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Abstract

Researchers and clinicians often rely on molecular assays like PCR to identify and monitor

viral infections, instead of the resource-prohibitive gold standard of viral culture. However, it

remains unclear when (if ever) PCR measurements of viral load are reliable indicators of

replicating or infectious virus. The recent popularity of PCR protocols targeting subgenomic

RNA for SARS-CoV-2 has caused further confusion, as the relationships between subge-

nomic RNA and standard total RNA assays are incompletely characterized and opinions dif-

fer on which RNA type better predicts culture outcomes. Here, we explore these issues by

comparing total RNA, subgenomic RNA, and viral culture results from 24 studies of SARS-

CoV-2 in non-human primates (including 2167 samples from 174 individuals) using custom-

developed Bayesian statistical models. On out-of-sample data, our best models predict sub-

genomic RNA positivity from total RNA data with 91% accuracy, and they predict culture

positivity with 85% accuracy. Further analyses of individual time series indicate that many

apparent prediction errors may arise from issues with assay sensitivity or sample process-

ing, suggesting true accuracy may be higher than these estimates. Total RNA and subge-

nomic RNA showed equivalent performance as predictors of culture positivity. Multiple

cofactors (including exposure conditions, host traits, and assay protocols) influence culture

predictions, yielding insights into biological and methodological sources of variation in assay

outcomes–and indicating that no single threshold value applies across study designs. We

also show that our model can accurately predict when an individual is no longer infectious,

illustrating the potential for future models trained on human data to guide clinical decisions

on case isolation. Our work shows that meta-analysis of in vivo data can overcome long-

standing challenges arising from limited sample sizes and can yield robust insights beyond

those attainable from individual studies. Our analytical pipeline offers a framework to

develop similar predictive tools in other virus-host systems, including models trained on

human data, which could support laboratory analyses, medical decisions, and public health

guidelines.
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Author summary

Although viral culture is the gold-standard method to detect replicating and infectious

virus, decisions in virology research, clinical diagnostics, and public health often must rely

on faster, cheaper PCR assays that detect viral genetic material. Substantial scientific effort

has focused on assessing whether PCR assays (and what kind of PCR assays) can accu-

rately predict culture outcomes, often finding conflicting results. In our study, we address

this long-standing question by developing a customized statistical approach to analyze a

large database of non-human primates experimentally infected with SARS-CoV-2. We

demonstrate that two common PCR protocols can predict viral culture results with simi-

larly high accuracy, as long as interpretations account for other factors such as exposure

conditions, demographics, and assay protocols. For example, we show that inoculated tis-

sues are more likely to be culture-positive (for a given PCR result) on the first day post

infection than all later days post infection or non-inoculated tissue on any day–a finding

that will clarify interpretation of results in experimental studies. Beyond these biological

findings, we also showed that our framework can accurately identify when an individual is

no longer infectious, showing the potential for future versions (trained on human data) to

offer an individualized approach to ending isolation. Overall, our work presents a stan-

dardized framework to quantitatively predict viral culture outcomes based on faster and

cheaper assays, which can be readily adapted to any other pathogen-host system with rele-

vant data. Our work also demonstrates the power of (Bayesian) meta-analysis, which will

be essential for the new era of data sharing in virology.

Introduction

Assays that detect and quantify the presence of viral genetic material are invaluable tools for

clinicians, virologists, and epidemiologists, since they are used to identify infections, monitor

individual infection trajectories, and track population-wide disease trends. The global reliance

on quantitative reverse transcription-polymerase chain reaction (RT-qPCR) during the

COVID-19 pandemic underscores its importance as a fast, sensitive, and relatively inexpensive

mainstay of research and public health. Yet positive RT-qPCR results do not necessarily indi-

cate active infection or viral shedding because these assays only target and quantify viral geno-

mic material [1,2]. Viral culture is the gold-standard method to detect infectious virus, but it is

slow, labor-intensive, and requires niche resources like permissive cells and biosafety facilities.

This precludes its use as a primary diagnostic in public health crises or even in standard clini-

cal and research practices where speed and accessibility matter. The development of alternate

methods to accurately characterize infectiousness is an active priority.

Seeking a culture-free method to identify replicating virus, many studies on SARS-CoV-2

developed alternative RT-qPCR assays based on coronavirus transcription mechanisms.

Within host cells, coronaviruses transcribe not only full-length genomic RNA (gRNA) but also

multiple subgenomic RNAs (sgRNA), which are a nested set of RNA segments that function as

mRNA for translation of some structural and accessory proteins [3]. Standard RT-qPCR pro-

tocols [4] typically amplify both gRNA and sgRNA simultaneously (henceforth termed a total

RNA assay and abbreviated to ‘totRNA’). Since sgRNAs are only transcribed after cellular

entry and are generally not packaged into mature virions [5], sgRNA-specific assays for

SARS-CoV-2 were developed as a proxy for replicating virus [6], and they have been used in

various contexts, including to distinguish between replicating virus and residual inoculum in

animal challenge experiments [7,8]. Many studies have also retrospectively analyzed clinical
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samples with sgRNA assays to gauge evidence of local replication [6,9–12], but reports of using

sgRNA for point-of-care clinical decisions are exceptionally rare [13].

Despite the popularity of sgRNA assays, their diagnostic utility relative to totRNA or gRNA

assays is debated. Based on evidence that sgRNA may degrade faster than gRNA [8], is not

found in virions [5], and correlates better with viral culture results [9,10,14,15], some consider

sgRNA a better indicator of recent replication and infectiousness [6,12]. Others dispute these

claims based on contrary findings, including evidence of similar degradation rates between

sgRNA and gRNA [16–18], the discovery of membrane-associated and nuclease-resistant

sgRNA [16], and analyses showing that sgRNA does not correlate better with culture outcomes

[19]. Studies finding that sgRNA quantities scale linearly with totRNA prompted further

claims that sgRNA quantification offers no additional value relative to totRNA [17–19], and

skeptics have argued that any improved correlation between sgRNA and culture likely reflects

the assay’s lower sensitivity rather than true biological signal [16–18]. Meanwhile, samples

with large quantities of totRNA but undetectable sgRNA or unculturable virus are widely evi-

dent in the literature, especially in animal challenge experiments, but they go largely unex-

plained [8,20]. These patterns highlight the complexity of the relationships among PCR assays

and viral culture, and they underscore that our understanding of their relative trajectories dur-

ing infection remains incomplete. Given their foundational importance for research and

potentially for healthcare, many studies have called for better methods to interpret these assays

and their interrelationships [21–24].

Data limitations are central to these unresolved debates on how well PCR predicts culture

and whether that varies by RNA type since the generalizability of observed patterns remains

unclear. Each study’s sample size is typically quite small (e.g., often less than 100 RNA-positive

samples), protocols differ between studies (e.g., PCR target genes, cell lines), patient demo-

graphics vary (e.g., hospitalized patients versus routine screening of university students), and

analytical methods differ (e.g., descriptive statistics, logistic or linear regressions). Further

unexplained variation may depend on patients’ age, sex, and comorbidities, which can affect

infection outcomes [25–28] but are often unaccounted for in assay comparisons. Exposure

route and dose are also unknown for clinical infections, and because the true infection time is

unknown, analyses of clinical data must rely on metrics like time since symptom onset

[6,17,22,29,30], for which individual heterogeneity and recall bias can introduce substantial

noise. Despite considerable effort to correlate RNA presence with culture outcomes, no study

yet has jointly evaluated these various cofactors to identify and quantify their effects, and thus

no method exists to integrate all of this information to quantitatively predict an individual’s

infectiousness on a per-sample basis. Instead, public health agencies have recommended isolat-

ing until obtaining two consecutive negative tests or until ten days after an individual’s first

positive test, where the latter was later revised to only five days depending on symptom severity

and other risk factors [31]. However, some individuals experience prolonged shedding, and

many individuals cease to be infectious well before testing PCR or antigen negative

[6,14,19,32]. An individualized, evidence-based method to ending isolation (i.e., a precision

medicine approach) could improve these practices substantially, by alleviating personal and

economic burdens imposed by unnecessarily long isolation while also reducing the number of

days individuals may still be infectious after release under static guidelines.

In this study, we compiled and jointly analyzed a database of non-human primate (NHP)

experiments, including 24 articles that reported per-sample measurements of at least two of

the following assays: totRNA, sgRNA, and viral culture. This meta-analytic design enabled

larger sample sizes and knowledge of variables that are unknowable with clinical data (i.e.,

exposure time, dose, and route), all for a gold-standard animal model of human disease [33].

We developed a Bayesian hurdle model to predict the results from these disparate assays and
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to evaluate the effects of NHP species, demographic characteristics (age, sex), exposure condi-

tions (dose and route), time since infection, and study protocols (sample type, target gene, cell

line, culture assay) on the relationships among assay outcomes. We first applied this method

to predict sgRNA results from totRNA results, which enabled us to reconstruct their relative

trajectories for all included individuals. Then, we tested the ability of both PCR assays to pre-

dict viral culture results. We characterized model performance on withheld data to evaluate

predictive accuracy and generalizability, and we analyzed apparent prediction errors in the

context of individual time courses to diagnose possible sources of these errors. Finally, we

assessed our model’s ability to identify when an individual is no longer infectious, which we

benchmarked against standard public health guidelines implemented for humans. With this

work, we aimed to: (i) uncover the fundamental relationships among SARS-CoV-2 PCR assays

and the presence of infectious virus, in the most human-relevant experimental model, (ii) pro-

vide a quantitative tool that can directly support the analysis, interpretation, and comparison

of SARS-CoV-2 studies conducted in NHPs, and (iii) offer a standardized framework that

future models can adapt to analyze relationships among disparate assays in other pathogen-

host systems.

Methods

Database compilation

Following many of the PRISMA guidelines for systematic literature searches [34], we con-

structed a comprehensive database of SARS-CoV-2 viral load and infectious virus data from

non-human primate experiments (S1 Fig). To be included, articles were required to: (i) experi-

mentally infect rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicu-
laris), or African green monkeys (Chlorocebus sabaeus) with SARS-CoV-2 (restricted to basal

strains, excluding those reported with the D614G mutation or other named variant), and (ii)

report quantitative or qualitative measurements of viral load (measured by RT-qPCR) or infec-

tious virus (measured by plaque assay or endpoint titration) from at least one biological speci-

men for at least one individual and at least one sample time post infection. Only individuals

receiving no or placebo treatments were recorded.

Of 86 studies meeting these criteria, we used the 24 articles that reported at least two of the

following assays: totRNA PCR, sgRNA PCR, or viral culture (S1 Table and S1 Fig) [7,8,20,35–

55]. Raw data were used when available (published or obtained via email correspondence);

otherwise, one author (CES) extracted data from published figures using the package ‘digitize’

[56] in R [57]. Additional details of data acquisition and standardization are described in the

S1 Methods.

Bayesian hurdle model framework

To compare disparate assays, we developed a Bayesian hurdle model with two components: (i)

a logistic regression that predicts whether assay Y will fall above the limit of detection (Y>LOD)

based on assay X, and (ii) a linear regression that describes the quantitative relationship

between X and Y when both are measurable (Yvalue) (S2 Fig). Each component may include

distinct sets of additional predictor variables (Ai and Bj, respectively). For the linear compo-

nent, we incorporated hierarchical errors such that the model estimates article-specific error

distributions (σa) based on distributions of population average errors (�s) and error standard

deviations (σsd). This captures potential differences in experimental noise among studies and

protocols. The basic form of this model is as follows, where δ and β are regression coefficients

associated with the predictors noted in the subscript:
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Logistic

Y>LOD � BernoulliðpÞ

logitðpÞ ¼ gþ dXX þ
X

i

dAi
Ai

Linear

Yvalue � Nðy; saÞ

y ¼ aþ bXX þ
X

j

bBj
Bj

sa � Nð �s;ssdÞ

We evaluated the predictive performance of multiple models with different combinations

of candidate predictors, and so the ∑δAiAi and ∑βBjBj terms varied for each considered model.

Categorical predictors with more than two classifications were treated as unordered index var-

iables, while binary predictors were treated as indicator variables. For instances of unknown

age or sex, we marginalized over all possibilities. Unless otherwise stated, we used a threshold

of 50% for the logistic components when classifying a sample as predicted positive or negative.

