
PROCEEDINGS OF IEEE 1

A Platform-Based Design Methodology
with Contracts and Related Tools for

the Design of Cyber-Physical Systems
Pierluigi Nuzzo, Alberto Sangiovanni-Vincentelli, Davide Bresolin, Luca Geretti, Tiziano Villa

Abstract—We introduce a platform-based design methodology
that uses contracts to specify and abstract the components of
a cyber-physical system (CPS), and provide formal support to
the entire CPS design flow. The design is carried out as a
sequence of refinement steps from a high-level specification to
an implementation built out of a library of components at the
lower level. We review formalisms and tools that can be used
to specify, analyze or synthesize the design at different levels
of abstractions. For each level, we highlight how the contract
operations can be concretely computed as well as the research
challenges that should be faced to fully implement them. We
illustrate our approach on the design of embedded controllers
for aircraft electric power distribution systems.

I. INTRODUCTION

ALARGE number of new IT applications are emerging,
which go beyond the traditional boundaries between

computation, communication and control. The majority of
these applications, such as “smart” buildings, “smart” traf-
fic, “smart” grids, “smart” cities, cyber security, and health-
care wearables, build on distributed, networked sense-and-
control platforms, characterized by the tight integration of
“cyber” aspects (computing and networking) with “physical”
ones (e.g., mechanical, electrical, and chemical processes). In
these cyber-physical systems (CPS) [1], [2], [3] computational
devices monitor and control the physical processes, usually
with feedback loops where physics affects computation and
vice versa.

Intelligent systems that gather, process and apply infor-
mation are changing the way entire industries operate, and
have the potential to radically influence how we deal with
a broad range of crucial societal problems. As embedded
digital electronics becomes pervasive and cost-effective, co-
design of both the cyber and the physical portions of these
systems shows promise of making the holistic system more

P. Nuzzo and A. Sangiovanni-Vincentelli are with the Department of
Electrical Engineering and Computer Sciences, University of California,
Berkeley, USA. Email: {nuzzo, alberto}@eecs.berkeley.edu.

D. Bresolin is with the Department of Computer Science and Engineering,
University of Bologna, Bologna, Italy. Email: davide.bresolin@unibo.it.

L. Geretti is with the Department of Electrical Engineering (DIEGM),
University of Udine, Udine, Italy. Email: luca.geretti@univr.it.

T. Villa is with the Department of Computer Science, University of Verona,
Verona, Italy. Email: tiziano.villa@univr.it.

This work was supported in part by IBM and UTC via the iCyPhy
consortium, by the TerraSwarm Research Center, one of six centers supported
by the STARnet phase of the Focus Center Research Program (FCRP), a
Semiconductor Research Corporation program sponsored by MARCO and
DARPA, and by the EU Commission through the EU project FP7-ICT-223844
CON4COORD.

capable and efficient. However, CPS complexity and hetero-
geneity, originating from combining what in the past have been
separate worlds, tend to substantially increase the design and
verification challenges.

A serious obstacle to the efficient realization of CPS is
the inability to rigorously model the interactions among het-
erogeneous components and between the physical and the
cyber sides. CPS design entails the convergence of several
sub-disciplines, and tends to stress all existing modeling
languages and frameworks, which are hardly interoperable
today. While in computer science logic is emphasized rather
than dynamics, and processes follow a sequential semantics,
physical processes are generally represented using continuous-
time dynamical models, often expressed as differential equa-
tions, which are acausal, concurrent models. It is therefore
difficult to accurately capture the interactions between these
two worlds. Moreover, a severe limitation in common design
practice is the lack of formal specifications. Requirements are
written in languages that are not suitable for mathematical
analysis and verification. Assessing system correctness is then
left for simulation and, later in the design process, prototyp-
ing. Thus, the traditional heuristic design process based on
informal requirements and designers’ experience can lead to
implementations that are inefficient and sometimes do not even
satisfy the requirements, yielding long re-design cycles, cost
overruns and unacceptable delays.

The cost of being late to market or of product malfunc-
tioning is staggering as witnessed by the recent recalls and
delivery delays that system industries had to bear. Toyota’s
infamous recall of approximately 9 million vehicles due to the
sticky accelerator problem1, Boeing’s 787 delay bringing an
approximate toll of $3.3 billion2 are examples of devastating
effects that design problems may cause. If this is the present
situation, the problem of designing planetary-scale CPS ap-
pears insurmountable unless bold steps are taken to bridge the
gap between system science and system engineering.

Several languages and tools have been proposed over the
years to overcome the limitations above and enable model-
based development of CPS. However, an all-encompassing
framework for CPS design that interconnects different tools,
possibly operating on different system representations, is still
missing [3]. By reflecting on the history of achievements of
electronic design automation in taming the design complexity

1see e.g., http://www.autorecalls.us
2see, e.g., http://en.wikipedia.org/wiki/Boeing 787

PROCEEDINGS OF IEEE 2

of VLSI systems, we advocate that CPS design automation
efforts are doomed to be impractical and poorly scalable,
unless they are framed in structured design methodologies
and in a formalization of the design process in a hierarchical
and compositional way. Hierarchy has been instrumental to
scalable VLSI design, where boosts in productivity have
always been associated with a rise in the level of abstraction of
design capture, from transistor to register transfer level (RTL),
to systems-on-chip. On the other hand, designers typically
assemble large and complex systems from smaller and simpler
components, such as pre-designed intellectual property (IP)
blocks. Therefore, compositional approaches offer a “natural”
perspective that should inform the whole design process,
starting from its earlier stages.

In this paper, we present a path towards an integrated
framework for CPS design; the pillars for the framework
are a methodology that relies on the platform-based design
paradigm (PBD) [4] and the algebra of contracts to formalize
the design process and enable the realization of systems
in a hierarchical and compositional manner. Contracts are
mathematical abstractions, explicitly defining the assumptions
of each component on its environment and the guarantees
of the component under these assumptions. The design is
carried out as a sequence of refinement steps from a high-
level specification to an implementation built out of a library
of components at the lower level. The high-level specification
is first formalized in terms of contracts to enable requirement
validation and early detection of inconsistencies. Then, at each
step, contracts are refined by combining synthesis, optimiza-
tion and simulation-based design space exploration methods.

