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EPIGRAPH

Data is not information,

information is not knowledge,

knowledge is not understanding,

understanding is not wisdom.

Clifford Stoll
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ABSTRACT OF THE DISSERTATION

Data-Triggered Threads

by

Hung-Wei Tseng

Doctor of Philosophy in Computer Science

University of California, San Diego, 2014

Professor Dean Tullsen, Chair

Professor Steven Swanson, Co-Chair

This thesis introduces the data-triggered threads (DTT) programming and exe-

cution model. Unlike threads in conventional parallel programming models, the DTT

model initiates threads on changes to memory locations. This enables increased paral-

lelism and the elimination of redundant, unnecessary computation.

This thesis shows that 78% of all loads fetch redundant data, leading to a high in-

cidence of redundant computation. By expressing computation through the DTT model,

that computation is executed once when the data changes, and is skipped whenever the

data does not change. The set of C SPEC benchmarks show performance speedup of up

xv



to 5.9X, and averaging 46% with architectural support.

To improve the generality of the DTT model, this thesis also demonstrates a

software-only runtime system that allows DTT programs running on top of existing ma-

chines. With mechanisms to minimize the multithreading overhead and dynamically

turning on/off the DTT model, the software runtime system improves the performance

of serial C SPEC benchmarks by 15% on a Nehalem processor, but by over 7X over the

full suite of single-thread applications. We also show that the DTT model can work in

conjunction with traditional parallelism using the software-only framework. The DTT

model provides up to 64X speedup over parallel applications exploiting traditional par-

allelism.

This thesis also discusses CDTT, a compiler framework that takes C/C++ code

and automatically generates a binary that applies the DTT model to eliminate dynami-

cally redundant code without programmer intervention. With the help of idempotence

analysis and inter-procedural name dependence analysis, CDTT identifies potential code

regions and composes support thread functions that execute as soon as live-in data

changes. CDTT can also use profile data to target the elimination of redundant com-

putation. The compiled binary running on top of a software runtime system can achieve

nearly the same level of performance as careful hand-coded modifications in most bench-

marks. CDTT improves the performance of serial C SPEC benchmarks by as much as

57% (average 11%) on a Nehalem processor.

xvi



Chapter 1

Introduction

The ubiquity of computing resources lead us to an era of data explosion. As

of 2012, we created an average of 2.5 exabytes of new data every day through numer-

ous computing devices, social networking applications, online services, scientific com-

puting, and online business transactions [1]. IDC projects that the trend of daily data

generation will exponentially increase by 50X from now to the end of this decade [23].

Building computer systems and applications that match up the performance demand of

transforming this rapidly growing application data becomes increasely important. How-

ever, the Von Neumann model [54] that drives most computers today can limit the par-

allelism and create uncessary computation when processing application data [6, 7].

The Von Neumann architecture stores instructions and data in the memory units

and uses processing units to execute instructions. The processing unit in a Von Neumann

machine contains instruction registers and a program counter. At each step of executing

a program, the processing unit fetches and executes the instruction where the program

counter is pointing. The program counter either advances to the next instruction, or

a new program counter is calculated (e.g. as the result of a branch instruction) after

an instruction finishes. This is also true for parallel architectures based on the Von

Neumann model. Typically, the computer starts parallel computation (i.e., threads) when

the program counter reaches a fork or maybe a pthread create call. Even for helper

1
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int S[N];

int D[N];

int update() {

  int i;

  .

  .

  .

  for(i=0;i<N;i++) {

     S[i] = getInput();

  }

  .

  .

  .

  for(i=0;i<N;i++) {

     D[i] = compute(&S[i]);

  }

  .

  .

  .

  return 0;

}

compute(&S[0]);

0

S[0]

1

S[1]

2

S[2]

3

S[3]

N

S[N]

compute(&S[1]);

S[0] = 1

S[1] =  2

S[2] =  2

0

D[0]

1

D[1]

2

D[2]

3

D[3]

N

D[N]

Conventional programming model code The data-triggered threads execution model

Figure 1.1. The concept of the DTT model

thread architectures [15, 16, 56, 55] or thread level speculation [36, 46, 48], it still

requires the program counter to reach a trigger instruction or a system call before a

new thread is spawned or activated.

Exploiting parallelism in the program counter based execution model of the von

Neumann architecture is challenging because it requires the programmer to explicitly

partition the computation running on top of different hardware contexts. In many cases,

the algorithms exhibit limited potential for parallelism in the conventional model [28].

In addition, this traditional architecture is unaware of the working data. Therefore, the

computer can potentially generate a significant amount of redundant computation that

repeats the same operations. We find that in the C SPEC benchmarks, 78% of loads are

redundant (meaning the same load fetches the same value as the last time it went to the

same address). The computation which operates on those values is often also redundant.

This thesis proposes data-triggered threads (DTT), a programming and execu-

tion model, to address the deficiencies of the Von Neumann model. In contrast to the

Von Neumann model, the DTT model initiates computation when the program changes
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particular memory contents. This has two primary advantages. First, computation de-

pending on the changing data can execute immediately regardless of the position of the

program counter, often exposing parallelism earlier and providing new opportunities for

parallelism. Second, untouched or unchanged data do not generate unnecessary compu-

tation. The latter effect, eliminating unnecessary, redundant computation, is shown to

be particularly powerful.

Figure 1.1 illustrates the concept of the DTT model. The C code in Figure 1.1

contains two for-loops. The first for-loop updates each element of array S. The second

for-loop updates array D by executing the compute function, which calculate the result

using only the value from an array element, on array S. In this example, the computer

completely recalculates every element of array D, even though S may have only changed

slightly, or even not changed at all.

In the DTT model, you can specify that D, or specific elements of D, are recal-

culated as soon as an element of S changed. For example, if the statement S[i] =

getInput(); changes the value of S[0], the DTT model can immediately initiate a

thread to recompute the value of D[0] in parallel. In this way, the DTT model exploits

parallelism at the earliest possible point in the program – when the data is generated or

changed.

On the other hand, if the value of S[2] remains the same after the statement

S[i] = getInput(); is executed, recalculating D[2] is unnecessary since the result

will not change. In this case, the DTT model can avoid the redundant computation by

triggering no computation in updating D[2].

Becuase of the design of the DTT model, the computer can support this model

with only a relatively small amount of architectural changes comparing with existing

works sharing similar goals. For example, because the DTT model does not specula-

tively spawn threads, the DTT model does not require additional hardware or software
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data structures to keep track of different versions of data or squash threads like specu-

lative multithreading [36, 46, 48, 8] or value prediction [34]. Because the DTT model

directly compare the sameness of data, the DTT model does not employs large hardware

tables that are required by dynamic instruction reuse [47], block reuse [25], and silent

stores [33] in book-keeping input-output pairs.

In addition, we show that supporting the DTT model using a software-only ap-

proach is feasible. The software-only runtime system makes the DTT model available

on existing machines and improves the generality of the DTT model. Without hardware

support, the software-only approach results in some runtime overhead. However, we

will show that in many cases, the overhead is negligible comparing with the huge ben-

efits that DTT model brings. Because the DTT model exploits redundancy, the DTT

model not only skip the redundant execution, but also often miss the software overheads

of tracking the data values and managing threads. As a result, the software solution can

in many cases be competitive with the hardware version. The software-only DTT frame-

work achieves an average of 15% performance improvement. We also demonstrates

that the DTT model is complementary with traditional parallelism and can speed up an

application by 64X.

The initial proposals of the DTT model rely on programmers to identify the po-

tential of exploiting parallelism and redundant computation. However, automatically

applying this model to existing programs is also possible. With the help of idempotence

analysis and inter-procedural name dependence analysis, the compiler can identify po-

tential code regions and generate binaries compatible with systems supporting the DTT

model. The experimental result not only shows the performance matches programmer’s

modifications, but also demonstrates that the algorithm for identifying code regions for

the DTT model serves as a good static predictor for redundant code. Without any pro-

grammer’s intervention, CDTT compiler can still improve performance by 10% on the
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software runtime system. The algorithm of selecting code regions to apply the DTT

model also serves as an accurate static predictor of dynamically redundant code.

This thesis describes and evaluates all of the above aspects of the DTT model.

We organize this thesis in the following way.

Chapter 2 demonstrates that nearly 80% of load instructions and more than half

of all computation in a set of SPEC2000 applications could be redundant.

Chapter 3 presents the DTT model. We first show how the DTT model can

execute a program, trigger parallel computation, and avoid redundant computation. We

also introduce the programming paradigm of the DTT model – we proposed an extension

to the C/C++ programming languages.

Chapter 4 examines the performance benefit of the DTT model using architec-

tural support. This chapter shows that supporting the DTT model requires a small set

of changes in the instruction set architecture and the microarchitecture. With minor pro-

grammers’ changes to SPEC2000 benchmarks using the DTT model, these changes can

achieve up to 5.89X speedup and an average of 1.46X speedup.

Chapter 5 presents a software-only runtime system that supports the DTT model

without hardware changes. This chapter also identifies potential performance bottle-

necks in supporting the DTT model in software and presents optimizations minimizing

multithreading overhead and automatically adjusting the usage of the DTT model.

Chapter 6 presents CDTT, a compiler that can automatically generate

data-triggered threads from legacy code. The CDTT compiler further releases the bur-

den of the programmer when applying the DTT model to existing applications. CDTT

automatically identifies the code regions that can apply the DTT model and produces

binaries running on top of systems supporting the DTT model.

Chapter 7 places the DTT project in context by discussing the related work and

Chapter 8 concludes this thesis.



Chapter 2

Redundant computation

In a simplified model of execution in the Von Neumann architecture, we can

consider a program as many strings of computation that begin with one or more loads of

data – and are followed by computation on that data using registers, and completing with

one or more stores to memory. If the data loaded remains the same since the previous

invocation of this code, it is likely the computation produces the same results, and the

program stores the same values to the same locations in memory.

Consider the for-loop in Figure 2.1 that we excerpt from the gcc compiler. If

j = 1 and the content in bb live regs[1] remains the same from the last time we

executed this for-loop, the statement live = bb live regs[j]; will load the same

data from bb live regs[1]. As a result, the statement old live regs[j] = live;

      for (j = 0; j < regset_size; j++)

        {

          REGSET_ELT_TYPE live = bb_live_regs[j];

          old_live_regs[j] = live;

          if (live)

            {

                .

                .

                .

            }

        }

Figure 2.1. A code example of redundant computation from gcc

6
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will produce the same result to old live regs[1]. If the bb live regs array only

changes slightly every time we execute the for-loop, most of the load and store instances

in this for-loop will reproduce the same result as the last invocation of the loop.

Lepak and Lipasti [32] demonstrated that 20-68% of all stores are silent stores.

They define a silent store as a store instruction writing the same value already present

at the memory address. For example, an instance of old live regs[j] = live; is a

silent store if the value in old live regs[j] is equal to live. By identifying silent

stores and squashing silent stores in the memory queue, the processor can reduce the

store traffic to the memory hierarchy and improve performance by 10% [33]. In this

thesis, we are more interested in the other end, redundant loads, because we want to skip

the entire string of computation leading to the silent stores, not just the store. Therefore,

we also study the incidence of redundant loads.

We define a redundant load as a load instruction where the last time this load

loaded this address, it fetched the same value. If the content in bb live regs[1]

remains the same from the last time this for-loop completed, the statement live =

bb live regs[j]; will incur a redundant load instance when j = 1. This redundant

load also results in a silent store in the later code if old live regs[1] is not modified

elsewhere.

This definition of the redundant load is different from that studied or exploited by

existing works including value prediction [34, 35, 12]. Value prediction only considers

a load instruction as redundant if the results of two consecutive instances of the load

instruction are the same. In the code example of Figure 2.1, they can only cover the

cases where bb live regs[j] and bb live regs[j-1] are the same, but may not

include the redundant load that we define in this thesis. In addition, a redundant load in

the prior definition does not necessarily lead to a silent store. If old live regs[j-1]

is different from old live regs[j], the store operation cannot be skipped even though
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Figure 2.2. The redundant load and silent store instructions in SPEC2000 C benchmarks

the loads from bb live regs return the same value. Therefore, these works can only

speculatively pre-execute some instructions, but not skip the computation string.

Using the above definitions of redundant loads and silent stores, we modified the

SMTSIM [52], an execution-driven, cycle-accurate simulator, to capture the percentage

of redundant loads and silent stores in the SPEC2000 C benchmarks. We compiled these

benchmark using the C compiler on an Alpha machine with -O2 optimization. Figure 2.2

shows the experimental result. We found that 79% of all loads are redundant, ranging

from 63% to 87%. Nearly all executed instructions depend (directly or indirectly) on at

least one load and thus inherit much of that redundancy. As a result, these instructions

perform the same computation as the last time them interact with the same input data.

As a result, over 50% of all stores are then silent.

For the code example in Figure 2.1 that contains the second most frequent stores

in the gcc program, 70% of the loads in the loop are redundant, and these loads result

in 70% silent stores. Even for ammp that has only 11% silent stores, we can still find a

computation string that incurs about 99% redundant loads and silent stores in the most

time-consuming function.
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Chapter 3

The data-triggered threads model

Data-triggered threads presents a new model of parallelism that has the potential

to expose parallelism more explicitly while avoiding redundant and unnecessary compu-

tation. Where conventional programming models generate parallelism based on control

flow (the program counter reaches a fork instruction, for example), in the DTT model a

thread is generated when a particular memory location is changed.

The DTT model has two advantages. First, it exposes parallelism immediately,

as soon as the program modifies the source data. Second, it eliminates redundant compu-

tation – if the data is not changed, we do not do the computation. Chapter 2 demonstrated

that about 80% of all loads are redundant, meaning that they load the same value that the

same load had fetched the last time it accessed this same address. The redundant load

often brings in redundant computation that depends on that load, typically leading to a

store that finally writes a value into memory that has not changed. With the DTT model,

the programmer can express the redundant computation in a support thread, which is

only triggered when the data has actually been changed.

This chapter will describe how the DTT model executes a program and discuss

how a programmer can write a program using the DTT model.

10
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store r1, 0(r2)A

B

C

load r3, 0(r2)

Code repeats the same 
load and computation if 
depending memory 
contents are still the 
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store r1, 0(r2)A

B'

C

main thread support thread

(a) The original execution model (b) The DTT execution model

Figure 3.1. The data-triggered thread execution model

3.1 The data-triggered threads execution model

Unlike traditional execution models, which generate parallelism based on con-

trol flow, the DTT model initiates a thread when the program changes particular memory

contents. Figure 3.1 shows the basic operation of the data-triggered threads execution

model. The original application contains code sections A, B, and C. The computation

in code section B depends on data generated by code section A. If the store instruction

in code section A generates a value different from what is currently stored in mem-

ory, the system will spawn a support thread (B’) using a free hardware context. The

spawned thread performs the computation or an incremental version of section B in

non-speculative fashion.

After the support thread (B’) completes execution and the main thread reaches

the original location of section B, the processor will skip the execution of section B and

jump to section C. This is possible because the computation of section B was done in B’

with exactly the same input data.

If the store instruction does not modify the value stored in memory or the pro-

gram does not execute the store instruction, the computation and memory access opera-

tions of section B are redundant. In this case, the DTT model will not spawn a thread
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but skip the instructions in section B to eliminate the redundant computation. Because

the DTT model skips the execution of code section B if the result of a prior support

thread computation is still valid, the DTT model calls the code section B the “skippable

region”.

Although in the common case the code in B will either be pre-executed or unnec-

essary, we leave the code in place (delineated by pragmas). This is done for two reasons.

(1) The support thread may have failed to spawn, and (2) the support thread may have

encountered an unexpected code path which caused it to squash itself. Either of those

cases will result in the original B code executing in place.

3.2 The data-triggered threads programming model

To describe a program that can initiate computation using the data-triggered

threads model, we propose a set of extensions of the C/C++ programming languages.

These language extensions allow the programmer to exploit the DTT model by declaring

data triggers, associating each data trigger with a support thread function, and defining

the skippable region.

3.2.1 Specifying data triggers

Data-triggered threads are triggered by modifications to data. Therefore, the

triggers themselves do not appear in the code section of the program, but rather in the

data declarations. In the basic DTT programming model, the programmer can declare a

trigger in two places, in a structure declaration or a variable declaration.

For each data structure field or variable that may spawn a thread, the program-

mer can attach the pragma #trigger to the definition of the data structure or variable.

The format of the pragma is:

#trigger support thread function name()
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node_t *net; #trigger refresh_potential_DTT();

(a) uses a trigger attached to a specific variable

typedef struct node {

struct node *pred;  #trigger refresh_potential_DTT()

struct arc *basic_arc; #trigger refresh_potential_DTT()

cost_t potential; #trigger refresh_potential_DTT()

    long orientation; #trigger update_checksum_DTT()

} node_t;

(b) uses a trigger attached to a particular field of a defined data structure

Figure 3.2. Two possible ways to specify triggers.

In a variable declaration, we are specifying that the thread be initiated any time

that variable is changed (Figure 3.2(a)). In this way, we can attach a support thread

function to specific variables of a type. If the programmer declares an array as a data

trigger, the DTT model will trigger the support thread function when any element in the

array changes.

On the other hand, when we declare a trigger in a structure declaration, we can

attach the support thread function to a particular element of the structure (Figure 3.2(b)).

This enables us, for example, to spawn a thread when we touch the potential field of

a node t structure, but not when we touch another field unrelated to this calculation.

If the programmer declares a variable or a data structure field as a data trigger,

the compiler will replace all store instructions that may touch the memory content of the

data trigger with a special instruction or a software function, described in the following

chapters, to detect the change of the memory content. The special instruction or function

can initiate computation if it detects changes in the memory content.
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We would like to avoid a flurry of unnecessary threads when data structures that

may otherwise be very stable are initialized. Therefore, we also allow the programmer

to use the #notrigger pragma to identify a region of code for which we do not want to

spawn a thread, even if it modifies one of our data triggers.

Because we depend on the compiler (rather than hardware that watches for an

address) to identify trigger locations, this impacts what accesses we can track. If we

pass a pointer to a trigger variable to a function, for example, then modify the variable

through that pointer, a thread will not be generated. However, if we specify the trigger

in a structure definition, it will cause the thread to be spawned in this case, as long as

the type of the pointer is declared correctly in the callee function.

3.2.2 Composing support thread functions

The support thread function describes the computation to perform after the mem-

ory content of a data trigger changes. The support thread function is written as a function

in a conventional language and accepts the triggering address as an input. When execut-

ing the support thread function, the spawned thread occupies the same address space as

the main thread, and can read and write anything in memory. The support thread func-

tion also has its own stack so that it can maintain its own local variables and even make

function calls.

Clearly, we do not want the data-triggered threads to create unwanted data races

when executing the support thread function in parallel. As with any parallel code, it is

up to the programmer to determine that those stores do not create data races. Because

the timing of the writes is always constrained to be between the triggering point and the

main thread join point (skippable region), it is often easy to verify the absence of data

races.

There are some restrictions when composing support thread functions. First, the
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support thread function should be idempotent [19]. A code segment is idempotent if the

code does not overwrite any of its inputs. As a result, this code segment always generates

the same result given the same inputs. This also implies that the result is not affected by

how many times the code is executed – as long as the input values remain the same. In

the DTT model, threads are started and potentially aborted asynchronously, and may be

executed multiple times before the result is used. Therefore, a thread that (for example)

accumulates state each time it executes will not be a good candidate. Second, the

current DTT model does not allow a support thread function to trigger another support

thread, although that will likely be added in future work.

Sometimes, the programmer realizes that the result of a triggered thread cannot

be reused when the thread takes a particular path – for example, if an unlikely condition

is met, causing the code to potentially access some data that may still be changing (e.g., a

trigger had not been applied to that data for some reason) or may create a race condition.

In this case, the programmer can use the cancellation feature to invalidate the status table

entry and stop the current thread by adding the pragma

#cancel

in the code segment. This guarantees that the code in the corresponding skippable region

will be executed again by the main thread before the result is accessed.

3.2.3 Defining skippable regions

In our current instantiation of the data-triggered threads programming model,

(often identical) code appears in two places: in the definition of the support thread func-

tion, but also in the main thread. If you are modifying existing code (as in all the appli-

cations considered in this paper), think of the latter as the place where the original code

region was before modification. This second copy of the code serves several purposes.

First, it serves as the join point of the main thread and the support thread, in the case
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where the support thread successfully pre-executed. Second, it serves as the backup in

case the support thread did not spawn or did not complete successfully. In those cases,

the main thread can just execute that code in place. Otherwise, the code is skipped, and

the return value (if any) is copied into a register.

To define the boundaries of these skippable regions in the main thread, the pro-

grammer needs to add pragmas into the program source code. The pragma

#block block name

defines the beginning of the skippable region, and the pragma

#end block

the end of the skippable region. In each support thread function, the programmer uses

the pragma

#DTT block name

to specify the corresponding skippable region that can be skipped after all spawned sup-

port thread functions complete.

In the DTT model, we allow more than one support thread functions to replace

the computation of a single code block. Consider this example: the potential field

and an orientation field could each trigger separate thread functions, but each would

specify the same block name in the pragma, allowing each to replace the piece of code

that recomputes multiple elements of the tree network.

3.2.4 Code example

To provide an overview about how to apply the DTT model in a program, we

use the most time-consuming function in mcf, the refresh potential function as an

example in this section. Figure 3.3 shows a while-loop in the refresh potential

function. Our experiment in Chapter 2 shows that more than 99% of the computation in

this function is redundant.
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while( node ) {

    if( node->orientation == UP ) {

         node->potential = node->basic_arc->cost + 

                           node->pred->potential;

    }

    else /* == DOWN */ {

         node->potential = node->pred->potential - 

                           node->basic_arc->cost;

         checksum++;

    }

    tmp = node;

    node = node->child;

}

Figure 3.3. Source code segment from refresh potential function of mcf

The while-loop in the refresh potential function updates the potential of

all nodes in a network. For each node, the value of the potential field only depends on

the potential field of the linked node pred and the cost field of the edge basic arc.

In other words, the value of potential changes only when the program changes the

value of potential or cost of its pred and basic arc nodes, or when the node has

different pred and basic arc nodes.

Because the interactions are complex, explicitly tracking changes and their impli-

cations would be difficult. However, these particular fields (including the links) of this

structure change slowly, so the code constantly recalculates the same potential values;

that is, the loads are redundant and the computation and stores are unnecessary. In this

implementation, using traditional programming features, the amount of computation is

constant, regardless of how much or how little the data in a network changes.

To generate the same result as the original code but also avoid redundant com-

putation, the programmer can use the DTT model to rewrite the code as in Figure 3.4.

We use the second mechanism (Figure 3.2(a)) for declaring data triggers. The second

mechanism is more efficient in this code because only modifications to the potential

and the cost fields and pointers to linked nodes (e.g.,basic arc and pred) can change

the value of potential. Figure 3.4(a) shows our data trigger declarations. Whenever

one of these fields changes, the DTT model can initiate the execution of the
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typedef struct node {

struct node *pred;  #trigger refresh_potential_DTT()

struct arc *basic_arc; #trigger refresh_potential_DTT()

cost_t potential; #trigger refresh_potential_DTT()

    long orientation; #trigger update_checksum_DTT()

} node_t;

(a) data trigger declaration

#DTT refreshPotential

void refresh_potential_DTT( node_t *root ) {

    node_t *node, *tmp;

    tmp = node = root->child;

    while( node != root ) {

        while( node ) {

            if( node->orientation == UP )

              node->potential = node->basic_arc->cost + 

                                node->pred->potential;

            else /* == DOWN */

              node->potential = node->pred->potential - 

                                node->basic_arc->cost;

            tmp = node;

            node = node->child;

        }

        

        node = tmp;

        while( node->pred ) {

            tmp = node->sibling;

            if(tmp) {

                node = tmp;

                break;

            }

            else

                node = node->pred;

        }

    }

}

(b) the support thread function

long refresh_potential( network_t *net ) {

    node_t *stop = net->stop_nodes;

    node_t *node, *tmp;

    node_t *root = net->nodes;

#block refreshPotential    

    root->potential = (cost_t) -MAX_ART_COST;

    tmp = node = root->child;

    while( node != root ) {

    }    

#end_block

    return checksum;

}

(c) modified refresh potential function

Figure 3.4. An excerpt of modified mcf benchmark
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refresh potential DTT function in a support thread. This is a particularly effective

construct; in this case, the contents of nodes may change frequently, but the structure

and the value of the potential or cost fields may not – this allows us to ignore all but

the exact changes we care about.

Figure 3.4(b) presents the support thread function that executes when any of

these fields in a node changes, the refresh potential DTT function. This support

thread function updates the potential fields of every nodes in the subtree that is rooted

at the changed node. This support thread function only updates the modified node and

its succeeding nodes because the change of a node never affects the potential fields of

its predecessors. This implementation of the support thread function allows us to avoid

more redundant computation.

If the value of the potential field in any node is not going to change further

and all the support thread functions triggered by modified nodes completed, the program

does not need to compute the code in the while-loop again. Therefore, we defined the

while-loop as the skippable region as in Figure 3.4(c). When the main thread reaches the

original refresh potential function, the DTT model will skip the execution of that

function, because all the values that need to change will have already been computed

and written.

We could also try to apply a software technique like memoization [37, 14] to

this code. Because it depends on a global linked list of unknown size, it would require

virtually unlimited storage for old values, and the cost of checking the input structure

for sameness and transferring all of the saved output values is nearly the same as the

computation itself. With data-triggered threads, we store only a few bytes, independent

of the size of the live-in data structures, and completely bypass the sameness check,

memory value copy, and the computation.
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Chapter 4

Architectural support for the DTT

model

The computer system can support the DTT model either with hardware and the

instruction set architecture (ISA) or a software-only runtime system. This chapter de-

scribes the former option. Chapter 5 will describe the software-only option.