We first applied this framework to predict sgRNA from totRNA results (termed the ‘sgRNA

model’). All totRNA-negative samples are predicted to be sgRNA-negative, by definition. We

then predicted viral culture results from PCR data using a parallel framework (termed the ‘cul-

ture model’), with the following minor modifications: (i) we considered models depending on

totRNA, sgRNA, or both as predictors, and (ii) we restricted analyses to the logistic compo-

nent, given scarcity of quantitative culture results. The model predicts all RNA-negative sam-

ples are culture negative.

Candidate predictor selection and prior sensitivity analyses

All candidate predictors were included because of hypothesized effects on the relationships

among assay results, as summarized below. We chose informative priors to rule out implausi-

ble parameter values and to reflect existing knowledge on the expected direction of individual

effects (outlined in the S1 Methods), where appropriate. Notably, prior predictive simulations

confirmed variable but reasonable a priori expectations for these informative priors, with sub-

stantial improvement over non-informative priors that do not reflect existing knowledge (S13

Fig). Parameter estimates for the best models were qualitatively similar between informative

and non-informative priors (S13 Fig).

All considered models included totRNA, sgRNA, or both as the primary predictor(s). For

all models, we considered multiple demographic factors including age class, sex, and non-

human primate species, given hypothesized effects on SARS-CoV-2 infection [25–

27,43,58,59]. Because exposure conditions can affect initial virion and totRNA quantities, we

included inoculation dose (in log10 pfu) and day post infection as candidate predictors. For

day post infection, we distinguished between inoculated tissues sampled on the first day versus

all other days post infection, and non-inoculated tissues on any day post infection (see S11

Table for tissue-specific categorization). Because sample content and processing may vary

between non-invasive (e.g., swabs) and invasive samples (e.g., whole tissues obtained at nec-

ropsy), we considered sample type as a binary predictor.
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We also included predictors to account for assay-specific variation. For sgRNA models, we

derived a target gene predictor based on the expected number of transcripts available for

amplification during each PCR protocol, given that sgRNA abundance varies by gene [60] and

totRNA assays can amplify both genomic and subgenomic RNA. We distinguished between

totRNA assays that amplify most (‘totRNA-high’; targeting the N gene) or few sgRNA species

(‘totRNA-low’; E gene) and sgRNA assays that target highly expressed (‘sgRNA-high’; sgN) or

less expressed sgRNA species (‘sgRNA-low’; sgE, sg7), resulting in four possible protocol com-

binations. For culture models, we used the totRNA target gene as the predictor, except for the

models including only sgRNA as the primary predictor. Since viral infectivity varies among

cell lines [21,61,62] and culture sensitivity differs between endpoint dilution and plaque assays

[63], we included cell line and culture assay as additional predictors for culture.

Evaluating and comparing model performance

To find the highest performing model for each investigation, we first used a forward search to

identify the model with the best performance for each possible number of predictors. We used

10-fold cross-validation to evaluate each model’s predictive performance on withheld data,

and for each stage we selected the predictor that most increased the expected log pointwise

predictive density (ELPD) [64]. Following convention, we considered an ELPD difference of

less than 4 to be small when comparing two models [64]. Of those models identified by the for-

ward search, we selected the ‘best model’ as the one with fewest predictors that achieved simi-

lar or better performance compared to the ‘full model’ (containing all predictors) on out-of-

sample (test) data for three relevant statistics: (i) ELPD, (ii) prediction accuracy (i.e., the per-

cent of correctly classified samples for the logistic component, or the percent of samples where

the observed value fell within the 50% prediction interval for the linear component), and (iii)

Matthew’s correlation coefficient [65] (MCC; logistic components) or median absolute error

on the posterior predictive medians (MAE; linear component). Comprehensive descriptions

of model evaluation and selection are provided in the S1 Methods.

Accounting for lab effects

Since there are other possible sources of methodological variation among articles besides

target genes, cell lines, and culture assays (e.g., RNA extraction methods, sample storage

conditions), we also fit all of our best models with an additional categorical predictor to

account for lab effects. To reduce the risk of overfitting, when possible, we grouped labs

based on where they conducted their primate experiments to account for common elements

in lab protocols (e.g., many studies that analyzed sgRNA housed their primates at BIOQ-

UAL, Inc.). Out of all articles, we identified eight groups of labs for the sgRNA analyses and

ten groups of labs for the culture analyses (S8 Table). We incorporated the lab effect as

another linear predictor to the logit probability term for the logistic components or to the

mean of the normal distribution for the linear component. The error term for the linear

component remained article- (not lab-) specific. We fit each of these models with the same

informative priors used in the models without lab effects, and we added non-informative

priors for the lab effects.

Analyzing isolation end times

To assess performance on clinically relevant metrics, we evaluated how well our simple and

best culture models can identify when an individual is no longer infectious (i.e., no longer cul-

ture positive). We restricted these analyses to individuals with at least two samples from the

respiratory tract after their first positive test from the same location and sample type. For each
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individual, we estimated the end of their infectious period as the midpoint between their last

true observed culture positive and their next observed culture negative (S18 Fig). When this

resulted in the infectious period ending on a half day, we rounded up to the nearest day, such

that all individuals are assumed to be infectious from the day of their first positive test up to

(but not including) the day on which they reach their calculated midpoint.

We then determined their model-specific isolation end time as the earliest day on which

the associated model predicted a second consecutive culture negative, to mirror the public

health guideline about two consecutive negative test results. Unless otherwise stated, we used

our standard threshold of 50% to classify samples as predicted negative or predicted positive.

We excluded the individuals for which neither model predicted a second consecutive negative,

resulting in 77 total trajectories for this analysis. When only one of the two models was unable

to identify such a time, we conservatively assumed that, under that model, the individual

would isolate until day 10 after their first positive. We benchmarked our analyses against stan-

dard guidelines developed for COVID-19 patients, where individuals are released from isola-

tion (i.e., assumed to no longer be infectious) on days five or ten after their first positive test

[31]. To compare the performance of these isolation methods, we calculated: (i) the number of

days each individual spent unnecessarily isolated when they were no longer infectious (‘unnec-

essary isolation days’), and (ii) the number of days they were still infectious while no longer

isolating (‘non-isolated infectious days’).

Computational methods and software

All data preparation, analysis, and plotting were completed with R version 4.2.0 [57]. Posterior

sampling of the Bayesian model was performed with No-U-Turn Sampling (NUTS) via the

probabilistic programming language Stan [66] using the interface CmdStanR version 0.5.2. All

model fits were generated by running six replicate chains with 4000 iterations each, of which

the first 2000 iterations were treated as the warmup period and the final 2000 iterations were

used to generate parameter estimates. Model convergence was assessed by the sampling soft-

ware using R̂, effective sample sizes, and other diagnostic measures employed by CmdStan by

default. No issues were detected.

Results

The compiled dataset includes 2167 samples from 174 individual non-

human primates

A comprehensive literature search for studies that challenged non-human primates with

SARS-CoV-2 identified 24 articles that reported per-sample measurements of at least two of

the following assays: totRNA RT-qPCR, sgRNA RT-qPCR, and viral culture (S1 Fig and

Tables 1 and S1). Of those, 14 articles reported totRNA and sgRNA for 116 individuals and

1194 samples, and 15 articles reported viral culture and either RNA type for 90 individuals and

1315 samples. Five articles reported results for all three assays, totaling 342 such samples.

The dataset includes various demographic groups, including both sexes, ages ranging from

1 to 22 years old, and three non-human primate species (rhesus macaque, cynomolgus

macaque, African green monkey) (Tables 1 and S1). The included articles span multiple study

protocols, including different target genes, cell lines, exposure conditions, sample types, and

sampling times. Only studies using early SARS-CoV-2 strains (i.e., excluding those reporting

the D614G mutation or named variants) were included, to minimize underlying strain-specific

variation. Sampling locations include the upper and lower respiratory tracts, gastrointestinal

tract, and other regions.
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Total RNA quantity does not solely explain sgRNA and culture results

Across individuals and samples in the database, totRNA, sgRNA, and culture trajectories

exhibit patterns and challenges consistent with previous reports, including unexpected

instances of sgRNA negativity and culture positivity (Figs 1A and S3–S10). Comparing PCR

results, totRNA copy numbers are larger than sgRNA copy numbers when both are detectable

Table 1. Dataset summary. Columns stratify by assay availability, including samples with results for sgRNA and totRNA, culture and either RNA type, and any combina-

tion of two or more included assays. Entries indicate sample sizes for the corresponding cofactor, formatted as: the number of samples/individuals/articles. Doses are

grouped by total plaque forming units (though they are analyzed as a continuous variable). Target gene corresponds with the totRNA assay when available, otherwise the

sgRNA assay. The full article-specific data distribution is shown in S1 Table.

sgRNA &

total RNA

Culture &

either RNA

All data

Demographics Species
Rhesus macaque 640 / 78 / 11 476 / 46 / 9 1071 / 112 / 17

Cynomolgus macaque 371 / 28 / 3 412 / 21 / 5 601 / 37 / 6

African green monkey 183 / 10 / 1 427 / 23 / 4 495 / 25 / 4

Age class
Juvenile 430 / 48 / 7 290 / 33 / 7 678 / 67 / 11

Adult 667 / 56 / 10 993 / 50 / 9 1362 / 89 / 16

Geriatric 54 / 8 / 1 2 / 1 / 1 54 / 8 / 1

Unknown 154 / 23 / 3 72 / 6 / 1 226 / 29 / 4

Sex
Female 673 / 57 / 11 803 / 47 / 12 1213 / 84 / 18

Male 367 / 36 / 9 440 / 37 / 10 728 / 61 / 16

Unknown 43 / 4 / 1 30 / 6 / 1 73 / 10 / 2

Sampling & exposure conditions Exposure dose
104 - <106 521 / 61 / 9 311 / 19 / 3 832 / 80 / 12

�106 673 / 55 / 7 1004 / 71 / 12 1335 / 94 / 14

Exposure route
Single 0 / 0 / 0 441 / 31 / 5 441 / 31 / 5

Multi 1194 / 116 / 14 874 / 59 / 10 1726 / 143 / 19

Sample type
Invasive 311 / 45 / 6 229 / 36 / 8 432 / 65 / 10

Non-invasive 883 / 96 / 12 1086 / 76 / 12 1735 / 146 / 21

Sample time
Inoc, 1 dpi 136 / 72 / 11 89 / 36 / 8 187 / 94 / 17

Inoc, 2+ dpi 724 / 99 / 13 595 / 72 / 12 1160 / 145 / 21

Non-Inoc, 1+ dpi 334 / 54 / 7 631 / 72 / 13 820 / 106 / 16

Assay protocols PCR target genes
N 814 / 86 / 11 824 / 54 / 9 1435 / 120 / 17

E 380 / 34 / 4 383 / 30 / 5 624 / 52 / 7

S 0 / 0 / 0 108 / 6 / 1 108 / 6 / 1

Culture assay
TCID50 — 856 / 53 / 10 856 / 53 / 10

Plaque — 459 / 37 / 5 459 / 37 / 5

Cell line
Vero E6 — 959 / 71 / 12 959 / 71 / 12

Vero E6/TMPRSS2 — 191 / 8 / 2 191 / 8 / 2

Vero 76 — 165 / 11 / 1 165 / 11 / 1

Total 1194 / 116 / 14 1315 / 90 / 15 2167 / 174 / 24

https://doi.org/10.1371/journal.ppat.1012171.t001
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(median difference: 1.45 log10 units) (S11A Fig), and totRNA becomes undetectable simulta-

neously or later in infection than sgRNA (S11D Fig), with rare exceptions for both patterns

likely due to assay noise or processing errors. When both totRNA and sgRNA are detectable

for a given individual, their trajectories are typically highly correlated (median Pearson corre-

lation coefficient: 0.92; S11C Fig). However, as is particularly common in animal challenge

experiments but also reported in clinical data, totRNA-positive samples in this database are

often sgRNA-negative (30.0%), and totRNA quantities for these samples can be curiously

large, ranging from 0.15 up to 6.38 log10 copy numbers (S11B Fig).