We review formalisms and tools that can be used to specify,
analyze or synthesize the design at different levels of abstrac-
tions, from the level of discrete systems, to the one of hybrid
systems. For each formalism, we highlight how the contract
operators can be computed, and expose the main research chal-
lenges for their implementation. We conclude by illustrating
our approach on the design of embedded controllers for aircraft
electric power distribution systems.

II. PLATFORM-BASED DESIGN WITH CONTRACTS
FOR CYBER-PHYSICAL SYSTEMS

We consider in this paper a particular case of CPS that
incorporates most, if not all, of the features of general CPSs,
to help explain the methodology: a control system, composed
of a physical plant, including sensors and actuators, and an
embedded controller. The controller runs a control algorithm
to restrict the behaviors of the plant so that all the remaining
(closed-loop) behaviors satisfy a set of system requirements.
Specifically, we consider reactive controllers, i.e. controllers
that maintain an ongoing relation with their environment
by appropriately reacting to it. Our goal is to design the
system architecture, i.e. the interconnection among system
components, and the control algorithm, to satisfy the set of
high-level requirements.

As shown in Fig. 4 (a), the design methodology consists
of two main steps, namely, system architecture design and
control design. The system architecture design step instantiates

system components and interconnections among them to gen-
erate an optimal architecture while guaranteeing the desired
performance, safety and reliability. Typically, this design step
includes the definition of both the embedded system and the
plant architectures. The embedded system architecture consists
of software, hardware, and communication components, while
the plant architecture depends on the physical system under
control, and may consist of mechanical, electrical, hydraulic
or thermal components. Sensors and actuators reside at the
boundary between the embedded system and the plant [5].
Given an architecture, the control design step includes the
exploration of the control algorithm and its deployment on
the embedded platform.

The above two steps are however connected. The correctness
of the controller needs to be enforced in conjunction with
the assumptions on the plant. Similarly, performance and
reliability of an architecture should be assessed for the plant
in closed loop with the controller.

At the highest level of abstraction, the starting point is
a set of requirements, predominantly written in text-based
languages that are not suitable for mathematical analysis and
verification. The result is a model of both the architecture
and the control algorithms to be further refined in subsequent
design stages. We place this process in the form of Platform-
Based Design and we use contracts extensively to verify the
design and to build refinements that are correct by construc-
tion.

A. Platform-Based Design

In PBD, at each step, top-down refinements of high-level
specifications are mapped onto bottom-up abstractions and
characterizations of potential implementations. Each abstrac-
tion layer is defined by a design platform, which is the
set of all architectures that can be built out of a library
(collection) of components according to composition rules. In
the bottom-up phase of each design step, we build and model
the component library (including both plant and controller).
In the top-down phase, we formalize the high-level system
requirements and we perform an optimization (refinement)
phase called mapping, where the requirements are mapped
onto the available implementation library components and
their composition.

Mapping is cast as an optimization problem, where a set
of performance metrics and quality factors are optimized
over a space constrained by both system requirements and
component feasibility constraints. Mapping is the mechanism
that allows to move from a level of abstraction to a lower one
using the available components within the library. Note that
when some constraint cannot be satisfied using the available
library components or the mapping result is not satisfactory
for the designer, additional elements can be designed and
inserted into the library. For example, when implementing an
algorithm with code running on a processor, we are assigning
the functionality of the algorithm to a processor and the code is
the result of mapping the “equations” describing the algorithm
onto the instruction set of the processor. If the processor is too
slow, then real-time constraints may be violated. In this case,

PROCEEDINGS OF IEEE 3

a new processor has to be found or designed that executes
the code fast enough to satisfy the real-time constraint. In
the mapping phase, we consider different viewpoints (aspects,
concerns) of the system (e.g. functional, reliability, safety,
timing) and of the components.

If the design process is carried out as a sequence of refine-
ment steps from the most abstract representation of the design
platform (top-level requirements) to its most concrete repre-
sentation (physical implementation), providing guarantees on
the correctness of each step becomes essential. Specifically,
we seek mechanisms to formally prove that: (i) a set of
requirements are consistent, i.e. there exists an implementation
satisfying all of them; (ii) an aggregation of components is
compatible, i.e. there exists an environment in which they can
correctly operate; (iii) an aggregation of components refines
a specification, i.e. it implements the specification and is
able to operate in any environment admitted by it. Moreover,
whenever possible, we require the above proofs to be per-
formed automatically and efficiently, to tackle the complexity
of today’s CPS. Therefore, to formalize the above design
concepts, and enable the realization of system architectures
and control algorithms in a hierarchical and compositional
manner that satisfies the constraints and optimizes the cost
function(s), we resort to contracts.

B. Contracts: An Overview

The notion of contracts originates in the context of compo-
sitional assume-guarantee reasoning [6], which has been used
for a long time, mostly for software verification. In a contract
framework, design and verification complexity is reduced by
decomposing system-level tasks into more manageable sub-
problems at the component level, under a set of assumptions.
System properties can then be inferred or proved based on
component properties. Rigorous contract theories have been
developed over the years, including assume-guarantee (A/G)
contracts [7] and interface theories [8]. However, their concrete
adoption in CPS design is still in its infancy, a major challenge
being the absence of a comprehensive modeling formalism for
CPS, due to their complexity and heterogeneity [9], [10].