To support the DTT model, the computer must be capable of detecting changes in

the memory, executing support thread functions in parallel, and skipping the unnecessary

computation in the skippable region. In the hardware solution presented in this chapter,

we leverage the existing multithreading processors to perform the support thread func-

tions, modify the ISA to detect memory content change, and use hardware tables to

guide the execution of skippable regions.

On the hardware side, the processor requires additional hardware tables – the

thread status table (TST) and the thread queue (TQ). The TST contains information

associated with each skippable region to indicate whether or not the processor can by-

pass the execution of the skippable region. The TQ stores information to manage active

support threads.

On the ISA side, the DTT model proposes several new instructions: tstore,

tspawn, tcancel, and treturn. The tstore instruction stores a value into a data trigger
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and checks if the stored value is the same as the current data in the target memory. If a

tstore instruction detects a change to memory contents, the following tspawn instruction

will transfer the support thread information to the TQ. The support thread will execute

on a spare hardware context until the support thread terminates at a treturn instruction

that updates the TST, or a tcancel instruction that simply invalidates the corresponding

TST entry when the program takes a path that causes the result to not be able to be

reused. Note that the implementation of the tstore instruction also assumes changes

to the load/store pipe and cache to determine whether the value has been changed in

memory.

This chapter will describe this modest architectural support to enable the DTT

model. This chapter will also show that existing, complex code can be transformed to

exploit the DTT model with minor changes. This chapter will also present the perfor-

mance gains from these transformations, which can be as high as 6X speedup.

4.1 Architectural support

The DTT execution model assumes processors capable of running multiple hard-

ware contexts, such as a chip multiprocessor or simultaneous multithreading. However,

it also works on a single-thread core with software threads. To support the DTT model,

we propose some architectural changes to the baseline processor. These include the

thread status table and the thread queue. In addition, a set of new instructions, tstore,

tspawn, tcancel, and treturn are added to the existing instruction set architecture.

In this section, we will introduce these new architectural components and discuss

how they enable the data-triggered threads model.
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4.1.1 ISA support

For the hardware implementation of data-triggered threads, we propose four new

types of instructions in the instruction set architecture. This implementation also re-

quires compiler modifications to generate binaries that can utilize the new instructions.

The primary addition in the ISA is the tstore instruction. This type of instruction

causes a thread to be generated if the store modifies memory. We also considered full

hardware solutions for tracking changes to memory values (e.g., a table that watches

memory addresses or regions); however, the ISA solution we use here has several key

advantages. (1) It greatly simplifies triggering based on specific data fields. In the

refresh potential example, we can trigger on a change to the pred or basic arc

fields of a node, but ignore changes to other fields — we could not do this with hard-

ware that tracked changes to a region of memory. (2) It makes it easier to ignore some

accesses (such as initialization of the structure) by just not using the tstore instruction.

(3) It allows us to track a larger set of addresses, not constrained by the size of some

internal table.

Whenever the main thread executes and commits a tstore instruction, hardware

detects whether the store is silent or not. A good description of the hardware to detect

silent stores is in [33]. Note that we do not simulate the performance gains from short-

circuiting silent stores except for tstore instructions, to better evaluate the impact of our

proposal in isolation. If the store does modify memory, we cause a thread to be spawned

by creating a support thread event in the thread queue.

To associate a tstore instruction with a support thread function, we must follow it

with a tspawn instruction, which fills the two hardware tables, thread queue and thread

status table, with the the PC of the support thread function, the start PC of the skippable

code in the main thread, the destination PC which denotes the new PC after the region
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is skipped.

The code executed in the support thread function has some implicit arguments

(which become live-ins) and a return value. These live-ins include the global pointer,

stack pointer, and the triggering address. At most, there will be one register live-out if

the function returns a value, zero if not.

The hardware injects move instructions right after the tstore triggers a thread

to transfer the implicit live-ins (sp, gp) from registers to the Thread Queue to create

a support thread event. We currently have two kinds of tstore instructions: for the

declaration in Figure 3.2(a), we pass the effective address to the TQ. For the structure-

based declaration in Figure 3.2(b), we pass the base address of the structure to the TQ. In

this case, we just need to ensure that the compiler constructs tstore instructions carefully

(and conventionally), with the base register containing the base address of the structure

and the displacement field the offset – in that case the base address in the register, not the

computed address, is inserted into the thread queue. If the tstore does not alter memory

(not actually known until the instruction commits), the tspawn instruction is ignored

and the transfers do not take place. Because our results in Section 4.3 indicate that

performance is highly insensitive to thread spawn costs, we could transfer the implicit

live-ins through memory via software and it would perform about the same.

When the support thread function encounters a tcancel instruction, the thread

will terminate its execution immediately. As discussed previously, this enables us to cre-

ate a support thread function in a case where an infrequent live-in is still not calculated.

In this case, we cancel the thread if we take a path that would read the unexpected value.

When the support thread function executes a treturn instruction, the processor

will finish execution of the current support thread. The current value of the thread live-

out will be copied into the TST – this may involve remote communication, depending

upon the location of the TST.
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0x200182e801 0x20018370

00

00

status bits

Start PC Destination PC

9582

Output valueTriggering Addr

0x3000c9d0

(a) thread status table

0x20038008 0x3000c9d0

Thread PC Stack Pointer

0x200182e8

Triggering Addr

0x3000c9d0

Start PC Global Pointer

(b) thread queue

Figure 4.1. New hardware tables

In order to maximize the exposure of redundant execution, we could have a

variant of the tspawn and treturn that are executed by the main thread when it executes

its version of the data-triggered threads code. This would allow its live-out to be written

into the TST to bypass future redundant computation.

4.1.2 New hardware structures

To efficiently support the DTT model, we add the thread queue (TQ) and the

thread status table (TST) as shown in Figure 4.1.

When a thread executes a tstore instruction that modifies memory, we will create

a new entry in the TQ, as described above, with data from the tstore and the thread

registry. The TQ holds the start PC and arguments for any thread that has been requested

but not yet completed. At the same time, we also allocate or modify an entry in the TST

corresponding to this thread, filled with data from the TQ and tspawn instruction – in

particular the start PC (the beginning of the skippable region) and destination PC (the

first instruction following the skippable region).
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Each TST entry also contains a location for (and register name of) the register

live-out, if the thread has one. This value is written when a support thread function

completes. In addition, each entry in the TST contains status bits to indicate if this entry

is valid, invalid, spawning, or running. If a new event enters the TQ, the corresponding

TST entry will change to spawning state.

When a hardware context is available and the TQ is not empty, a thread is

spawned with the PC and arguments based on the values stored in the TQ. However,

if there is a TST entry corresponding to the same code block when a thread is triggered,

and its status is running, one of two things will happen. If the triggering address is the

same, the running thread is aborted in favor of the new thread. If the triggering address is

different, the new thread waits to spawn until after the first completes — this is a conser-

vative approach and may not be neccessary in all cases. If there is no available context

when a thread is ready to spawn, the TST entry is simply marked invalid, ensuring that

the computation will be performed by the main thread.

When the main thread’s PC reaches a value that matches a start PC entry that is

valid, a register move instruction is injected into the pipeline to move the register live-

out from the TST to the local register file. Then the PC is changed to the destination PC

value. When code is highly redundant, we will do this latter operation much more often

than we will spawn threads.

If the TST status bits specify invalid, we will just execute the code in place. If

the status bits indicate that a support thread event is still spawning, we will remove the

support thread event from the TQ and execute the code in place, and the support thread

event will never execute. If the status is running, we will stall the main thread until the

entry becomes either valid or invalid. We can either have one TST per core, or have

it centralized. In the latter case, we can exploit redundancy between parallel threads

more easily, but would need to cache at least part of the TST data in each fetch unit for
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fast comparison with the current program counter each cycle. We assume one TST per

core, with remote threads communicating register output values to the TST across the

interconnect when the support thread returns.

Our TST currently allows one entry per code block (identified by the PC of the

code in the main thread). This does not change the programming model, but may limit

the performance. Consider the case of a routine that calculates the determinant of a

matrix. If it is always called for the same slowly-changing matrix, it will detect the re-

dundancy. If it is called for 5 different slowly-changing matrices, it will not identify the

redundancy when it is called for a different matrix than the last call. This is because the

arguments to the function will differ from the previous call. This is an implementation

detail that can be changed in future implementations. It was not a major impediment to

the current set of applications. The primary impact was that we sought out very coarse-

grain threads that operate on entire data structures, rather than fine-grain threads that

made local changes in reaction to writes to individual elements.

In summary, we add only a few small tables, accessed infrequently. The only

frequent access is the comparison of the skippable region start address with the program

counter, a comparison similar to, but less complex than, the BTB access. Thus, we add

no significant complexity to the core. We do add some hardware to the ECC check

circuit of the L1 data cache – it is the same hardware proposed for silent stores [33, 32]

which incurs no extra delays.

4.2 Experimental methodology

4.2.1 Opportunities for data-triggered threads

Data-triggered threads can enhance parallelism by starting dependent computa-

tion as soon as the source data is changed, or to reduce unnecessary computation by
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placing often-redundant code in a thread. For this initial investigation of these ideas,

we focus on the latter, but do exploit the former when it presents itself in the neighbor-

hood of the redundant computation we are studying. We profile SPEC C applications

for procedures or code regions with high incidence of redundant loads. For each applica-

tion, we then identified just one or a few regions to investigate, making relatively minor

changes to the code.

However, not all code is a candidate for data-triggered threads. Code where the

data is changed very close to the original code region will not create parallelism, but can

still pay off if the redundancy is high. Conversely, code based on frequently changing

data is only a good candidate if it can be triggered well ahead of time to exploit parallel

execution. Data that often changes multiple times between invocations of the targeted

code region will still work, but can create extra work and may not perform well.

One new constraint that C programmers may not be used to is that each support

thread function must be idempotent, as described in Chapter 3. Because threads are

started and potentially aborted asynchronously, and may in fact be executed multiple

times before the result is used, a thread that (for example) accumulates state each time

it executes will not be a good candidate. If the refresh potential function, from

Figure 3.3, accumulated the total potential and added it to a running sum, it would not

work without some restructuring. But because it only writes local variables that are

initialized in the routine or global variables that will be rewritten on a restart, it is an

excellent candidate. We expect the compiler to help to identify and flag support thread

functions that are not idempotent.

For this set of experiments, we have modified all of the C SPEC2000 programs

– our current framework only works with C code. In each case, we identify no more

than three routines that appeared to be good candidates for a data-triggered thread, and

modify the code accordingly. The changes to the source code were extremely minor in
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all cases. For example, in mcf, we copied part of the subroutine refresh potential

(35 lines), added two lines of code to prevent redundant computation, and also added

7 pragmas. Table 4.1 lists the number of static instructions of our DTTs. The average

length of our DTTs is 145 instructions.

We summarize our modifications to the C SPEC 2000 benchmarks in Table 4.1.

We also provide more detail regarding our implementation in Chapter A. We were

guided heavily by the profile data regarding functions and code regions with high inci-

dence of redundant loads. We exploited opportunities to increase parallelism only when

they presented themselves during that process — we did not profile for opportunities for

parallelism.

4.2.2 Simulation

In this set of experiments, we evaluate the architectural support for the data-

triggered threads model using a modified version of SMTSIM[52]. SMTSIM is an

execution-driven, cycle-accurate simulator which models a multicore, multithreaded

processor executing the Alpha ISA.

We assume the baseline processor core is a 4-issue out-of-order superscalar pro-

cessor with a 2-way 64KB L1 instruction cache and 2-way 64KB L1 data cache. The

processor also has a 2-way 512KB L2 cache and a 2-way 4MB shared L3 cache. The

global hit times of L1, L2, and L3 caches are 1 cycle, 12 cycles, and 36 cycles, and it

takes 456 cycles to access main memory. The branch predictor used for simulation is a

gshare predictor with 2K entries.

Since the DTT model will work with any processor capable of running multiple

contexts concurrently, we tested our scheme on both chip multiprocessor (CMP) and

simultaneous multithreading processors (SMT) [53]. We assume the CMP platform is a

dual-core processor in which each core has a private instruction cache and data cache,



30

T
a
b

le
4
.1

.
M

o
d
ifi

ca
ti

o
n
s

to
b
en

ch
m

ar
k
s

B
en

ch
m

ar
k

D
at

a
tr

ig
g
er

s
A

v
g
.

st
at

ic
C

o
m

p
u
ta

ti
o
n

p
er

fo
rm

ed
b
y

d
at

a-
tr

ig
g
er

ed
th

re
ad

s

D
T

T
in

st
.

am
m

p
l
a
s
t

,
n
a
y
b
o
r

1
9
3

S
o
m

e
co

d
e

fr
o
m

a
n
u
m
b
e
r

fu
n
ct

io
n

to
re

co
m

p
u
te

to
ta

l

n
u
m

b
er

o
f

n
o
d
es

an
d

co
d
e

fr
o
m

m
m
f
v
u
p
d
a
t
e
n
o
n
b
o
n

fu
n
ct

io
n

to
re

fr
es

h
a
t
o
m
a
l
l

ar
t

f
1
l
a
y
e
r
[
]
.
P

3
1
3

S
o
m

e
co

d
e

fr
o
m

t
r
a
i
n
m
a
t
c
h

fu
n
ct

io
n

to
re

fr
es

h

f
1
l
a
y
e
r
[
]
.
Y

b
zi

p
2

s
s

3
9

C
o
m

p
u
te

s
th

e
v
al

u
e

o
f
b
b
S
t
a
r
t

,
b
b
S
i
z
e

an
d
s
h
i
f
t
s

cr
af

ty
s
e
a
r
c
h

1
0
1

S
o
m

e
co

d
e

fr
o
m

E
v
a
l
u
a
t
e

fu
n
ct

io
n

to
p
re

co
m

p
u
te

th
e

n
ew

sc
o
re

eo
n

a
M
R

an
d
a
V
H
R

in

m
r
S
u
r
f
a
c
e
L
i
s
t
:
:
v
i
e
w
i
n
g
H
i
t

m
et

h
o
d

6
7

T
h
e

co
n
st

ru
ct

o
r

o
f

th
e

g
g
M
a
t
e
r
i
a
l
R
e
c
o
r
d

o
r

m
r
V
i
e
w
i
n
g
H
i
t
R
e
c
o
r
d

cl
as

s

eq
u
ak

e
t
i
m
e

,
d
i
s
p
[
]

5
7

W
e

tr
ig

g
er

th
e

co
m

p
u
ta

ti
o
n

o
f
p
h
i
0

,
p
h
i
1

,
an

d
p
h
i
2

fu
n
c-

ti
o
n
s

o
n
ce

t
i
m
e

ch
an

g
es

.
W

e
al

so
tr

ig
g
er

a
th

re
ad

to
p
er

-

fo
rm

th
e

ti
m

e
in

te
g
ra

ti
o
n

co
m

p
u
ta

ti
o
n

w
h
en

th
e

sm
v
p

fu
n
c-

ti
o
n

g
en

er
at

es
a

n
ew

v
al

u
e

fo
r

a
d
i
s
p

ar
ra

y
el

em
en

t.

g
cc

r
e
g
r
t
x
n
o

4
T

h
e

co
m

p
u
ta

ti
o
n

o
f
m
a
x
r
e
g
n
u
m

fu
n
ct

io
n

g
zi

p
s
t
r
s
t
a
r
t

,
h
a
s
h
h
e
a
d

3
0

T
h
e

co
m

p
u
ta

ti
o
n

o
f
l
o
n
g
e
s
t
m
a
t
c
h

fu
n
ct

io
n

m
cf

n
o
d
e
t

3
5

S
o
m

e
co

d
e

fr
o
m

r
e
f
r
e
s
h
p
o
t
e
n
t
i
a
l

fu
n
ct

io
n

to
u
p
d
at

e

th
e

su
b
tr

ee
le

ad
in

g
b
y

th
e

to
u
ch

ed
n
o
d
e

m
es

a
i
0

,
w
0

,
an

d
w
1

2
0
3

G
en

er
at

in
g

n
ew

R
,

G
,
B

,
an

d
al

p
h
a

v
al

u
es

p
ar

se
r

r
a
n
d
t
a
b
l
e

an
d

in
p
u
ts

o
f
c
o
u
n
t

fu
n
ct

io
n

5
5

T
h
e

co
m

p
u
ta

ti
o
n

o
f
h
a
s
h

fu
n
ct

io
n

p
er

lb
m

k
P
L
o
p

4
6

P
re

-e
x
ec

u
ti

n
g

th
e

fu
n
ct

io
n

sp
ec

ifi
ed

b
y
P
L
o
p

tw
o
lf

n
e
w
t
o
t
a
l

o
f
d
i
m
p
t
r

1
5
9

T
h
e

co
m

p
u
ta

ti
o
n

o
f
n
e
w
d
b
o
x
a

fu
n
ct

io
n

v
o
rt

ex
E
m
p
T
k
n
0
1
0

an
d
P
e
r
s
o
n
T
k
n

1
6
8

T
h
e

co
m

p
u
ta

ti
o
n

o
f
P
e
r
s
o
n
O
b
j
s
F
i
n
d
I
n

fu
n
ct

io
n

v
p
r

h
e
a
p

3
0

T
h
e

co
m

p
u
ta

ti
o
n

o
f
m
y
a
l
l
o
c
a
t
e

fu
n
ct

io
n



31

but shared L2 and L3 caches. The SMT processor can run at most two hardware threads

– it is a single core with the same size caches as a single core on the CMP.

We also assume that there is an additional 10-cycle delay (unless specified other-

wise) before spawning threads due to the transfer of register values. The TST contains

4 entries and the TQ contains 16 entries.

Because the data-triggered threads change the total number of dynamic instruc-

tions, we cannot use IPC as the performance metric. Instead, we set a check point

within each benchmark (based on the Simpoint [45] and the desired simulation length)

to compare the cycles each different configuration takes for the main thread to reach the

checkpoint.

We use all 15 benchmarks written in C from both the SPEC CPU 2000 inte-

ger and floating point suites as our target benchmark suite, regardless of whether our

profiling determined they were good candidates for data-triggered threads. This set of

programs exhibit a wide range of data access behaviors including pointer deferencing

and control flow behaviors. We simulated each benchmark for a total of 500 million

instructions (based on the original code’s execution stream) starting at a point indicated

by Simpoint [45]. All simulation results use the reference input sets. For each bench-

mark, we rewrote the functions containing the most redundant load instructions using

the proposed DTT model as descibed in Section 3.2.2.

4.3 Results

Figure 4.2 shows the experimental results of our modified codes running on the

DTT architecture. These applications achieve an average of 45.6% performance im-

provement over the baseline processor in the CMP platform. In the best case, we see

a gain near 6X. Even the harmonic mean, which heavily discounts the positive outliers,

shows an average gain of 17.8%.
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Figure 4.2. The relative performance of data-triggered threads for the CMP and SMT

configurations, relative to our baseline. (HM means harmonic mean, and AM means

arithmetic mean)

The DTT model running on this architecture achieves a speedup of 5.89 on mcf.

As discussed in Figure 3.4, we optimize the refresh potential function, which tra-

verses a large pointer-based data structure and incurs many cache misses. This is the

most time consuming function within mcf, yet most of its computation is redundant.

For the SMT results, our architecture spawns support threads on another hard-

ware context on the same core, possibly competing more heavily for execution resources.

Even still, our DTT architecture achieves a 40% performance improvement on the SMT

platform.

We further break down the execution statistics in Figure 4.3. This graph shows

the percentage of cycles when only the main thread is running, when only the support

thread is running, or both. We see that our largest gain, on mcf, comes completely from

reduced execution. In the cases where we get no gains, the support threads just do not

occur frequently enough (neither executed nor skipped). In a couple cases, we actually

increases the total executed instructions. Due to parallelism effects, it is perfectly plau-

sible that we could still get speedup when that happens – but in these cases we don’t.

Both the CMP and SMT implementations clearly benefit from the elimination
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Figure 4.3. The execution time breakdown for our benchmarks for the CMP configura-

tion.
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Figure 4.4. The relative performance with CMP processor and single core configuration

of redundant computation. The experimental results of the two architectures are nearly

identical for benchmarks like mcf, mesa, vortex, and vpr. Table 4.2 shows that DTT

reduces dynamic instruction counts by more than 10% for these benchmarks. However,

the CMP has an advantage in exploiting parallelism, not having to compete for pipeline

resources. For ammp, art, crafty, equake, and twolf, our DTT architecture helps to

exploit parallelism between the main thread and support threads. But these benchmarks

suffer from resource competition on SMT.

To further examine this point, we ran a non-multithreaded, single-core version of
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the architecture. With this architecture, support threads pre-empt the main thread when

they are ready to run. This architecture exploits no parallelism, but again benefits from

reduced execution due to redundancy. Those results are in Figure 4.4. Even that archi-

tecture achieved a 1.33 speedup despite a few benchmarks showing large slowdowns. If

we tuned off DTTs for this case (e.g., not using DTTs when they cause slowdowns) the

overall speedup would be 1.38.

Even though we were not targetting parallelism in general, we find that one

reason that we do not expose as much parallelism as we might hope is our success at

eliminating redundant computation. When the support threads rarely execute (e.g., mcf,

vortex, vpr), they have little opportunity to execute in parallel.

We do see extensive parallelism in ammp, art, and equake. It is unexpected that

we do not see significant SMT speedup in any of these cases. In ammp and equake, the

parallelism does help to significantly improve performance in CMP, but incurs serious

resource contention with the main thread in SMT – a single thread of ammp or equake

uses almost all of the execution bandwidth of a single core. In art, eon, mesa, and twolf,

the gains are mitigated in both the CMP and SMT cases because the main thread must

often wait for the DTT. For CMP this tradeoff is a slight win, for SMT it is a clear loss.

In an energy-conservative architecture, we would likely not use this approach for this

benchmark.

There is another source of performance gain, however, besides parallel execution

and fewer executed instructions. Table 4.2 shows that DTT helps to improve cache

performance at all levels of the cache hierarchy. With a CMP processor, DTT reduces

the L1 D-cache miss rate from 6.60% to 5.27% and L2 cache miss rate from 39.60% to

33.69%, on average. Even with the SMT processor, in which two threads compete for

the shared L1 cache, DTT still reduces the L1 D-cache miss rate from 6.60% to 6.24%

and L2 cache miss rate from 39.60% to 34.61%. Because we tended to target code that
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Figure 4.5. The performance with thread spawn latencies of 10 vs 500 cycles.

traversed large data structures (because that’s where much of the redundancy was), DTT

successfully eliminated code that had poor cache behavior.

The latency for spawning new threads is an important variable and will depend

on several factors, including communication latencies between cores, the number of live-

ins, etc. In our initial results, we model a very fast spawn latency to get an understanding

of what gains are possible. To get a better feel for how the spawn latency affects per-

formance, Figure 4.5 compares the performance of data-triggered thread under spawn

latencies of 10 and 500 cycles. The performance does not make a significant difference

in most of the benchmarks. In crafty, eon, twolf, and vpr, the data structure is frequently

modified and there is insufficient slack between the execution of support thread func-

tions and the code segment using the result; therefore, the high spawn overhead results

in going from no gain to actually losing performance. In general, though, we lose little

performance overall even with a high spawn latency.

4.4 Discussion

With the data-triggered threads model, the programmer can specify threads to

spawn and execute when the application touches and changes data (of a certain variable,



37

or of a certain type). This enables increased parallelism, but in this initial foray into

this execution model, the focus is on the elimination of redundant computation. This

chapter presented that by specifying computation in the DTT model, the computation

is only performed when the data gets changed, eliminating redundant executions. We

presented that the DTT model only requires minor architectural changes. By making

small modifications to existing C programs, we achieve speedups as high as 5.89, and

averaging 1.46 with the architectural support of the DTT model.
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Chapter 5

Software data-triggered threads

In the previous chapter, we demonstrated that the DTT model can achieve up to

6X speedup, but requires changes to the instruction set architecture and the addition of

hardware tables to the microarchitecture, making it unavailable on existing processors.

This chapter introduces a software implementation that supports the DTT model,

software data-triggered threads (software DTT). Software DTT enables programmers to

utilize the DTT model on existing architectures without any hardware support. Software

DTT experiences overheads (primarily the high cost of spawning threads in current ar-

chitectures) compared to the simulated hardware approach, yet still provides opportu-

nity for significant gains. This chapter presents techniques for mitigating the software

overheads of DTT. The thresholding mechanism, for example, addresses the scenario

where excessive threads are being generated and cause large slowdowns, a case that the

prior proposal was vulnerable to. Thus, we significantly increase the generality of data-

triggered threads in two ways: (1) we make it available today on real hardware, and (2)

we free the programmer to use DTT for any computation that lends itself to the DTT

model, without having to think as carefully about the performance implications.

To demonstrate the feasibility of supporting the DTT model without architectural

support, we build a prototype compiler and user-space runtime libraries. The compiler

accepts programs written in C and C++ with DTT extensions and produces code using

38
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runtime libraries. The runtime libraries schedule and execute support thread functions

when they detect memory content change to a marked variable. A key challenge in

designing the runtime system for the DTT model is the high multithreading overhead.

We introduce a fast thread spawning mechanism to avoid the thread spawning costs. To

avoid performance degradations due to multithreading hardware, software, or commu-

nication overheads, or poorly written data-triggered threads programs, we also design a

simple threshold mechanism that automatically and transparently disables the usage of

the DTT model dynamically.

Software DTT can be used to either add a new type of parallelism to serial code,

or to augment traditionally parallel code. This chapter demonstrates both. We run serial

SPEC benchmarks and both serial and parallel versions of the PARSEC applications on

several existing machines. Despite the overheads of our software approach, we achieve

1.15X average performance improvement for the SPEC benchmarks, but an average

gain of 7.3X over single-thread execution overall (including the PARSEC results). For

just the parallel applications, our speedups over traditional parallel execution with an

equivalent number of cores vary, but achieve up to 64X (2-thread DTT compared to

2-thread traditional).