TotRNA and culture positivity results are also often discordant, disagreeing for 39.3% of all

available samples and 61.3% of all totRNA-positive samples. Up to 11.02 log10 totRNA copy

numbers were quantified in a culture-negative sample, which is only 1 log10 smaller than the

maximum copy numbers observed in a culture-positive sample (12.09 log10) (S11E and S11F

Fig). As few as 2.06 log10 totRNA copy numbers (when detectable) were noted in a culture-

positive sample. As expected, totRNA typically becomes detectable earlier and remains detect-

able later than infectious virus, although for six individuals culture positivity preceded RNA

positivity and one culture-positive individual was never totRNA-positive (S11G and S11H

Fig). Considerably fewer samples with culture data also had sgRNA results (Fig 1B), so com-

parisons are limited, but patterns broadly parallel those for totRNA. Together, these patterns

highlight that totRNA quantity cannot entirely explain sgRNA and culture outcomes. Statisti-

cal models may uncover cofactors underlying the discrepancies among these essential assays.

Predictive performance on withheld data clearly identifies the best

statistical models

To compare disparate assays, we developed a Bayesian hurdle model that predicts whether an

assay of interest will fall above the limit of detection (the ‘logistic component’) and, if so, pre-

dicts a quantitative value for that assay (the ‘linear component’) (S2 Fig). We used stepwise

Fig 1. Example trajectories and distribution of samples across assay types. (A) Each column presents the totRNA (circle) and sgRNA (diamond)

trajectories for the labelled individual. When available, culture results (square) are plotted above the yellow line, with yellow and grey fill indicating

positive or negative culture, respectively. Samples from the upper respiratory tract (URT) are plotted above the lower respiratory tract (LRT). Dashed

lines indicate reported limits of detection (plotted at 0 when unavailable). Samples with undetectable RNA are plotted below 0. Representative

individuals were chosen from the full dataset. All individual trajectories are shown in S3–S10 Figs. (B) Number of samples available in our database for

the corresponding assay(s).

https://doi.org/10.1371/journal.ppat.1012171.g001
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forward regression with 10-fold cross-validation to evaluate predictive performance on with-

held data for variable numbers of predictors. This allowed us to identify the most parsimoni-

ous model with similar or better performance on three key metrics compared to the model

containing all predictors (the ‘best’ and ‘full’ models, respectively). To benchmark our analysis

against prior work, we also evaluated the ‘simple model,’ for which the logistic and linear com-

ponents contain PCR results as the sole predictor (i.e., it is a hurdle model comprised of a sim-

ple logistic regression and a simple linear regression).

We first applied this method to predict sgRNA from totRNA assays (the ‘sgRNA model’),

for which we considered species, age class, sex, exposure dose, day post infection, PCR target

gene, and sample type (invasive vs. non-invasive) as candidate predictors. We then applied the

logistic model framework to relate PCR results to culture positivity (the ‘culture model’),

including cell line and culture assay as additional candidate predictors (see Methods for

justifications).

For both model types, the selection procedure clearly identified the best models (Fig 2),

where each component included a unique set of predictors. These results were robust to alter-

nate cross-validation procedures and prior distributions. Each selected model is generalizable,

as shown by comparable prediction accuracy between training and test sets. See the S1 Meth-

ods for further details on model evaluation and selection.

Exposure dose, species, and PCR target gene improve predictions of sgRNA

positivity

totRNA levels clearly correlate with sgRNA positivity, but the substantial overlap in totRNA

quantities measured for both sgRNA-positive and sgRNA-negative samples emphasize that

other factors must influence sgRNA outcomes (Fig 3A). The best sgRNA logistic model identi-

fied exposure dose, species, and PCR target gene as key additional predictors of sgRNA positiv-

ity (Fig 2 and S2 Table). This model is highly accurate, correctly classifying 91.1% of withheld

samples. It outperforms the simple model both by increasing prediction accuracy and by

assigning higher probabilities to correct classifications for more samples (Fig 3B). For inter-

mediate quantities of totRNA (2–6 log10 copies), sgRNA positivity predictions differ between

the simple and best models (Fig 3C), emphasizing the particular importance of accounting for

cofactors in this range. The best and full models perform similarly (Fig 2).

Our best model reveals insights into the three additional predictors of sgRNA outcomes:

exposure dose, species, and PCR target gene. The following trends hold for model predictions

across any cofactor combination when holding totRNA quantity constant: (i) individuals inoc-

ulated with larger doses have smaller chances of detecting sgRNA, (ii) African green monkeys

have the smallest chance of sgRNA detection, while rhesus and cynomolgus macaques have

similar predictions, and (iii) assays targeting highly-expressed sgRNA species (‘sgRNA-high’

assays) have higher chances of sgRNA detection than those targeting less-expressed sgRNA

species (‘sgRNA-low’). We refer the reader to Fig 3C for quantitative median predicted

chances of sgRNA detection for a select cofactor combination, Fig 3D for qualitative variability

in those predictions, and S6 Table for the associated 90% prediction intervals. In S7 Table, we

also provide the 90% credible intervals for all parameters to facilitate predictions of other

cofactor combinations. Columns within row groups in Fig 3C with a strong color gradient

indicate substantial impacts of the associated cofactor on sgRNA predictions, and grey boxes

highlight totRNA ranges where final classifications of sgRNA positivity differ within that

cofactor group (for the standardized cofactor set).

To determine whether any of the observed patterns could stem from lab-level methodologi-

cal variation, we tested whether the findings of our best model were altered by including an

PLOS PATHOGENS PCR predicts culture results for SARS-CoV-2 in primates

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012171 April 29, 2024 10 / 39

https://doi.org/10.1371/journal.ppat.1012171


Fig 2. Model selection criteria identify the best models. The highest performing models for each predictor number and modeling component are shown,

ordered by increasing predictor numbers. Purple horizontal lines depict performance of the full model. Green vertical lines indicate the best model, chosen

according to the displayed metrics. These include estimated log pointwise predictive density (ELPD), prediction accuracy, percent of samples within the 50%

prediction interval, Matthews correlation coefficient (MCC), and median absolute error around the median (MAE). These were generated using test data

during 10-fold cross validation. For the culture logistic component, the model with seven predictors was not chosen because, although it outperformed the full

model on MCC and prediction accuracy, it underperformed on ELPD. This is because the ELPD for the full model was larger than the ELPD for this model by

more than our threshold of 4 units. Please see the Methods for more details about our selection criteria and the S1 Methods for a full description of the

selection procedure. Acronyms are: T, totRNA; DPI, day post infection; SP, species; TG, target gene; ST, sample type; CELL, cell line; ASSAY, culture assay. All

tested models are shown in S2–S5 Tables.

https://doi.org/10.1371/journal.ppat.1012171.g002
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Fig 3. The best sgRNA model captures key sources of underlying variation in PCR outcomes. (A) All available sgRNA data plotted against totRNA results

(with vertical jitter), with all totRNA-negative samples plotted in the grey region (with horizontal and vertical jitter). One totRNA- and sgRNA-positive sample

with -1.18 log10 totRNA copies is not visible. (B) Distribution of median model-predicted chances of sgRNA detection for all available totRNA-positive

samples, stratified by model type and observed outcomes. Samples right of the dashed line are correct predictions. (C) Median predicted chances of sgRNA

detection for the simple model (top row) and all cofactor groups for the best model (other rows), evaluated for specific totRNA levels. Predictions were

generated using the following ‘standardized cofactor set’ (which are highlighted in bold text): rhesus macaques inoculated with 5.5 log10 pfu and sampled at

least two days post infection from inoculated tissues, which were processed with a totRNA-high/sgRNA-low assay. For the simple model, the grey box encloses

totRNA copies where classifications differ among the simple model and any possible combination of cofactors in the best model, based on our standard

prediction threshold of 50%. For all other rows, grey boxes enclose regions where classifications differ within the displayed cofactor group for the standardized

cofactor set. For example, 5 log10 totRNA copies / sample is enclosed for ‘Species’ because African green monkeys are predicted to be negative while both other

species are predicted to be positive. The rows for the other cofactor groups (e.g., target gene) do not influence the grey boxes for ‘Species’. (D) 300 posterior

draws from the best logistic model for the standardized cofactor set, with colored lines as indicated in panel-specific legends. The dark blue line presents the

simple model’s mean fit. (E) All available sgRNA data for totRNA-positive samples, where sgRNA-negative samples are plotted below 0 (with vertical jitter). (F)

Distribution of median absolute errors for all sgRNA-positive samples, stratified by model type. (G) As in (D) but for the best linear component. (H) As in (C)

but reporting median sgRNA copy number predictions. Grey boxes enclose regions where predicted sample quantities within the displayed cofactor group fall

both above and below a common limit of detection (1.69 log10), and otherwise follow the same rules as in panel (C). Acronyms are as follows: ‘RM’, rhesus

macaque; ‘CM’: cynomolgus macaque; ‘AGM’: African green monkey; ‘Non-Inv’: non-invasive; ‘Inv.’: invasive; ‘DPI’: day post infection; ‘I, 1’: inoculated

tissues sampled on day 1 post infection; ‘I, 2+’: inoculated tissues sampled any other day post infection; ‘NI, 1+’; non-inoculated tissues on any day post

infection; “T"SG"”: totRNA-high/sgRNA-high; “T#SG"”: totRNA-low/sgRNA-high; “T"SG#”: totRNA-high/sgRNA-low; “T#SG#”: totRNA-high/sgRNA-low.

https://doi.org/10.1371/journal.ppat.1012171.g003
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additional predictor for lab effects. Some lab groups were predicted to have higher chances of

sgRNA detection per totRNA quantity (S12A Fig), but performance was similar to the model

without an explicit lab effect (S12B Fig). Crucially, the predicted differences among doses, spe-

cies, and target genes were qualitatively unchanged between these models (S12C and S12D

Fig), offering confidence in the robustness of our results.

Exposure conditions, species, and PCR target gene impact expected RNA

ratios

sgRNA quantities scale positively with totRNA quantities, but with considerable unexplained

variation (Fig 3E). Our best sgRNA linear model identified exposure dose, species, PCR target

gene, and day post infection as key predictors of sgRNA quantity (note these are the same pre-

dictors as for the sgRNA logistic model, but with day post infection also included). This model

performs well on withheld data, with 55.0% of observed sample values falling within the

model-generated 50% prediction interval (Fig 2 and S3 Table). The best model clearly outper-

forms the simple model, decreasing the median absolute prediction error from 0.58 to 0.43

log10 copies (Fig 3F) and increasing the correlation between observed and median predicted

values (from an adjusted R2 of 0.68 to 0.77). The best model performs marginally better than

the full model, with small improvements in prediction accuracy (Fig 2).

Below, we explore the effects of each selected cofactor on predicted sgRNA copy numbers.

We report qualitative trends that hold across all cofactor combinations, and we refer the reader

to Fig 3H for median (quantitative) predicted sgRNA copy numbers for a select cofactor com-

bination (our ‘standardized cofactor set’, see figure legend). Variability in these predictions are

presented qualitatively in Fig 3G and quantitatively (as 90% prediction intervals) in S6 Table.

Credible intervals for all parameters are included in S7 Table. Similar to the logistic compo-

nent, we also fit the best model with an additional predictor for lab group, which identified

some modest differences in the expected sgRNA quantities among articles (S12E Fig) and had

similar prediction accuracy to the model without lab effects (S12F Fig). We describe any other

qualitative differences in our results between these models below, which are also visualized in

S12 Fig.

The best model predicts that exposure conditions and sampling time impact RNA ratios.

Samples obtained from individuals inoculated with larger doses must have higher total RNA

copy numbers to expect the same sgRNA quantity. Results for day post infection parallel these

exposure-dependent patterns. To expect a given sgRNA quantity, totRNA copies must be high-

est for inoculated tissues on the first day post infection, intermediate for inoculated tissues on

all later days post infection, and lowest for non-inoculated tissues on any day post infection.

When we added a predictor for lab group, the effects of day post infection were qualitatively

unchanged while the dose effect weakened and reversed (S12G and S12H Fig), although a sub-

stantial portion of the parameter density allowed for the original dose effect.

PCR target genes also affect predictions. Conditional on totRNA quantity, totRNA-low/

sgRNA-high assays have the largest predicted median sgRNA quantities, followed by totRNA-

low/sgRNA-low and totRNA-high/sgRNA-low assays. Quantitative sgRNA outcomes were

unavailable for totRNA-high/sgRNA-high assays, so estimates were not possible for those pro-

tocols. These effects were qualitatively similar in our model with lab effects (S12G and S12H

Fig).