In this paper, we adopt the assume-guarantee (A/G) contract
framework, as introduced by Benveniste et al. [7], [10], to
reason about requirements and their refinement during the
design process. Because of the explicit distinction between
component and environment, A/G contracts are deemed as a
rigorous yet intuitive framework, which directly conforms to
the thought process of a designer, aiming to guarantee certain
performance figures for the design under specific assumptions
on its environment. An integration language incorporating
A/G contracts to formalize system requirements and enable
the generation of simulation monitors has been proposed
within the META research program [11], with the aim to
compress the product development and deployment timeline
of defense systems. Furthermore, over the last few years,
many publications have demonstrated the application of A/G
contracts in different domains, such as automotive [12], [13],
analog integrated systems [5] and, more recently, synthesis and
verification of control algorithms for CPS [14], [15], [16], [17].

Since A/G contracts are centered around behaviors, they
are expressive and versatile enough to encompass all kinds of
models encountered in system design, from hardware and soft-
ware models to representations of physical phenomena [10],
[18]. The particular structure of the behaviors is defined by
specific instances of the contract model. This will only affect
the way operators in the contract algebra are implemented,
since the basic definitions will not vary.

In the sequel, before describing the steps of our methodol-
ogy, we detail the notions of components and contracts.

C. Components and Contracts

Since PBD is based on the composition of components
while refining the design, we start our analysis with a formal
representation of a component and we associate to it a set
of properties that the component satisfies expressed with
contracts. The contracts will be used to verify the correctness
of the composition and of the refinements.

A component M can be seen as an abstraction represent-
ing an element of a design, characterized by the following
attributes:
• a set of input U , output Y and internal X variables (in-

cluding state variables); a set of configuration parameters
K, and a set of input, output and bidirectional ports
Λ. Components can be connected together by sharing
certain ports under constraints on the values of certain
variables. In what follows, to simplify, we use the same
term variables to denote both component variables and
ports;

• a set of behaviors, which can be implicitly represented
by a dynamic behavioral model F(u, y, x, κ) = 0,
uniquely determining the values of the output (y ∈ Y)
and internal (x ∈ X) variables given the values of the
input variables (u ∈ U) and configuration parameters
(κ ∈ K). Components can respond to every possible
sequence of input variables, i.e. they are receptive to
their input variables. Behaviors are generic and could be
continuous functions that result from solving differential
equations, or sequences of values or events recognized by
an automata model. In the following, we also use [[M]]
to denote the set of behaviors of a component;

• a set of non-functional models, i.e. maps that allow
computing non-functional attributes of a component, cor-
responding to particular valuations of its input vari-
ables and configuration parameters. Examples of non-
functional maps include the performance model P(.) = 0,
computing a set of performance figures (e.g. bandwidth,
latency) by solving a behavioral model, or the reliability
model R(.) = 0, providing the failure probability of a
component.

Components can be hierarchically organized to represent the
system at different levels of abstraction. A system can then
be assembled by parallel composition and interconnection
of components at level l, and represented as a new com-
ponent at level l + 1. We denote the composition of two
components M1 and M2, when it is defined, as M1 ×M2.
Then, the behaviors of the composition can be described, in

PROCEEDINGS OF IEEE 4

(a)

Amp

u y ×2

Sine

θ x 2sin()

(b)

Sine

θ x 2sin()

Amp

y ×2

(c)

Square

𝒛

Diode

𝒘

()2

(d)

Load

powered

v(t)

M

t 3T

𝟐

𝟑
𝒗𝒇

powered

v1(t)

v2(t)

Fig. 1. Pictorial representation of the components and interconnections used
to illustrate some of the contract operations and relations: (a) parallel com-
position, (b) serial composition, (c) feedback composition, (d) heterogeneous
refinement.

general, as the intersection of the behaviors of its components,
i.e. [[M1 ×M2]] = [[M1]]∩ [[M2]]. At each level of abstraction,
components are also capable of exposing multiple, comple-
mentary viewpoints, associated with different design concerns
(e.g. safety, performance, reliability) and with models that
can be expressed via different formalisms, and analyzed by
different tools. Finally, a component M may be associated
with a contract, offering a specification for it, as further
detailed below.

To simplify, in the sequel, we always refer to components
with a fixed configuration, i.e. components in which the
configuration parameters K are fixed. Then, a contract C for
a component M is a triple (V,A,G), where V = U ∪ Y ∪X
is the set of component variables, and A and G are assertions,
each representing a set of behaviors over V [7]. A represents
the assumptions that M makes on its environment, and G rep-
resents the guarantees provided by M under the environment
assumptions.

A component M satisfies a contract C whenever M and
C are defined over the same set of variables, and all the
behaviors of M satisfy the guarantees of C in the context
of the assumptions, i.e. when [[M]] ∩ A ⊆ G. We denote this
satisfaction relation by writing M |= C, and we say that M
is an implementation of C. However, a component E can also
be associated to a contract C as an environment. We say that
E is a legal environment of C, and write E |=E C, whenever
E and C have the same variables and [[E]] ⊆ A.

As an example, we consider the amplifier component Amp
represented in Fig. 1 (a), whose amplification gain is two.
To specify its operation, we can then formulate a simple
(stateless) contract as follows:

Camp = ({u, y}, {(u, y) ∈ R2| |u| ≤ 1},
{(u, y) ∈ R2| y = 2u}),

where we use |u| to denote the absolute value of u, and
constraints (predicates) on the real variables u and y to char-
acterize the sets of assumptions and guarantees of Camp. For

brevity’s sake, when the domain of all the component variables
is known, we can also represent assumptions and guarantees
directly in terms of predicates, e.g., Camp = ({u, y}, |u| ≤
1, y = 2u), where we implicitly assume that an assumption
predicate φA and a guarantee predicate φG are both interpreted
over the whole set of contract variables. Moreover, A and G
will be, respectively, the set of all the behaviors satisfying φA
and φG.