5.1 Design and implementation of software data-

triggered threads

In this section, we demonstrate the design of software DTT. Software DTT is

a compiler-assisted, software-only framework that accepts programs written using the

DTT extensions and executes the compiled programs in the DTT model. To enable the

DTT model without hardware, the software-only system replaces the functionalities of

the two hardware tables in Section 4.1, Thread Status Table and Thread Queue, using

software data structures. We will describe these software data structures in Section 5.1.1.
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Where we needed ISA changes in Chapter 4, we instead replace each of those

new instructions with a function call; for example, the tstore instruction is now replaced

with a call to tstore(), which is a library function in our software runtime system. In

the software-only runtime systems, these function calls will play important roles in (1)

detecting if an operation changes memory contents, (2) scheduling the thread, and (3)

skipping over the skippable region, if appropriate. We will also explain these function

calls in Section 5.1.2.

5.1.1 Software data structures

The hardware framework to support the DTT model uses the Thread Status Table

and Thread Queue (Section 4.1) to manage execution. In our runtime system, we intro-

duce state variables and a software thread queue to replace these hardware structures.

For each skippable region, the compiler allocates a state variable that contains

information that determines if our runtime system can skip the execution of that skip-

pable region. In the basic implementation, a state variable contains a valid bit, a pending

support thread counter, and a cancellation bit (set by the cancel pragma) for a skippable

region. The valid bit indicates if the result of the previous DTT execution is still correct.

The pending support thread counter records the number of running and queued support

thread events that can potentially affect the result of the skippable region. The valid bit

tends to change often, as it is always zero when there are active support threads; the can-

cellation bit is set very rarely, and stays set until we execute the skippable region. When

the cancellation bit is high, the valid bit is always low. The program can only skip the

execution of a skippable region when the valid bit is set and the pending support thread

counter is 0. If the counter is positive, the main thread will wait for all support threads

to complete. After that, if the valid bit is set it will skip the skippable region, but if it is

reset it will execute the skippable region in place.
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We can add performance-monitoring counters to allow more advanced manage-

ment of the DTT runtime, as described in Section 5.3.4. Even then, we use no more

than 40 bytes of memory for each state variable. In this chapter, we only declare one or

two code sections as skippable regions in each benchmark, so we only use at most two

state variables in each application. However, this is not a limitation of the model; the

programmer can express more.

When the program needs to generate a support thread, we enqueue the necessary

information to a software data structure, the thread queue (TQ). We statically allocate the

TQ at the beginning of execution. For each TQ entry, we record (1) the current support

thread status which indicates whether the event is executing or waiting to execute, (2) the

memory address that triggered the support thread event, (3) the support thread function

to execute, and (4) a pointer to the state variable of the corresponding skippable region.

The size of a TQ entry is also 40 bytes. We allocate 256 entries for the TQ in this

chapter.

5.1.2 Detecting changes to memory contents

The DTT model spawns threads when a memory operation changes a value in

memory. Therefore, the runtime system must be able to detect a change to memory

content. To detect whether or not a memory operation writes a new value to an address,

the compiler attaches tstore() functions to all assignments that may store a new value

to data triggers. These functions replace the conventional store instructions in those

cases.

The tstore() function takes the following arguments: the writing memory ad-

dress, the triggering address, the new value that we are writing, the pointer to the support

thread function, and a pointer to the state variable of the skippable region. The trigger-

ing address is the only argument of the support thread function. Our framework uses the



42

base address of the writing object as the triggering address if the data trigger is attached

to a field of a data structure (this simplifies the code for the programmer). Otherwise,

the triggering address is identical to the writing address. Because the DTT model allows

programmers to attach data triggers to any variable or field of a data structure with ar-

bitrary type, we also need to pass the size of the modifying variable or data field to the

tstore() function so that the value is stored properly, and so that changes are detected

at the right granularity.

When the tstore() function detects a memory change and if the cancellation

bit is not set, it enqueues the support thread event with the triggering address, the state

variable of the corresponding skippable region, and the support thread function pointer

into the TQ. The DTT runtime system also sets the state of the new support thread event

to pending. If the TQ does not contain a free entry (all the queued events are still running

or pending) for storing this information, the runtime system can either (1) execute a

queued event on the current processor core to free up a TQ entry or (2) force the main

thread to stall until a running thread releases a TQ entry. In our preliminary experiments,

we found that the TQ rarely becomes full, so we choose the latter to simplify the design.

After the tstore() function successfully transfers the support thread informa-

tion to the TQ, it will first increase the pending support thread counter of the correspond-

ing state variable by 1. It will then clear the valid bit of the corresponding state variable

and return to the main thread.

When there is any pending support thread event in the TQ, our framework will

try to schedule the execution of the support thread function. The system will select the

first event in the queue that does not have any running support thread event pointing to

the same state variable; that is, we serialize the execution of support thread functions that

may affect the same skippable region. This restriction is due to our current definition of

DTT, where the compiler knows the triggering address but not necessarily the outputs
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of the support thread. Thus, it cannot distinguish between those threads that need to be

serialized (e.g., each thread updates the same structure) and those that can be executed in

parallel if their triggering addresses differ (e.g., if each writes a separate element, such

as if a change to A[i] creates a thread that updates C[i]). This will likely be addressed

in future work. For now, this limits our parallelism to two, unless we have multiple

skippable regions.

The initial baseline implementation spawns a new thread, if possible, when data

is modified. However, our experiments (Section 5.3.2) find that this strategy significantly

degrades the performance due to the overhead of spawning new threads. Therefore, we

develop a fast thread spawn (Section 5.3.3) technique, which uses polling threads to

minimize the thread spawning latency.

Once the runtime system starts executing a support thread event, it will first

change the support thread event state to running. The support thread will then run as

a conventional thread until it reaches a dtt return() call. The dtt return() func-

tion, inserted by the compiler at all function exit points, will atomically decrease the

pending support thread counter by 1 and update the valid bit in the state variable of the

corresponding skippable region to valid if (1) no other event currently in the TQ will

change the computation result, and (2) the cancellation bit is low. It will then release the

occupied TQ entry for future events. In addition to the dtt return() function, we also

provide a dtt cancel() function that terminates the support thread when the support

thread executes a path that may lead to unwanted results. The dtt cancel() function

will invalidate the valid bit, clear all the queued events associated with the state variable,

reset the pending support thread counter to 0, and set the cancellation bit. Once we set

the cancellation bit, all later events for the skippable region will be discarded until the

main thread executes the skippable region code, which will clear the cancellation bit and

re-enable the use of DTT on the skippable region. The cancellation bit enables an im-
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portant implementation feature — by always initializing these bits high, we ensure that

the skippable region is executed the first time, and prevent a flurry of support threads

being spawned while data structures are being initialized.

In the DTT model, the skippable region provides an implicit barrier since the

main threads stall at the beginning of a skippable region if any corresponding thread

event is executing. In our framework, the compiler inserts a dtt barrier() function

right before each skippable region to perform the implicit barrier. The dtt barrier()

function examines the number of pending threads recorded in the corresponding state

variable. If any outstanding support thread of this skippable region is running, the dtt

barrier() function will stall the main thread until all support threads finish execu-

tion. If there are no pending support threads associated with the skippable region, the

dtt barrier() function will return with the value of the current valid bit of the state

variable and allow the main threads to continue execution. In this version of DTT, all

active main threads (in parallel code) must share the barrier – i.e., they must each con-

tain the skippable region. In this way, there is no possibility of a race condition between

reading and updating the active thread count.

Just prior to returning from the dtt barrier(), the valid bit is read. If the valid

bit is set, the main thread will jump to the end of the skippable region. Otherwise, the

main thread will execute the skippable region code in place. The DTT runtime system

will then set the valid bit of the skippable region to valid after the program executes the

skippable region.

The DTT model allows support thread functions to modify global data. As in

many parallel programming paradigms, the programmer needs to ensure that those data

updates in support thread functions do not incur unwanted data races.

The only memory consistency issue we need to be careful about is to ensure

that the store that happens in tstore() precedes the support thread, and that stores
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Table 5.1. The three processors have very different microachitectures that lead to differ-

ent performance gain and optimal points for software DTT

System Information Intel Nehalem AMD Opteron Intel Core 2 Quad

Core Model Nehalem Opteron 2427 Harpertown

No of Sockets× 2×1×4 2×1×6 2×2×2

No of Dies×No of cores

L1 Cache size 32KB 64KB 32KB

L1 hit time 4 cycles 3 cycles 3 cycles

L2 Cache size 256KB private 512KB private 6MB (per die)

L2 hit time 10 cycles 15 cycles 15 cycles

L3 Cache size 8MB shared 6MB shared None

L3 hit time 38 cycles 36 cycles N/A

Memory access latency 200-240 cycles 230-260 cycles 300-350 cycles

in the support thread precede the skippable region. In our software implementation, a

memory consistency violation is either impossible (any strong consistency system) or

highly unlikely (weak consistency). In the latter case, a few memory fences suffice.

5.2 Experimental methodology

To study the performance of software DTTs, we selected three processor archi-

tectures and a variety of applications. We describe those processors and applications

in this section. Like the previous chapter, we focus on modifications to existing, ma-

ture code rather than new programs, which enables better comparison between DTT and

non-DTT code.

5.2.1 Processors

To investigate the performance of the software DTT, we select three widely avail-

able processors – Intel Xeon E5520 (Nehalem), AMD Opteron 2427 (Opteron), and Intel

Xeon E5420 (Core 2 Quad) as the experimental platforms. Table 5.1 lists the configura-

tion of each machine. The memory hierarchies of the processors vary significantly. The
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Core 2 Quad features a shared 6MB L2 cache on each die. In contrast, the Nehalem

and Opteron have private L2 caches for each core but a shared L3 cache. The Opteron

has an exclusive cache hierarchy while the others are inclusive. The memory latencies

for these processors also differ significantly. Each of the processors features very differ-

ent microarchitectures including the pipeline design, the branch predictor, etc., but all

these processors can execute multiple threads on the same die. The Nehalem processor

also supports simultaneous multithreading (SMT) [53] which can execute two threads

within the same processor core to maximize the utilization of functional units. In this

work, we also examine the performance of software data-triggered threads on the SMT

configuration using the Nehalem processor.

5.2.2 Applications

We use gcc-4.1.2 to compile all 15 applications in SPEC 2000 that are written

in C or C++ into x86-64 binaries. For each benchmark, we use Pin [44] to profile the

memory instructions that frequently incur redundant loads. Unlike the previous chapter

that only profiles the portions of execution selected by simpoint [45], we profile the

whole program to determine the potential of applying the DTT model. The profiling

results help identify the data structures incurring most of the redundant loads. We select

very few data structures as data triggers, and copy the code that depends on the data

triggers to compose support thread functions. Table 5.2 lists our modifications to the

benchmarks. These modifications in some cases are identical or similar to those made

in the prior work [49], but in several cases (equake, gcc, gzip, mesa, perlbmk, and vpr)

we target other sections of code because we found that the code used in Chapter 4 did not

address whole-program execution as much as it impacted the short simulated regions in

the prior experiments. For the same reason, unfortunately, we cannot directly compare

the software DTT results to the hardware-support results in the previous chapter, because
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the results are not gathered over identical program regions.

We also investigate the interaction between DTT and traditional parallelism for

the first time in this research. We use the PARSEC 2.1 benchmarks [9]. We found

that the level of redundant execution varied more widely in PARSEC than it does in

SPEC. Therefore, we run the majority of the PARSEC benchmarks, but did not attempt

to transform those where the profiled incidence of redundant loads was below 30%. In

each case for the remaining benchmarks, we optimize the single function that contains

the most redundancy in the benchmark, but retain the traditional parallelism for the rest

of the program.

In most cases, the DTT parallelism did not overlap with the traditional paral-

lelism, or targeted redundancy rather than parallelism. As a result, the effects of DTT

on non-parallel PARSEC was also instructive, particularly in light of our better access

to runtime statistics while executing the serial versions. Therefore, we also include the

single-thread versions of the PARSEC benchmarks with our single-thread analysis and

results.

For blackscholes, our support thread computes a single value of the prices array

in bs thread(), replacing code that recomputes the entire array. For bodytrack, the

support thread calculates the Estimate() method only when a particle filter object gets

updated. For canneal, we detect the change of element a and b to update the result of

calculate routing cost(). For facesim, we only perform UPBS initialization when

the number of elements changes. For fluidanimate, the support thread function computes

x, y, and z values for an element in the cell.a array right after the program generates a

new value for the element; this eliminates the need to execute ProcessCollisions()

after all threads finish ComputeForcesMT().

For swaptions, we recompute the dSimSwaptionMeanPrice and

dSimSwaptionStdError field of an element that is in the swaptions array only when
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the program changes other fields in that element that may change those fields. This

avoids the redundant execution of the HJM Swaption Blocking() function for the

entire array. For vips, we trigger the linear transform computation as soon as the input

images are ready. For x264, we examine the type of frame and only regenerate the

headers once the type of the upcoming frame is different from the previous frame.

For blackscholes and swaptions, some of that redundancy is benchmark-related,

rather than inherent to the original programs they are based on. However, these results

are useful here because the source of the redundancy is less important than whether we

can identify it and exploit it.

For the parallel experiments, we still use just an additional thread to execute sup-

port thread functions and disable traditional parallelism when the application is using

DTT. Because we only target one code section in each application, and exploit redun-

dancy heavily, we tend (in the current implementation) to get nearly all of our DTT gains

with just one extra core. This mutually exclusive usage of the two models of parallelism

(either DTT or traditional parallelism is active) is not a part of the DTT programming

model – traditional parallel threads should be able to access DTT triggers. However, this

simplification in the current implementation still allows us to achieve high speedups.

Since it is difficult to quantify programmer effort required to achieve perfor-

mance results, we have restricted our changes, both for the serial and parallel applica-

tions, to relatively minor changes with few skippable regions and support functions. For

most benchmarks, we only target one support thread function and one skippable region.

This allows us to demonstrate that in many cases very significant speedups are possible

with low programmer effort.

In Chapter A, we will provide detailed descriptions about our benchmark imple-

mentation used in this chapter, including the PARSEC benchmark applications.
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5.3 Results

This section fisrt quantifies the software overheads of our data-triggered threads

implementation, and then shows performance results for the modified applications. We

discuss results on three different hardware platforms, results for both a single-thread

implementation and for a multithreaded implementation, results for three different hard-

ware parallelism scenarios – on an SMT core, across cores on a CMP, and across sockets,

and results for both serial applications and parallel applications. We separate the serial

application and parallel application results for two reasons. First, for comparison with

the prior work on hardware DTTs, we run the same SPEC benchmarks in similar con-

figurations. Second, our performance monitoring library allows us to collect statistics

more accurately for the single-threaded case, so we present more comprehensive data

for those results.

Software data-triggered threads incur overheads, both in runtime monitoring and

especially in multithreading-related latencies, that the hardware-driven approach did

not see in the simulated experiments. Even compared to conventional parallelism, the

DTT model tends to create many short threads, and conventional architectures are not

optimized to execute short threads well [11]. This section will quantify some of those

costs and describe mechanisms that mitigate those overheads, but they do not go away

completely. As a result, even more than the prior work, our code modifications that

exploit DTTs (see Section 5.2) target redundant execution more than new opportunities

for parallelism. This is because if code is redundant, not only do we avoid the redundant

computation, we also skip the overheads of spawning and communication associated

with that support thread.

To better exploit parallelism in the DTT model, we optimize the runtime system

design to avoid thread spawning overhead and adapt to the overhead in the underlying
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Figure 5.1. The overhead of tracking changes to memory content and managing the

internal data structures in Software DTT, with the support thread execution disabled.

systems. With the optimized runtime system, we also demonstrate that DTT can be

highly complementary with traditional parallelism to further improve the performance of

parallel applications. In our experiments, we use single-thread unmodified benchmarks

as the default baseline unless otherwise specified.

5.3.1 Runtime system overhead

Without hardware support, the runtime system needs to check if modifications

change the memory contents of variables declared as data triggers. The runtime system

also needs to transfer information to the TQ and manage the software structures after

detecting a change. These are overheads that impact the main thread of execution. To

examine these overheads, we designed a runtime system (just for this experiment) that

executes the tstore() functions and queues the support thread events, but does not

compute support thread functions.

Figure 5.1 presents the overhead of our runtime system. The average slowdowns

for DTT overheads are 1.4%, 2.4% and 1.0% on the Nehalem, Opteron, and Core 2

Quad, respectively. For most benchmarks, the software overhead is less than 2% since

we only replace the assignments associated with data triggers, which is typically a very
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Figure 5.2. The relative performance of the software DTTs implementation with both

the main thread and the support thread functions running in a single thread.
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Figure 5.3. The relative performance of the base software DTTs implementation with

the support threads running on separate cores.

small fraction (lower than 0.01%) of all store instructions. For parser, which is more

heavily impacted, the program touches data triggers frequently; we observe that the the

dynamic instruction count increases by 9% in that program.

5.3.2 Base implementation

While we focus our code changes on regions that exhibit redundancy, we do ex-

ploit both redundancy and parallelism with our DTTs. Following the lead of Chapter 4,

we can separate these effects by running both a single-thread version of our DTT run-
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time system and a multi-context version. The latter benefits from both effects, while the

former only benefits from redundancy. In addition, for this research, this also isolates

the thread spawning and communication overheads, since the single-thread version does

not incur these. Therefore, for the initial experiments in this section, we create a DTT

runtime system that runs in a single thread. In this configuration, when the tstore()

function detects a memory modification, the program invokes the support thread func-

tion immediately in the same hardware context.

Figure 5.2 shows the data-triggered threads performance for a single-thread im-

plementation compared with running unmodified (no DTTs) code on a single core of

the processors. The experiments show that even without the help of parallelism and

with no hardware support, our modification can still improve the performance for most

serial benchmarks from SPEC2000, with averages of 6%, 7%, and 8% on the Nehalem,

the Opteron, and the Core 2 Quad, respectively. For PARSEC benchmarks, our modi-

fication achieves significant performance gain, 14.8X and 128.5X for blackscholes and

swaptions on the Nehalem machine. Both blackscholes and swaptions contain about

70% redundant loads, which is somewhat lower than the SPEC benchmarks that we

investigated. However, the actual level of redundancy, especially for swaptions, is sig-

nificantly higher. The vast majority of the non-redundant loads are to temporary local

structures that the program re-initializes in function calls that depend on highly static

data. Thus, they are not recorded by our tools as redundant, but in fact are unneces-

sary when the global data does not change. These regions are easily identified by the

programmer due to the presence of the redundant loads of the global data.

Over all single-thread benchmarks, we achieve average performance improve-

ments of 7.3X, 4.4X, and 7.2X on the Nehalem, the Opteron, and the Core 2 Quad,

respectively.

For benchmarks eon, equake, mcf, blackscholes, canneal, fluidanimate, and
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swaptions, which obtain the most speedup in this configuration, the DTT model signifi-

cantly reduces dynamic instruction counts. A phenomenon we see in a few applications

is exhibited most strongly for mcf, in which the DTT model reduces the dynamic in-

struction count by 21%, yet achieves more than 100% speedup. As in Chapter 4, this

happens because the redundant computation that we eliminate in that application is also

the code that incurs the most cache misses and dominates the execution time.

However, for parser, because the reduction of redundant computation cannot

compensate for the runtime system overhead, we still slow down the performance of

this benchmark. In crafty, our modification still increases the dynamic instruction count

by 6% and causes significant performance degradation. As expected, we see lower

performance in general than the hardware approach in Chapter 4.

To benefit from parallelism, we extend our data-triggered threads framework to

utilize two cores within a processor, one for the main thread, the other for the support

threads. In the baseline multi-threaded DTT framework, the tstore() function creates

a new pthread when the system finds a support thread event is available for execution.

The dtt return() function terminates the thread.

Figure 5.3 shows the performance of our initial software implementation of

multi-core DTT. Despite achieving speedup on 9 of 15 SPEC2000 benchmarks and 3

out of 8 PARSEC benchmarks on Nehalem, this implementation significantly underper-

forms the single-thread case. For the SPEC benchmarks, our implementation degrades

performance vs. the baseline an average of 9% on the Nehalem processor and 10% on

Opteron and the Core 2 Quad. For PARSEC, the multi-core DTT on the Nehalem ma-

chine still shows 128X performance improvement for swaptions, and marginally better

performance for facesim and vips. However, the others all drop off considerably, includ-

ing blackscholes which achieved 15X speedup in single-thread mode. For benchmarks

like twolf, crafty, parser, blackscholes, canneal, and fluidanimate, which generate many
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short support threads, the overhead of multithreading is dominant.

These results imply that the thread spawning overheads, including operating sys-

tem overhead, warming up the cache, and communicating data, have a large impact on

the software DTT performance for several applications. In the following sections, we

present optimizations to minimize the thread spawning overhead and allow software

DTTs to take better advantage of the available parallelism.

5.3.3 Fast thread spawning

While the initial, naive implementation of software DTT achieves speedup on

some applications, anywhere threads are actually being generated with high frequency

we fail to amortize the high cost of generating and spawning these threads. To minimize

the effect of these overheads, we introduce a fast user-level thread spawning mechanism

in our runtime system.

In our fast spawning runtime, we host a thread on each core that we plan to use

for executing support threads. This thread, when idle, will monitor the thread queue. If

the polling thread finds a queued event that has not executed, it will fetch the queued

event and invoke the specified support thread function. When the support thread function

finishes, the dtt return() function updates the state variable of the corresponding

skippable region and goes back to the polling function.

Figure 5.4 shows the performance of our runtime system with fast thread spawn-

ing on the Nehalem machine for all benchmarks we examined. Because we optimize

only one skippable region for each benchmark and our current framework serializes the

support threads associated with the same skippable region, we need only create one

polling thread on a separate processor core.

The fast spawn scheme significantly improves the software DTT implementa-

tion. For SPEC2000 benchmarks, the fast spawn scheme improves the performance over
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Figure 5.4. The relative performance of the software DTTs implementation with the

fast thread spawning mechanism (DTT + fast spawn).
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Figure 5.5. The relative execution time of DTT + fast spawn on the Nehalem machine.

the baseline architecture (single thread without DTT) with an average improvement of

11.5%. The fast spawn scheme also improves the SPEC2000 performance over the base-

line by 3.7% on the Opteron machine and 4.2% on the Core 2 Quad machine. For ammp,

art, mcf, vortex, and vpr, the fast spawn mechanism allows those benchmarks to take ad-

vantage of parallelism and outperform the single-threaded runtime system. For PARSEC

benchmarks, the fast spawn helps exploit the parallelism of the DTT model and achieves

significant performance improvement on blackscholes, canneal, and fluidanimate over

the original implementation.

We can see the importance of parallelism to each application in Figure 5.5. It

presents the relative portion of time that each benchmark spends in running only the

main thread (main thread only), running only the support thread (DTT only), and run-

ning both the main thread and the support thread in parallel (MT/DTT in parallel) —

we only present the execution time breakdown on the Nehalem machine; the results for

other machines are similar. In fact, we not only see the importance of parallelism (how

often both threads are executing), but also the importance of lack of parallelism (how

often the support thread is running alone – which implies the main thread is stalled,

waiting for the support thread completion). In particular, for crafty and parser, where

we still suffer slowdown in the fast spawn scheme, we find that these benchmarks spend
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a significant portion of time where only the support thread function is running. This

problem is addressed in the next section.

5.3.4 Thresholding

The fast spawn scheme minimizes the overhead in spawning threads. However,

we still see that some benchmarks experience significant performance degradation be-

cause the main thread stalls frequently. This is a result of two factors. First, the DTT

computation is not highly redundant — if support threads do not execute (i.e., are redun-

dant), the main thread does not wait for them. Second, there is insufficient slack to hide

the latency of the support thread. Both must be true for the main thread to stall. For

example, it is still advantageous for the programmer to create support threads with no

slack (i.e., no parallelism with the main code), as long as there is significant redundancy.

To avoid this case where we are frequently stalling, we introduce a simple thresh-

olding scheme for our software runtime system. For each skippable region, we add two

counters to keep track of how many times the program calls the barrier function (at the

skippable region) and how many times the main thread stalls. This accounts for both

factors above — as long as the main thread does not have to wait, we don’t distinguish

whether it was because the support thread(s) did not run or because they ran and com-

pleted in time. When the runtime system invokes the barrier function a certain number

of times, it calculates the percentage of support thread executions that caused stalls over

that period. If the percentage is lower than a threshold, the runtime system will reset the

counters. Otherwise, the later invocations of the tstore() function will only invalidate

the state variable without enqueueing any support thread events to the TQ. Thus, the

main thread will execute the code in the skippable region instead of using the support

threads to perform this computation. After a certain period, the runtime system will

retry the DTT model.
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Figure 5.6. The relative performance of the software DTTs implementation with fast

thread spawning and thresholding mechanism (DTT + fast spawn + threshold), for

SPEC.
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Figure 5.6 shows the performance of software DTTs with the thresholding mech-

anism on the Nehalem machine. For these experiments, we calculate the percentage of

stalls every 1000 calls to the barrier function of each skippable region. If the threshold

mechanism turns off the usage of the DTT model, the system will retry using DTT every

10000 calls to the corresponding barrier function. We examined thresholds ranging from

10% to 90% at increments of 5%. The threshold percentage that achieves the best overall

performance gain is different for each of our hardware platforms. This is to be expected,

as this value will be a factor of the relative cost of communication (e.g., thread cold start

effects) to computation, which will be impacted by memory latencies, core architectures,

inclusive vs. exclusive caches, etc. However, we always find a threshold value in each

architecture which outperforms all the prior software DTT implementations we have

investigated. The runtime system performs best with 50%, 10%, and 15% threshold

values for the Nehalem, the Opteron, and the Core 2 Quad processor, respectively.