The best model also predicted that sgRNA quantities vary by species. Regardless of whether

a lab effect was included, rhesus macaques and African green monkeys had highly similar pre-

dictions. Cynomolgus macaques were predicted to have lower median sgRNA quantities for

any given totRNA quantity, though this effect was substantially reduced when lab effects were
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included. Given that only one lab group had data from both cynomolgus macaques and

another species (rhesus macaques), we view this species effect as an intriguing but tentative

finding that warrants further investigation.

The sgRNA model accurately reconstructs individual viral load trajectories

To further analyze performance, we reconstructed individual viral load trajectories using the

best sgRNA model (Figs 4 and S3–S5). The model correctly predicted the timing of the first

and last observed sgRNA positive for 90.1% (n = 219/243) and 72.8% (n = 177/243) of all indi-

vidual- and (non-invasive) sample-specific trajectories with at least two sampling times,

respectively (S14 Fig). Notably, 70.0% (n = 170/243) of those trajectories were predicted with-

out a single misclassification. The distribution of predicted sgRNA quantities was highly simi-

lar to the distribution of observed sgRNA quantities (median differences of estimated means:

-0.04 log10 units; 90% Credible Interval [CI]: -0.18, 0.08; S1 Methods) but highly dissimilar to

observed totRNA values (-0.79; 90%CrI: -0.92, -0.66), offering further confidence in the mod-

el’s excellent performance.

Total RNA and sgRNA are both suitable predictors of viral culture

To determine which PCR assay best predicts viral culture, we compared models including

totRNA, sgRNA, or both as predictors of culture positivity. We first evaluated performance

only on samples with quantitative results for both assays and for models with no additional

cofactors, for which totRNA, sgRNA, and both had similar prediction accuracy (S9 Table).

Because few samples had both sgRNA and culture outcomes (Fig 1B), we imputed median

sgRNA predictions where needed, using the best performing sgRNA model. On this full data-

set, all three models also performed similarly well, though totRNA showed some evidence of

better predicting culture positive samples. We then ran our model selection procedure on

totRNA and sgRNA separately for all available data, which resulted in highly similar prediction

Fig 4. The best sgRNA model reconstructs individual trajectories with high accuracy. Each panel includes the data for one randomly selected

individual sampled from either the upper respiratory (URT) or lower respiratory tract (LRT), including observed totRNA (circle), observed sgRNA

(diamond), and median predicted sgRNA (triangle) quantities. Detection limits are plotted as dashed lines in the corresponding color when available,

otherwise grey lines are plotted at zero. All undetectable samples are plotted below zero. See S3–S5 Figs for all individuals.

https://doi.org/10.1371/journal.ppat.1012171.g004

PLOS PATHOGENS PCR predicts culture results for SARS-CoV-2 in primates

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012171 April 29, 2024 14 / 39

https://doi.org/10.1371/journal.ppat.1012171.g004
https://doi.org/10.1371/journal.ppat.1012171


accuracy for both best models, though the model using totRNA was more parsimonious, with

two fewer predictors (S4 and S5 Tables). Given this parsimony and the lack of reliance on

imputed sgRNA values, plus the lack of evidence that sgRNA is a superior predictor, we based

further analyses solely on totRNA.

Demography, exposure conditions, and assay protocols resolve disparities

in culture results

We next sought to predict culture positivity from totRNA results using the logistic model

framework. The best model contained day post infection, inoculation dose, age class, species,

culture assay, cell line, and PCR target gene as predictors, and it correctly classifies 84.7% of

withheld data (Fig 2, and S4 and S9 Tables). It outperforms the simple model by correctly pre-

dicting an additional 7.0% of culture positive samples and by assigning higher probabilities for

true classifications (Figs 5B and S15A). The difference in performance is especially pro-

nounced at intermediate totRNA quantities (6–8 log10), which often occur during the critical

transition between culture positive and negative states (i.e., in clinical terms, at the end of the

infectious period). For these samples, the best model correctly predicts an additional 23.3% of

culture positives (S15B Fig) and often with much higher confidence (S15C Fig). Strikingly,

culture predictions can differ between the simple and best models for all considered quantities

of totRNA (0–12 log10 copies) (Fig 5C), highlighting the benefit of accounting for cofactors

when predicting culture outcomes across all totRNA quantities. The best model performs simi-

larly to the full model (Fig 2 and S4 Table).

In the text below, we explore the effects of each selected cofactor on culture outcomes.

Given the high dimensionality of these predictions, we report qualitative trends that hold

across cofactor combinations, and we refer the reader to Fig 5C for median predicted chances

of positive culture for a select combination of cofactors (i.e., our ‘standardized cofactor set’, see

figure legend). Columns in Fig 5C with a strong color gradient indicate dramatic impacts of

the associated cofactor on culture predictions, and grey boxes highlight totRNA ranges where

final classifications differ within that cofactor group (for the standardized cofactor set). These

ranges differ for other cofactor combinations. We present the variability of our results (for the

standardized cofactor set) qualitatively in Fig 5D and quantitatively (as 90% prediction inter-

vals) in S10 Table. In S7 Table, we provide the medians and 90% credible intervals for all

parameters to facilitate predictions of other cofactor combinations.

To determine whether unmodelled differences among labs could explain any of the

observed patterns, we fit our best culture model with an additional term for lab effects. Some

groups of labs were predicted to have higher overall chances of culture positivity per totRNA

quantity (S16A Fig), but overall prediction accuracy was similar to the model without a lab

effect (S16B Fig). There was some additional variation in the parameter estimates for the

model with a lab effect, but the qualitative findings for all cofactors were consistent across both

models (S16C and S16D Fig).

Exposure conditions had substantial impacts on culture predictions. Individuals inoculated

with larger doses have smaller probabilities of obtaining successful culture for any given

totRNA quantity. Interestingly, in contrast with results predicting lower sgRNA (per totRNA

quantity) in inoculated tissues (Fig 3G and 3H), the culture model predicts that inoculated tis-

sues sampled on the first day post infection have the highest probabilities of being culture posi-

tive per totRNA quantity. Inoculated tissues on later days post infection and all non-

inoculated tissues are much less likely to be culture positive, with substantial overlap in the

predicted probabilities of those two groups.
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Fig 5. The best culture model captures key sources of underlying variation in culture outcomes. (A) All available culture data plotted against totRNA

results (with vertical jitter), with all totRNA-negative samples plotted in the grey region (with horizontal and vertical jitter). (B) Distribution of median

model-predicted chances of positive culture for all totRNA-positive samples, stratified by model type and observed outcomes. Samples right of the dashed

vertical line are correct predictions. (C) Median predicted chance of positive culture for the simple model (top row) and all cofactor groups included in the

best model (other rows) for totRNA copies (evaluated at integer values, starting at 0). Predictions were generated using the following ‘standardized cofactor
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Multiple demographic factors also affect culture outcomes. Predictions for juvenile and

adult age classes largely overlap, but geriatric individuals have substantially higher predicted

chances of successful culture for the same viral load. This difference was reduced, though still

clearly apparent, when including a lab effect. However, few samples from geriatric individuals

were available (Table 1), and so these results should be interpreted cautiously. Predictions also

vary based on species: the chances of successful culture for some viral load are smallest for

cynomolgus macaques compared to rhesus macaques and African green monkeys, where the

latter two species have highly similar predictions.

Assay conditions also influence culture outcomes, as expected. The model predicts that

VeroE6-TMPRSS2 cells have the highest chance of positive culture, followed by VeroE6 and

Vero76 cells. TCID50 assays are predicted to have higher sensitivity than plaque assays, and

the chances of culture positivity (for a given viral load) are higher for PCR protocols targeting

Spike (S) than for those targeting the Nucleocapsid (N) or Envelope (E) genes.

Individual trajectories uncover sources of culture prediction errors

Although our best culture model exhibits remarkable 84.7% accuracy on withheld data, we

analyzed our predictions further to identify potential causes and implications of existing

errors. 64.1% (n = 116/181) of all incorrect predictions were false negatives, of which a curious

11.2% (n = 13/116) were PCR negative. Even excluding these totRNA-negative samples,

totRNA copies for false negative samples were substantially smaller than for true positives

(median difference of estimated population means: -2.83 log10 units; 90%CrI: -3.13, -2.53) but

more similar to true negatives (median difference: 0.57; 90%CrI: 0.27, 0.87). These RNA-low

but culture-positive samples could be explained by PCR or sample processing issues resulting

in the amplification of less RNA (e.g., sample degradation), or by culture contamination. Simi-

larly, totRNA copy numbers for false positive predictions were substantially larger than for

true negatives (median difference: 3.05; 90%CrI: 2.74, 3.36) but were similar to true positives

(median difference: -0.35, 90%CrI: -0.66, -0.04). Culture insensitivity could explain these

RNA-high but culture-negative samples.

We further characterized errors by analyzing performance in the context of individual tra-

jectories for (non-invasive) samples with at least two sampling times (Figs 6 and S7–S9 and

S17). Overall, the best model correctly predicted 58.3% (n = 120/206) of these trajectories with-

out a single culture misclassification, compared to only 47.6% (n = 98/206) by the simple

model. Within all trajectories, the best model made a total of 131 errors in predicting culture

status of individual samples, while the simple model made 171 errors. We categorized these

errors into four types: (i) samples obtained on the first or last sampling day (termed an ‘edge’),

(ii) samples obtained as culture results transition between positive and negative states (‘transi-

tion’), (iii) samples where observed culture results change for one sampling time despite sur-

rounding instances of the opposite classification (‘data blip’), and (iv) samples where culture

predictions change for one sampling time despite surrounding instances of the opposite classi-

fication (‘prediction blip’). Notably, while edge errors are difficult to analyze, given limited

information from surrounding time points, transitions may reflect sample quality and assay

set’ (which are highlighted in bold text): adult rhesus macaques inoculated with 5.5 log10 pfu and sampled at least two days post infection from inoculated

tissues, where PCR targets the Nucleocapsid gene and culture uses plaque assays with VeroE6 cells. Grey boxes enclose regions where classifications differ

within the cofactor group for the standardized cofactor set, as described for Fig 3C. For the simple model, it encloses regions where classifications differ

between the simple model and any possible combination of cofactors. (D) 300 posterior draws from the best model for the standardized cofactor set, with

colored lines as indicated in panel-specific legends. The dark blue line presents the simple model’s mean fit. Acronyms are as described in Fig 3, plus the

following: E6, VeroE6; E6-SS2, VeroE6-TMPRSS2; and 76, Vero76 cells.

https://doi.org/10.1371/journal.ppat.1012171.g005
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Fig 6. Error analysis reveals potential causes of culture prediction errors. (A) Each row shows culture results for one individual-sample trajectory that

contains at least one instance of the panel-specific error type. Trajectories may appear in multiple panels if they contain multiple error types, though trajectory

ordering is inconsistent. Red outlines highlight samples with the denoted error type. (B) TotRNA values over time for each error type, all invasive samples, and

all correctly classified non-invasive samples (‘no error’). In (A) and (B), yellow squares indicate culture positives and grey indicates culture negatives. Squares

with black outline are correctly classified, while those with no or red outline are incorrectly classified. The data blip individual on day 21 post infection has

another sample available at a later timepoint, so it is not considered an ‘edge’.

https://doi.org/10.1371/journal.ppat.1012171.g006
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sensitivity interacting to drive noisy outcomes for samples with intermediate RNA or virion

quantities.

When considering all prediction errors, we find that edge errors are the most common for

both the best (n = 51/131; 38.9%) and simple (n = 78/171; 45.6%) models. Transition errors,

however, are of particular interest, given that the shift from positive to negative states deter-

mines the end of infectivity. The best model made 44 transition errors (n = 44/131; 33.6%),

while the simple model made 49 transition errors (n = 49/171; 28.7%). We then calculated how

many edge errors could also be considered transition errors, and once again we found that the

best model made fewer such errors (23 vs. 34). Thus, model accuracy at this critical point dur-

ing infection is improved by accounting for key covariates.

For the best model, data blips are less common (n = 19/131; 14.5%) than edge and transi-

tion errors, and all except one data blip are observed culture positives surrounded by culture

negatives (leading to false-negative prediction errors) (Figs 6B and S17A). Eight of these sam-

ples co-occur with increases in totRNA quantities from the previous sampling time, suggesting

they may reflect true local replication (e.g., as in rebound cases). The remaining instances

accompany decreases in totRNA quantities, where sample contamination could drive spurious

culture positivity or PCR processing issues could result in RNA underestimates. Prediction

blips are the least common (n = 17/131; 13.0%), of which 70.6% (n = 12/17) are false negatives

that often have lower totRNA quantities than the previous sampling time (Figs 6B and S17B).