The component Amp duplicates the value of any real number
u in the interval [−1, 1], provided as an input. Because the
behavior of Amp is only determined for a specific input range,
there is potentially an infinite number of implementations for
Camp. In particular, a component Mamp, defined over the same
set of variables {u, y}, and enforcing y = 2u for all u ∈ R,
is certainly an implementation for Camp, i.e. Mamp |= Camp.
In fact, its set of behaviors [[Mamp]] = {(u, y) ∈ R2|y = 2u},
coincides with the guarantees of Camp, and therefore [[Mamp]]∩
Aamp ⊆ Gamp trivially holds. On the other hand, let M ′amp
be an amplifier with saturation, defined over the same set of
variables {u, y}, and characterized by the following behavioral
model:

M ′amp :

 y = 2u ∀u ∈ R : −1 ≤ u ≤ 1,
y = −2 ∀u ∈ R : u < −1,
y = 2 ∀u ∈ R : u > 1.

(1)

M ′amp blocks its output to a constant value when the magni-
tude of its input exceeds one. However, in the context of the
assumptions Aamp, it satisfies Gamp; therefore, by definition
of contract satisfaction, M ′amp is also an implementation of
Camp.

Any component satisfying the assumptions of Camp is a
legal environment for it; specifically, a component Eamp,
defined over {u, y}, and providing as an output u = 0 for
all y ∈ R is legal, i.e. Eamp |=E Camp. Moreover, given a
legal environment Eamp, the composition Eamp ×Mamp, for
all implementations Mamp, generates a closed system.

Two contracts C and C′ with identical variables, identical
assumptions, and such that G′ ∪ A = G ∪ A, where A is
the complement of A, possess identical sets of environments
and implementations. Such two contracts are then equivalent.
In particular, any contract C is equivalent to a contract in
saturated form C′, obtained by taking G′ = G ∪ A. For
instance, the contract C′amp = ({u, y}, |u| ≤ 1, |u| ≤ 1 →
y = 2u) is equivalent to Camp, since it has the same sets
of environments and implementations. However, differently
than Camp, C′amp is in saturated form; its set of guarantees
G′amp = ({u, y}, |u| > 1∨y = 2u) is maximal, and coincides
with the union of the behaviors of all its implementations. In
what follows, we assume that all contracts are in saturated
form.

1) Composition: Contracts associated to different compo-
nents can be combined according to different rules. Similar to
parallel composition of components, parallel composition (⊗)
of contracts can be used to construct composite contracts out
of simpler ones. Let C1 = (V,A1, G1) and C2 = (V,A2, G2)
be contracts (in saturated form) over the same set of variables
V . The composite contract C1 ⊗ C2 is defined as the triple

PROCEEDINGS OF IEEE 5

(V,A,G) where:

A = (A1 ∩A2) ∪ (G1 ∩G2) (2)
G = G1 ∩G2. (3)

The composite contract must satisfy the guarantees of both,
which explains the operation of intersection in (3) [10]. Intu-
itively, the assumptions of the composite contract should also
be the conjunction of the assumptions of each contract, since
the environment should satisfy all the assumptions. However,
in general, part of the assumptions A1 will be already satisfied
by composing C1 with C2, acting as a partial environment for
C1. Therefore, G2 can contribute to relaxing the assumptions
A1, and vice versa.

As an example, let us consider a simple producer-consumer
system, where the producer M1 is interconnected in series
with the consumer M2, sharing the variable y ∈ R. Let
C1 = ({y},T, y > 0) and C2 = ({y}, y > 0,T) be the two
contracts specifying the behaviors of M1 and M2, respectively,
both in saturated form. In this example, both assumptions
and guarantees are expressed as predicates on y, and T is
the Boolean value True. M1 guarantees that y is a positive
number, which coincides with the assumption made by M2

on its environment. Then, by applying (2) and (3), we obtain
G = (y > 0) and A = (y > 0) ∨ (y ≤ 0) = T,
denoting that the composite system is able to operate in any
environment, which is intuitive, since the assumptions of M2

on its environment are relaxed by the guarantees of M1.
Specifically, when computing (2), we are interested in the

maximum set of behaviors A such that A ∩ G2 ⊆ A1 and
A ∩ G1 ⊆ A2, where “maximum” refers to the order of sets
by inclusion [10]. This is equivalent to finding:

A = max{A′|A′ ⊆ A1 ∪G2, A
′ ⊆ A2 ∪G1}

= (A1 ∪G2) ∩ (A2 ∪G1)

= (A1 ∩A2) ∪ (A1 ∩G1) ∪ (A2 ∩G2) ∪ (G1 ∩G2)

= (A1 ∩A2) ∪G1 ∪G2,

(4)

which reduces to (2). The last equality in (4) stems from the
fact that G = G ∪ A holds for a contract C = (V,A,G) in
saturated form. Contract composition preserves saturated form,
that is, if C1 and C2 are in saturated form, then so is C1 ⊗C2.
Moreover, ⊗ is associative and commutative and generalizes
to an arbitrary number of contracts. We therefore can write
C1 ⊗ C2 ⊗ · · · ⊗ Cn.

For composition to be defined, contracts need to be over the
same set of variables V . If this is not the case, then, before
composing the contracts, we must first extend their behaviors
to a common set of variables using an inverse projection
type of transformation, which we call alphabet equalization.
Formally, let C = (V,A,G) be a contract and let V ′ ⊇ V
be the set of variables on which we want to extend C. The
extension of C on V ′ is the new contract C′ = (V ′, A′, G′)
where A′ and G′ are sets of behaviors over V ′, defined by
inverse projection of A and G, respectively. In the sequel,
we freely compose contracts C1 and C2 over arbitrary sets of
variables V1, V2, by implicitly first taking their extensions to
V = V1 ∪ V2.

As an example, consider the component Sine shown in
Fig. 1 (a), which receives as input an angle θ and produces an
output proportional to the sine of θ. We would like to charac-
terize the contract Csin⊗C′amp, specifying the parallel compo-
sition of Amp and Sine, where Csin = ({θ, x},T, x = 2 sin θ).
Moreover, we assume that the components interact by sharing
their input variables, which we capture by renaming u as θ.
Then, to combine correctly the assumptions and guarantees
according to (2) and (3), we first need to extend them to the
variable set {θ, x, y}, thus obtaining

C′′amp = ({θ, x, y}, |θ| ≤ 1, (|θ| ≤ 1)→ (y = 2θ))

C′sin = ({θ, x, y},T, x = 2 sin θ) .

