
H -5.43600092386143 0.01361146796558 1.24634975194441
H -5.92782839134545 0.47419749909588 2.64156655767535
O -5.94477709630853 -0.21759661538459 -0.38002919807345
H -6.01407877925696 -1.16061294388368 -0.54884973721424
H -5.35704751520394 0.12825638274579 -1.07605691155447
O -4.26258338704458 0.38500229424918 -2.51495775560289
H -4.78441777863216 0.68747405757485 -3.26058367929492
H -3.50335719163598 1.00553308940269 -2.45207980802344
O -2.64848090540609 0.89953001936487 3.05153962222798
H -2.20562305892970 0.03908294801808 3.00858296857843
H -3.57077746670061 0.72300835839978 2.81262837805496
O -3.97980198198955 -2.37380268812964 2.84972342033456
H -4.46856973273367 -1.54012292441881 2.74307630018970
H -4.03760249836420 -2.81693083128547 1.99764834633957
O 0.08179397594676 0.84144108953019 3.85013855186153
H -0.76576615150180 1.27072206811602 4.01145275383373
H -0.12975595490232 -0.09657919912718 3.75503198749904
O 1.59934553660706 2.94341568272997 2.73843299886463
H 1.86397207013781 3.48906236463566 3.48019627493195
H 1.16744731845832 2.16136610904262 3.12043638019430
O -0.04559414852723 4.37245978264215 0.97339417311893
H 0.63880038899782 3.91388337890814 1.48862852762670
H -0.87397199030510 4.20564205342136 1.46479909379794
O 1.64990760104538 -2.18780971818301 -2.40278108485771
H 1.57121036707849 -2.91643905152953 -1.75253036944704
H 2.43140302256478 -1.69748424433517 -2.13503051200718
O 1.23383362304618 2.44331466582074 -3.27941084258912
H 1.32514978312110 2.94333588238373 -4.09161010758928
H 0.71063696400890 2.99711057090307 -2.66784589017420
O -2.19507838224383 -4.57932507827314 -0.35546666489021
H -1.74868290365406 -4.37792292153607 -1.20166412829912
H -2.94807374226602 -3.97278195425944 -0.33129715081419



CHAPTER 6. APPENDIX 2: EXPLORING MULLIKEN POPULATION CHANGES
UPON EXCITATION IN EXPLICITLY SOLVATED SYSTEMS 76

O -0.51928266752831 -4.03691964700294 1.60457800373668
H -0.47149819481513 -4.77315880883380 2.21551618553357
H -1.20984530213564 -4.28146183930034 0.93265411596221
O 1.20282455142790 -4.24175193884034 -0.63023744920814
H 0.71846175869687 -4.10177731564556 0.20208084366272
H 0.61990675491934 -4.77167726205029 -1.18155539008296