For SPEC2000 benchmarks, the runtime system improves the average perfor-

mance by 14.8% on the Nehalem machine. On the Opteron processor, we achieve 7.3%

performance improvement. On the Core 2 Quad processor, we improve performance by

9.3%. Over all single-thread benchmarks, DTT achieves 7.3X speedup on Nehalem.

For the threshold values that achieve the best performance on each platform,

the scheme successfully eliminates the performance loss of parser and mitigates the

performance loss in crafty. However, it also degrades the performance in ammp by

5% and 2% on Opteron and Core 2 Quad machines. That is the only case where our

threshold appears to be too aggressive and negates some opportunity.

For PARSEC benchmarks, the runtime system with thresholding mechanism

and fast spawn achieves average performance gains of 18.9X on the Nehalem machine,

10.9X on the Opteron machine, and 18.9X on the Core 2 Quad machine. We will discuss

the equivalent (serial main thread plus DTT) PARSEC results in Section 5.3.6.
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Figure 5.7. The relative performance of the software DTTs implementation with sup-

port threads running on a separate core (different cores), or the same core (SMT) or a

different core from another physical processor (different sockets).

Since the thresholding mechanism (with fast spawn) works the best among all

our implementations, we use it as the default software DTT implementation in the rest

of the chapter.

5.3.5 Adapting to different types of hardware parallelism

For the above multithreaded implementations, we execute support thread func-

tions on a separate core within the same chip. However, our experimental platforms

allow us to explore two more options to schedule the execution of the data-triggered

support threads. One is to schedule the support thread functions in a different hard-

ware context within the same core using simultaneous multithreading, and the other is

to schedule support thread functions to another core located in a different socket. The

former minimizes communication and cold-start effects, because caches are shared be-

tween SMT contexts, but maximizes potential interference between the main thread and

the DTT (both in the caches and the execution resources). The latter has the opposite

tradeoff.

Figure 5.7 shows the result of executing the support threads on the same core
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using SMT. Running a support thread within the same core can achieve 12.7% perfor-

mance improvement for SPEC2000 and 18.7X performance improvement for PARSEC

over the baseline. Thus, the software technique is still effective for multithreading con-

texts, but just a bit lower than the performance on separate cores. In this case, the

improvements in communication do not fully compensate for the increased interference.

Notice that the interference affects even applications that rarely spawn support threads,

because the fast spawn optimization utilizes polling.

We also investigate the impact of running support threads on different sockets in

Figure 5.7. This configuration eliminates nearly all resource sharing between the main

thread and support thread, but it also increases the communication latencies between

them. Compared with running the support threads on a different core within the same

chip, the performance impact of increasing communication latencies is very insignifi-

cant in most benchmarks. For SPEC2000 benchmarks, the increased communication

latency does hurt the performance of gcc, crafty, and parser on some architectures. The

average performance loss of running support threads on different sockets is within 0.3%

of our baseline DTT running on different cores on the Core 2 Quad machine. For Ne-

halem and Opteron, scheduling support threads to a separate chip is affected more, but

still within 3%. For PARSEC benchmarks, running support threads on different sockets

significantly hurts the performance of blackscholes, fluidanimate and swaptions on all

the platforms, but the speedups are still high. Compared with our baseline DTT, schedul-

ing support threads on a separate chip reduces the average performance by 3.5%, 3.5%,

and 1.8% on the Nehalem machine, the Opteron machine, and the Core 2 Quad machine.

In general, however, we see that our implementation makes the DTT program-

ming model very tolerant of varying communication latency. This is in large part due

to the thresholding optimization. Thresholding successfully disables DTT in the cases

where the increased latency is enough to push the DTTs past the breakeven point and
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start hurting performance. We confirm this in separate experiments we ran on the Ne-

halem machine. Without thresholding, the cost of moving from same-socket to cross-

socket parallelism is 8% for SPEC (compared to 3% with thresholding).

5.3.6 Data-triggered threads and multithreaded applications

Having DTT versions of parallel programs for the first time allows us to inves-

tigate a couple of interesting questions. First, does DTT parallelism overlap with tra-

ditional parallelism (exploiting the same phenomena) or is it complementary? Second,

how do DTT/parallel programs scale with thread count?

Figure 5.8 shows the performance gain of the modified PARSEC benchmarks

with and without DTT using different number of threads. Because the performance

trends are similar across all our experimental platforms, we only show the result on the

Nehalem machine.

The results for the parallel benchmarks fall into a few distinct categories. For

blackscholes and swaptions, DTT speedups are still dramatic. We see in this case that

DTT subsumes (and surpasses) traditional parallelism, instead of the other way around.

Performance, however, does not scale with the number of threads, because what little

code still gets executed has not been parallelized. In these cases, DTT achieves speedup

of 8X and 64X, respectively, over the 4-core parallel version.

For fluidanimate, we are able to target enough redundant computation (from the

ProcessCollisions() function) to get 2.4X speedup from DTT. However, we still see

excellent scaling from fluidanimate, even better than traditional parallelism, because the

code that remains (after the elimination of the redundant code) is effectively addressed

by the traditional parallelism. Thus, even in this implementation of DTT which does

not scale beyond two threads, DTT can still improve parallel scaling if it removes serial

code or parallel bottlenecks, leaving the remaining code more highly parallel than the
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Figure 5.8. The performance of PARSEC applications with DTT (DTT) and traditional

parallelism (pthread only). The DTT version uses a combination of DTT and the original

parallelism.
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full original code.

For bodytrack, the application has 53% redundant loads, so DTT exploits some

redundant computation, which improves performance by 23% without the help of paral-

lelism. When using multiple threads, that redundant code is not on the critical path, and

the DTT version simply tracks the parallel version with two or more threads.

In canneal, we see the one case where DTT parallelism interferes with traditional

parallelism. Our DTT implementation targets code with modest redundancy, which

gives us 27% performance gain. However, this is the same region that is targeted by the

traditional parallelism, and our current implementation does not allow us to exploit both

in the same region. Thus, we lose the gains of the original parallelism. We expect this

limitation to go away in future implementations.

For the remaining benchmarks, facesim, vips, and x264, we target code that tra-

ditional techniques could not or did not parallelize. Although the gains were typically

small, they were complementary with traditional parallelism, such that we always gain

more (if only slightly) from the combination of DTT and parallelism than from paral-

lelism alone.

We see from these results that even on parallel applications, the DTT model

enables us to express a new type of parallelism that is often complementary to traditional

parallelism, and in other cases we can use it to express traditional parallelism more

efficiently.

Although DTT alone does not currently scale beyond two threads, most of these

applications scale well with the combination of DTT and traditional parallelism. When

DTT targets and eliminates serial code, it can improve the scaling of traditional paral-

lelism overall.
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5.4 Discussion

This chapter presents a pure software approach to support the DTT program-

ming and execution model, software DTT. Software DTT improves the generality and

portability of the DTT model. Having a complete software solution allows the use of the

DTT programming model on any existing parallel machine. The presented solutions to

mitigate thread spawning costs and to eliminate the performance lost to runaway, serial

DTTs frees the programmer to use the DTT constructs without worrying about potential

performance loss. Our system allows a set of serial programs applications from SPEC

2000 to be sped up by 15%, with minor code modification and no hardware support.

The complete set of serial applications (including single-thread PARSEC) were sped up

by 7.3X (arithmetic mean) or 1.6X (geometric mean). We also show that DTT can be

highly complementary with traditional parallelism and achieve significant performance

gain, as high as 64X, even over the original parallel version.
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Chapter 6

Compiler-generated data-triggered

threads

The data-triggered threads (DTT) programming and execution model has shown

the ability to improve application performance by exploiting parallelism and eliminat-

ing redundant computation. Instead of generating threads based on control flow like

traditional execution models, the DTT model spawns a thread when specific memory

contents change. The dataflow-like thread generation brings two primary advantages to

the DTT model. First, computation that depends on the changed data can execute in par-

allel immediately. Second, computation that depends on untouched or unchanged data

does not need to execute (as a prior execution is still valid). The previous chapters show

that the effect of eliminating unnecessary, dynamically redundant computation can be

especially powerful.

The DTT model described in the previous chapters relies on programmers’ ef-

forts to achieve performance improvement. That approach needs the programmer to

identify the pieces of source code that contain potential for DTT support threads, write

the support thread functions, and then attach those functions to variables or structure

fields that trigger the computation of the support threads. They do so using extensions

to an imperative programming language. In this way, code must be modified to exploit

67



68

data-triggered threads or written from scratch. The advantages of DTT remain unavail-

able for code not written in this style, including existing code that pre-dates the DTT

programming model.

In this chapter, we present a compiler framework, CDTT (compiler-generated

data-triggered threads), which automatically generates data-triggered threads from ap-

plications written in C/C++, without requiring any modification to the source code. Be-

cause a support thread function can execute multiple times (if the input changes) before

it is consumed, the previous work requires that support thread functions be idempotent.

This remains true in our compiler-based approach. The design of CDTT starts by iden-

tifying idempotent code regions [19].

Since DTT achieves significant performance improvement through eliminating

redundant computation, we also present profile-assisted CDTT, which can use profile-

generated information about redundance as an input to guide the selection of DTT code

regions. Profile-assisted CDTT thus selects code regions that contain often-redundant

computation and constructs support threads from that code. This work shows that while

profile data can be helpful, CDTT is very effective even with no profile input.

In this form, then, CDTT becomes a static compiler optimization that is capable

of removing (sometimes large) blocks of code dynamically when that code is found to

be redundant. Because it does not require the storage and comparison of inputs that

other techniques require (e.g., memoization [37, 14]), it typically does so with relatively

low overhead.

The elimination of redundant or unnecessary computation by the compiler can be

a highly effective optimization, particularly in modern systems, because it both reduces

execution latency as well as power and energy use. Compilers traditionally eliminate

statically redundant code with techniques such as dead code elimination. Techniques

to remove dynamically redundant code have been proposed, (e.g., automatic memoiza-
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tion [38, 42]), but the cost of checking redundance of the inputs scales with the size

of the inputs themselves. This chapter presents new compiler techniques to remove dy-

namically redundant code, with costs that are independent of the data structure sizes,

allowing code and data regions of unlimited size to be easily exploited.

CDTT can work with either hardware support for DTT in Chapter 4 or the

software-only implementation in Chapter 5. To maximize generality, in this chapter

we demonstrate CDTT running on top of the software infrastructure on existing hard-

ware. To evaluate the performance of CDTT, we implement the proposed profiling and

compilation methods using LLVM [31]. The compiled applications use a DTT run-

time system similar to the software DTT infrastructure described in [50]. We achieve

11% average performance improvement over serial SPEC2000 benchmarks with profile-

assisted CDTT. With the help of a thresholding mechanism in the runtime system which

has the ability to dynamically disable DTT for particular triggers, CDTT without profile

data can still achieve a 10% average performance gain.

The success of the non-profiling approach comes from the fact that our algorithm

for identifying DTT regions has a high tendency to select code that is redundant.

In this chapter, we will demonstrate that the automatically generated DTTs can

achieve nearly the same level of performance improvement as careful human coding.

We will describe an analysis framework that identifies potential code regions for apply-

ing data-triggered threads. We will also present algorithms for automatically composing

support thread functions. Finally, we will demonstrate that the algorithms for selecting

regions for DTT formation also serve as an accurate static predictor of redundant com-

putation.
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6.1 Design of CDTT

This section describes the CDTT compiler framework. Creating data triggered

threads requires the following steps: (1) identifying potential DTT Regions in the ex-

isting code, (2) composing support thread functions and skippable regions from each

candidate DTT region, and (3) inserting tstores at each data trigger and generating the

code for the DTT runtime system. We will discuss each step in turn.

We will initially discuss the algorithms for the case where there is no profiler-

generated input. We will then describe the additional steps that would be required when

the profile data (about data redundance) is available.

Our compiler framework is built on top of LLVM 3.0 [31]. CDTT accepts C/C++

source code and compiles the program into LLVM bitcode. The LLVM bitcode has a

one-to-one mapping to the LLVM intermediate representation. After transforming the

LLVM bitcode with DTT runtime support, LLVM generates the x86 machine code.

6.1.1 Identifying potential DTT Regions

The first step of the CDTT framework is to find regions in the original program

code that could be transformed into support threads. We will call these DTT Regions.

Once selected, a DTT region will serve as a template to create both the support thread

and the associated skippable region.

Selecting DTT regions involves the following steps. Throughout this process we

maintain a list of candidate regions until the final set of regions are selected.

(1) Identify idempotent regions. Create a list of single-entry, single-exit regions

that are idempotent. These regions may overlap with other regions in the list.

(2) Test for name dependence. Remove from the list any region with a possible

WAR or WAW data race with surrounding code.
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int a_number_DTT()

{

ATOM *ap; 

if( atomUPDATE ) {

atomNUMBER = 0;

if( first == NULL ) return 0 ;

ap = first;

while(1)

{

if( ap->next == NULL) 

break;

atomNUMBER++;

if( ap->next == ap ) 

break;

ap = ap->next;

}

}

return atomNUMBER;

}

Figure 6.1. An example of idempotent code

(3) Select DTT regions. Select the largest regions and remove from the list any

region that overlaps the selected regions.

Identify idempotent regions In the beginning of the optimization process, CDTT

scans the whole program and creates a candidate list of regions that are single-entry,

single-exit code. These regions usually contain multiple blocks, but can be as small as a

single block, or as large as a function. These regions may also contain loops.

DTT generates a support thread event when a specific memory content changes.

The application can potentially trigger the same code several times before the application

uses the result. Therefore, CDTT only creates support thread functions and skippable re-

gions that are idempotent, which means the effect of executing the code region multiple

times is the same as executing the code region only once. For the DTT programming

model in the previous chapters, it is up to the programmer to create idempotent code.

For CDTT, we need the ability to detect idempotence automatically.

CDTT then tests each region in the candidate list for idempotence. Any region

that fails this test will be removed from the list. To accomplish the idempotence check,
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CDTT needs to identify all the inputs and outputs. A variable is an input of the candidate

code region if (1) the variable is used in the region but defined outside of the region or

(2) the variable is the source of a memory load instruction within the region. CDTT

also identifies the outputs of the candidate code region at this stage. A variable is an

output of the candidate code region if (1) the variable is defined in the candidate code

region but used outside of the candidate code region, or (2) the variable is the target of

a memory store instruction in the candidate code region and the variable is used outside

of the candidate code region.

To be idempotent, a code region cannot overwrite any of its own inputs. If the

code region overwrites its inputs, the next execution of the code region may use the

changed input value and produce a different result. In other words, an idempotent code

region cannot contain any data dependency that is a write to an input of the code region.

For example, the function in Figure 6.1 is idempotent because the function does not

modify any of its inputs. However, if the function code were to assign new values to the

atomUPDATE variable or if it were to read atomNUMBER from the last execution prior to

updating, the code would not be idempotent.

To identify potential idempotent regions that the compiler can compose as sup-

port thread functions, CDTT uses an algorithm similar to the static analysis phase of

Kruijf et. al [19]. CDTT transforms the application code into an LLVM intermediate

representation (IR) that is already in SSA form. The SSA form of LLVM IR can elim-

inate the artificial antidependences that do not affect the idempotence of the examined

regions. For each candidate single-entry, single-exit code region, CDTT checks if any

data dependency exists – that is a write to the register or memory inputs to the code

region. To be conservative, CDTT treats any write to a possible alias (may-alias, partial-

alias, or must-alias) of an input to the code region to be a violation of idempotence. If the

code region contains no such dependencies, CDTT considers the region as idempotent



73

and a potential candidate to be transformed into a support thread function.

Currently, our compiler only detects idempotence – it does not transform the

code to try and create idempotence, which would increase the potential for performance

gain.

If the candidate code region contains function calls, CDTT also considers the

inputs and outputs of calling functions. If the output set intersects with the input set,

the candidate code region will not pass our idempotence check. If the code region calls

an external function where the function body is unavailable to CDTT, CDTT will not

consider this region as idempotent.

Test for name dependence We must not create any data races in our code as we

transform serial code into parallel via our support threads. RAW dependence is naturally

handled in the placement of triggers and skippable regions, but we must also monitor

and prevent name dependences (WAR and WAW). In this step we identify (1) the inputs

and outputs for each candidate region, (2) all of the stores to those inputs which will then

become potential data triggers, and (3) all of the code reachable between the potential

data triggers and the region.

In the reachable code, CDTT identifies both types of name dependence: (1)

WAR: any load to any of the outputs of the region and (2) WAW: any store to any of

the outputs of the region. For WAW dependency, CDTT also examines the code along

the path between two invocations of the region in the reachable code analysis since the

DTT model can skip the region several times after a support thread function is triggered.

If CDTT identifies any of these dependences for a candidate region, CDTT will remove

the region from the list. If the reachable code includes any external function where

the function body is unavailable to CDTT, CDTT removes the region from the list. If

the region contains any recursive function call that violates these name dependencies,
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Figure 6.2. An example inter-procedural control flow graph

CDTT also removes the region from the list.

For example, assume that we have a program as shown in Figure 6.2. The ap-

plication contains three functions A, B, and C. In basic block A3 of function A, there

is an instruction calling function C. In basic block A4 of function A, there is an instruc-

tion calling function B. The code region that contains basic blocks B4, B5, B6, and B7

of function B is a candidate region. If an instruction in basic block A1 of function A

changes an input of the candidate region, DTT can trigger computation of the candidate

region (via a support thread) immediately after the instruction in A1 changes the mem-

ory content. However, if function C consumes an output of the candidate region, this

creates a potential data race, as the generated support thread now runs in parallel with

the code in C, and could write the value before C consumes it.

Together with the memory name dependence information, we use the basic alias

analysis infrastructure in LLVM. CDTT considers that two memory objects have no data

dependency only when the infrastructure responds with no alias. If the alias analysis

tool responds with must-alias, may-alias, or partial alias, CDTT will signal the WAR or
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WAW dependence for these memory objects in the reachable code.

Select DTT regions To minimize the effect of thread execution overhead, CDTT fa-

vors longer support thread functions over short ones. So while at this point our list of

candidate regions typically contains a large number of possibly overlapping regions, we

seek to select the largest possible regions. Therefore, we begin by ordering all regions

by static instruction count. For loops, we multiply their static instruction count by 10x to

better estimate the dynamic instruction count without the help of profile data. We select

the largest to be a DTT region, then remove from the list that region and all regions that

overlap (contain a common basic block) with it. We repeat that process until the list is

empty.

Our infrastructure currently does not allow support threads that trigger other

support threads – all triggers must be in the main thread. As a result, in this step we

must also remove any region that would have a trigger inside an already-selected DTT

region.

At the end of this step, we have our set of DTT regions that will be passed to

the subsequent phases of the compiler to create support threads, mark skippable regions,

and insert tstores.

6.1.2 Generating support thread functions and skippable regions

With the methods described in the previous section, CDTT obtains a list of non-

overlapping DTT regions that each need to be transformed into a combination of a skip-

pable region and a DTT support thread.

For each DTT region, CDTT first finds all register and memory inputs/outputs

of the code region. Because the DTT model does not support passing arguments other

than the triggering address of a support thread event, CDTT uses global variables and
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spills the register inputs of skippable regions. CDTT also identifies the outputs of the

code region. For register outputs that later code will consume, we still allocate global

memory space for storing these outputs. Then, CDTT copies the DTT region code into

a new function. CDTT adds instructions at the beginning of the support thread function

code to load all the required inputs, and at the end of the support thread function to store

register outputs to global memory. After CDTT composes the support thread function,

the skippable region is created with minor changes to the original DTT region.

If the underlying architecture contains architectural support for the DTT execu-

tion model, CDTT simply needs to add instructions at every exit of the support thread

function to complete a support thread event, and provide static information needed for

the hardware tables at startup.

If the code is targeting a software-only runtime system, CDTT creates a state

variable for each skippable region as in Section 5.1.1 to manage the execution of the

support thread event. CDTT adds instructions in the beginning and the end of the support

thread functions to manage the state variable. In the beginning of the support thread

function, CDTT inserts instructions to load the state variable pointer from the TQ of the

DTT runtime system and updates the state to running. At the end of the support thread

function, CDTT marks the state variable as valid or pending depending on the current

status of the TQ.

Because the beginning of a skippable region is an implicit barrier in the DTT

model, CDTT inserts a dtt barrier function call before the skippable region to make

sure that there is no in-flight support thread event associated with the skippable region.

Upon exiting the barrier, the code will check the current status of the state variable asso-

ciated with the skippable region. If the state variable indicates that the application can

bypass the execution of the skippable region, the program will jump past it. Otherwise,

the application will execute the code in the skippable region.
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6.1.3 Inserting tstores

The DTT model triggers support thread execution when selected memory con-

tent changes. Therefore, the compiler needs to identify the store instructions associated

with data triggers so that they can be replaced with tstores.

For each support thread, CDTT will find all the potential stores that can trigger

that thread. CDTT applies the same approach that we use to discover the producers

of inputs of a candidate code region in Section 6.1.1. Because CDTT transforms all

the inputs of a support thread function into global variables or memory addresses (Sec-

tion 6.1.2), all producers of the support thread function are store instructions at this

phase. CDTT replaces these with tstore function calls (or tstore instructions if we

have hardware support) that check and update memory contents. We also use the basic

alias analysis infrastructure in LLVM to identify memory dependencies. If the target of

a store instruction is a must-alias, may-alias, or partial alias to an input of the support

thread function, CDTT will replace the store instructions with tstore function calls or

instructions. It should be noted that poor aliasing could inflate the overhead of CDTT

by inducing unnecessary tstores and spurious support threads (because the code is idem-

potent, there is no correctness issue, only performance). However, we did not encounter

this issue in any of our programs.

In some cases, a basic block can contain several tstores for the same support

thread function. Triggering all these support thread events is often unnecessary and

can potentially result in performance slowdown and energy waste. To minimize the

overhead, we introduced a tstore invalidate function in the DTT runtime system.

Unlike the conventional tstore function, the tstore invalidate function compares

and updates the memory content but only invalidates the state variable when the function

detects a change of memory content. The tstore invalidate function will then set a
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flag in the state variable, so the last tstore function will trigger a support thread event

even if the memory content that the last tstore compares remains the same — this is a

slight change to the implementation of tstore from Chapter 5. This works when either

the triggering addresses are statically the same, or the support thread is independent

of the triggering address (the latter is a common case for our statically-generated data-

triggered threads; see the ammp code from Figure 6.1 as an example). In these cases,

CDTT replaces all the tstore function calls with tstore invalidate except for the

very last one in the basic block. As a result, the basic block can only trigger one event

to the same support thread function each time it executes.

6.2 Experimental methodology

We evaluate benchmarks that are written in C or C++ from the SPEC2000 bench-

mark suites. We select the older SPEC2000 benchmarks to be able to compare with the

result in Chapter 5. We use the ref dataset and run each application 5 times to measure

the performance. We validate the correctness of programs compiled using CDTT by

comparing the output with the original program.

For profile-assisted CDTT, we tried profiling with both the test dataset and the

train dataset. This demonstrated that our techniques are tolerant of profile quality, as

we achieved essentially the same performance results (on the ref dataset) when profiling

with each of them. For the results shown in this chapter, we use train for profiling.

We compile each benchmark application into two different binary versions using

LLVM – a highly optimized binary without DTT support and a binary with DTT support

using the same compilation flags. When compiling these applications, we add one addi-

tional polling thread to execute the support thread function by default. Thus, we never

use more than two cores. CDTT only adds at most 20 seconds to compile time across all

the applications we examined in this chapter. We use a DTT runtime system without the
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thresholding mechanism [50] (we call this multi-core runtime system in the later text)

as the default DTT runtime system, but also examine performance with thresholding

turned on. For all results shown in this work, we evaluate the performance of CDTT

with no hardware support and no programmer modifications.

To investigate the performance of the binaries optimized by our compiler frame-

work, we use an Intel Xeon E5520 (Nehalem) processor as the experimental platform.

The processor has private L2 caches for each core but a shared L3 cache. The Nehalem

processor also supports simultaneous multithreading, but we always schedule the sup-

port thread on a distinct core in this work.

6.3 Results

This section presents the result of applying the CDTT optimizations to our bench-

marks. We examine performance with profiling data (at different cutoffs), without pro-

filing data, with and without thresholding to control DTT spawning, and examine the

runtime overheads of CDTT.

6.3.1 Performance of profile-assisted CDTT

CDTT can work either with or without profile data. For CDTT with profile data

(profile-assisted CDTT), the profile data and the silent store cutoff are two important

inputs. To see how profile data and different silent store cutoffs affect the performance

of applications, we perform experiments that change the silent store cutoff from 0% to

90% with increments of 10%. We also examine a highly conservative 99% silent store

cutoff. When the silent store cutoff is 0%, this is equivalent to CDTT with no profile

data.

Table 6.1 shows the number of support thread functions and the average num-

ber of static instructions in these support thread functions for each application. We list
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Figure 6.3. The speedup of CDTT by using different silent store cutoffs running on the

multi-core runtime system

the numbers for applications compiled with silent store cutoffs of 80%, 20%, and 0%.

According to the table, profile-assisted CDTT can generate more and (in many cases)

longer support thread functions when we relax the silent store cutoff constraint or turn

off the profile data. All applications identify at least one redundant region, and those re-

gions are often of reasonable static size. Although each program contains a fair number

of potential idempotent regions, the actual number of DTT regions is typically small.

This is a result of two factors. First, we eliminate a number of candidates due to the

name dependence tests, and second, our algorithm tends to coalesce smaller regions

into a small number of larger regions.