Finally, we can compute the assumptions and guarantees of
the composite contract as follows:

G⊗ := (x = 2 sin θ) ∧ ((y = 2θ) ∨ (|θ| > 1))

A⊗ := (|θ| ≤ 1) ∨ (x 6= 2 sin θ) ∨ ((y 6= 2θ) ∧ (|θ| ≤ 1))

= (|θ| ≤ 1) ∨ (x 6= 2 sin θ).

As informally introduced by the producer-consumer exam-
ple above, both serial and feedback compositions of contracts
can be defined using the notion of parallel composition.
Feedback composition in the context of contracts has also been
investigated in a seminal paper by Benvenuti et al. [19]. Let
C1 = (V1, A1, G1) and C2 = (V2, A2, G2) be two contracts,
in which the variable sets V1 = U1 ∪ Y1 and V2 = U2 ∪ Y2
are, respectively, partitioned into finite sets of input (U1, U2)
and output variables (Y1, Y2)3. Moreover, we assume that
all sets U1, Y1, U2, Y2 are pairwise disjoint. Then, a serial
interconnection structure σ, defined as a subset of pairs of
Y1 × U2, i.e. σ ⊆ Y1 × U2, generates a renaming on C2
where, for each pair (y, u) ∈ σ, u is renamed as y. Let
Y σ1 = {y|∃u : (y, u) ∈ σ} and Uσ2 = {u|∃y : (y, u) ∈ σ}.
As represented in Fig. 2 (a), we can then define a renaming
operator on C2, renσ(C2), which returns a new contract
Cσ2 = (U2 \ Uσ2 ∪ Y σ1 ∪ Y2, Aσ2 , Gσ2), where Aσ2 and Gσ2
are obtained from A2 and G2 after renaming their respective
variables according to σ. Finally, we can define the serial
composition of C1 and C2 as C1

σ
 C2 := C1⊗Cσ2 . For example,

we compute the cascade composition of Csin
σ
 Camp for

σ = {(x, u)}, as shown in Fig. 1 (b). After renaming and
alphabet equalization, by using (2) and (3), we obtain:

Gσ := (x = 2 sin θ) ∧ ((y = 2x) ∨ (|x| > 1))

Aσ := (|x| ≤ 1) ∨ (x 6= 2 sin θ),

where both predicates are now to be interpreted on {θ, x, y}.
Similarly, a feedback interconnection structure κ can be

defined as a subset of pairs κ ⊆ (Y1 × U2) ∪ (Y2 × U1),
thus generating a renaming on both C1 and C2 where, for
each pair (y, u) ∈ κ, u is renamed as y. Let Y κ1 = {y ∈
Y1|∃u ∈ U2 : (y, u) ∈ κ}, Uκ2 = {u ∈ U2|∃y ∈ Y1 :
(y, u) ∈ κ}, Y κ2 = {y ∈ Y2|∃u ∈ U1 : (y, u) ∈ κ},

3To simplify, we do not explicitly mention the internal variables X of a
contract in our discussion of serial and feedback compositions, since we can
assume, without loss of generality, that X is a subset of the output variables
Y .

PROCEEDINGS OF IEEE 6

(a)

C1

U1

𝑌1
𝜎

Y1∖ 𝑌1
𝜎

C2

Y2

U2∖ 𝑈2
𝜎

(c)

C
𝑈 ∖ 𝑢

y

𝑌 ∖ 𝑦

(b)

C1

U1∖ 𝑈1
𝜅

𝑌1
𝜅

Y1∖ 𝑌1
𝜅

C2

U2∖ 𝑈2
𝜅

 Y2∖ 𝑌2
𝜅

𝑌2
𝜅

Fig. 2. Pictorial representation of different examples of contract compositions:
(a) serial composition, (b) feedback composition of two contracts, (c) feedback
composition of one contract.

and Uκ1 = {u ∈ U1|∃y ∈ Y2 : (y, u) ∈ κ}. We can then
define a renaming operator renκ on C1 and C2, which returns
the new contracts Cκ1 = (U1 \ Uκ1 ∪ Y κ2 ∪ Y1, Aκ1 , Gκ1), and
Cκ2 = (U2 \ Uκ2 ∪ Y κ1 ∪ Y2, Aκ2 , Gκ2), as represented in Fig. 2
(b). Finally, we can define the feedback composition of C1 and
C2 as C1 ◦κ C2 := Cκ1 ⊗ Cκ2 .

A special case of feedback interconnection occurs when a
set of outputs of a contract is directly connected to a set of
its inputs, as represented in Fig. 2 (c). For instance, given a
contract C = (V,A,G), in which V = U ∪ Y , with U and
Y finite sets of input and output variables, and U ∩ Y = ∅,
let κ = (y, u) ∈ Y × U be a feedback interconnection on
C, connecting an output of C to one of its inputs, and let
Cid,κ = ({y, u},T, y = u) a contract which guarantees that
the variables supposed to be connected in κ are set to be
equal. To simplify, we express the guarantees of Cid,κ by using
a stateless constraint over its variable set; however, stateful
extensions, including temporal constructs, are straightforward.
We can then reduce the feedback connection on a contract
to the general case of feedback composition defined above,
by redefining the new contract generated by κ as κ(C) :=
C ◦κ Cid,κ = Cκ. It is then possible to extend the notions of
compatibility and consistency of contracts to their serial and
feedback compositions as further discussed below.