These could be explained by sample quality or PCR processing issues resulting in RNA under-

estimates, which is particularly plausible for instances where totRNA levels increase in the next

sampling time. In contrast, false positive prediction blips primarily occur after sharp increases

and high quantities of totRNA, and all occur for plaque assays. Given our model predicts

lower sensitivity for plaque assays, these errors could reflect failed culture, though RNA overes-

timates could also explain this pattern.

The best culture model shows potential for accurate, individualized

isolation practices

Although our model is trained on NHP data and cannot be applied directly to humans, we

sought to illustrate the potential clinical utility of such a framework. To do so, we assessed the

simple and best models’ ability to identify when an individual is no longer infectious (i.e., no

longer culture positive). For all available individuals (n = 77), we determined their (model-spe-

cific) isolation end times as the earliest day on which the associated model predicted a second

consecutive culture negative (S18 Fig). Because the time between consecutive tests increases

over the course of infection (S19 Fig), there is an implicit bias towards longer isolation times

for individuals that test positive longer and hence are observed less frequently during the

period that they lose infectiousness. To account for this bias, we also ran analyses for a hypo-

thetical ‘perfect’ model that identifies culture status correctly for every sample, and so it always

releases individuals from isolation on the day of their true second consecutive culture negative.

For further comparison, we included two standard public health guidelines for SARS-CoV-2,

which release all individuals from isolation on days five or ten after their first positive test [31].

We found that, across all procedures, the best model resulted in the smallest number of

days that individuals were unnecessarily isolating while no longer infectious (Fig 7A), with an

especially large reduction compared to the ten-day protocol (126 vs. 510 days). We then con-

sidered the number of days on which individuals were not isolating but still infectious. If no

isolation practices were used, there would be 260 such days. No individual was infectious up to

day ten after the first positive test, and so the ten-day protocol was the only one with zero non-

isolated infectious days (Fig 7B). The simple model had the largest number of non-isolated
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infectious days (65 days), followed by the best model (60 days), the five-day procedure (37

days), and the perfect model (34 days). Upon further investigation, many of these non-isolated

infectious days arose from 16 individuals that showed evidence of rebound infection, which

we defined as at least one known culture negative occurring between two known culture posi-

tives (S18 Fig). Of these 16 individuals, many of them (n = 6/16; 37.5%) had their final culture

positive before day 5 (“early rebound”), which thus did not affect the performance of the five-

day protocol but did penalize the best and simple models despite them accurately identifying

many intermittent culture negatives. All protocols (except for the ten day procedure) were also

affected by the 10 individuals that had their final culture positive on or after day 5 (“late

rebound”; n = 10/16; 62.5%). When we excluded any rebound individuals, the best model and

the five-day procedure differed by only three non-isolated infectious day (20 vs. 17 days).

To further compare the protocols, we also evaluated their ability to identify the first time

that individuals experienced a true (observed) second consecutive culture negative. For these

Fig 7. The best culture model captures the end of infectiousness better than existing approaches. (A) The cumulative days unnecessarily isolated by all

individuals (histogram, left axis) and the distribution of individual days unnecessarily isolated (points, right axis) for the ten-day, five-day, simple, best, and

perfect protocols. Individuals that were isolated for too few or the exact number of days are not shown. (B) The cumulative days that individuals were still

infectious after the end of isolation (histogram, left axis) and the distribution of days that individuals were still infectious (points, right axis) for all the protocols

in panel A. Transparency shows the classification of individual trajectories as either showing no indication of a rebound (darkest), indication of a late rebound

(medium, day 5 after the first positive test or later), or indication of an early rebound (lightest, before day 5 after the first positive test). Rebound individuals are

indicated by red points. Individuals that were not still infectious are not displayed. (C) Performance of each protocol on identifying the true (observed) time of

the second consecutive culture negative for all individuals where this occurred. ‘Correct’ (darkest, bottom) includes all individuals for which the protocol

exactly identified the second consecutive negative. ‘Early’ (medium, middle) includes all individuals where the prediction occurred before the true time, while

‘Late’ (lightest, top) includes all individuals where the prediction occurred after the true time. The perfect model is not shown, as by definition it is 100%

correct. (D) Comparison of the culture positive probabilities predicted for the simple and best models on both samples from the first true instance of

consecutive negatives. The right panel shows the raw predicted probabilities for each model. The left panel shows the per-sample difference between those

probabilities for the simple and the best model, where the best model is more confident in the upper region (i.e., it has smaller predicted probabilities of being

culture positive) and the simple model is more confident in the lower region. (E) The cumulative days unnecessarily isolated by all individuals (green

histogram, left axis) and the distribution of individual days unnecessarily isolated (green points, right axis) for five different threshold probabilities at which a

sample is considered culture positive. The best model results are displayed in the green bars (cumulative) and by the green points (individuals). The horizontal

lines show the results for the five- and ten-day procedures, with the same colors as in (A). The blue points and connecting lines show the cumulative days for

the simple model. (F) As in panel E, except displaying the number of days individuals were still infectious after the end of isolation. Red points are rebound

individuals.

https://doi.org/10.1371/journal.ppat.1012171.g007
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analyses, we excluded the 12 individuals where this never occurred. We classified the protocols

based on whether they accurately identified this time (‘Correct’) or whether the predicted time

occurred before (‘Early’) or after (‘Late’) the known time. The best model was correct for the

most individuals (n = 30/65; 46.2%; Figs 7E and S18), with the exception of the perfect model

that by definition classifies all individuals correctly. The simple model only classified 30.8%

(n = 20/65) of individuals correctly, which is 15.4% (n = 10/65) fewer individuals than the best

model. The best model also generated 10.8% (n = 7/65) fewer early predictions, which is a par-

ticularly important improvement given the public health cost of premature release from isola-

tion. We also analyzed the confidence with which the two models identified the first two

consecutive true negatives. The best model misclassified fewer of these samples as culture posi-

tive (difference: n = 7/130; 5.4%), and it was equally or more confident (by up to 36.4%) in the

correct prediction for 80.0% of the samples (n = 104/130; Fig 7D).

Finally, we investigated the sensitivity of our results to the threshold probability at which

samples are predicted to be culture positive. We sequentially decreased this probability from

50% (our standard threshold) to a more conservative 10%, which increased the number of

samples predicted to be culture positive. Because the five- and ten-day protocols are discrete

rules, varying thresholds do not affect their metrics. For the best and simple models (Fig 7E;

green bars and blue dots, respectively), lower thresholds increased the number of unnecessary

isolation days, though notably the best model always had fewer days than the simple model.

Lower thresholds also resulted in substantially fewer non-isolated infectious days, and both the

simple and best models can outperform the five-day protocol (Fig 7F). Notably, lowering this

threshold reduced the number of rebound individuals that are prematurely released from iso-

lation. Although the simple model appeared to outperform the best model on the number of

infectious days, this reduction actually resulted from the simple model failing to identify a sec-

ond consecutive negative more often than the best model for all threshold values (e.g., 64.6%

vs. 51.9% of individuals for a 10% threshold). This causes more individuals to default (by our

assumption) to the ten-day procedure, thus also decreasing the number of non-isolated infec-

tious days. Overall, the best model provides the most accurate and customizable approach–

offering the potential to tune predictions to minimize non-isolated infectious days or to mini-

mize unnecessary isolation days, depending on context and local priorities.

Discussion

In this study, we developed a generalizable model to infer the results of one virological assay

from another. By applying this framework to our compiled database of non-human primate

experiments on SARS-CoV-2, we generated highly accurate predictions of sgRNA and culture

results from standard PCR protocols. These analyses allowed us to answer foundational ques-

tions about whether totRNA and sgRNA assays are fundamentally interchangeable and what

factors drive the complicated relationships between PCR and culture outcomes. Our best mod-

els identify key sources of biological and methodological variation (including exposure condi-

tions, demographics, and assay protocols), across which predictions varied widely. We showed

that because standard, single regression models (like our ‘simple models’) ignore this variation,

they could incorrectly infer culture outcomes for samples with totRNA copy numbers span-

ning twelve orders of magnitude; our biologically-informed multiple regression models

showed substantial gains in accuracy and precision. Our findings highlight the importance of

accounting for the influence of cofactors on viral load and culture positivity–no single thresh-

old value applies across study designs.

We addressed the unresolved debate about the relative merit of sgRNA to predict culture

outcomes by conducting the first comprehensive analysis of a large dataset of controlled
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exposures. We found no clear evidence that sgRNA outperforms totRNA, and instead we

found that both infer culture outcomes with high accuracy when accounting for key biological

covariates. Given these results and that we can reconstruct sgRNA trajectories from totRNA

outcomes with high accuracy, underlying cofactors may explain previously observed differ-

ences in the relative predictive capacity of totRNA and sgRNA [10,14]. Future studies could

prospectively measure all three assays (ideally with quantitative culture) to confirm and extend

our findings, though notably our model achieved a remarkable 85% accuracy in predicting cul-

ture outcomes and our error analysis showed that many prediction errors may have arisen

from upstream data issues (see below).

Our models characterize many biological patterns hypothesized (or known) based on previ-

ous experimental work on SARS-CoV-2, including the effects of exposure conditions on

sgRNA and culture outcomes. In particular, we find that larger exposure doses increase the

totRNA copy numbers associated with predicting culture positivity and detectable sgRNA.

This suggests that the amplification of residual (inoculum-derived) genomic RNA may explain

curious instances of sgRNA- or culture-negative samples with large totRNA copies, substanti-

ating concerns in the animal challenge literature that inoculation procedures can directly influ-

ence viral detection and quantification [7]. Interestingly, when we included a lab effect, our

best sgRNA model predicted that (for any given totRNA quantity) larger doses would increase

or have no effect on sgRNA quantities. This pattern could arise from two dueling effects of the

inoculation procedure, whereby larger doses may increase (at least initial) sgRNA production,

but inoculum-derived and newly produced gRNA could mask this effect. Future experimental

work could test this hypothesis by directly comparing a range of doses.

The amplification of residual inoculum may also explain differences predicted between

inoculated and non-inoculated tissues, where exposed tissues tend to have larger totRNA

quantities than non-exposed tissues for any given sgRNA value, particularly on the first day

post infection. Inoculum effects on totRNA quantity appear to linger throughout infection,

given that sgRNA predictions for exposed tissues on later days post infection fall between pre-

dictions for exposed tissues on the first day and non-exposed tissues on all days. Interestingly,

the chance of positive culture (for a given totRNA value) is highest for exposed tissues sampled

on the first day post infection, which is consistent with detection of lingering inoculum-

derived virions. In contrast to sgRNA, culture predictions for exposed tissues on all later days

post infection are highly similar to non-exposed tissues. These patterns are consistent with

most inoculated virions having infected cells, dispersed to other tissues, or been cleared by the

immune system within the first two days of infection, whereas the high stability of RNA (at

least in human respiratory fluids monitored ex vivo [67]) could enable its prolonged detection.

Our work showed that the relationships between virological assays were also shaped by host

demographic factors. Primate species affected all relationships we considered, where cynomol-

gus macaques were predicted to have the lowest sgRNA:totRNA ratio and the smallest chance

of positive culture per totRNA quantity. African green monkeys and rhesus macaques have

highly similar predictions for sgRNA:totRNA ratios and chances of positive culture. Curiously,

African green monkeys also have the smallest chance of sgRNA detection per totRNA quantity,

but only one study [8] reported totRNA and sgRNA outcomes for this species. Our models did

not identify age-mediated effects on sgRNA outcomes but did predict that geriatric animals

have the highest chances of positive culture per totRNA quantity. Sex did not influence either

sgRNA or culture outcomes. While these results may reflect differing susceptibility, disease

severity, or infection kinetics among non-human primate species and age classes, as has been

previously suggested [26,28,43,58,59,68], sample sizes were limited for African green monkeys

and geriatrics, so these patterns should be interpreted cautiously. Also, given the complexity of

viral fitness, cellular processes, and immune responses, inference on the cause of
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demographic-specific differences is difficult without mechanistic theory. Mathematical models

of the cellular life cycle [69] may uncover processes that explain the stoichiometric differences

we observed among RNA types and virions.