Figure 6.3 presents the performance of the applications under different silent

store cutoffs. We run each application with the default multi-core runtime system. In

this graph, we use PACDTT-X to represent profile-assisted CDTT with X% as the silent

store cutoff. We use CDTT to represent the case where we use CDTT without any profile

data. We skip the 10%, 30%, 50%, 60% and 70% cases because their performance does

not dramatically differ from the neighboring data points. On average, CDTT performs

best when the silent store cutoff is 80%. We obtain an average 10% speedup across
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Table 6.1. The average static instruction counts for the support thread functions for

applications compiled using profile-assisted CDTT with silent store cutoffs of 80%, 20%

and CDTT without profile (0%)

Support Average support

thread functions thread instruction counts

Name 80% 20% 0% 80% 20% 0%

ammp 1 1 1 24 24 24

art 1 3 3 24 46 46

bzip2 1 1 1 26 26 26

crafty 2 2 3 40 40 69

eon 1 1 1 24 24 24

equake 1 1 2 22 22 75

gcc 3 19 19 712 116 126

gzip 1 2 2 23 34 34

mcf 1 1 2 154 154 108

mesa 1 2 3 23 91 75

parser 1 1 2 24 24 50

perlbmk 4 4 5 37 49 54

twolf 3 5 5 34 28 28

vortex 2 2 3 13 13 22

vpr 0 1 3 0 26 40

all benchmarks, and the best performance improvement is for mcf, at 55%. CDTT

with the 80% silent store cutoff results in a 5% reduction of dynamic instructions over

the C SPEC2000 applications, compared to no cutoff. We also observe that CDTT

achieves 6% performance improvement even without profile data. We will provide a

more detailed discussion of CDTT without profile data in Section 6.3.2.

For gcc and mesa, the silent store cutoff affects the performance significantly. In

these cases, lower silent store cutoffs increase both the number of triggers (instances of

the tstore function) and the number of executed support threads, potentially resulting in

a significant increase in the total dynamic instruction count. For example, with gcc, the

dynamic instruction count increases by a hefty 60%. Profile-assisted CDTT performs

much better than without using profiling for these benchmarks. The large gains with

profiling in gcc indicate that CDTT does identify good DTT regions; however, when the

cutoff is too low, the good regions become dominated by the negative overheads of the
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Figure 6.4. The speedup of profile-assisted CDTT with different silent store cutoffs

running on the runtime system with thresholding

useless regions. With the profile data, we can filter out the useless regions and isolate

the useful regions.

In other cases, too high a silent store cutoff can overly constrain the construction

of support threads. For example, profile-assisted CDTT with 99% silent store cutoff

creates no support threads for gzip, twolf, and vpr.

For several benchmarks, the silent store cutoffs do not make a significant differ-

ence in performance because the regions that pass single-entry, single-exit idempotence

requirements already tend to have highly redundant computation. This will also be ex-

plored further in the next section.

To prevent frequent stalling of the main thread resulting from ill-behaved support

threads, the software DTT [50] paper proposes a thresholding mechanism that dynam-

ically disables the usage of DTT when the main thread frequently has to stall at the

barrier, waiting for support threads to complete. Figure 6.4 presents the application per-

formance when profile-assisted CDTT uses the DTT runtime system with thresholding,

targeting different silent store cutoffs.

Relative to Chapter 5, we find that thresholding is actually less important for

the automatically generated threads using profile-assisted CDTT than for programmer-



83

Table 6.2. The percentage of silent stores in DTT regions selected by CDTT (without

profiling), compared to the percentage of silent stores in all code.

benchmark DTT All benchmark DTT All

regions code regions code

ammp 100% 0.3% art 40% 47%

bzip2 100% 4% crafty 89% 22%

eon 100% 31% equake 100% 1%

gcc 58% 39% gzip 15% 10%

mcf 100% 50% mesa 64% 43%

parser 81% 10% perlbmk 91% 11%

twolf 40% 40% vortex 100% 57%

vpr 39% 2% average 74% 24%

generated threads. This is because the profiling allows us to be fairly conservative and

avoid ill-behaved threads that need to be disabled at runtime.

We do find, however, that the optimal silent store cutoff is much lower in the

presence of dynamic thresholding – 80% in the absence of thresholding, but 20% when

thresholding is turned on. This is expected, as thresholding allows the compiler to be

more liberal, with the runtime system still able to eliminate poorly chosen DTT threads.

In the best case (20% silent store cutoff), we get an average of 11% performance gain.

6.3.2 Discussion of CDTT without profiling

Perhaps most interesting, however, are the results in Figure 6.4 for the no-profile

results. First, we see that thresholding is more important for the no-profile results than

the profiled results – again, this is expected because the no-profile results apply no

compile-time filter and must rely more heavily on the runtime filter.

Second, we observe that the no-profile results, with thresholding, achieve a 10%

overall gain, only slightly below the profile-assisted result (and as we’ll see in a fol-

lowing section, competitive with previous hand-coded results). This is not an expected

result, that we lose little performance by ignoring extensive information about the re-

dundance of computation.
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Table 6.2 helps illuminate this phenomenon. It describes the percentage of stores

that are silent, both for the total application, and for the code that is selected to be placed

in data-triggered threads (for the case where our algorithms do not use any profile infor-

mation). In many cases, we see a dramatic difference in the likelihood of computation

being redundant (as indicated by the silent stores) in the selected code vs. the remaining

code. It turns out that our algorithms for selecting DTT regions are a highly effective

static predictor of redundant code.

Consider a potential DTT region that is composed of a few loads, some compu-

tation that depends on those loads, and ends in one or more stores. If all of the loads

are redundant, the stores will be silent. Our selection criteria (namely idempotence and

name dependence) tend to filter out loads unlikely to be redundant. Idempotent regions

are those where the loads do not depend on the region itself. The name dependence

analysis filters out regions with loads that depend on the surrounding code (anywhere

between the trigger and the skippable region). Thus, a region is only selected if there

are no stores to the loaded data anywhere in the nearby, reachable code (either within or

outside the DTT region itself). Thus, it is not surprising that the selected loads are much

less likely to be written to, and the stores that depend on those loads are far more likely

to be silent.

As a result, by selecting only DTT regions with minimal interactions with sur-

rounding code, our DTT region selection criteria also doubles as an effective static pre-

dictor of redundance. Therefore, in many cases, the carefully collected profile data

serves only to confirm the identification of the redundant regions.

6.3.3 Redundance vs. parallelism in CDTT

Like prior applications of DTT described in the previous chapters, CDTT ex-

ploits both redundance and parallelism. In this section, we perform experiments that
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Figure 6.5. The speedup of CDTT on single-threaded and multi-core runtime system
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Figure 6.6. The speedup of CDTT without profile (CDTT), profile-assisted CDTT with

20% silent store cutoff (profile-assisted CDTT) and programmers’ modification (hand-

coded DTT) running on multi-core runtime system with thresholding

allow us to separate the effects.

Figure 6.5 compares the performance result of (1) running both the main thread

and support thread functions in the same thread as (single-threaded CDTT) with (2)

CDTT running on two cores of a multi-core runtime system (CDTT, with the main thread

on one core and another core devoted to executing DTTs). With the single-threaded

configuration, the program executes the support thread function immediately after the

application modifies a data trigger without using an additional thread. This provides

us two insights. First, it allows us to distinguish between the two advantages of DTT,
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redundance and parallelism, because the single-threaded version can only exploit the

former. Second, it provides an interesting comparison with serial execution, because it

only utilizes one core for DTT. For this graph, we only show the no-profile, no thresh-

olding results – while this is not our best result, thresholding is not available for the

single-thread implementation, and profiling filters for redundance and thus masks one

of the phenomena (parallelism) this graph is trying to identify.

For most applications, we see only small improvement moving from the single-

threaded runtime system to the multi-core runtime system, indicating that the primary

gain comes from eliminating redundant computation. This is not surprising as CDTT fa-

vors regions with redundance. For benchmarks like gzip and twolf, we find that the DTT

parallelism does help improve performance significantly. We see this because the multi-

core implementation of CDTT achieves gains that the single-thread version cannot; in

those cases, the overheads of CDTT actually increase instruction count causing perfor-

mance loss for the single-thread version, but increased parallelism allows the multi-core

version to still achieve speedup.

When profile data is incorporated (results not shown), the outcome is predictably

different. Because the profile data targets redundance specifically, the difference be-

tween the single-thread and the multi-core results is only 0.4% (when using the 80%

cutoff), implying that virtually all of the gains in that case are from removing redundant

computation.

The single-thread CDTT results are also important because they maximize the

potential energy advantages of this technique – that potential is significant, because the

most effective energy optimization is to not do computation, which is the strength of

CDTT. However, in the dual-core case the gains are mitigated by the spinning, often

idle polling thread. In the best case, for example, mcf running in single-thread mode

expends only 65% of its original energy, resulting in an energy-delay product that is
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only 42% of its original value – that is a 2.4X gain in energy efficiency. These values

were measured at the wall using a power meter.

6.3.4 CDTT and hand-coded DTT

Figure 6.6 compares our automatically generated results with the carefully hand-

coded results from Chapter 5. We use the multi-core runtime system with thresholding

across all the experiments. We actually match the highest gain, mcf, from hand-coding.

With profile data, our automatic system optimizes the same code region, the while loop

in the refresh potential function. Without profile data, CDTT also optimizes the

primal bea mpp function that the previous hand-coded version did not target and pro-

vides an additional, but small performance gain.

On the other hand, gcc compiled with CDTT achieves strong gains that the hand-

coded versions missed – our framework allows CDTT to create support thread functions

for code regions in reload as needed, expand call, and mark set 1. In one case, for

example, we have silent stores that depend only on registers (either locals or function

arguments). There are no redundant loads in the region for the programmer (led by the

original profiles) to use as triggers, but when our system identifies the region the inputs

get placed in memory, giving us redundant loads to use as triggers.

For most other benchmarks, CDTT does not select the same regions that the

hand-coded version did. This happens for several reasons.

First, in Chapter 5, we composed code using profile data of redundant loads, but

CDTT works with profile data of silent stores, or using only static analysis for idem-

potence. Sometimes this helps us – CDTT gets additional gain on art and vortex by

exploiting functions that execute frequently but the original profiling data did not in-

dicate as promising. In art, CDTT optimizes the code regions in the match function

which is called more frequently than the train match function the hand-coded version
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focused on because of the high load redundance. In vortex, CDTT selects blocks in

the DbmGetVchunkTkn function that executes 39x more than the PersonObjs FindIn

function that the hand-coded version targets.

In addition, CDTT must be conservative with respect to data races and idempo-

tence. However, the programmer can ignore potential data races that do not occur or

create idempotent code where there is none. As an example of the former case, in bzip2,

CDTT does not select the same region as the hand-coded version in the sortIt func-

tion because the code region calls several shared library functions that then fail our name

dependence tests. This is also the case for eon and vpr, two of the strong hand-coded

performers.

For equake, mesa, and twolf, some important redundant code, even though it is

identified by the profiler, does not fall within an idempotent region. In those cases, the

programmer can usually write idempotent DTTs, while our system does not currently

have the ability to create idempotence. In other cases, the programmer can replace the

original computation with an incremental version, which our infrastructure also cannot

replicate.

Chapter 5 showed very high speedups for the PARSEC benchmarks (e.g., 16X

on blackscholes and 128X on swaptions). In this chapter, we have not shown those re-

sults in earlier graphs. This is because some of that redundancy is benchmark-related as

described in Section 5.2.2. However, these results are still useful here because we want

to show the fact that CDTT can achieve the same level of performance improvement as

programmer’s modification. Thus, the PARSEC results are also included in Figure 6.6.

Some benchmarks from PARSEC that the prior work used are currently incompatible

with our toolchain: canneal contains inline x86 assembly that cannot be converted into

LLVM IR and cannot be supported by LLVM JIT; facesim contains C++ exceptions;

vips cannot be compiled correctly using LLVM. We run PARSEC benchmarks with sim-
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Figure 6.7. The runtime overhead of the runtime system that CDTT uses

large dataset to collect profile data and use the native dataset to measure the performance.

The experimental result in Figure 6.6 shows that our framework actually identifies the

redundant regions and replicates the spectacular hand-coded gains on those PARSEC

benchmarks.

On average, despite no programmer involvement whatsoever, we still achieve

nearly all of the performance gain achieved with hand-coding, both for the SPEC and

the PARSEC results.

6.3.5 Runtime system overheads

In this work, we evaluate the performance of the proposed compiler framework

using a runtime system assuming no special hardware support. The runtime must detect

trigger-induced changes to memory and manage the support threads.

To evaluate these costs, we implement a runtime system that performs memory

change detection and most of the thread management features except that the runtime

system does not actually generate the support thread and does not skip any computation.

Thus, it experiences almost all of the overhead and none of the benefits. To separate the

effect of additional global variables that CDTT adds to store inputs for skippable regions
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and communication between the main thread and support threads, we also evaluated

the performance of non-DTT version binaries using these global variables. Figure 6.7

depicts the overhead of our runtime system. We present the performance overhead for

applications compiled with profile-assisted CDTT and CDTT without profile.

When using profile-assisted CDTT, the overhead of our runtime system is 1.4%

on average. The runtime system overhead is low because only a fraction of all stores

are associated with data triggers, and only those stores experience the tstore overhead

(and then possibly generate thread management overheads). Take gcc as an example,

when the silent store cutoff is 80%, only 0.5% of stores are tstores. However, when the

silent store cutoff is less than 20%, the number of tstores increases by 5X and results

in significant overhead in comparing the values and managing the threads. For bench-

marks where CDTT inserts many tstore or tstore invalidate calls, like gcc, the

performance degradation can be large. For example, gcc suffers a 44% performance

degradation. The additional global variables added by CDTT only incurs another 0.2%

of performance degradation because profile-assisted CDTT only creates a limited num-

ber of skippable regions and support thread functions within the code.

In the absence of profile data (CDTT), the compiler is much more liberal in

generating support thread functions, resulting in more stores being identified as data

triggers, as well. In that case, the runtime system overhead results in an average 3.2%

performance degradation for SPEC2k benchmarks. The additional global variables of

CDTT contribute to another 1% of the performance degradation because CDTT without

profile data also creates more skippable regions and support thread functions.

These results do give us some insight into the possible performance of a system

with hardware support for DTT as in Chapter 4. In that case, nearly all of the measured

overhead will go away. This implies that our non-profiled results could improve signifi-

cantly (from the current 11% to over 14%), as the 3.2% overhead will disappear. These
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results also indicate, however, that when the compiler has profile data and is configured

to be fairly conservative, the expected gain from hardware support is relatively small

and the software system appears to be sufficient.

6.4 Discussion

This chapter presents a compiler framework which can automatically generate

binaries which identify dynamically redundant code and bypass the redundant compu-

tation. It generates data-triggered thread executables from existing conventional source

code. The CDTT binary runs on top of a software runtime system. The compiler frame-

work allows a set of serial applications from SPEC2000 to be sped up by 11% on average

for the SPEC benchmarks (as high as 57%), without any code modification and no hard-

ware support. The result for the PARSEC benchmarks is even higher. Energy efficiency

gains are even greater, since most of the performance gains come from not doing work.

A key insight of CDTT is that idempotence and name dependence analysis be-

comes a highly effective static filter for redundant code identification, rendering profil-

ing unnecessary.
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Chapter 7

Related work

This chapter places the DTT model in context relative to the previous execution

models and architectures that triggers computation upon the generation of data. This

chapter also describes several programming models and compiler techniques that can

eliminate redundant computation or opens new opportunities for parallelism as the DTT

model.

The DTT model can find its roots in dataflow architectures. In contrast to the von

Neumann model that executes instructions using the program counter order, instruction

scheduling in dataflow models[20, 4, 43, 5] is only based on operand availability, and

execution is not constrained by program sequencing. In this way, instructions with their

operands available can be processed concurrently to achieve fine-grain parallelism. The

DTT model triggers parallelism upon the generation of data, like dataflow architectures

to open new opportunities for parallelism.

The dataflow-like execution model brings another advantage to the DTT model

– the computer can avoid unnecessary computation when data remain the same. Several

hardware approaches that use hardware tables to cache input-output pairs for instruc-

tions, blocks, or functions can also eliminate redundant computation [47, 25, 33, 32].

The programmer can also use programing techniques like memoization [37, 14] to re-

duce redundant computation.
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Similar to Cilk [22] and CEAL [24], the DTT model incorporate the concept

of dataflow programming models into imperative programming languages. Cilk targets

dataflow-like parallelism, and CEAL focuses on incremental recomputation to avoid

redundant computation. The DTT model allows the programmer to benefit from both

parallelism and incremental recomputation without completely rewriting programs us-

ing pure dataflow programming models [13, 40].

CDTT [51] creates parallelism that initiates using the DTT model from legacy

programs similar to Program Demultiplexing (PD) [8]. There are also existing compiler

optimizations that can eliminate redundant computation as CDTT [10, 29].

In the following paragraphs, we will describe these works in detail.

7.1 The dataflow model

The basic dataflow execution model [20] represents a program as a collection

of operations describing the dataflow graph. To extract the full power of dataflow ex-

ecution model, the programmer uses pure dataflow programming languages [13, 40]

that differ significantly from imperative programming languages to describe programs

as dataflow graphs The processor using the dataflow model triggers instructions only

based on operand availability. A completed instruction directly forwards the result to

the target instructions without saving any state, so the execution model is stateless and

does not incur any overhead when context switching. The synchronization of parallel

instructions is implicit by direct result forwarding. This initial implementation of the

dataflow architecture can only provide limited parallelism but cannot support general

recursion. Therefore, dynamic dataflow architectures [4, 43, 5] use tokens that attach a

tag to each value to improve the generality of the dataflow architecture. An operation

can execute only when the operation receives all input tokens with the same tag number.

However, these classic dataflow processors are hampered by the hardware complexity
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for communication and token matching.

To provide a smoother transition from the von Neumann model to dataflow archi-

tectures, hybrid architectures[27, 39, 17], StarT[41, 3], EARTH[26], DDM[21, 30], and

Fuce[2] attempt to build dataflow machines on top of conventional architectures. Simi-

lar to the DTT model, these hybrid architectures exploit fine-grained (instruction level)

parallelism using the von Neumann model based processors. In terms of coarse-grained

parallelism (thread level), these machines adopt the dataflow model to schedule threads.

This allows hybrid architectures to support imperative programming interfaces and ex-

isting instruction set architectures. However, existing proposals still require significant

changes to a baseline architecture to support message passing, thread management, syn-

chronization, context switching, and memory accesses.

7.2 Eliminating redundant computation

A number of prior proposals have exploited redundant computation. These

works usually employ hardware tables to cache the inputs and outputs from previous

execution instances. The processor can use the cached outputs in the future computation

instead of performing the same computation again if the inputs remain the same [47, 25].

For example, dynamic instruction reuse [47] buffers the inputs and execution results of

instructions. The processor can skip the execution stage of reused instructions if the

inputs match saved prior invocations. Thus, each instruction is reused non-speculatively

as long as the inputs match. Block reuse [25] expands the reuse granularity to a basic

block by tracking and storing inputs and outputs of each block. Similarly, if the proces-

sor detects the same set of inputs to the basic block, the processor can skip the execution

of the basic block. However, because the usage of hardware tables, these techniques

are significantly limited in the size of the computational blocks that they can reasonably

address and all but the last are also very limited in the number of addresses they can
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track. Moreover, these techniques do not work if a single instruction or code block has

multiple frequently used input values.

Memoization [37, 14] is a technique, typically employed in software, that stores

the input and output values of frequent operations or functions. When the input values

repeat, the program can reuse the output to avoid recalculation. Memoization requires

the programmer to create additional storage in software to hold the values of all inputs.

Sometimes, the programmer needs to significantly change the algorithms to apply mem-

oization. Conversely, the DTT model triggers proactively as soon as value(s) change

without the need to check sameness before skipping redundant computation. Therefore,

DTT works with almost no storage, works for code regions of any size, allows unlimited

data structure sizes, and naturally exposes and exploits parallelism. Because of the stor-

age limitations, in particular, only a small fraction of the software changes we exploit

with DTT could be reasonably reproduced with memoization.

Silent stores[33, 32] detects and removes store instructions from the load/store

queue by exploiting the free read ports of the cache. The architectural support of the

DTT model (Chapter 4) leverages the silent store detection logic from these researches

to compare the writing value and the existing value. In addition to removing the silent

store instruction, the DTT model has the potential to remove the whole computation

string leading to the silent store.

7.3 Dataflow-like programming models

Cilk [22] and CEAL [24] incorporate the concept of dataflow programming mod-

els into imperative programming languages to take advantage of dataflow constructs

without completely rewriting programs. Like the DTT model, they each propose exten-

sions to the C/C++ programming language to trigger computation when the program

generates new data.
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Simliar to the concept of support thread functions in the DTT model, each thread

in Cilk is an instance of a non-blocking C function. The Cilk programming model uses

the return values and arguments to these non-blocking functions to specify the data

dependencies among threads. The Cilk runtime system does not execute a thread until

the runtime system receives all the arguments for the non-blocking function. DTT shares

the idea of triggering parallel non-blocking threads upon the generation of data with Cilk,

but Cilk does not exploit the potential of removing redundant computation.

CEAL and the DTT model both provide general-purpose language extensions

to allow incremental recomputation. The programmer implements a core and mutators

for each program using C language extensions. The mutators reflect the change of data

and propagate the computation results to the core program. In this way, both CEAL

and the DTT model only operate on chaning data and avoid redundant computation on

unchanging data. However, CEAL does not incorporate parallelism or threading into its

solution.

7.4 Compiler optimizations for eliminating redundant

computation and creating parallelism

Several compiler optimizations [10, 29] target redundant computation. Bodik et

al. [10] removes the redundant computation along frequently executed paths and specula-

tively executes the optimized code. The IA-64 compiler utilizes the additional registers

in the processor to create temporary storage for data that are highly likely to be accessed

in the near future. Therefore, the IA-64 compiler can reduce the amount of memory

accesses. However, these compiler optimizations only work on relatively small blocks

of code, and on load instructions with a relatively small memory footprint.

Both CDTT and Program Demultiplexing (PD) [8] try to create non-traditional

concurrency from programs written in imperative languages. PD decouples the exe-
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cution of methods from the total sequential ordering of the program. Like the data

triggers in CDTT, PD can insert triggers to the sites where the inputs of each demulti-

plexed method change. The program can then initiate the execution of a demultiplexed

method as soon as the evaluation result of a trigger becomes true. Because PD executes

these demultiplexed methods speculatively, PD requires additional hardware to buffer

the speculative results. In addition, PD never decreases the instruction count because it

does not have the ability to skip redundant computation.

Like CDTT, de Kruijf et al. [19, 18] use idempotent code. These works take ad-

vantage of idempotence to support low-overhead fault recovery. They identify the idem-

potent code regions in the program. When the system detects an error within the idempo-

tent region, the system uses the idempotent code to reconstruct the program states since

re-executing idempotent code does not affect the correctness of the program. In this way,

the system does not need to create checkpoints for idempotent code regions. In addition

to idempotence analysis, the CDTT compiler detects possible name dependencies and

other filters that are not necessary in de Kruijf et al’s work.



Chapter 8

Conclusion and future work

It is critical to the computer industry, both hardware and software, that we con-

tinue to scale both the raw performance and energy efficiency of applications. We will

need to exploit architectures, programming languages, compilers, and new program-

ming models to achieve this. This thesis, the data-triggered threads model, in particular,

presents a new programming and execution model which makes it natural to express

computation in such a way that redundant computation is eliminated, and exposes new

opportunities for parallel execution.

In particular, the DTT model allows the programmer to express computation

that only executes upon modifications to data. We show that 78% of the loads in the C

SPEC benchmarks are redundant and create unnecessary computation. By making small

changes to hardware and existing C programs to exploit the data-triggered thread execu-

tion model, we achieve speedups as high as 5.89, and averaging 1.46. This work also

demonstrated that even without any hardware support, the software DTT can still speed

up the same set of applications by 15%. The complete set of serial applications (includ-

ing single-thread PARSEC) were sped up by 7.3X (arithmetic mean) or 1.6X (geometric

mean). The DTT model can be highly complementary with traditional parallelism and

achieve significant performance gain, as high as 64X, even over the original parallel

version.
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This work also presents CDTT, a compiler framework that takes C/C++ code

and automatically generates a binary that eliminates dynamically redundant code with-

out programmer intervention. Using idempotence analysis and inter-procedural name

dependence analysis, CDTT identifies potential code regions and composes support

thread functions that execute as soon as live-in data changes. The compiled binary

running on top of a software runtime system can achieve nearly the same level of per-

formance as careful hand-coded modifications in most benchmarks. CDTT improves

the performance of serial C SPEC benchmarks by as much as 57% (average 11%) on a

Nehalem processor.

The DTT model has the potential to yield orders of magnitude improvements in

energy-delay product. This is because in some cases we achieve multiplicative increases

in performance, and that increase comes not from doing the same work in less time, but

by doing less work, yielding a similar decrease in energy. The most effective way to

save energy is to do less work. Much good architecture research has focused on doing

less work per instruction. We take an alternate approach – in some cases, we simply

skip blocks of several million instructions.

The growing number of computing devices, social networking applications, on-

line services, and online business transactions leads us to an era of data explosion. As

of 2012, the world created an average of 2.5 exabytes of new data every day [1]. Data-

centric computing – which processes data in a data-oriented approach – is an alternative

for applications with huge amount of data. However, this is not a natural transformation

for convention parallel programming models, which create parallelism by partitioning

the computation. The DTT model always attaches computation to data. The current

DTT runtime system or hardware only provide limited support in massive parallelism.

In the future, we will exploit the potential of attaching computation to data in the DTT

model to provide a platform for big data applications.



Appendix A

Benchmark implementations

In this chapter, we detail the implementation for each benchmark we used in this

thesis. Section A.1 - Section A.15 describe our modifications of SPEC2000 benchmarks.