2) Compatibility and Consistency: C is compatible if there
exists a legal environment E for it, i.e. if and only if A 6= ∅.
The intent is that a component satisfying contract C can only
be used in the context of a compatible environment, to be
assured that its behaviors conform with the ones specified by
the contract. Similarly, a contract is consistent when the set
of implementations satisfying it is not empty, i.e. it is feasible
to develop implementations for it. For contracts in saturated
form, this amounts to verify that G 6= ∅.

When there is a clear distinction between input (uncon-
trolled) and output (controlled) variables, different notions of
contract compatibility and consistency can be defined [7], [9],
[18]. Let U ⊆ V and Y ⊆ V be, respectively, the subset of
input and output variables of C, with U ∩ Y = ∅. Then C is
compatible if and only if A is Y -receptive, i.e. if and only if
for all behaviors ρ′ restricted to variables in Y , there exists a
behavior ρ ∈ A, such that ρ′ and ρ coincide over Y . Intuitively,

an environment has no control on the variables set by an
implementation, and therefore A accepts any history offered
to the subset Y of its variables. Similarly, C is consistent if
and only if G is X-receptive.

Based on these definitions, Camp and Csin are both compat-
ible and consistent, while a contract Camp1 = ({u, y}, |u| ≤
2, |u| ≤ 1 → (y = 2u) ∧ (y > 3)) is compatible but
inconsistent. In fact, compatibility checking amounts to ask
whether ∀y : |u| ≤ 2 is satisfiable, which is true. On the other
hand, consistency checking produces ∀u : |u| ≤ 1 → (y =
2u) ∧ (y > 3) = F (F being the Boolean value False), since
it is impossible to satisfy the guarantees of Camp1 for any u
in the interval [−1, 1]4.

The definitions above can be lifted to pairs of contracts,
so that C1 and C2 are compatible (consistent) if and only
if C1 ⊗ C2 is compatible (consistent). As an example, we
show how to derive compatibility and consistency conditions
for the cascade of contracts in Fig. 2 (a). To be concrete,
we assume that the assumptions and guarantees of C1 and
C2 are represented in terms of predicates or logic formulas
on their variables, i.e. C1 = (U1 ∪ Y1, φA1, φG1) and C2 =
(U2 \Uσ2 ∪Y σ1 ∪Y2, φA2, φG2). Moreover, since C1 and C2 are
in saturated form, both φA1 ∨ φG1 = T and φA2 ∨ φG2 = T
must hold. We can then compute assumptions and guarantees
for the composite contract Cσ = C1

σ
 C2 by applying (2)

and (3) as follows:

φGσ = φG1 ∧ φG2 (5)
φAσ = (φA1 ∧ φA2) ∨ ¬φG1 ∨ ¬φG2, (6)

where φGσ and φAσ must be interpreted as predicates or
formulas over the entire set of variables U1∪Y1∪U2\Uσ2 ∪Y2.
In a general case, we would already conclude that C1 and C2
are compatible if and only if φAσ is satisfiable. Similarly, C1
and C2 are consistent if and only if φGσ is satisfiable. However,
to gather more insight into compatibility checking, we will
further discuss a special case, which is still relevant to several
application domains.

We assume that each component of a system only controls
its output ports, while the inputs are assigned by the external
environment. In this scenario, the assumptions of each contract
will only involve its input variables, since the outputs will be
under the responsibility of the implementations. Specifically,
for the system in Fig. 2 (a), φA1 and φA2 will depend,
respectively, only on U1 and Y σ1 ∪ U2 \ Uσ2 , while φG1 and
φG2 will describe relations involving both the input and output
variables of each contract. Finally, we assume that the original
contracts C1 and C2 are themselves compatible and consistent.
In fact, if any contract is incompatible, then it cannot be used
in any context; if any contract is inconsistent, it translates into
a specification that generates per se a contradiction, and cannot
be implemented.

Our objective is to determine the conditions on the input
variables U1 ∪ U2 \ Uσ2 that make the composite contract Cσ

4In several practical situations, we are interested in contracts that are
compatible and consistent at the same time, i.e. satisfying G ∩ A 6= ∅,
to discard pathological situations of contracts which are compatible but not
consistent, or consistent but not compatible.

PROCEEDINGS OF IEEE 7

compatible. To do so, since the variables in Y1 ∪ Y2 cannot
be controlled by the environment, we derive new assumptions
for Cσ as follows, by using universal quantification over the
output variables Y = Y1 ∪ Y2 [18]:

φ′Aσ := ∀Y : φAσ

= ¬∃Y : (¬φA1 ∧ φG1 ∧ φG2) ∨ (¬φA2 ∧ φG1 ∧ φG2)

= (¬∃Y : ¬φA1 ∧ φG1 ∧ φG2)∧
(¬∃Y : ¬φA2 ∧ φG1 ∧ φG2)

= (¬∃Y : ¬φA1 ∧ φG2) ∧ (¬∃Y : ¬φA2 ∧ φG1)

= (φA1 ∨ (∀Y : ¬φG2)) ∧ (∀Y : φG1 → φA2). (7)

In the derivations above, we use the fact that quantifiers are
commutative and associative to lift them to sets of variables so
that ∀Y := ∀y1 : ∀y2 : . . . : ∀yn when Y = {y1, y2, . . . , yn}.
Moreover, we leverage the fact that ¬φA1 → φG1 and
¬φA2 → φG2 must always hold for contracts in saturated
form (implying, e.g., ¬φA1 ∧ φG1 ∧ φG2 = ¬φA1 ∧ φG2).
Furthermore, since the contrapositive ¬φG2 → φA2 is also
true for Cσ2 (implying ¬φG2 = ¬φG2 ∧ φA2), we obtain

(∀Y : ¬φG2) = (∀Y : ¬φG2 ∧ φA2) = F, (8)

since for any input set satisfying φA2, there always exists a
set of outputs Y2 that satisfies φG2. Given that φA1 does not
depend on Y , we can then conclude from (7) that