Assay protocols had clear impacts on model predictions. PCR target gene was a consistent

factor in our best models, with effects aligned with known differences in RNA quantities. We

find that totRNA protocols targeting the Spike (S) gene must amplify less totRNA than those

targeting the Envelope (E) or Nucleocapsid (N) genes to predict the same chance of positive

culture. This likely reflects that totRNA assays targeting S will amplify only sgS and no other

sgRNA species (because it is the most upstream sgRNA), whereas the others amplify multiple

sgRNA species and thus will have inherently higher per-sample totRNA copy numbers. Nota-

bly, this result does not imply that spike assays better predict infectivity. Different genes simply

require different RNA quantities to expect the same chance of culture positivity, and so other

considerations should motivate choice of target gene (e.g., selecting target sequences that are

conserved across variants). Similar reasoning can explain observed differences in sgRNA out-

comes, where sgRNA protocols amplifying the highly-expressed sgN have higher chances of

detecting sgRNA (per totRNA quantity) and also larger sgRNA:totRNA ratios than protocols

amplifying the less-expressed sgE and sg7 species. For viral culture, our model predicts Ver-

oE6-TMPRSS2 cells have the highest chance of detecting infectious virus (per totRNA quan-

tity), which is concordant with the importance of TMPRSS2 for SARS-CoV-2 cellular entry

[62] and agrees with experiments showing VeroE6-TMPRSS2 cells are more permissive to

infection than VeroE6 cells [21,61]. In accordance with our results, prior work has also shown

that VeroE6 cells are more sensitive than Vero76 cells, which is likely related to increased

TMPRSS2 expression in VeroE6 cells [70]. Our model also predicts that TCID50 assays are

more likely to detect infectious SARS-CoV-2 than plaque assays, agreeing with standard assay

conversions [71] and prior experimental work [63].

Although we developed this model to analyze SARS-CoV-2 in non-human primates, our

results showed many similarities with patterns previously noted in humans. Multiple studies

have found that, depending on the dataset, human-derived samples with around 5–9 log10

RNA copies had a 50% chance of being culture positive [6,19,28,72]. The prediction from our

analogous model without cofactors falls within this range (7 log10 totRNA copies). Other

work has found evidence of age-dependent increases in infectious virus shedding [73] or in

culture probability on any day rescaled to the time since peak viral load [28]. Both of these

findings are consistent with, although not directly comparable to, our result that geriatric

NHPs have higher probabilities of culture positivity per totRNA quantity. Another study also

discovered that the ratios of RNA to culturable virus differed substantially throughout infec-

tion [74]. We unfortunately did not have sufficient quantitative culture information to obtain

a similar ratio, but their findings agree with our observation that (for any given totRNA quan-

tity) sgRNA copy numbers and culture probability vary by day post infection. Finally, we

observed no culture positive (non-invasive) samples from the respiratory tract more than

seven days after an individual’s first positive test, and so the public health guidelines of isolat-

ing for five or ten days [31] performed remarkably well on our dataset, despite being designed

for an entirely different host species. Collectively, these concordances further underscore that

non-human primates are an excellent model system for human SARS-CoV-2 infection.

By analyzing our culture predictions for individual trajectories, we identified potential

causes of prediction errors. Many occurred during transition periods when viral replication

slows or begins (i.e., when infectivity changes). During this crucial phase, our best culture

model clearly outperformed the simple model by making fewer mistakes. In any case, during

these periods, assay readouts will depend strongly on sample quality and assay sensitivity, so

additional caution in interpreting culture outcomes is warranted. Beyond this, while we expect
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some errors due to complex and non-stationary biological effects, many errors are also consis-

tent with PCR or culture processing issues. Sample quality, preservation methods, and storage

conditions can substantially impact the quantification of RNA copy numbers and the detection

of infectious virus [75,76]. PCR issues resulting in the amplification of less RNA may explain

curious culture-positive samples with low or no detectable RNA (generating false negative pre-

dictions), while culture insensitivity may explain some culture-negative samples with especially

large RNA quantities (i.e., false positives). Alternatively, sample contamination or sample

swapping could cause elevated RNA levels or spurious culture positivity, where the latter is

particularly plausible for ‘data blips’ of a single culture positive surrounded by a series of cul-

ture negatives, although these could reflect brief, intermittent replication. In any case, if we

assume our model predictions were correct for at least some of these suspect samples (or else if

we exclude them from accuracy calculations entirely), our culture model’s true accuracy would

be higher than 85%.

With this study, we demonstrated the utility and feasibility of meta-analyses and Bayesian

statistical techniques for virological studies, which will become increasingly important tools

under new data sharing mandates [77]. Multiple factors enabled us to rigorously analyze our

aggregate database: (i) PCR results were reported as RNA copy numbers, which are internally

standardized (as opposed to unstandardized Ct values) [75], (ii) processing techniques and

viral concentrations per reported sample volume are consistent within each study, (iii) many

articles reported results for multiple cofactors, and (iv) we accounted for any additional

between-study variation by including article-level hierarchical error rates when possible. To

evaluate whether any of the observed patterns could be explained by unmodelled methodologi-

cal differences among articles, we also ran our best models with an additional predictor for lab

effects. Reassuringly, we found that all of our results were qualitatively unchanged between the

models with and without lab effects (with one minor exception, discussed above), offering con-

fidence in the robustness of our results. Under typical analytical approaches, our investigations

would have required one study to generate the data for all protocols, samples, and demograph-

ics of interest, which would be time and resource prohibitive. Crucially, our approach did not

require the generation of new data, which is especially important for non-human primate

models where ethical principles [78,79] and constrained supply [80,81] demand principled

data reuse whenever possible.

Although the concordances noted between prior work and our results offer confidence in

our models’ performance, our study has limitations. Multiple source articles did not report age

class or sex, requiring our model fits to marginalize over all possibilities. Consequently, param-

eter estimates for age and sex may underestimate their effects. This underscores the impor-

tance of comprehensive reporting, especially for animal challenge experiments where using

previously collected data would increase adherence to the 3R principles [78]. Also, few articles

reported results for both sgRNA and culture, so some of our investigations relied on imputed

sgRNA values. Prospective data on all three assays and more comprehensive data panels across

cofactors would enable deeper exploration of the predictive capacity of totRNA and sgRNA for

viral culture. Finally, while some cofactors were not selected for inclusion in our best models,

we cannot exclude the possibility that their effects exist but were not evident or were masked

by other predictors. Because covariate coverage relied on different studies in different labs, it

remains possible that lab or study effects impacted our results even though we found no evi-

dence of this when including lab-specific predictor variables. Some covariate effects may have

also been absorbed into our article-level error or lab effect terms. Despite these limitations, our

analysis (and similar analyses) can help prioritize resource allocation, so future experiments

can more easily adopt the gold-standard approach of testing model-based findings in head-to-

head comparisons under fixed conditions.
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While the quantitative results of our models should not be used directly to predict culture

results for any host-pathogen system besides non-human primates and SARS-CoV-2, the gen-

eral framework could be adapted easily to generate similar predictions for other host species,

other viruses, or other assays. For example, our model could be modified to robustly compare

the relationships among antigen tests, PCR, and viral culture, which has recently garnered

interest [14,15,82,83] and would benefit from the increased sample size and cofactor coverage

possible with meta-analytical treatment. Notably, when applying the framework to other sce-

narios, careful model development is still necessary, especially given that different viruses and

assays may have other defining characteristics that could affect their relationships, which

should influence the choice of candidate cofactors.

We believe our framework also shows particular promise for future development to support

clinical diagnostics. Beyond the fact that our model trained on NHP data recapitulated many

patterns previously observed in humans, we also demonstrated its excellent performance on

clinically relevant metrics. Relative to the five- or ten-day isolation protocols outlined by public

health agencies [31], our best model substantially reduced unnecessary isolation time (relative

to the ten-day rule), and it reduced the risk of releasing individuals while still infectious (rela-

tive to the 5-day rule). Our best model also clearly outperformed the simple model on both of

these metrics, in addition to correctly classifying more sequential culture negative samples and

with markedly higher confidence, all of which could be crucial improvements in public health

settings. In fact, because sampling frequency decreased over the course of infection in our

data, our results likely underestimate the potential improvements achievable in humans where

sampling can be more frequent. To realize the clinical potential of this approach, however, the

model framework must be trained on human data. This would involve some model modifica-

tions, including the consideration of other cofactors such as viral variant, prior infection, vac-

cination history, disease severity, and co-morbidities. Outside the very rare context of human

challenge trials, the model will also need to function without knowledge of exposure dose,

route, or exact timing (requiring the use of a proxy such as time since symptom onset or first

positive test). If such a model performs well, then it would offer a straightforward, standard-

ized pipeline to predict whether an individual is infectious based on SARS-CoV-2 PCR results,

which is a clear need [9,17,19,21–24]. To further increase prediction accuracy, future work

could also modify the framework to capitalize on individual-specific trajectories for patients

undergoing regular screening (e.g., by incorporating a mechanistic modeling component

[73]). Once the modeling pipeline is established, it could be readily tailored to any other patho-

gen with sufficient clinical data, either to improve management strategies of existing viruses or

even to help characterize and contain an emerging one. With these tools, public health officials

and clinicians would be better-equipped to weigh transmission risk with medical resource

availability and economic burden to designate evidence-based (and pathogen-specific) hospital

discharge criteria and public health guidelines.

By assembling and analyzing a large database that captures infection patterns described in

the clinical and animal challenge literature, we demonstrated that highly accurate RNA-based

culture predictions are possible with our statistical framework. By using non-human primate

data, we were able to identify underlying effects of exposure conditions, which would be

impossible for humans without experimental challenge trials (of which only one exists for

SARS-CoV-2, to date [84]). Consequently, our model offers the first set of explicit quantitative

guidelines on interpreting SARS-CoV-2 assay outcomes in light of exposure conditions, which

has direct implications for analyzing non-human primate experiments and thus could affect

human health by improving interpretations of crucial preclinical trials for human vaccines and

therapeutics. We propose our method as a standardized framework to conduct assay compari-

sons, whether for individual virology experiments, clinical diagnostic settings, qualitative
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literature syntheses, or quantitative meta-analyses. Such approaches for data aggregation and

(meta-)analysis are vital and powerful tools for an era of increasing data-sharing, with

untapped potential to develop translational applications and to guide further research into fun-

damental mechanisms.

Supporting information

S1 Methods. Additional methodological detail, including database compilation, prior jus-

tifications, performance analysis, model selection, and prediction generation.

(PDF)

S1 Fig. Screening and selection procedure for database compilation. We created this figure

by adapting the template flowchart provided in Moher et al. 2009 (34), which offers guidelines

and resources for systematic reviews and meta-analyses. We incorporated all of their suggested

steps for reporting the results of systematic literature searches, but all of the substantive con-

tent (e.g., numbers, exclusion reasons) is based entirely on our literature search. Additional

detail on the screening procedure is provided in the S1 Methods.

(TIF)

S2 Fig. Schematic diagram of generalizable hurdle model predicting assay Y from a more

sensitive assay X. Predictors are grey, model components are green, and predictions are red

(positive) or blue (negative). If assay X falls below the limit of detection (< LOD), assay Y is

also predicted to fall below the limit of detection. (Note that this particular assumption may

not hold for all assay relationships, and modeling adjustments may need to be made in these

scenarios.) If assay X falls above the limit of detection (> LOD), then the value of assay X is

passed as a predictor to the logistic component of the hurdle model, which uses a set of addi-

tional covariates Ai to predict whether assay Y falls above or below the LOD. If the posterior

probability of assay Y falling above the limit of detection is less than some assigned threshold

C (P(Y> LOD) < C), then the model predicts assay Y falls below the LOD. Otherwise, the

model predicts assay Y falls above the LOD. Note that the probability cut-off value C should be

selected to balance false positive and false negative rates as appropriate to investigator aims. In

this study, we used a standard value of C = 0.5. For samples predicted to fall above the LOD,

the linear model component will generate a predicted value of assay Y (Ypredict) based on

another set of covariates (Bj). If Ypredict is larger than the reported LOD for assay Y, the model

will return the predicted value. Created with BioRender.com.