Section A.16 - Section A.23 present our changes in the PARSEC benchmarks.

For each benchmark, we first give a high level description of our modification

and then summarize the code sections we modified.

A.1 ammp

The ammp benchmark is a computational chemistry application that models

molecular dynamics. Our profiler indicates one of the most time-consuming function,

the a number function, contains more than 99% redundant loads. Therefore, we apply

the DTT model to this function.

The a number() function reads the global variable atomUPDATE and counts the

total number of atoms in the linked list. The atomUPDATE variable is set whenever the

application changes a field of an element in the list of the ATOM data structure. However,

unless the application adds a new ATOM into the list, which modifies the next field in

any of the elements in the list, the total number of elements in the list remains the same.

As a result, the original code repeatedly reads the same values from next pointers and

returns the same atomNUMBER.
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Since we only need to update the value of atomNUMBER when a next pointer

changes, we attach the data trigger to the next field. The DTT model will initiate the

support thread function, a number DTT() when the application modifies any next field

in the ATOM data structure. This support thread function walks through the linked list to

calculate the up-to-date atomNUMBER. Once a number DTT() updates atomNUMBER, the

application does not need to recalculate the number of ATOMS in the a number function.

Therefore, we mark the region of code that performs this part of computation in the

a number function as the skippable region.

The following code summarizes our modifications:

Data trigger declaration

typedef struct{

float x,y,z;

critical_precision fx,fy,fz;

int serial;

void *next; #trigger a_number_DTT()

....

} ATOM;

The support thread function

#DTT anumber

int a_number_DTT() {

ATOM *ap;

atomNUMBER = 0;

if( first == NULL ) return 0 ;

ap = first;

while(1) {

if( ap->next == NULL)

break;

atomNUMBER++;

if( ap->next == ap )

break;

ap = ap->next;

}

return atomNUMBER;
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}

The skippable region

int a_number() {

ATOM *ap;

if( atomUPDATE ) {

atomUPDATE = 0;

#block anumber

atomNUMBER = 0;

if( first == NULL ) return 0 ;

ap = first;

while(1) {

if( ap->next == NULL)

break;

atomNUMBER++;

if( ap->next == ap )

break;

ap = ap->next;

}

}

return atomNUMBER;

#end_block

}

A.2 Art

ART implements a neural-network based algorithm to recognize objects in a ther-

mal image. In the SimPoint-based result used in chapter 4, we found that train match

is the most critical function. Our profiler in the Software DTT work of Chapter 5 shows

that the match function is the most critical one. Though the profiling tools identify dif-

ferent functions, the behavior of both functions are similar. They both contain more

than 99% redundant loads when loading P values from the f1 neuron array, f1 layer.

Both functions contain code regions computing the Y values and finding match that only

depends on the P values.

Therefore, we apply the DTT model by attaching a data trigger to the P field in
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the data structure and perform the computation that only depends on the P values. In

Chapter 4, we apply this modification to the train match function, and we apply this

modification to the match function in Chapter 5.

However, because we need to keep the support thread function idempotent, the

support thread function cannot be incremental in this case. We always recalculate the y

values in the Y array in the above code, and as a result, we can potentially increase the

instruction count if the redundancy of P values is not high enough.

The following code sections demonstrate the data trigger declaration, the sup-

port thread function and the skippable region that we use in Chapter 5. For Chapter 4,

because the train match function contains the same computation as in match, we use

the same data trigger as in Chapter 5, but replace the computation in the train match

function.

Data trigger declaration

typedef struct {

double *I;

double W;

double X;

double V;

double U;

double P; #trigger match_compute_winner_thread();

double Q;

double R;

} f1_neuron;

The support thread function

#DTT computeWinner

void match_compute_winner_thread(f1_neuron *x) {

int ti, tj;

for (tj=0;tj<numf2s;tj++) {

Y[tj].y = 0;

if ( !Y[tj].reset )

for (ti=0;ti<numf1s;ti++)
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Y[tj].y += f1_layer[ti].P * bus[ti][tj];

}

/* Find match */

*Winner = 0;

for (ti=0;ti<numf2s;ti++) {

if (Y[ti].y > Y[*Winner].y)

*Winner =ti;

}

return;

}

The skippable region

for (tj=0;tj<numf1s;tj++)

f1_layer[tj].Q = f1_layer[tj].P;

#block computeWinner

/* Compute F2 - y values */

for (tj=0;tj<numf2s;tj++)

{

Y[tj].y = 0;

if ( !Y[tj].reset )

for (ti=0;ti<numf1s;ti++)

Y[tj].y += f1_layer[ti].P * bus[ti][tj];

}

/* Find match */

winner = 0;

for (ti=0;ti<numf2s;ti++)

{

if (Y[ti].y > Y[winner].y)

winner =ti;

}

#end_block

A.3 bzip2

The bzip2 benchmark in SPEC2000 implements the core algorithm of bzip2-0.1

and performs all compression and decompression in memory. Our profiler found that

more than 99% of the loads from the ftab table in the most frequently executed sortIt
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function are redundant. In each iteration, the ss variable decides the entry the iteration

will access in the iteration, so we attach the data trigger to this variable. In this way, we

only trigger the support thread function, the bbstart thread function, to update values

depending on the ftab table when ss changes. We also make the original code in the

sortIt function the skippable region.

We illustrate our modifications below:

Data trigger declaration

Int32 ss; #trigger bbstart_thread();

The support thread function

#DTT bbstart

void bbstart_thread(int *x) {

Int32 ss = *x;

bbStart = ftab[ss << 8] & CLEARMASK;

bbSize = (ftab[(ss+1) << 8] & CLEARMASK)

- bbStart;

shifts = 0;

while ((bbSize >> shifts) > 65534) shifts++;

return;

}

The skippable region

if (i < 255) {

#block bbstart

Int32 bbStart = ftab[ss << 8] & CLEARMASK;

Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK)

- bbStart;

Int32 shifts = 0;

while ((bbSize >> shifts) > 65534) shifts++;

#end_block

for (j = 0; j < bbSize; j++) {

Int32 a2update = zptr[bbStart + j];

UInt16 qVal = (UInt16)(j >> shifts);
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quadrant[a2update] = qVal;

if (a2update < NUM_OVERSHOOT_BYTES)

quadrant[a2update + last + 1] = qVal;

}

if (! ( ((bbSize-1) >> shifts) <= 65535 ))

panic ( "sortIt" );

}

A.4 Crafty

Crafty is a chess game program included in SPEC2000. The program inten-

sively searches and evaluates the scores of potential moves using the Evaluate func-

tion. However, this process can potentially incur redundant computation on rare events,

for example, trapping bishops. Therefore, we attach data triggers only to the variables

WhiteBishops and BlackPawns, which can affect the evaluation regarding if a bishop

is trapped.

In this section, we only demonstrate the modification for reducing redundant

computation for trapping white bishops. Users can also apply similar idea to

BlackBishops and WhitePawns for black bishops. The DTT model computes the

update WhiteBishops support thread function when any data trigger changes. How-

ever, the original code in the Evaluate function is not idempotent since it accumulates

the result into the score variable. We make the update WhiteBishops function idem-

potent by using a global variable trappingWhiteBishop to store the value to subtract

for this part of the computation. We also need to change the code in the skippable region

to make the code in the skippable region idempotent.

The following code sections present our implementation, including the data trig-

ger declaration, the support thread function, and the modified skippable region.
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Data trigger declaration

BITBOARD WhiteBishops; #trigger update_WhiteBishops();

BITBOARD BlackPawns; #trigger update_WhiteBishops();

The support thread function

#DTT update_WhiteBishops

void update_WhiteBishops(void *e)

{

register BITBOARD temp;

register int score=0;

temp=And(WhiteBishops,mask_A7H7);

while(temp) {

square=FirstOne(temp);

if (square == A7 && And(mask_B6B7,BlackPawns)) {

if (And(set_mask[B6],BlackPawns) || Swap(B7,B6,0)>=0)

score-=BISHOP_TRAPPED;

}

else if (square == H7 &&And(mask_G6G7,BlackPawns)) {

if (And(set_mask[G6],BlackPawns) || Swap(G7,G6,0)>=0)

score-=BISHOP_TRAPPED;

}

Clear(square,temp);

}

trappingWhiteBishop = score;

}

The skippable region

#block update_WhiteBishops

trappingWhiteBishop = 0;

temp=And(WhiteBishops,mask_A7H7);

while(temp) {

square=FirstOne(temp);

if (square == A7 &&

And(mask_B6B7,BlackPawns)) {

if (And(set_mask[B6],BlackPawns)||

Swap(B7,B6,0)>=0)

trappingWhiteBishop-=BISHOP_TRAPPED;

}

else if (square == H7 &&
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And(mask_G6G7,BlackPawns)) {

if (And(set_mask[G6],BlackPawns)

|| Swap(G7,G6,0)>=0)

trappingWhiteBishop-=BISHOP_TRAPPED;

}

Clear(square,temp);

}

#end_block

score -= trappingWhiteBishop;

A.5 Eon

Eon is a ray tracer written in C++. The ray tracer sends several rays into a

3D object and simulates that path of these rays after encountering the object. The

mrSurfaceList::viewingHit method in this application generates lots of redundant

computation to reinitialize two variables, a MR and a VHR, even though their values re-

main the same after the computation in the following for-loop.

for (int i = 0; i < length(); i++) {

mrSurface *sPtr = surfaces[i];

ggMaterialRecord a_MR;

mrViewingHitRecord a_VHR;

a_MR.UV = uvTemp;

if ( ((!sPtr->boundingBox(time, time, objectBox)) ||

ggOverlapBox3(rayBox,objectBox)) &&

sPtr->viewingHit( r, time, tmin, a_tmax, a_VHR, a_MR))

if (a_VHR.t < VHR.t) {

hit_one = ggTrue;

VHR = a_VHR;

a_tmax = VHR.t;

MR = a_MR;

}

}

In our implementation, we would like to avoid the re-initialization of a MR and

a VHR. Therefore, we move the declaration of these two variables to the beginning of the

mrSurfaceList::viewingHit method and make these variables data triggers. If the

viewingHit method touches the content of a MR or a VHR, the DTT model executes the
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corresponding support thread function to reinitialize the values. With this modification,

the code only needs to initialize these variables when touched.

We summarize the modification below:

Data trigger declaration

ggMaterialRecord a_MR;

#trigger ggMaterialRecord::ggMaterialRecordThread();

mrViewingHitRecord a_VHR;

#trigger mrViewingHitRecord::mrViewingHitRecordThread();

The support thread function

#DTT ggMaterialRecordThread

ggMaterialRecordThread()

{ BRDFPointer = 0; kBRDF.Set(1.0);

hasRay1 = hasRay2 = ggFalse; }

#DTT mrViewingHitRecordThread

mrViewingHitRecordThread() : p(ggFalse), UVW(ggFalse), UV(ggFalse)

{ hasUVW = hasUV = hasEmit = hasAdd = ggFalse; coverage = 1.0;}

The skippable region

ggMaterialRecord() {

#block ggMaterialRecordThread

BRDFPointer = 0; kBRDF.Set(1.0);

hasRay1 = hasRay2 = ggFalse;

#end_block

}

mrViewingHitRecord() : p(ggFalse), UVW(ggFalse), UV(ggFalse) {

#block mrViewingHitRecordThread

hasUVW = hasUV = hasEmit = hasAdd = ggFalse; coverage = 1.0;

#end_block

}

A.6 equake

Equake simulates the propagation of earthquake waves in large valleys or basins.

The time integration loop is the most critical part of this application. The profiling
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result indicates that the application creates a significant amount of redundant loads when

calling phi0, phi1, and phi2 functions in the third nested for-loop shown below:

for (i = 0; i < ARCHnodes; i++)

for (j = 0; j < 3; j++)

disp[disptplus][i][j] +=

2.0 * M[i][j] * disp[dispt][i][j] -

(M[i][j] - Exc.dt / 2.0 * C[i][j]) *

disp[disptminus][i][j] -

Exc.dt * Exc.dt *

(M23[i][j] * phi2(time) / 2.0 +

C23[i][j] * phi1(time) / 2.0 +

V23[i][j] * phi0(time) / 2.0);

These three functions all use the variable time as inputs and only depend on

the value of time and another variable, Exc.t0, to calculate the output. These three

functions incur redundant computation, because the value of time only changes in the

beginning of every loop iteration, and the value of Exc.t0 never changes after it’s ini-

tialized.

Therefore, we attach data triggers to time. Since the current DTT model only

allows one variable to associate with a support thread function, we create two other

variables, time1 and time2, to trigger support thread functions for phi1 and phi2. We

also insert statements to set the values of phi1 and phi2 after the statement that can

assign a new value to phi. The corresponding support thread function of each variable

will perform the required computation and keep the result in a global variable. When

the application visits these phi functions, the DTT model uses the stored result instead

of recomputing values to reduce redundant computation.

The following code shows our modifications.

Data trigger declaration

double time; #trigger update_phi0();

double time1; #trigger update_phi1();
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double time2; #trigger update_phi2();

The support thread function

#block update_phi0

void phi0(double *t) {

double value;

if (t <= Exc.t0) {

value = 0.5 / PI * (2.0 * PI * t / Exc.t0

- sin(2.0 * PI * t / Exc.t0));

phi0_value = value;

}

else

phi0_value = 1.0;

}

#end_block

#block update_phi1

void phi1_thread(double *t) {

if (*t <= Exc.t0) {

value = (1.0 - cos(2.0 * PI * *t / Exc.t0))

/ Exc.t0;

phi1_value = value;

}

else

phi1_value = 0.0;

}

#end_block

#block update_phi2

void phi2_thread(double *t) {

double value;

if (*t <= Exc.t0) {

value = 2.0 * PI / Exc.t0 / Exc.t0 *

sin(2.0 * PI * *t / Exc.t0);

phi2_value = value;

}

else

phi2_value = 0.0;

}

#end_block
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The skippable region

double phi0(t)

double t;

{

double value;

#block update_phi0

if (t <= Exc.t0) {

value = 0.5 / PI * (2.0 * PI * t / Exc.t0 -

sin(2.0 * PI * t / Exc.t0));

return value;

}

else

return 1.0;

#end_block

return phi0_value;

}

double phi1(t)

double t;

{

double value;

#block update_phi1

if (t <= Exc.t0) {

value = (1.0 - cos(2.0 * PI * t / Exc.t0)) / Exc.t0;

return value;

}

else

return 0.0;

#end_block

return phi1_value;

}

double phi2(t)

double t;

{

double value;

#block update_phi2

if (t <= Exc.t0) {

value = 2.0 * PI / Exc.t0 / Exc.t0 *

sin(2.0 * PI * t / Exc.t0);

return value;

}
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else

return 0.0;

#end_block

return phi2_value;

}

A.7 gcc

The gcc benchmark included in the SPEC2000 is a C compiler based on gcc-

2.7.2.2. For this benchmark, we also have different implementations for Chapter 4 and

Chapter 5.

Our implementation in Chapter 4 found that in the program phase we simulated,

the value returned from the max reg num never changes since the value of reg rtx no

remains the same all the time. Therefore, we declare the reg rtx no as the trigger.

If the value of reg rtx no changes, the support thread function change max reg num

updates the recorded return value in the TST and injects this value to the register instead

of accessing the memory.

The following code presents our modification for Chapter 4.

Data trigger declaration

int reg_rtx_no; #trigger change_max_reg_num();

The support thread function

#DTT maxRegNum

int change_max_reg_num () {

return reg_rtx_no;

}

The skippable region

int max_reg_num () {

#block maxRegNum
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return reg_rtx_no;

#end_block

}

For the implementation used in Chapter 5, the profiler suggests that the

propagate block function is the most frequently executed function and contains po-

tential for redundant computation – 97% of accesses to basic block live at end are

redundant in this function. Therefore, we modify the declaration of

basic block live at end by changing it from a pointer to an array and allow the

DTT model to trigger support thread functions when an element in the array changes.

The DTT model can skip the computation in the life analysis function that calls the

propagate block function if the data trigger remains the same.

We demonstrate our implementation in Chapter 5 in the following code.

Data trigger declaration

regset basic_block_live_at_end[max_n_basic_blocks];

#trigger propagate_block_thread

The support thread function

#DTT propagateBlock

void *propagate_block_thread (regset *basic_block_live_at_end_i)

{

int i = basic_block_live_at_end_i - &basic_block_live_at_end[0]

propagate_block (basic_block_live_at_end[i],

basic_block_head[i], basic_block_end[i], 1,

(regset) 0, i);

#ifdef USE_C_ALLOCA

alloca (0);

#endif

return NULL;

}

The skippable region

if (n_basic_blocks > 0)
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for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)

if (basic_block_live_at_start[0][i / REGSET_ELT_BITS]

& ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))

reg_basic_block[i] = REG_BLOCK_GLOBAL;

max_scratch = 0;

#block propagateBlock

for (i = 0; i < n_basic_blocks; i++)

{

propagate_block (basic_block_live_at_end[i],

basic_block_head[i], basic_block_end[i], 1,

(regset) 0, i);

#ifdef USE_C_ALLOCA

alloca (0);

#endif

}

#end_block

A.8 gzip

gzip is a popular compression program. In this application, the percentage of

redundant loads is high. The source of redundant loads is loads from relatively stable

tables. However, the inputs generated after each iteration of the core algorithm are

highly dynamic, and as a result, the percentage of silent stores is lower than 30%. In

this benchmark, we can only apply the DTT model to accelerate a small piece of code

in the longest match function.

In Chapter 4, we focus on skipping the computation in the beginning parts of

the function. This part of computation only depends on the value of two variables,

hash head and strstart. We attach the data trigger declarations to these two variables

and trigger the support thread function, longest match thread if necessary. The DTT

model can skip the beginning parts that calculates the scan, strend, and limit. The

following C code shows our implementation.



116

Data trigger declaration

int hash_head; #trigger longest_match_thread();

int strstart; #trigger longest_match_thread();

The support thread function

#DTT longestMatch

void longest_match_thread()

{

scan = window + strstart;

strend = window + strstart + MAX_MATCH;

limit = strstart > (IPos)MAX_DIST ?

strstart - (IPos)MAX_DIST : NIL;

}

The skippable region

int longest_match(cur_match)

IPos cur_match; {

#block longestMatch

scan = window + strstart; /* current string */

strend = window + strstart + MAX_MATCH;

limit =

strstart > (IPos)MAX_DIST ? strstart - (IPos)MAX_DIST : NIL;

#end_block

For Chapter 5, we instead focus on another part in the longest match function

because the implementation in Chapter 4 provides no benefit in the software DTT. For

this piece of code, we use the variable max chain length as the data trigger. As soon

as the max chain length changes, the DTT model triggers the support thread function

– update variable thread function. This allows us to skip some computation in the

longest match function.

We use the following C code in Chapter 5.

Data trigger declaration

unsigned near max_chain_length; #trigger update_variable_thread();
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The support thread function

#DTT updateVariable

void update_variable_thread()

{

chain_length = max_chain_length; /* max hash chain length */

best_len = prev_length; /* best match length so far */

scan_end1 = scan[best_len-1];

scan_end = scan[best_len];

return;

}

The skippable region

#undef UNALIGNED_OK

#ifdef UNALIGNED_OK

register uch *strend = window + strstart + MAX_MATCH - 1;

register ush scan_start = *(ush*)scan;

register ush scan_end = *(ush*)(scan+best_len-1);

#else

#block updateVariable

chain_length = max_chain_length; /* max hash chain length */

best_len = prev_length; /* best match length so far */

scan_end1 = scan[best_len-1];

scan_end = scan[best_len];

#end_block

#endif

A.9 mcf

For our implementation in mcf, please refer to Section 3.2.4.

A.10 mesa

Mesa is an OpenGL library that creates 3D objects from 2D scalar fields. For

this benchmark, though both our implementation in Chapter 4 and Chapter 5 focus on

the same function, our profiling in Chapter 5 covers a longer execution phase and allows
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us to discover different opportunities for triggering computation using the DTT model.

In chapter 4, we found that one of the most frequently executed functions

– sample 1d linear incurs high redundancy in both loads and stores because the inputs

i0, i1, w0, and w1 do not dramatically change, and generate similar results between

invocations. Therefore, we declare four global variables to store the value of the four

inputs of the

sample 1d linear and attach the data triggers to these variables.

We also add statements to assign values from local variables to global variables.

The DTT model triggers the sample 1d linear thread whenever the contents of these

global variables change. Finally, we define part of the computation that the support

thread function can replace as the skippable region.

The code shown below presents our implementation in Chapter 4.

Data trigger declaration

GLint i0_thread; #trigger sample_1d_linear_thread();

GLint i1_thread; #trigger sample_1d_linear_thread();

GLint w0_thread; #trigger sample_1d_linear_thread();

GLint w1_thread; #trigger sample_1d_linear_thread();

The support thread function

#DTT sample1DLinear

void sample_1d_linear_thread(GLint *x)

{

GLubyte red0, green0, blue0, alpha0;

GLubyte red1, green1, blue1, alpha1;

if (i0border_thread) {

red0 = tObj->BorderColor[0];

green0 = tObj->BorderColor[1];

blue0 = tObj->BorderColor[2];

alpha0 = tObj->BorderColor[3];

}

else {
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get_1d_texel( tObj, img, i0_thread, &red0,

&green0, &blue0, &alpha0);

}

if (i1border_thread) {

red1 = tObj->BorderColor[0];

green1 = tObj->BorderColor[1];

blue1 = tObj->BorderColor[2];

alpha1 = tObj->BorderColor[3];

}

else {

get_1d_texel( tObj, img, i1_thread, &red1,

&green1, &blue1, &alpha1);

}

*red = (w0_thread*red0 + w1_thread*red1) >> 8;

*green = (w0_thread*green0 + w1_thread*green1) >> 8;

*blue = (w0_thread*blue0 + w1_thread*blue1) >> 8;

*alpha = (w0_thread*alpha0 + w1_thread*alpha1) >> 8;

}

The skippable region

static void sample_1d_linear( const struct gl_texture_object *tObj,

const struct gl_texture_image *img,

GLfloat s,

GLubyte *red, GLubyte *green,

GLubyte *blue, GLubyte *alpha )

{

GLint width = img->Width2;

GLint i0, i1;

GLfloat u;

GLint i0border, i1border;

u = s * width;

if (tObj->WrapS==GL_REPEAT) {

i0 = ((GLint) floor(u - 0.5F)) % width;

i1 = (i0 + 1) & (width-1);

i0border = i1border = 0;

}

else {

i0 = (GLint) floor(u - 0.5F);

i1 = i0 + 1;
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i0border = (i0<0) | (i0>=width);

i1border = (i1<0) | (i1>=width);

}

if (img->Border) {

i0 += img->Border;

i1 += img->Border;

i0border = i1border = 0;

}

else {

i0 &= (width-1);

}

#block sample1DLinear

{

GLfloat a = frac(u - 0.5F);

GLint w0 = (GLint) ((1.0F-a) * 256.0F);

GLint w1 = (GLint) ( a * 256.0F);

GLubyte red0, green0, blue0, alpha0;

GLubyte red1, green1, blue1, alpha1;

if (i0border) {

red0 = tObj->BorderColor[0];

green0 = tObj->BorderColor[1];

blue0 = tObj->BorderColor[2];

alpha0 = tObj->BorderColor[3];

}

else {

get_1d_texel( tObj, img, i0, &red0,

&green0, &blue0, &alpha0 );

}

if (i1border) {

red1 = tObj->BorderColor[0];

green1 = tObj->BorderColor[1];

blue1 = tObj->BorderColor[2];

alpha1 = tObj->BorderColor[3];

}

else {

get_1d_texel( tObj, img, i1, &red1,

&green1, &blue1, &alpha1 );

}

*red = (w0*red0 + w1*red1) >> 8;

*green = (w0*green0 + w1*green1) >> 8;
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*blue = (w0*blue0 + w1*blue1) >> 8;

*alpha = (w0*alpha0 + w1*alpha1) >> 8;

}

#end_block

}

In Chapter 5, the profiling tool covers the execution of the whole program. We

found that the redundant computation in the sample 1d linear function originates

from the several arrays – red, green, blue, and alpha in the

general textured triangle function. We declare these arrays as data triggers and

implement different support thread functions to perform incremental algorithms that up-

dates the result for the sample 1d linear function.

In the following code, we demonstrate the data trigger declaration, the support

thread function, the get 1d texel red thread that we created for the support thread

function, and the skippable region code for the case when an element in the red array

changes. The programmer can apply similar techniques to other arrays in addition to the

data trigger that we use in this work.