φ′Aσ = φA1 ∧ (∀Y : φG1 → φA2), (9)

and that Cσ is compatible if and only if φ′Aσ is satisfiable.
Intuitively, this is equivalent to require that there exists an
environment satisfying the assumptions of C1, and capable
of driving the guarantees of C1 to become a subset of the
assumptions of Cσ2 for any possible assignment of the output
variables. For example, we apply the result above to the serial
composition Csin

σ
 Camp. Both Csin and Camp are compatible

and consistent contracts. Moreover, φA,sin = T. However, for
their composition to be compatible, we also need to enforce
(∀Y : φG1 → φA2):

∀x : ∀y : (x 6= 2 sin θ) ∨ (|x| ≤ 1) =

= ¬∃x : (x = 2 sin θ) ∧ (|x| > 1)

= ¬∃x : (x = 2 sin θ) ∧ (2| sin θ| > 1)

= ¬ ((2| sin θ| > 1) ∧ (∃x : x = 2 sin θ))

= | sin θ| ≤ 1

2
∨ ¬∃x : (x = 2 sin θ)

= | sin θ| ≤ 1

2

⇐⇒
∨
k∈Z

(
−π

6
+ kπ ≤ θ ≤ π

6
+ kπ

)
.

In fact, if θ violates this condition, there is no way for Csin
to provide a legal environment for Cσamp.

Compatibility and consistency conditions for the feedback
composition in Fig. 2 (b) can be determined in a similar way.
Computation of the composite contract Cκ = Cκ1 ◦κ Cκ2 gener-
ates expressions for the assumptions φAκ and the guarantees
φGκ that are analogous to (5) and (6). However, in the special

case of controlled outputs and uncontrolled inputs, we obtain

φ′Aκ := ∀Y : φAκ = ∀Y : (φG2 → φA1) ∧ (φG1 → φA2),
(10)

stating that Cκ is compatible if and only if there exists an envi-
ronment such that, for all possible assignments on the output
variables, the guarantees of Cκ1 are included into the assump-
tions of Cκ2 , and vice versa. For example, we investigate the
feedback composition of a Square component, which squares
any input value, with a Diode component, which propagates its
input to the output only if it is larger or equal to zero, as shown
in Fig. 1 (c). We assume that the components are formally
specified by the contracts Csquare = ({w, z},T, z = w2) and
Cdiode = ({w, z}, z ≥ 0, (z < 0) ∨ (w = z)). Then, since

∀w : ∀z : ((z < 0)∨ (w = z)→ T)∧ (z = w2 → z ≥ 0) = T,
(11)

we conclude that the two contracts are compatible; moreover,
the admitted behaviors can be obtained from the joint guaran-
tees φG,square ∧ φG,diode := (w = z) ∧ (z = 0 ∨ z = 1).

Finally, for a contract κ(C) = (U ∪ Y \ y, φA, φG) as in
Fig. 2 (c), compatibility checking reduces to verify that

φ′A := ∀Y : φA = ∀Y : φA ∨ ¬φG = ∀Y : φG → φA (12)

is satisfiable, where we use again the fact that ¬φG → φA is
always true for a contract in saturated form. The results in this
subsection offer a generalization of the conditions for compat-
ibility of contracts in cascade and feedback compositions that
were previously reported in the literature [19].

3) Refinement: Refinement is a preorder on contracts,
which formalizes a notion of substitutability. We say that C
refines C′, written C � C′ (with C and C′ both in saturated
form), if and only if A ⊇ A′ (φA′ → φA) and G ⊆ G′

(φG → φG′). Refinement amounts to relaxing assumptions and
reinforcing guarantees, therefore strengthening the contract.
Clearly, if M |= C and C � C′, then M |= C′. On the other
hand, if E |=E C′, then E |=E C. We can then replace C′ with
C.

As an example, let Crange = ({u, y}, |u| ≤ 1
2 , |y| ≤ 1)

be a contract specifying the input and output ranges for the
component Amp; we would like to show that Camp � Crange,
that is, when operating in the context of the assumptions of
Crange, Camp produces an output within the range prescribed
by the guarantees of Crange. To do this, we apply the defi-
nitions above to the saturated versions of the two contracts;
then, refinement checking translates into proving the validity
of the following two predicates involving, respectively, the
assumptions and the guarantees of both contracts:

|u| ≤ 1/2→ |u| ≤ 1 (13)
(y = 2u) ∨ (|u| > 1)→ (|y| ≤ 1) ∨ (|u| > 1/2). (14)

While (13) is trivially true, to show the validity of (14), we
recall that the antecedent in (14) is true when either (|u| > 1)
or (y = 2u) holds, and prove that in both cases the consequent
is also true. In fact, in the former case, we also have that
(|u| > 1/2) holds and the implication is true; in the latter case,
if (1/2 < |u| ≤ 1) is true, then the implication is still trivially

PROCEEDINGS OF IEEE 8

true. If instead (|u| ≤ 1/2) is true, we can still conclude
|y| = 2|u| ≤ 1, hence (14) is true.

Alphabet equalization is also needed as a preliminary step
to define refinement when C and C′ are defined over a different
alphabet. A more general case of refinement occurs when
C and C′ are also expressed by using different formalisms
(heterogeneous refinement). In this case, before the refinement
relation can be defined, we need to map the behaviors ex-
pressed by one of the contracts to the domain of the other
contract via a transformation M (e.g. a type of projection
or inverse projection) which is generally more involved than
alphabet equalization.