(TIF)

S3 Fig. Individual viral load trajectories in the upper respiratory tract, including sgRNA

predictions generated by the best sgRNA model. Each panel corresponds with one individual

and one non-invasive sample type, indicated in the top right of each panel. Only individuals

with both total RNA and sgRNA results for at least two days post infection are plotted. Some

individuals were sampled from multiple locations in the upper respiratory tract, in which case

they are plotted as neighboring panels. Each line and the accompanying points track the indi-

vidual’s total RNA (dark blue, circle), observed sgRNA (light blue, diamond), and median pre-

dicted sgRNA (green, triangle) trajectories. For some individuals (e.g., KS_2021C), multiple

RT-qPCR assays targeting different genes were run on the same sample, which are plotted as

distinct panels. All samples observed or predicted to fall below the limit of detection are plotted

below 0 at set values for visual clarity (totRNA: -0.5, observed sgRNA: -0.75, predicted sgRNA:

-1). When available, the limits of detection (LOD) or quantification (LOQ) for PCR assays are

plotted as dotted lines in the assay-specific color. When both the LOD and LOQ were available,

only the LOD is plotted. In instances where the total RNA and sgRNA assay LOD are equal,
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only the sgRNA line is visible. No instances exist in this dataset where the LOD or LOQ is only

available for one RNA type.

(TIF)

S4 Fig. Individual viral load trajectories in the lower respiratory tract, including sgRNA

predictions generated by the best sgRNA model. Each panel corresponds with one individual

and one non-invasive sample type, indicated in the top right of each panel (‘BAL’: bronchoal-

veolar lavage). Only individuals with both total RNA and sgRNA results for at least two days

post infection are plotted. Each line and the accompanying points track the individual’s total

RNA (dark red, circle), observed sgRNA (orange, diamond), and median predicted sgRNA

(yellow, triangle) trajectories. For some individuals (e.g., KS_2021C), multiple RT-qPCR assays

targeting different genes were run on the same sample, which are plotted as distinct panels. All

samples observed or predicted to fall below the limit of detection are plotted below 0 at set val-

ues for visual clarity (totRNA: -0.5, observed sgRNA: -0.75, predicted sgRNA: -1). When avail-

able, the limits of detection (LOD) or quantification (LOQ) for PCR assays are plotted as

dotted lines in the assay-specific color. When both the LOD and LOQ were available, only the

LOD is plotted. In instances where the total RNA and sgRNA assay LOD are equal, only the

sgRNA line is visible. No instances exist in this dataset where the LOD or LOQ is only available

for one RNA type.

(TIF)

S5 Fig. Individual viral load trajectories in the gastrointestinal and other systems, includ-

ing sgRNA predictions generated by the best sgRNA model. Each panel corresponds with

one individual and one non-invasive sample type, indicated in the top right of each panel.

Only individuals with both total RNA and sgRNA results for at least two days post infection

are plotted. Each line and the accompanying points track the individual’s total RNA (dark pur-

ple, circle), observed sgRNA (dark pink, diamond), and median predicted sgRNA (light pink,

triangle) trajectories. All samples observed or predicted to fall below the limit of detection are

plotted below 0 at set values for visual clarity (totRNA: -0.5, observed sgRNA: -0.75, predicted

sgRNA: -1). When available, the limits of detection (LOD) or quantification (LOQ) for PCR

assays are plotted as dotted lines in the assay-specific color. When both the LOD and LOQ

were available, only the LOD is plotted. In instances where the total RNA and sgRNA assay

LOD are equal, only the sgRNA line is visible. No instances exist in this dataset where the LOD

or LOQ is only available for one RNA type.

(TIF)

S6 Fig. Individual viral loads for invasive samples, including sgRNA predictions generated

by the best sgRNA model. Each panel corresponds with one individual, indicated with text in

the panel (day post infection: individual). Each point presents the total RNA (circle), observed

sgRNA (diamond), and predicted sgRNA (triangle) values. All samples observed or predicted

to fall below the limit of detection are plotted below 0 at set values for visual clarity (totRNA:

-0.5, observed sgRNA: -0.75, predicted sgRNA: -1). When available, the limits of detection

(LOD) or quantification (LOQ) for PCR assays are plotted as dotted lines in the assay-specific

color. When both the LOD and LOQ were available, only the LOD is plotted. In instances

where the total RNA and sgRNA assay LOD are equal, only the sgRNA line is visible. No

instances exist in this dataset where the LOD or LOQ is only available for one RNA type.

(TIF)

S7 Fig. Individual culture trajectories in the upper respiratory tract. Each panel corre-

sponds with one individual and one non-invasive sample type, indicated in the top right of

each panel. Only individuals with culture results for at least two days post infection are plotted.
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Culture data are plotted as squares above the yellow line at 10 log10 copies. Yellow squares are

culture positive samples, while grey squares are culture negative. Squares outlined in black are

correct predictions, squares with no outline are incorrect predictions. We did not generate

predictions for the culture samples outlined in blue, as they do not have available totRNA

results. We also plot observed total RNA values (circle) and observed sgRNA values (dia-

mond), otherwise we plot predicted median sgRNA values generated by our best sgRNA

model (triangle). Some individuals were sampled from multiple locations in the upper respira-

tory tract, in which case they are plotted as neighboring panels. All samples observed or pre-

dicted to fall below the limit of detection are plotted below 0 at set values for visual clarity

(totRNA: 0, sgRNA: -1). When available, the limits of detection (LOD) or quantification

(LOQ) for PCR assays are plotted as dotted lines in the assay-specific color. When both the

LOD and LOQ were available, only the LOD is plotted. In instances where the total RNA and

sgRNA assay LOD are equal, only the sgRNA line is visible. No instances exist in this dataset

where the LOD or LOQ is only available for one RNA type. Individuals from one study cannot

be included in this figure due to a data sharing agreement.

(TIF)

S8 Fig. Individual culture trajectories in the lower respiratory tract. Each panel corresponds

with one individual and one non-invasive sample type, indicated in the top right of each panel.

Only individuals with culture results for at least two days post infection are plotted. Culture

data are plotted as squares above the yellow line at 10 log10 copies. Yellow squares are culture

positive samples, while grey squares are culture negative. Squares outlined in black are correct

predictions, squares with no outline are incorrect predictions. We did not generate predictions

for the culture samples outlined in blue, as they do not have available totRNA results. We also

plot observed total RNA values (circle) and observed sgRNA values (diamond) when available,

otherwise we plot predicted median sgRNA values generated by our best sgRNA model (trian-

gle). Some individuals were sampled from multiple locations in the lower respiratory tract, in

which case they are plotted as neighboring panels. All samples observed or predicted to fall

below the limit of detection are plotted below 0 at set values for visual clarity (totRNA: 0,

sgRNA: -1). When available, the limits of detection (LOD) or quantification (LOQ) for PCR

assays are plotted as dotted lines in the assay-specific color. When both the LOD and LOQ

were available, only the LOD is plotted. In instances where the total RNA and sgRNA assay

LOD are equal, only the sgRNA line is visible. No instances exist in this dataset where the LOD

or LOQ is only available for one RNA type.

(TIF)

S9 Fig. Individual culture trajectories in the gastrointestinal and other systems. Each panel

corresponds with one individual and one non-invasive sample type, indicated in the top right

of each panel. Only individuals with culture results for at least two days post infection are plot-

ted. Culture data are plotted as squares above the yellow line at 10 log10 copies. Yellow squares

are culture positive samples, while grey squares are culture negative. Squares outlined in black

are correct predictions, squares with no outline are incorrect predictions. We also plot

observed total RNA values (circle) and observed sgRNA values (diamond) when available, oth-

erwise we plot predicted median sgRNA values generated by our best sgRNA model (triangle).

Some individuals were sampled from multiple locations, in which case they are plotted as

neighboring panels. All samples observed or predicted to fall below the limit of detection are

plotted below 0 at set values for visual clarity (totRNA: 0, sgRNA: -1). When available, the lim-

its of detection (LOD) or quantification (LOQ) for PCR assays are plotted as dotted lines in

the assay-specific color. When both the LOD and LOQ were available, only the LOD is plotted.

In instances where the total RNA and sgRNA assay LOD are equal, only the sgRNA line is
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visible. No instances exist in this dataset where the LOD or LOQ is only available for one RNA

type. Individuals from one study cannot be included in this figure due to a data sharing agree-

ment.

(TIF)

S10 Fig. Individual culture data for invasive samples. Each panel corresponds with one indi-

vidual, indicated with text in the panel (day post infection: individual). Culture data are plotted

as squares above the yellow line at 10 log10 copies. Yellow squares are culture positive samples,

while grey squares are culture negative. Squares outlined in black are correct predictions,

squares with no outline are incorrect predictions. We did not generate predictions for the cul-

ture samples outlined in blue, as they do not have available totRNA results. We also plot the

observed total RNA (circle) and observed sgRNA (diamond) values when available, otherwise

we plot predicted median sgRNA values generated by our best sgRNA model (triangle). Color

corresponds to the organ system from which the tissue was obtained (URT, upper respiratory

tract; LRT, lower respiratory tract; GI & Other, gastrointestinal and other systems). All samples

observed or predicted to fall below the limit of detection are plotted below 0 at set values for

visual clarity (totRNA: 0, sgRNA: -1). When available, the limits of detection (LOD) or quanti-

fication (LOQ) for PCR assays are plotted as dotted lines in the assay-specific color. When

both the LOD and LOQ were available, only the LOD is plotted. In instances where the total

RNA and sgRNA assay LOD are equal, only the sgRNA line is visible. No instances exist in this

dataset where the LOD or LOQ is only available for one RNA type.

(TIF)

S11 Fig. Statistics relating PCR and culture results. (A) Difference between total RNA and

sgRNA copy numbers when both are detectable, stratified by target gene predictor with the fol-

lowing acronyms: “T"SG"”: totRNA-high/sgRNA-high; “T#SG"”: totRNA-low/sgRNA-high;

“T"SG#”: totRNA-high/sgRNA-low; “T#SG#”: totRNA-high/sgRNA-low. No totRNA-high/

sgRNA-high data was available for this investigation. (B) Total RNA copy numbers for all

sgRNA negative samples, stratified by target gene as in (A). (C) Pearson correlation coeffi-

cients between total RNA and sgRNA copy numbers when both are detectable, for all individ-

ual-sample trajectories with at least three sampling days where both were positive. (D)

Comparison of the timing of the first negative results from total RNA and sgRNA assays for

each available individual-sample trajectory (dpi: day post infection). (E) Total RNA copy num-

bers (when detectable) for all culture positive samples, stratified by culture assay type. (F) Total

RNA copy numbers (when detectable) for all culture negative samples, stratified by culture

assay type as in (E). (G) Comparison of the timing of the first negative results from total RNA

and culture assays for each available individual-sample trajectory. (H) Comparison of the tim-

ing of the first positive results from total RNA and culture assays for each individual-sample

trajectory. For panels (A), (B), (C), (E), and (F), the purple dashed line indicates the median

for the full distribution (i.e., not stratified by assay or target gene). For panels (D), (G), and

(H), the size of each circle indicates the number of individuals with the indicated observation.

Individuals in the ‘None’ column were never negative (D, G) or positive (H) for total RNA.

Individuals that were never sgRNA negative (D), culture negative (G), or culture positive (H)

are not plotted.

(TIF)

S12 Fig. Results from the best sgRNA model with an additional predictor for lab group.

(A) The predicted chances of sgRNA detection for three key totRNA quantities (3 log10, blue;

5 log10, salmon; 7 log10, red), across the eight available lab groups and for the standard cofac-

tor set. The article(s) included in each group are provided in S8 Table. Each point is one out of
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200 samples generated for each lab group, with transparency to show the density of points. (B)

As in Fig 3B, with additional predictions from the model including a lab effect (‘Lab’, grey). (C

and D) As in Fig 3C and 3D, except showing the results from the model including a lab effect.

(E) The predicted quantities of sgRNA for a sample with 5 log10 totRNA copies, across the

eight available lab groups and for the standard cofactor set. (F) As in Fig 3F, with additional

predictions from the model including a lab effect (‘Lab’, grey). (G and H) As in Fig 3G and 3H,

except showing the results from the model including a lab effect. In panels C, D, G and H, the

predictions are not specific to a particular lab group (i.e., we set the lab effect term to zero to

extract general patterns across all labs).