Data trigger declaration

GLubyte red[MAX_WIDTH]; #trigger sample_1d_linear_red_thread();

The support thread function

#DTT sample1DLinear

void sample_1d_linear_red_thread(GLfloat *x)

{

GLfloat s = *x;

struct gl_texture_object *tObj = img_thread;

struct gl_texture_image *img = tObj->Image[0];

GLubyte red0;

GLubyte red1;

GLint width = img->Width2;

GLint i0, i1, i0border, i1border;

GLfloat u = s * width;

GLfloat a = frac(u - 0.5F);
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GLint w0 = (GLint) ((1.0F-a) * 256.0F);

GLint w1 = (GLint) ( a * 256.0F);

if (tObj->WrapS==GL_REPEAT) {

i0 = ((GLint) floor(u - 0.5F)) % width;

i1 = (i0 + 1) & (width-1);

i0border = i1border = 0;

}

else {

i0 = (GLint) floor(u - 0.5F);

i1 = i0 + 1;

i0border = (i0<0) | (i0>=width);

i1border = (i1<0) | (i1>=width);

}

switch (img->Format) {

case GL_LUMINANCE:

case GL_INTENSITY:

if (i0border) {

red0 = tObj->BorderColor[0];

}

else {

get_1d_texel_red_thread( tObj, img, i0, &red0);

}

if (i1border) {

red1 = tObj->BorderColor[0];

}

else {

get_1d_texel_red_thread( tObj, img, i1, &red1);

}

lastRed = (w0*red0 + w1*red1) >> 8;

}

return;

}

The get 1d texel red thread function

void get_1d_texel_red_thread( const struct gl_texture_object *tObj,

const struct gl_texture_image *img,

GLint i,

GLubyte *red)

{

GLubyte *texel;
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#ifdef DEBUG

GLint width = img->Width;

if (i<0 || i>=width) abort();

#endif

switch (img->Format) {

case GL_COLOR_INDEX:

{

GLubyte index = img->Data[i];

palette_sample(tObj, index, red, green, blue, alpha);

return;

}

return;

case GL_ALPHA:

*alpha = img->Data[ i ];

return;*/

case GL_LUMINANCE:

case GL_INTENSITY:

*red = img->Data[ i ];

return;

case GL_LUMINANCE_ALPHA:

texel = img->Data + i * 2;

*red = texel[0];

return;

case GL_RGB:

texel = img->Data + i * 3;

*red = texel[0];

return;

case GL_RGBA:

texel = img->Data + i * 4;

*red = texel[0];

return;

default:

gl_problem(NULL, "Bad format in get_1d_texel");

return;

}

}

The skippable region

static void sample_1d_linear( const struct gl_texture_object *tObj,

const struct gl_texture_image *img,

GLfloat s,

GLubyte *red, GLubyte *green,
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GLubyte *blue, GLubyte *alpha )

{

GLint width = img->Width2;

GLint i0, i1;

GLfloat u;

GLint i0border, i1border;

u = s * width;

if (tObj->WrapS==GL_REPEAT) {

i0 = ((GLint) floor(u - 0.5F)) % width;

i1 = (i0 + 1) & (width-1);

i0border = i1border = 0;

}

else {

i0 = (GLint) floor(u - 0.5F);

i1 = i0 + 1;

i0border = (i0<0) | (i0>=width);

i1border = (i1<0) | (i1>=width);

}

if (img->Border) {

i0 += img->Border;

i1 += img->Border;

i0border = i1border = 0;

}

else {

i0 &= (width-1);

}

#block sample1DLinear

{

GLfloat a = frac(u - 0.5F);

GLint w0 = (GLint) ((1.0F-a) * 256.0F);

GLint w1 = (GLint) ( a * 256.0F);

GLubyte red0, green0, blue0, alpha0;

GLubyte red1, green1, blue1, alpha1;

if (i0border) {

red0 = tObj->BorderColor[0];

green0 = tObj->BorderColor[1];

blue0 = tObj->BorderColor[2];

alpha0 = tObj->BorderColor[3];

}

else {
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get_1d_texel

( tObj, img, i0, &red0, &green0, &blue0, &alpha0 );

}

if (i1border) {

red1 = tObj->BorderColor[0];

green1 = tObj->BorderColor[1];

blue1 = tObj->BorderColor[2];

alpha1 = tObj->BorderColor[3];

}

else {

get_1d_texel

( tObj, img, i1, &red1, &green1, &blue1, &alpha1 );

}

*red = (w0*red0 + w1*red1) >> 8;

*green = (w0*green0 + w1*green1) >> 8;

*blue = (w0*blue0 + w1*blue1) >> 8;

*alpha = (w0*alpha0 + w1*alpha1) >> 8;

}

return;

#end_block

*red = lastRed;

*blue = lastBlue;

*green = lastGreen;

*alpha = lastAlpha;

}

A.11 parser

Parser is an English syntactic parser. In parser, the loads that access the hash

table in the count function are 99% redundant, on average. However, these redundant

loads do not necessarily lead to redundant computation. The computation in the count

function depends on two inputs and the same pair of inputs never appear twice. Though

almost every access to the hash table is redundant, the following computation is not

redundant.

In parser, we can only take advantage from triggering the hash table lookup

earlier once we know the inputs of the function. However, because the DTT model only
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allows one argument, we create global variables to store all the inputs of the count

function and make these variables data triggers. In the beginning of the count function,

we assign the arguments into these variables that we added for the DTT model and

trigger the support thread function – hash thread. Finally, we also need to define the

original code in the hash function that looks up the randtable as the skippable region.

Again, because this application does not contain the type of redundant computation the

DTT model can exploit, our modification always increases the dynamic instructions.

We list the code here.

Data trigger declaration

int lw_thread; #trigger hash_thread();

int rw_thread; #trigger hash_thread();

Connector *le_thread; #trigger hash_thread();

Connector *re_thread; #trigger hash_thread();

int cost_thread; #trigger hash_thread();

The support thread function

void hash_thread(void *x){

i = i + (i<<1) + randtable[(lw_thread + i) & (RTSIZE - 1)];

i = i + (i<<1) + randtable[(rw_thread + i) & (RTSIZE - 1)];

i = i + (i<<1) +

randtable[(((long) le_thread + i) %

(table_size_thread+1)) & (RTSIZE - 1)];

i = i + (i<<1) +

randtable[(((long) re_thread + i) %

(table_size_thread+1)) & (RTSIZE - 1)];

i = i + (i<<1) + randtable[(cost_thread+i) & (RTSIZE - 1)];

i_DTT = i;

}

The skippable region

int hash(int lw, int rw, Connector *le, Connector *re, int cost) {

int i;
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#block hashLookup

i = 0;

i = i + (i<<1) + randtable[(lw + i) & (RTSIZE - 1)];

i = i + (i<<1) + randtable[(rw + i) & (RTSIZE - 1)];

i = i + (i<<1) +

randtable[(((long) le + i) % (table_size+1)) & (RTSIZE - 1)];

i = i + (i<<1) +

randtable[(((long) re + i) % (table_size+1)) & (RTSIZE - 1)];

i = i + (i<<1) + randtable[(cost+i) & (RTSIZE - 1)];

i_DTT = i;

#end_block

return i_DTT & (table_size-1);

}

A.12 perlbmk

The benchmark version of Perl in SPEC2000 implements the core Perl inter-

preter and several third party modules. Though this benchmark reveals 86% redundant

loads and 70% redundant stores in Chapter 2, most of this redundant behavior comes

from register spilling rather than real redundant behavior. In Chapter 4, we can only

apply the DTT model to precompute the interpretation when the operation of a perl

statement is determined. We implement the runops standard thread support thread

function to pre-execute the function needed to run on each operation, and store the result

to the global variable next op. In the original runops standard function, we can skip

the while-loop and assign the stored dtt op variable to PL op if the DTT model has

already done so.

Here are our modifications in Chapter 4.

Data trigger declaration

PERLVAR(Top,OP *) #trigger runops_standard_thread()
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The support thread function

#DTT runOps

void runops_standard_thread(OP *x) {

dTHR;

OP *dtt_op = x;

while ( dtt_op = (dtt_op->op_ppaddr)(ARGS) ) ;

TAINT_NOT;

next_op = dtt_op;

}

The skippable region

int

runops_standard(void)

{

dTHR;

#block runOp

while ( PL_op = (CALLOP->op_ppaddr)(ARGS) ) ;

TAINT_NOT;

return 0;

#end_block

PL_op = dtt_op;

return 0;

}

In Chapter 5, we found that the multithreading overhead makes the implemen-

tation in Chapter 4 inefficient. We instead change the gv stashpvn since this func-

tion only needs to update its result when the name passing into the function changes.

Therefore, we attach the data trigger to a global pointer to the name string. When

the application assigns a new name string to the pointer, the DTT model executes the

gv stashpvn thread support thread function. Once the support thread function fin-

ishes, the application does not need to recompute the gv stashpvn again.

The following code demonstrates our modification in Chapter 5.
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Data trigger declaration

char *name_thread; #trigger gv_stashpvn_thread();

The support thread function

#DTT gvStashpvn

void* gv_stashpvn_thread(void *x) {

char smallbuf[256];

char *tmpbuf;

HV *stash;

GV *tmpgv;

lastnamelen = strlen(name_thread);

if (namelen_thread + 3 < sizeof smallbuf)

tmpbuf = smallbuf;

else

New(606, tmpbuf, namelen_thread + 3, char);

Copy(name_thread,tmpbuf,namelen_thread,char);

tmpbuf[namelen_thread++] = ’:’;

tmpbuf[namelen_thread++] = ’:’;

tmpbuf[namelen_thread] = ’\0’;

tmpgv = gv_fetchpv(tmpbuf, create_thread, SVt_PVHV);

if (tmpbuf != smallbuf)

Safefree(tmpbuf);

if (!tmpgv)

return 0;

if (!GvHV(tmpgv))

GvHV(tmpgv) = newHV();

stash = GvHV(tmpgv);

if (!HvNAME(stash))

HvNAME(stash) = savepv(name_thread);

lastStash = stash;

}

\subsubsection{The skippable region}

gv_stashpvn(char *name, U32 namelen, I32 create)

{

char smallbuf[256];

char *tmpbuf;

HV *stash;

GV *tmpgv;

namelen_thread = namelen;

name_thread = name;
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#block gvStashpvn

if (namelen + 3 < sizeof smallbuf)

tmpbuf = smallbuf;

else

New(606, tmpbuf, namelen + 3, char);

Copy(name,tmpbuf,namelen,char);

tmpbuf[namelen++] = ’:’;

tmpbuf[namelen++] = ’:’;

tmpbuf[namelen] = ’\0’;

tmpgv = gv_fetchpv(tmpbuf, create, SVt_PVHV);

if (tmpbuf != smallbuf)

Safefree(tmpbuf);

if (!tmpgv)

return 0;

if (!GvHV(tmpgv))

GvHV(tmpgv) = newHV();

stash = GvHV(tmpgv);

if (!HvNAME(stash))

HvNAME(stash) = savepv(name);

lastStash = stash;

}

#end_block

return lastStash;

}

A.13 twolf

Twolf in SPEC2000 uses the ”TimberWolfSC” package to determine the place-

ment of transistors. Several of the load instructions in one of the most time-consuming

functions – new dbox a reveals high percentage of redundant loads in our profiling re-

sult. These redundant loads come from loading pointer addresses, but do not lead to

the type of redundant computation that the DTT model can eliminate. Therefore, in

our implementation, we simply use the DTT model to trigger the computation of the

new dbox a function as soon as the value in the new total field of the dimbox struc-

ture changes. The changing of this field indicates that the data structure is modified and

will be performing the new dbox a function to update the cost field. In the support

thread function, we update cost field of the dimbox structure. Once the cost is calcu-
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lated and remains valid before the main thread visits the code, the DTT model can skip

the update of the cost field in each net and add all cost fields.

We list the modified code.

Data trigger declaration

typedef struct dimbox {

int new_total ; #trigger update_new_dbox_a();

}

*DBOXPTR , DBOX ;

The support thread function

#DTT update_new_dbox_a

void *update_new_dbox_a(DBOXPTR x)

{

DBOXPTR dimptr ;

NBOXPTR netptr ;

int old_mean , new_mean , oldx , newx ;

int min , max , row , net ;

dimptr = x;

if( dimptr->dflag == 0 ) {

return;

}

new_mean = dimptr->new_total / dimptr->numpins ;

old_mean = dimptr->old_total / dimptr->numpins ;

dimptr->cost=0;

for( netptr = dimptr->netptr ; netptr ;

netptr = netptr->nterm )

{

oldx = netptr->xpos ;

if( netptr->flag == 1 ) {

netptr->flag = 0 ;

newx = netptr->newx ;

} else {

newx = oldx ;

}

dimptr->cost +=

ABS( newx - new_mean ) - ABS( oldx - old_mean );

dimptr->dflag = 1;

return ;

}
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The skippable region

new_dbox_a( antrmptr , costptr )

TEBOXPTR antrmptr ;

int *costptr ;

{

for( termptr = antrmptr ; termptr ;

termptr = termptr->nextterm )

{

net = termptr->net ;

dimptr = netarray[ net ] ;

if( dimptr->dflag == 0 ) {

continue ;

}

#block update_new_dbox_a

if((dimptr->dflag == 2)

{

new_mean = dimptr->new_total / dimptr->numpins ;

old_mean = dimptr->old_total / dimptr->numpins ;

dimptr->cost = 0;

for( netptr = dimptr->netptr ; netptr ;

netptr = netptr->nterm )

{

oldx = netptr->xpos ;

if( netptr->flag == 1 ) {

newx = netptr->newx ;

netptr->flag = 0 ;

} else {

newx = oldx ;

}

dimptr->cost +=

ABS( newx - new_mean ) - ABS( oldx - old_mean );

}

#end_block

*costptr += dimptr->cost;

dimptr->dflag = 0 ;

}

A.14 VORTEx

VORTEx is database transaction benchmark. In this benchmark, we found many

redundant loads in the most frequently executed Chunk ChkGetChunk function. We
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traced the code and found many of the calls to the Chunk ChkGetChunk function were

originated from PersonObjs FindIn. Therefore, we focused on triggering the com-

putation of Chunk ChkGetChunk as soon as we detect any change to the inputs of

PersonObjs FindIn function by attaching data triggers to the inputs of the

PersonObjs FindIn function.

The DTT model triggers the computation that performs the computation of

PersonObjs FindIn using the support thread function update PersonObjs FindId,

which generates calls to the Chunk ChkGetChunk function and stores the result in the

PersonObjs FindIn return variable. In addition, we also need to modify the

PersonObjs FindIn function to accommodate the addition of the

PersonObjs FindIn return variable as shown below:

We shows our modification as below.

Data trigger declaration

tokentype EmpTkn010; #trigger update_PersonObjs_FindId();

addrtype PersonId; #trigger update_PersonObjs_FindId();

tokentype PersonTkn;#trigger update_PersonObjs_FindId();

The support thread function

#DTT update_PersonObjs_FindId

void update_PersonObjs_FindId(void *x)

{

tokentype *OwnerTkn = &EmpTkn010;

addrtype KeyValue = &PersonId;

tokentype *MemberTkn = &PersonTkn;

Owner_KeySetFindIn (PersonObjs_Set, OwnerTkn,

KeyValue, McStat, MemberTkn);

PersonObjs_FindIn_return = STAT;

}
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The skippable region

boolean PersonObjs_FindIn(tokentype *OwnerTkn, addrtype

KeyValue, ft F,lt Z,zz *Status, tokentype *MemberTkn)

{

#block update_PersonObjs_FindId

Owner_KeySetFindIn (PersonObjs_Set, OwnerTkn,

KeyValue, McStat, MemberTkn);

TRACK(TrackBak,"FindInPersonObjs\n");

PersonObjs_FindIn_return = STAT;

#end_block

return (PersonObjs_FindIn_return);

}

A.15 vpr

For vpr, a circuit placement and routing program, our modifications for Chapter 4

and Chapter 5 are different.

For Chapter 4, we worked on the add to heap function to trigger the

my realloc function as soon as we know the heap is full. We attach the data trigger

to the heap tail variable and judge if we need to invoke the my realloc function.

We also define the code region that invokes the my realloc function as the skippable

region.

Data trigger declaration

static int heap_tail; #trigger my_realloc_DTT();

The support thread function

#DTT myRealloc

void *my_realloc_DTT(void *x)

{

dtt_event *e = (dtt_event *)x;

if (heap_tail > heap_size )

{ /* Heap is full */
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heap_size *= 2;

heap = my_realloc ((void *)(heap + 1), heap_size *

sizeof (struct s_heap *));

heap--; /* heap goes from [1..heap_size] */

}

}

The skippable region

static void add_to_heap (struct s_heap *hptr) {

/* Adds an item to the heap, expanding the heap if necessary.*/

int ito, ifrom;

#block myRealloc

if (heap_tail > heap_size ) { /* Heap is full */

heap_size *= 2;

heap = my_realloc ((void *)(heap + 1), heap_size *

sizeof (struct s_heap *));

heap--; /* heap goes from [1..heap_size] */

}

#endif

heap[heap_tail] = hptr;

For Chapter 5, the profiler reports check node as the most opportune function to

exploit redundant computation. We make several fields in the s rr node data structure

as data triggers. This implementation triggers the DTT model to perform the computa-

tion in the check node function only when one of the fields in the s rr node changes.

Then, the DTT model can skip the call to check node in the check rr graph if the

support thread function already completed the computation.

We demonstrate our modification using the following C code.

Data trigger declaration

struct s_rr_node {

short xlow; #trigger check_node_thread();

short xhigh; #trigger check_node_thread();

short ylow; #trigger check_node_thread();

short yhigh; #trigger check_node_thread();

short ptc_num; #trigger check_node_thread();

short num_edges; #trigger check_node_thread();
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t_rr_type type;

int *edges; #trigger check_node_thread();

short *switches; #trigger check_node_thread();

float R; float C;

};

The support thread function

#DTT checkNode

void *check_node_thread (s_rr_node *x) {

int inode = (int)(x-&rr_node[0]);

enum e_route_type route_type = router_opts_thread->route_type;

int xlow, ylow, xhigh, yhigh, ptc_num, capacity;

t_rr_type rr_type;

int nodes_per_chan, tracks_per_node, num_edges;

rr_type = rr_node[inode].type;

xlow = rr_node[inode].xlow;

xhigh = rr_node[inode].xhigh;

ylow = rr_node[inode].ylow;

yhigh = rr_node[inode].yhigh;

ptc_num = rr_node[inode].ptc_num;

capacity = rr_node_cost_inf[inode].capacity;

if (xlow > xhigh || ylow > yhigh) {

printf ("Error in check_node:

rr endpoints are (%d,%d) and (%d,%d).\n",

xlow, ylow, xhigh, yhigh);

exit (1);

}

if (xlow < 0 || xhigh > nx+1 || ylow < 0 || yhigh > ny+1) {

printf ("Error in check_node:

rr endpoints, (%d,%d) and (%d,%d), \n"

"are out of range.\n", xlow, ylow, xhigh, yhigh);

exit (1);

}

if (ptc_num < 0) {

printf ("Error in check_node.

Inode %d (type %d) had a ptc_num\n"

"of %d.\n", inode, rr_type, ptc_num);

exit (1);
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}

switch (rr_type) {

case SOURCE: case SINK: case IPIN: case OPIN:

if (xlow != xhigh || ylow != yhigh) {

printf ("Error in check_node: Node

%d (type %d) has endpoints of\n"

"(%d,%d) and (%d,%d)\n",

inode, rr_type, xlow, ylow, xhigh, yhigh);

exit (1);

}

if (clb[xlow][ylow].type != CLB

&& clb[xlow][ylow].type != IO) {

printf ("Error in check_node: Node

%d (type %d) is at an illegal\n"

" clb location (%d, %d).\n",

inode, rr_type, xlow, ylow);

exit (1);

}

break;

case CHANX:

if (xlow < 1 || xhigh > nx || yhigh > ny || yhigh != ylow) {

printf("Error in check_node: CHANX out of range.\n");

printf("Endpoints: (%d,%d) and (%d,%d)\n",

xlow, ylow, xhigh, yhigh);

exit(1);

}

if (route_type == GLOBAL && xlow != xhigh) {

printf ("Error in check_node: node %d

spans multiple channel segments\n"

"which is not allowed with global routing.\n",

inode);

exit (1);

}

break;

case CHANY:

if (xhigh > nx || ylow < 1 || yhigh > ny || xlow != xhigh) {

printf("Error in check_node: CHANY out of range.\n");

printf("Endpoints: (%d,%d) and (%d,%d)\n",

xlow, ylow, xhigh, yhigh);

exit(1);
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}

if (route_type == GLOBAL && ylow != yhigh) {

printf ("Error in check_node: node %d spans multiple

channel segments\n" "which is not

allowed with global routing.\n", inode);

exit (1);

}

break;

default:

printf("Error in check_node: Unexpected segment

type: %d\n", rr_type);

exit(1);

}

switch (rr_type) {

case SOURCE:

if (clb[xlow][ylow].type == CLB) {

if (ptc_num >= num_class ||

class_inf[ptc_num].type != DRIVER) {

printf ("Error in check_node.

Inode %d (type %d) had a ptc_num\n"

"of %d.\n", inode, rr_type, ptc_num);

exit (1);

}

if (class_inf[ptc_num].num_pins != capacity) {

printf ("Error in check_node. Inode %d (type %d)

had a capacity\n"

"of %d.\n", inode, rr_type, capacity);

exit (1);

}

}

else { /* IO block */

if (ptc_num >= io_rat) {

printf ("Error in check_node. Inode %d (type %d)

had a ptc_num\n"

"of %d.\n", inode, rr_type, ptc_num);

exit (1);

}

if (capacity != 1) {

printf ("Error in check_node: Inode %d (type %d)

had a capacity\n"

"of %d.\n", inode, rr_type, capacity);
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exit (1);

}

}

break;

case SINK:

if (clb[xlow][ylow].type == CLB) {

if (ptc_num >= num_class ||

class_inf[ptc_num].type != RECEIVER) {

printf ("Error in check_node. Inode %d (type %d)

had a ptc_num\n"

"of %d.\n", inode, rr_type, ptc_num);

exit (1);

}

if (class_inf[ptc_num].num_pins != capacity) {

printf ("Error in check_node. Inode %d (type %d)

has a capacity\n"

"of %d.\n", inode, rr_type, capacity);

exit (1);

}

}

else { /* IO block */

if (ptc_num >= io_rat) {

printf ("Error in check_node. Inode %d (type %d)

had a ptc_num\n"

"of %d.\n", inode, rr_type, ptc_num);

exit (1);

}

if (capacity != 1) {

printf ("Error in check_node: Inode %d (type %d)

has a capacity\n"

"of %d.\n", inode, rr_type, capacity);

exit (1);

}

}

break;

case OPIN:

if (clb[xlow][ylow].type == CLB) {

if (ptc_num >= pins_per_clb ||

class_inf[clb_pin_class[ptc_num]].type

!= DRIVER) {

printf ("Error in check_node. Inode %d (type %d)

had a ptc_num\n"

"of %d.\n", inode, rr_type, ptc_num);
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exit (1);

}

}

else { /* IO block */

if (ptc_num >= io_rat) {

printf ("Error in check_node. Inode %d (type %d)

had a ptc_num\n"

"of %d.\n", inode, rr_type, ptc_num);

exit (1);

}

}

if (capacity != 1) {

printf ("Error in check_node: Inode %d (type %d)

has a capacity\n"

"of %d.\n", inode, rr_type, capacity);

exit (1);

}

break;

case IPIN:

if (clb[xlow][ylow].type == CLB) {

if (ptc_num >= pins_per_clb ||

class_inf[clb_pin_class[ptc_num]].type

!= RECEIVER) {

printf ("Error in check_node. Inode %d (type %d)

had a ptc_num\n"

"of %d.\n", inode, rr_type, ptc_num);

exit (1);

}

}

else { /* IO block */

if (ptc_num >= io_rat) {

printf ("Error in check_node. Inode %d (type %d)

had a ptc_num\n"

"of %d.\n", inode, rr_type, ptc_num);

exit (1);

}

}

if (capacity != 1) {

printf ("Error in check_node: Inode %d (type %d)

has a capacity\n"

"of %d.\n", inode, rr_type, capacity);

exit (1);
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}

break;

case CHANX:

if (route_type == DETAILED) {

nodes_per_chan = chan_width_x[ylow];

tracks_per_node = 1;

}

else {

nodes_per_chan = 1;

tracks_per_node = chan_width_x[ylow];

}

if (ptc_num >= nodes_per_chan) {

printf ("Error in check_node: Inode %d (type %d)

has a ptc_num\n"

"of %d.\n", inode, rr_type, ptc_num);

exit (1);

}

if (capacity != tracks_per_node) {

printf ("Error in check_node: Inode %d (type %d)

has a capacity\n"

"of %d.\n", inode, rr_type, capacity);

exit (1);

}

break;

case CHANY:

if (route_type == DETAILED) {

nodes_per_chan = chan_width_y[xlow];

tracks_per_node = 1;

}

else {

nodes_per_chan = 1;

tracks_per_node = chan_width_y[xlow];

}

if (ptc_num >= nodes_per_chan) {

printf ("Error in check_node: Inode %d (type %d)

has a ptc_num\n"

"of %d.\n", inode, rr_type, ptc_num);

exit (1);

}
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if (capacity != tracks_per_node) {

printf ("Error in check_node: Inode %d (type %d)

has a capacity\n"

"of %d.\n", inode, rr_type, capacity);

exit (1);

}

break;

default:

printf("Error in check_node: Unexpected segment type:

%d\n", rr_type);

exit(1);

}

num_edges = rr_node[inode].num_edges;

if (rr_type != SINK) {

if (num_edges <= 0) {

printf ("Error in check_node: node %d has no edges.

\n", inode);

exit (1);

}

}

else { /* SINK -- remove this check if feedthroughs allowed */

if (num_edges != 0) {

printf ("Error in check_rr_graph: node %d is a sink,

but has "

"%d edges.\n", inode, num_edges);

exit (1);

}

}

}

The skippable region

for (inode=0;inode<num_rr_nodes;inode++) {

num_edges = rr_node[inode].num_edges;

#block checkNode

check_node (inode, route_type);

#end_block

rr_type = rr_node[inode].type;

C = rr_node[inode].C;
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R = rr_node[inode].R;

A.16 blackscholes

Black-scholes is a financial application that evaluates stock options using the

Black-Scholes Partial Differential Equation. The bs thread function in this bench-

mark contains a for-loop that invokes BlkSchlsEqEuroNoDiv 100 times (defined by

NUM RUNS). Our profiling tool indicates that the inputs remain the same between iter-

ations. Therefore, we declare all the six array inputs of the BlkSchlsEqEuroNoDiv

function as data triggers. Each different array would trigger a different support thread

function. For example, any change to the sptprice array triggers the

bsInnerLoopDTTSptPrice function that calls the BlkSchlsEqEuroNoDiv function

and updates the prices array that stores the computation result. After all support thread

functions finish, the main thread does not need to call BlkSchlsEqEuroNoDiv function.

Therefore, we skip the computation of the BlkSchlsEqEuroNoDiv function by making

the statement in bs thread function as the skippable region.

We list the code snippets here.

Data trigger declaration

// Definition of arrays

int otype[10000000]; #trigger bsInnerLoopDTTOtype();

fptype sptprice[10000000]; #trigger bsInnerLoopDTTSptPrice();

fptype strike[10000000]; #trigger bsInnerLoopDTTStrike();

fptype rate[10000000]; #trigger bsInnerLoopDTTRate();

fptype volatility[10000000];#trigger bsInnerLoopDTTVolatility();

fptype otime[10000000]; #trigger bsInnerLoopDTTOtime();

The support thread function

#DTT bsThreadInnerLoop

void bsInnerLoopDTTSptPrice(fptype *dataPtr) {
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// Get the index value

int i = dataPtr - &sptprice[0];

fptype price;

price = BlkSchlsEqEuroNoDiv( sptprice[i], strike[i],

rate[i], volatility[i], otime[i],

otype[i], 0);

prices[i] = price;

}

The skippable region

int bs_thread(void *tid_ptr) {

int i, j;

fptype price;

fptype priceDelta;

int start = tid * (numOptions / nThreads);

int end = start + (numOptions / nThreads);

for (j=0; j<NUM_RUNS; j++) {

#block bsThreadInnerLoop

for (i=0; i<numOptions; i++) {

price = BlkSchlsEqEuroNoDiv( sptprice[i], strike[i],

rate[i],volatility[i],

otime[i],

otype[i], 0);

prices[i] = price;

}

#end_block

}

return 0;

}

A.17 bodytrack

Bodytrack is a computer vision application that tracks a person within a series of

bitmap files. For each camera image, this application uses Monte Carlo re-sampling

to choose particles. Because of the randomness in the algorithm, the particles fre-

quently change and the ratio of redundant computation is not high. Our DTT imple-

mentation for this benchmark targets using the support thread to calculate the Estimate
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method as soon as a particle filter object gets updated. We added a field updated in

the ParticleFilter class. This variable is incremented when the Update method fin-

ishes updating the ParticleFilter. If support thread function events complete, the

loop in the main function does not need to call the Estimate function again, and our

implementation marks that function call as the skippable region.

The following code sections contain the data trigger declaration, the modified

Update function, the support thread function, and the skippable region.

Data trigger declaration

template<class T>

class ParticleFilter{

public:

//Types

typedef float fpType;

typedef std::vector<fpType> Vectorf;

std::vector<Vectorf > mParticles, mNewParticles;

//lists of particles

Vectorf mWeights, mCdf;

//particle weights, cumulative distribution

int updated; #trigger Estimate_thread();

protected:

//variables

T *mModel;

The modified Update function

bool ParticleFilter<T>::Update(fpType timeval)

//weights have already been com

{

if(!mInitialized)

//check for proper initializati

{ std::cout << "Update Error : Particles not initialized" <<

std::endl;

return false;

}

if(!mModel->GetObservation(timeval))

{ std::cout << "Update Error : Model observation

failed for time : "
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<< timeval << std::endl;

return false;

}

for(int k = (int)mModel->StdDevs().size() - 1; k >= 0 ; k--)

//loop over all annealing steps

{ CalcCDF(mWeights, mCdf);

//Monte Carlo re-sampling

Resample(mCdf, mBins, mSamples, mNParticles);

bool minValid = false;

while(!minValid)

{ GenerateNewParticles(k);

CalcWeights(mNewParticles);

//calculate particle weights an

minValid = (int)mNewParticles.size() >= mMinParticles;

//repeat if not enough valid pa

if(!minValid)

std::cout << "Not enough valid particles -

Resampling!!!" << std::endl;

}

mParticles = mNewParticles;

//save new particle set

}

updated++;

}

The support thread function

#DTT Estimate

template<class T>

void ParticleFilter<T>::Estimate_thread(void *x)

{

estimate.assign(mParticles[0].size(), 0);

for(uint i = 0; i < mParticles.size(); i++)

for(uint j = 0; j < estimate.size(); j++)

estimate[j] += mParticles[i][j] * mWeights[i];

}

The skippable region

for(int i = 0; i < frames; i++)

//process each set

{ cout << "Processing frame " << i << endl;

if(!pf.Update((float)i))
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//Run particle filt

{ cout << "Error loading observation data" << endl;

workers.JoinAll();

return 0;

}

#block Estimate

pf.Estimate(estimate);

#end_block

//get avera

WritePose(outputFileAvg, estimate);

if(OutputBMP)

pf.Model().OutputBMP(estimate, i);

//save output bitma

}

A.18 canneal

Canneal implements the simulated annealing algorithm to minimize the cost of

circuit routing. In the critical Run method, this application randomly picks one new

node, calculates the cost of the new node and the old node, and then swaps the two

nodes if that reduces the cost. However, if there is no swapping, evaluating the cost of

the old node is redundant. Therefore, our implementation focuses on avoiding redundant

computation when there is no swapping.

To achieve this goal, we implement a new method, the

routing cost given loc p method, and modified the swap cost method in the

netlist elem class to get the cost of an individual node. Since Run only picks one

node in each iteration, we only update the cost when the method picks a new

netlist elem b and make this pointer a data trigger. When the DTT model computes

the swap cost, the later code can reuse the computed cost fields of the node without

recalculating them.

We list the data trigger declaration, the modified routing cost given loc p

method, the modified swap cost method, the modified Run method, the support thread
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function, and the skippable region in the following C++ code.

Data trigger declaration

netlist_elem* b; #trigger routing_cost_given_loc_thread();

The routing cost given loc p method

routing_cost_t netlist_elem::routing_cost_given_loc_p

(location_t* loc)

{

routing_cost_t total_cost=0;

for (int i = 0; i< fanin.size(); ++i){

location_t* fanin_loc = fanin[i]->present_loc.Get();

total_cost += fabs(loc->x - fanin_loc->x);

total_cost += fabs(loc->y - fanin_loc->y);

}

for (int i = 0; i< fanout.size(); ++i){

location_t* fanout_loc = fanout[i]->present_loc.Get();

total_cost += fabs(loc->x - fanout_loc->x);

total_cost += fabs(loc->y - fanout_loc->y);

}

return total_cost;

}

The modified swap cost method

routing_cost_t

netlist_elem::swap_cost(location_t* old_loc, location_t* new_loc)

{

routing_cost_t no_swap = 0;

routing_cost_t yes_swap = 0;

for (int i = 0; i< fanin.size(); ++i){

location_t* fanin_loc = fanin[i]->present_loc.Get();

no_swap += fabs(old_loc->x - fanin_loc->x);

no_swap += fabs(old_loc->y - fanin_loc->y);

yes_swap += fabs(new_loc->x - fanin_loc->x);

yes_swap += fabs(new_loc->y - fanin_loc->y);

}
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for (int i = 0; i< fanout.size(); ++i){

location_t* fanout_loc = fanout[i]->present_loc.Get();

no_swap += fabs(old_loc->x - fanout_loc->x);

no_swap += fabs(old_loc->y - fanout_loc->y);

yes_swap += fabs(new_loc->x - fanout_loc->x);

yes_swap += fabs(new_loc->y - fanout_loc->y);

}

new_cost = yes_swap;

old_cost = no_swap;

return yes_swap - no_swap;

}

The modified code in the Run method

if (is_good_move == move_decision_accepted_bad){

accepted_bad_moves++;

_netlist->swap_locations(a,b);

b->old_cost = b->new_cost;

} else if (is_good_move == move_decision_accepted_good){

accepted_good_moves++;

_netlist->swap_locations(a,b);

b->old_cost = b->new_cost;

} else if (is_good_move == move_decision_rejected){

//no need to do anything for a rejected move

}

The support thread function

void routing_cost_given_loc_thread(void *x)

{

location_t* loc = last_b->present_loc.Get();

last_b->swap_cost(loc, last_a->present_loc.Get());

}

The skippable region

routing_cost_t annealer_thread::

calculate_delta_routing_cost(netlist_elem* a, netlist_elem* b)

{

location_t* a_loc = a->present_loc.Get();
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location_t* b_loc = b->present_loc.Get();

routing_cost_t delta_cost = 0;

a->new_cost = a->routing_cost_given_loc_p(b_loc);

delta_cost += a->new_cost;

#block deltaCost

delta_cost -= a->routing_cost_given_loc_p(a_loc);

delta_cost += b->swap_cost(b_loc, a_loc);

return delta_cost;

#end_block

delta_cost -= a->old_cost;

delta_cost -= b->old_cost;

delta_cost += b->new_cost;

return delta_cost;

}

A.19 facesim

Facesim is a physics simulation application that models the human face and a

time sequence of muscle activation. In the initialization phase of each time step, this

application resizes several array structures using the value of extended elements. If

the value of extended elements remains the same, the process of resizing arrays is

redundant. Therefore, we define the m field in the LIST ARRAYS class, where the value

of extended elements comes from, as the data trigger. The data trigger initiates the

resizeArraysThread support thread function and allows us to skip the code in the

Update Position Based State Parallel when possible.

We show our modification with the following code sections.

Data trigger declaration

class LIST_ARRAYS

{

public:

typedef T ELEMENT;

ARRAYS<T> array;
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int m; #trigger resizeArrayThread();

The support thread function

#DTT resizeArrays

void resizeArraysThread(int *m) {

int extended_elements=m;

threading_auxiliary_structures->

extended_U->Resize_Array(extended_elements);

threading_auxiliary_structures->

extended_De_inverse_hat->Resize_Array(extended_elements);

threading_auxiliary_structures->

extended_Fe_hat->Resize_Array(extended_elements);

threading_auxiliary_structures->

extended_dP_dFe->Resize_Array(extended_elements);

threading_auxiliary_structures->

extended_V->Resize_Array(extended_elements);

return;

}

The skippable region

Update_Position_Based_State_Parallel()

{

THREAD_POOL& pool=*THREAD_POOL::Singleton();

#ifdef USE_REDUCTION_ROUTINES

THREAD_DIVISION_PARAMETERS<T>&

parameters=*THREAD_DIVISION_PARAMETERS<T>::Singleton();

#endif

LOG::Time("UPBS (FEM) - Initialize");

#ifndef USE_REDUCTION_ROUTINES

int

extended_elements=

threading_auxiliary_structures->extended_tetrahedrons->m;

#block resizeArrays

threading_auxiliary_structures->

extended_U->Resize_Array(extended_elements);

threading_auxiliary_structures->

extended_De_inverse_hat->Resize_Array(extended_elements);

threading_auxiliary_structures->

extended_Fe_hat->Resize_Array(extended_elements);
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threading_auxiliary_structures->

extended_dP_dFe->Resize_Array(extended_elements);

threading_auxiliary_structures->

extended_V->Resize_Array(extended_elements);

#end_block

node_stiffness->

Resize_Array

(strain_measure.tetrahedralized_volume.particles.number);

threading_auxiliary_structures->

extended_edge_stiffness->

Resize_Array(threading_auxiliary_structures->extended_edges->m);

A.20 fluidanimate

Fluidanimate is a physics simulation application that generates data from sur-

face rendering for computer animations. The algorithm in this application contains

four steps when processing each frame – RebuildGrid, ComputeForces, ProcessColli-

sions, AdvanceParticles. Conventional parallelism partitions the computation within

each step and places barriers between steps. However, we found that the computation

in the ProcessCollisions function can start earlier – as soon as the required data is

ready.

For our DTT implementation in this application, we modify the Cell data struc-

ture by adding an update flag. The flag is incremented every time the ComputeForces

function updates the content of an element in the Cell array. By declaring the update

field as the data trigger, the increment of the update flag causes the execution of the

ProcessCollisionsThread function. Therefore, the DTT model starts this computa-

tion earlier than conventional parallelism but also avoids the synchronization overhead

between these two steps.

The following code sections illustrate our changes.



153

Data trigger declaration

struct Cell

{

Vec3 p[16];

Vec3 hv[16];

Vec3 v[16];

Vec3 a[16];

float density[16];

int update; #trigger ProcessCollisionsThread();

};

The support thread function

#DTT ProcessCollisions

void ProcessCollisionsThread(Cell *x)

{

const float parSize = 0.0002f;

const float epsilon = 1e-10f;

const float stiffness = 30000.f;

const float damping = 128.f;

int i = x - &cells[0];

{

Cell &cell = cells[i];

int np = cnumPars[i];

for(int j = 0; j < np; ++j)

{

Vec3 pos = cell.p[j] + cell.hv[j] * timeStep;

float diff = parSize - (pos.x - domainMin.x);

if(diff > epsilon)

cell.a[j].x += stiffness*diff - damping*cell.v[j].x;

diff = parSize - (domainMax.x - pos.x);

if(diff > epsilon)

cell.a[j].x -= stiffness*diff + damping*cell.v[j].x;

diff = parSize - (pos.y - domainMin.y);

if(diff > epsilon)

cell.a[j].y += stiffness*diff - damping*cell.v[j].y;

diff = parSize - (domainMax.y - pos.y);

if(diff > epsilon)

cell.a[j].y -= stiffness*diff + damping*cell.v[j].y;
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diff = parSize - (pos.z - domainMin.z);

if(diff > epsilon)

cell.a[j].z += stiffness*diff - damping*cell.v[j].z;

diff = parSize - (domainMax.z - pos.z);

if(diff > epsilon)

cell.a[j].z -= stiffness*diff + damping*cell.v[j].z;

}

}

}

The skippable region

void AdvanceFrame()

{

RebuildGrid();

ComputeForces();

#block ProcessCollisions

ProcessCollisions();

#end_block

AdvanceParticles();

}

A.21 Swaptions

Swaptions is a financial benchmark that uses the Heath-Jarrow-Morton frame-

work to price a portfolio of stock options. The benchmark spends most of its time in the

worker method that walks through each element in the swaptions array and calls the

HJM Swaption Blocking using each of them. The HJM Swaption Blocking function

is an idempotent function because this function does not overwrite any of the inputs.

In addition, our profiler also found that the inputs for each call are the same in this

benchmark. Therefore, we create several global variables that store the inputs of the

previous invocation of the HJM Swaption Blocking function. We only trigger the

HJM Swaption Blocking thread support thread function that calls the

HJM Swaption Blocking function when the inputs change. We declare those global
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variables as data triggers and mark the original code that calls the

HJM Swaption Blocking function as the skippable region since the

HJM Swaption Blocking thread support thread function will replace the computa-

tion.

The following code sections contain our modifications.

Data trigger declaration

FTYPE dStrike_thread; #trigger HJM_Swaption_Blocking_thread();

FTYPE dCompounding_thread;

#trigger HJM_Swaption_Blocking_thread();

FTYPE dMaturity_thread; #trigger HJM_Swaption_Blocking_thread();

FTYPE dTenor_thread; #trigger HJM_Swaption_Blocking_thread();

FTYPE dPaymentInterval_thread;

#trigger HJM_Swaption_Blocking_thread();

int iN_thread; #trigger HJM_Swaption_Blocking_thread();

FTYPE dYears_thread; #trigger HJM_Swaption_Blocking_thread();

int iFactors_thread; #trigger HJM_Swaption_Blocking_thread();

FTYPE *pdYield_thread; #trigger HJM_Swaption_Blocking_thread();

FTYPE **ppdFactors_thread;

#trigger HJM_Swaption_Blocking_thread();

The support thread function

#DTT HJM_Swaption_Blocking

void HJM_Swaption_Blocking_thread(void *x)

{

HJM_Swaption_Blocking(pdSwaptionPrice, dStrike_thread,

dCompounding_thread, dMaturity_thread,

dTenor_thread, dPaymentInterval_thread,

iN_thread, iFactors_thread,

dYears_thread,

pdYield_thread, ppdFactors_thread,

100, NUM_TRIALS, BLOCK_SIZE, 0);

}

The skippable region

void * worker(void *arg){
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int tid = *((int *)arg);

int chunksize = nSwaptions/nThreads;

int beg = tid*chunksize;

int end = (tid+1)*chunksize;

if(tid == nThreads -1 )

end = nSwaptions;

for(int i=beg; i < end; i++) {

Id_thread = swaptions[i].Id;

dStrike_thread = swaptions[i].dStrike;

dCompounding_thread = swaptions[i].dCompounding;

dMaturity_thread = swaptions[i].dMaturity;

dTenor_thread = swaptions[i].dTenor;

old_value.d = dPaymentInterval_thread;

dPaymentInterval_thread = swaptions[i].dPaymentInterval;

iN_thread = swaptions[i].iN;

dYears_thread = swaptions[i].dYears;

iFactors_thread = swaptions[i].iFactors;

pdYield_thread = swaptions[i].pdYield;

ppdFactors_thread = swaptions[i].ppdFactors;

#block HJM_Swaption_Blocking

int iSuccess = HJM_Swaption_Blocking

(pdSwaptionPrice, swaptions[i].dStrike,

swaptions[i].dCompounding,

swaptions[i].dMaturity,

swaptions[i].dTenor,

swaptions[i].dPaymentInterval,

swaptions[i].iN, swaptions[i].iFactors,

swaptions[i].dYears,

swaptions[i].pdYield, swaptions[i].ppdFactors,

100, NUM_TRIALS, BLOCK_SIZE, 0);

assert(iSuccess == 1);

#end_block

swaptions[i].dSimSwaptionMeanPrice = pdSwaptionPrice[0];

swaptions[i].dSimSwaptionStdError = pdSwaptionPrice[1];

}

return NULL;

}

A.22 vips

The vips benchmark is derived from the VASARI Image Processing System. It

transforms the image through 18 different pipeline stages. Our profiler suggests that
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one of the pipeline stages that uses the im lintra vec function with IMAGE t[12] as

the input creates redundant computation on vectors with zeros. We also found that the

computation of this stage can be triggered in parallel earlier if we rearrange the pipeline

somewhat to generate the value of t[12] earlier.

In our DTT version of the code, we declare an IMAGE variable t12 to replace

the t[12] and use this variable as the data trigger. The content in this variable can be

produced after we know the value of t[4]. So we move the generation of t12 right after

the pipeline stage that generates t[4]. Once the content in t12 changes, the DTT model

can immediately execute the support thread function – im lintra vec zero thread or

avoid redundant computation if t12 remains the same. The

im lintra vec zero thread function is also a specialized version of the

im lintra vec function given that one of the input images contains only zeros to fur-

ther reduce the amount of computation.

We show our DTT implementation as the following.

Data trigger declaration

IMAGE *t12; #trigger im_lintra_vec_zero_thread();

The support thread function

#DTT im_lintra_vec_zero_thread

int

im_lintra_vec_zero_thread( IMAGE *in)

{

LintraInfo *inf;

int i;

double *b = white;

double *a = zero;

IMAGE *out = t[13];

/* Check args.

*/

if( in->Coding != IM_CODING_NONE ) {
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im_error( "im_lintra_vec", _( "not uncoded" ) );

return( -1 );

}

if( n != in->Bands && (n != 1 && in->Bands != 1) ) {

im_error( "im_lintra_vec",

_( "not 1 or %d elements in vector" ), in->Bands );

return( -1 );

}

/* Prepare output header.

*/

if( im_cp_desc( out, in ) )

return( -1 );

if( im_isint( in ) ) {

out->Bbits = IM_BBITS_FLOAT;

out->BandFmt = IM_BANDFMT_FLOAT;

}

if( in->Bands == 1 )

out->Bands = n;

/* Make space for a little buffer.

*/

if( !(inf = IM_NEW( out, LintraInfo )) ||

!(inf->a = IM_ARRAY( out, n, double )) ||

!(inf->b = IM_ARRAY( out, n, double )) )

return( -1 );

inf->n = n;

for( i = 0; i < n; i++ ) {

inf->a[i] = 0;

inf->b[i] = white[i];

}

/* Generate!

*/

if( n == 1 ) {

if( im_wrapone( in, out,

(im_wrapone_fn) lintra1_gen_zero, in, inf ) )

return( -1 );

}

else if( in->Bands == 1 ) {

if( im_wrapone( in, out,

(im_wrapone_fn) lintranv_gen_zero, in, inf ) )

return( -1 );

}

else {
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if( im_wrapone( in, out,

(im_wrapone_fn) lintran_gen_zero, in, inf ) )

return( -1 );

return( 0 );

}

The skippable region

im_extract_area( t[0], t[1],

100, 100, t[0]->Xsize - 200, t[0]->Ysize - 200 );

im_affine( t[1], t[2],

0.9, 0, 0, 0.9, 0, 0,

0, 0, t[1]->Xsize * 0.9, t[1]->Ysize * 0.9 );

im_extract_band( t[2], t[3], 0 ) ;

im_moreconst( t[3], t[4], 99 ) ;

im_black( t12, t[4]->Xsize, t[4]->Ysize, 3 );

#block im_lintra_vec_zero

im_lintra_vec( 3, zero, t12 , white, t[13] );

#end_block

read(pfm_fd[0], values, sizeof(values));

totalDTTCycle +=(values[0]-PFM_DTT_start);

return(

im_lintra_vec_zero_1( 3, darken, t[2], zero, t[5] ) ||

im_Lab2XYZ( t[5], t[6] ) ||

im_recomb( t[6], t[7], d652d50 ) ||

im_lintra_vec_zero_1( 3, whitepoint, t[7], zero, t[8] ) ||

im_lintra( 1.5, t[8], 0.0, t[9] ) ||

im_XYZ2Lab( t[9], t[10] ) ||

im_lintra_vec( 3, one, t[10], shadow, t[11] ) ||

im_ifthenelse( t[4], t[13], t[11], t[14] ) ||

im_Lab2LabQ( t[14], t[15] ) ||

im_sharpen( t[15], out, 11, 2.5, 40, 20, 0.5, 1.5 )

);

A.23 x264

X264 is a video codec application. Our profiling tool found that the application

can generate redundant computation in the process of setting up a frame context if the

i type field of the h->fenc remains the same. Therefore, our implementation stores the



160

previously used i type field in the i type current frame. We update this variable

when the program moves to the next frame. We declare this variable as a data trigger

and only trigger the computation depending on the i type field if necessary.

We summarize our code modifications in the following code snippets.

Data trigger declaration

int i_type_DTT; #trigger x264_slice_init_thread();

The support thread function

#DTT frameInit

void *x264_slice_init_thread(void *x)

{

int i_nal_type;

int i_nal_ref_idc;

int i_global_qp;

if( i_type_DTT == X264_TYPE_IDR )

{

/* reset ref pictures */

x264_reference_reset( h );

i_nal_type = NAL_SLICE_IDR;

i_nal_ref_idc = NAL_PRIORITY_HIGHEST;

h->sh.i_type = SLICE_TYPE_I;

}

else if( i_type_DTT == X264_TYPE_I )

{

i_nal_type = NAL_SLICE;

i_nal_ref_idc = NAL_PRIORITY_HIGH;

h->sh.i_type = SLICE_TYPE_I;

}

else if( i_type_DTT == X264_TYPE_P )

{

i_nal_type = NAL_SLICE;

i_nal_ref_idc = NAL_PRIORITY_HIGH;

h->sh.i_type = SLICE_TYPE_P;

}

else if( i_type_DTT == X264_TYPE_BREF )

{
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i_nal_type = NAL_SLICE;

i_nal_ref_idc = NAL_PRIORITY_HIGH;

h->sh.i_type = SLICE_TYPE_B;

}

else /* B frame */

{

i_nal_type = NAL_SLICE;

i_nal_ref_idc = NAL_PRIORITY_DISPOSABLE;

h->sh.i_type = SLICE_TYPE_B;

}

The skippable region in the x264 encoder encode function

/* 4: get picture to encode */

h->fenc = x264_frame_shift( h->frames.current );

if( h->fenc == NULL )

{

/* waiting for filling bframe buffer */

pic_out->i_type = X264_TYPE_AUTO;

return 0;

}

i_type_DTT = h->fenc->i_type;

do_encode:

#block frameInit

if( h->fenc->i_type == X264_TYPE_IDR )

{

h->frames.i_last_idr = h->fenc->i_frame;

}

#block

/* 5: Init data dependent of frame type */

if( h->fenc->i_type == X264_TYPE_IDR )

{

/* reset ref pictures */

x264_reference_reset( h );

i_nal_type = NAL_SLICE_IDR;

i_nal_ref_idc = NAL_PRIORITY_HIGHEST;

h->sh.i_type = SLICE_TYPE_I;

}

else if( h->fenc->i_type == X264_TYPE_I )

{
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i_nal_type = NAL_SLICE;

i_nal_ref_idc = NAL_PRIORITY_HIGH;

h->sh.i_type = SLICE_TYPE_I;

}

else if( h->fenc->i_type == X264_TYPE_P )

{

i_nal_type = NAL_SLICE;

i_nal_ref_idc = NAL_PRIORITY_HIGH;

h->sh.i_type = SLICE_TYPE_P;

}

else if( h->fenc->i_type == X264_TYPE_BREF )

{

i_nal_type = NAL_SLICE;

i_nal_ref_idc = NAL_PRIORITY_HIGH;

h->sh.i_type = SLICE_TYPE_B;

}

else /* B frame */

{

i_nal_type = NAL_SLICE;

i_nal_ref_idc = NAL_PRIORITY_DISPOSABLE;

h->sh.i_type = SLICE_TYPE_B;

}

#end_block

h->fdec->i_poc =

h->fenc->i_poc = 2 *

(h->fenc->i_frame - h->frames.i_last_idr);

h->fdec->i_type = h->fenc->i_type;

h->fdec->i_frame = h->fenc->i_frame;

h->fenc->b_kept_as_ref =

h->fdec->b_kept_as_ref = i_nal_ref_idc !=

NAL_PRIORITY_DISPOSABLE && h->param.i_keyint_max > 1;
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