(TIF)

S13 Fig. Sensitivity analyses comparing informative (blue) and non-informative (red) pri-

ors. (A) Each line presents an expected model fit generated by sampling the indicated prior

distributions. Informative priors are outlined in the Methods and S1 Methods. All parameters

were given a N(0,1) prior for all non-informative investigations. Informative priors much bet-

ter represent a priori understanding of the relationships between total RNA copy numbers and

both sgRNA and culture outcomes. (B) Each panel compares the final parameter estimates

obtained for the corresponding best model using the different prior types (red: non-informa-

tive; blue: informative), where each row is a distinct parameter. Acronyms are as described in

Figs 3 and 5. Note that in many instances parameters estimates are almost perfectly overlap-

ping, so only the non-informative (red) priors are visible.

(TIF)

S14 Fig. Error analysis for the best sgRNA model. (A) Individual-specific sgRNA trajecto-

ries, where each row presents one individual. These are stratified by whether the model mis-

classifies any samples for that individual (“Some errors”) or whether the model makes no

misclassifications (“No errors”). In both (A) and (B), yellow circles indicate positive samples

and grey indicates negative samples. Circles with a black outline correspond with correctly

classified samples, while no outline indicates incorrectly classified samples. (B) Scatterplot of

all samples with sgRNA results, stratified by the elements of a confusion matrix and colored as

in (A). The x-axis tracks the day post infection and the y-axis plots log10 total RNA copy num-

bers. Samples in the grey shaded region along the bottom present all samples where total RNA

was undetectable. (C) Histograms of all samples grouped by the elements of a confusion

matrix, where log10 total RNA copy numbers per sample is plotted on the y-axis. Bins located

in the grey shaded region along the bottom (labelled “<LOD”) include all totRNA-negative

samples.

(TIF)

S15 Fig. Additional performance comparisons between the simple and best culture models.

(A) Distribution of the differences between the predicted probabilities of both models for all

totRNA-positive samples, stratified by whether the sample was culture positive (yellow) or

negative (grey). Samples on the right side of the dashed blue line were predicted with higher

confidence by the best model, while those on the left side were predicted with higher confi-

dence by the simple model. (B) Distribution of median model-predicted chances of positive

culture for intermediate totRNA-positive samples (6–8 log10 copies), stratified by model type

and observed outcomes. Samples right of the dashed vertical line are correct predictions. The

colored text gives the percent of samples that are correctly classified by each model. (C) As in

panel A, except only for intermediate totRNA-positive samples (6–8 log10 copies).

(TIF)
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S16 Fig. Results from the best culture model with an additional predictor for lab group.

(A) The predicted chances of culture positivity for three key totRNA quantities (3 log10, blue;

7 log10, salmon; 11 log10, red), across the ten available lab groups and for the standard cofac-

tor set. The article(s) included in each group are listed in S8 Table. Each point is one out of 200

samples generated for each lab group, with transparency to show the density of points. (B) As

in Fig 5B, with additional predictions from the model including a lab effect (‘Lab’, grey). (C

and D) As in Fig 5C and 5D, except showing the results from the model including a lab effect.

In panels C and D, the predictions are not specific to a particular lab group (i.e., we set the lab

effect term to zero to extract general patterns across all labs).

(TIF)

S17 Fig. Viral load and culture trajectories for individuals with data blip (A) or prediction

blip (B) error types. Panel-specific errors are indicated with red outlines. All other samples

with prediction errors have no outline. Correct predictions are outlined in black. Yellow

squares indicate known culture positive samples, while grey squares indicate known culture

negative samples. Text in the upper right corner of each panel indicates the ID name and sam-

ple type of the individual from whom the data was derived. All totRNA-negative samples are

plotted below the grey dashed line at zero. Note that individual NN_#5412 has an additional

(true negative) sample available on a later day post infection, which is not shown for visual

clarity. Six trajectories from one study cannot be included in this figure due to a data sharing

agreement.

(TIF)

S18 Fig. Isolation end times predicted by the simple (A) and best (B) culture models. Each

row is a unique individual, and each panel displays all individuals included in the isolation

analyses. The results of all samples after every individual’s first positive test (PCR or culture)

are displayed, where culture positive samples are yellow and negative samples are grey. Each

individual’s last culture positive and their subsequent culture negative times are plotted with

more intensity for better visualization. For each individual, their isolation end time is shown

with colored, filled diamonds (i.e., the time of their second consecutive predicted culture nega-

tive test). When isolation end time could not be determined by the model (i.e., the model did

not predict a second consecutive negative), we conservatively set that individual’s end time to

day 10. Each individual’s first predicted negative is shown by an empty diamond, and the true

(observed) time of their second consecutive negative is shown with a small red point. With yel-

low lines, we show the time range that we consider each individual to be infectious, based on

the data, which ranges from their first total RNA positive day up to the midpoint between their

first culture negative test after their last observed culture positive test. For individuals with no

observed negative after their last positive, we conservatively assumed their next observed nega-

tive to be day 10. With dashed red lines, we also indicate which individuals show evidence of a

rebound infection (i.e., the individuals with at least one culture negative occurring between

two culture positives). Finally, we use colored vertical lines to display the days on which the

five- and ten-day protocols would release individuals from isolation.

(TIF)

S19 Fig. Days between consecutive tests relative to the number of days since the first posi-

tive test. The size of the point shows the number of samples at the given coordinate. The mar-

ginal histograms show the distribution of points along each individual axis.

(TIF)

S1 Table. Summary of articles included in the dataset. Multiple rows for an individual article

are included when the study involved multiple species and/or multiple exposure doses. In all
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columns, U indicates the detail is unknown. Sample sizes (N) are presented in the following

format: number of available datapoints (number of individuals). Species abbreviations are as

follows: RM, rhesus macaque; CM, cynomolgus macaque; AGM, African green monkey. Age

class presents the standardized assignments according to our protocol (S1 Methods), and the

abbreviations are: J, juvenile; A, adult; G, geriatric. Individuals inoculated via multiple routes

are indicated by exposure routes joined by commas, where the abbreviations are: AE, aerosol;

IT, intratracheal; IN, intranasal; IG, intragastric; OC, ocular; OR, oral. Exposure dose is pre-

sented as log10 plaque forming units, and an adjoining * indicates the dose was originally

reported as TCID50, so those values were converted using the standard method described in

the S1 Methods. NI indicates non-invasive sample types (i.e., swabs, biofluids, BAL), while I

indicates invasive tissue samples obtained at necropsy. Sample location distinguishes between

the following systems: URT, upper respiratory tract; LRT, lower respiratory tract; GI, gastroin-

testinal tract; and Other, all other locations. Sample time presents the days post infection with

available samples according to our DPI predictor, where 1: 1 dpi, inoculated tissues, 2: 2+ dpi,

inoculated tissues, 3: any dpi, non-inoculated tissue (further categorization information is in

S9 Table). PCR target genes are stratified by total RNA (totRNA) and sgRNA. The level of the

target gene predictor for the sgRNA model follows the sgRNA gene in parentheses: (1)

totRNA-high/sgRNA-high, (2) totRNA-low/sgRNA-high, (3) totRNA-high/sgRNA-low, and

(4) totRNA-low/sgRNA-low. The cell lines used for culture are indicated when available, with

SS2 as an abbreviation for TMPRSS2. An adjoining † indicates the use of a TCID50 assay,

while no symbol indicates a plaque assay.

(DOCX)

S2 Table. Extended sgRNA logistic model performance comparisons. Models are ordered

by increasing number of predictors, with the simplest (l1), best (l4.2), and full (l8.1) models

noted in bold. We report expected log pointwise predictive density (ELPD) generated by

10-fold cross validation (cross-validation columns), where larger ELPD indicates better perfor-

mance. ELPD difference indicates the difference between ELPDs of the given model and the

model with the largest ELPD (in this case model l6.1, though this is not our ‘best model’). The

PSIS-LOO approximation columns present statistics generated by running Pareto-Smoothed

Importance Sampling approximate leave-one-out cross validation, including ELPD and ELPD

difference as above. The prediction columns indicate the percent of samples (stratified by

training and test sets) for which posterior predictions generated by 10-fold cross validation

correctly classified them as below or above the limit of detection (i.e., where the per-sample

posterior predictive distributions exhibited at least a probability of 0.5 for the true, observed

classification). MCC is the Matthews correlation coefficient. Note that all models included

total RNA as a predictor, even though it is not specified in the predictor column. Standard

error (SE) is shown in parentheses following all relevant statistics.

(DOCX)

S3 Table. Extended sgRNA linear model performance comparisons. Models are ordered by

increasing number of predictors, with the simplest (f1), best (f5.1), and full (f8.1) models noted

in bold. We report expected log pointwise predictive density (ELPD) generated by 10-fold

cross validation (cross-validation columns), where larger ELPD indicates better performance.

The best logistic model was run in tandem with all tested linear components, so the ELPD

reported here reflects the sum of the ELPD for the best logistic and the considered linear com-

ponents. ELPD difference indicates the difference between ELPDs of the given model and the

model with the largest ELPD (in this case model l5.1, the ‘best model’). The PSIS-LOO approx-

imation columns present statistics generated by running Pareto-Smoothed Importance Sam-

pling approximate leave-one-out cross validation, including ELPD and ELPD difference.
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Standard error (SE) is shown in parentheses following all relevant statistics. We also used mul-

tiple metrics to assess model predictions, which are all stratified by performance on training

versus test data sets and were generated by 10-fold cross validation. MAE is the median differ-

ence between the observed value and the posterior predictive median (i.e., median absolute

error around the median) for all samples with sgRNA above the LOD, and this metric was also

scaled by one standard deviation (Scaled). ‘% within 50% PI’ and ‘% within 95% PI’ columns

indicate the percent of sgRNA positive samples where the true, observed value fell within the

sample-specific 50% and 95% prediction intervals, respectively. Note that all models included

total RNA as a predictor, even though it is not specified in the predictor column.

(DOCX)

S4 Table. Extended culture model performance comparisons with totRNA as the primary

predictor. Models are ordered by increasing number of predictors, with the simplest (c1), best

(c8.1), and full (c10.1) models noted in bold. We report expected log pointwise predictive den-

sity (ELPD) generated by 10-fold cross validation (cross-validation columns), where larger

ELPD indicates better performance. ELPD difference indicates the difference between ELPDs

of the given model and the model with the largest ELPD (in this case model l9.2, though this is

not our ‘best model’). The PSIS-LOO approximation columns present statistics generated by

running Pareto-Smoothed Importance Sampling approximate leave-one-out cross validation,

including ELPD and ELPD difference. The prediction column indicates the percent of samples

(stratified by training and test sets) for which posterior predictions generated by 10-fold cross

validation correctly classified them as below or above the limit of detection (i.e., where the per-

sample posterior predictive distributions exhibited at least a probability of 0.5 for the true,

observed classification). MCC is the Matthews correlation coefficient. Standard error (SE) is

shown in parentheses following all relevant statistics.

(DOCX)

S5 Table. Extended culture model performance comparisons with sgRNA as the primary

predictor. Models are ordered by increasing number of predictors, with the simplest (c1) and

best/full (c10.1) models noted in bold. We report expected log pointwise predictive density

(ELPD) generated by 10-fold cross validation (cross-validation columns), where larger ELPD

indicates better performance. ELPD difference indicates the difference between ELPDs of the

given model and the model with the largest ELPD (in this case model c10.1, our ‘best model’).

The PSIS-LOO approximation columns present statistics generated by running Pareto-

Smoothed Importance Sampling approximate leave-one-out cross validation, including ELPD

and ELPD difference. The prediction column indicates the percent of samples (stratified by

training and test sets) for which posterior predictions generated by 10-fold cross validation

correctly classified them as below or above the limit of detection (i.e., where the per-sample

posterior predictive distributions exhibited at least a probability of 0.5 for the true, observed

classification). MCC is the Matthews correlation coefficient. Standard error (SE) is shown in

parentheses following all relevant statistics.

(DOCX)

S6 Table. 90% prediction intervals for the best sgRNA model. These intervals correspond

with the predictions in Fig 3C and 3H.

(DOCX)
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46. Li D, Edwards RJ, Manne K, Martinez DR, Schäfer A, Alam SM, et al. In vitro and in vivo functions of

SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021 Aug 5; 184(16):4203–4219.

e32.

47. Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L, Schulz J, et al. Respiratory
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