For instance, let Cdis = ({powered},T,3[0,3)powered) be
the contract specifying the dynamics of a load in an electrical
system, which is powered at startup. We will provide details
about the temporal construct used to express the guarantees
in Section III. For the moment, we point out that Cdis offers
a discrete-time discrete-state abstraction of the dynamics,
prescribing that, in all contexts, the Boolean variable powered
must be asserted within three time units. On the other hand,
let Ccon = ({v},T, v(t) = vf (1 − e−

t
τ), t ∈ R, t ≥ 0)

be the contract describing the voltage level of the electrical
load as a continuous function of time t. The load responds
as a first order dynamical system with time constant τ and
steady-state voltage vf . Then, we can reason about refinement
between Ccon and Cdis only if we provide a mechanism to
map continuous time and voltage levels into discrete ones. In
this case, given a time step T , such a mechanism could be
provided by the following transformation M:

M :

{
powered := (v ≥ 2

3vf)
k := b tT c

, (15)

stating that powered is asserted if and only if the voltage
is greater or equal to two thirds of the steady-state value,
while the discrete time index k is obtained by discretizing t
according to the quantization step T . Resting on this mapping,
we can then conclude that Ccon �M Cdis if and only if
v(3T) > 2

3vf , i.e. if and only if the system time constant
satisfies τ < 3T

ln 3 . This condition is illustrated in Fig. 1 (d),
where v2(t) (in green) satisfies the constraint on τ and refines
the guarantees of Cdis, whereas v1(t) (in blue) does not, since
it reaches the desired value 2

3vf exactly at time t = 3T
(k = 3), while the interval in the guarantees of Cdis is right-
open.

4) Conjunction: To compose multiple requirements on the
same component, possibly representing different viewpoints
that need to be satisfied simultaneously, we can also define
the conjunction (∧) of contracts. Let C1 = (V,A1, G1) and
C2 = (V,A2, G2) be contracts (in saturated form) over the
same set of variables V and on the same component M . We
would like to combine C1 and C2 into a joint contract C1 ∧C2
so that, if M |= C1 ∧ C2, then M |= C1 and M |= C2. We
can compute the conjunction of C1 and C2 by taking their
greatest lower bound with respect to the refinement relation,
i.e. (i) C1 ∧C2 is guaranteed to refine both C1 and C2, and (ii)
for any contract C′ such that C′ � C1 and C′ � C2, we have
C′ � C1∧C2. For contracts in saturated form and on the same

alphabet, we have

C1 ∧ C2 = (A1 ∪A2, G1 ∩G2). (16)

As an example, let Crange1 and Crange2 be two contracts
restricting the input and output ranges of an Amp component,
and defined as follows

Crange1 = ({u, y}, 0 ≤ u ≤ 1/2, 0 ≤ u ≤ 1/2→ y ≥ u)

Crange2 = ({u, y}, 0 ≤ u ≤ 1, 0 ≤ u ≤ 1→ 0 ≤ y ≤ 3u).

Then, we can compute the conjunction Crange1 ∧ Crange2 as

A∧ := (0 ≤ u ≤ 1/2) ∨ (0 ≤ u ≤ 1) = 0 ≤ u ≤ 1

G∧ := (0 ≤ u ≤ 1/2→ y ≥ u) ∧ (0 ≤ u ≤ 1→ 0 ≤ y ≤ 3u)

= (u ≤ y ≤ 3u) ∨ (u > 1/2 ∧ 0 ≤ y ≤ 3u) ∨ (u < 0)

∨ (u > 1).

Since Camp admits a larger set of inputs, the whole interval
[−1, 1], and promises y = 2u for u ∈ [0, 1], it clearly
refines the conjunction contract, hence it refines both Crange1
and Crange2. Therefore, any implementation of Camp, such as
Mamp, will also implement both Crange1 and Crange2.

Another form for A/G contracts has also been proposed,
which supports reasoning about complex component interac-
tions by avoiding using parallel composition of contracts to
overcome the problems that certain models have with the ef-
fective computation of the operators [20]. Instead, composition
is replaced with the concept of circular reasoning [21]: when
circular reasoning is sound, it is possible to check relations
between composite contracts based on their components only,
without taking expensive compositions. However, the notions
of compatibility and conjunction, as described above, are not
addressed in this theory.

5) Horizontal and Vertical Contracts: Traditionally con-
tracts have been used to specify components, and aggregation
of components at the same level of abstraction, as illustrated
by the above examples; for this reason we refer to them as
horizontal contracts.

We use contracts also to formalize and reason about re-
finement between two different abstraction levels in the PBD
process [5], [10]; for this reason, we refer to this type of
contracts as vertical contracts. To illustrate this concept,
consider the problem of mapping a specification platform of a
system at level l+ 1 onto an implementation platform at level
l. In general, the specification platform architecture (i.e. inter-
connection of components) may be defined in an independent
way, and may not directly match the implementation platform
architecture. Such a different architectural decomposition will
also reflect on the contracts associated with the components
and their aggregations. For instance, the contract describing
the specification platform C =

∧
k∈K

(⊗
i∈Ik Cik

)
may be

defined as the conjunction of K different viewpoints, each
characterized by its own architectural decomposition into Ik
contracts. On the other hand, the contract describing the
implementation platform M =

⊗
j∈J

(∧
n∈NjMjn

)
may

be better represented as a composition of J contracts, each
defined out of a conjunction of its different viewpoints. Be-
cause there may not be, in general, a direct matching between

PROCEEDINGS OF IEEE 9

contracts and viewpoints of M and C, checking that M� C
in a compositional way, by reasoning on the elements of M
and C independently, as discussed in Section II-C3, may not
be effective.

However, it is still possible to reason about refinement
between M and C by resorting to a contract which specifies
the composition of a model and its vertical refinement, even
though they are not directly connected, by connecting them
indirectly through a mapping, e.g., by synchronizing pairs of
events, as if co-simulating a model and its refinement. Infor-
mally, this kind of composition captures the fact that the actual
satisfaction of all the design requirements and viewpoints by a
deployment depends on the supporting execution platform, the
underlying physical system, and on the way in which system
functionalities are mapped to them. Formally, this composition
can be modelled using two alternative methods, based on the
specific shapes of C and M:
• The interaction between the specification and the imple-

mentation platforms can be modeled using the contract
composition C ⊗M. In this case, assumptions made by
the specification platform on the implementation platform
get discharged by the guarantees of the implementation
platform, and vice versa, as indicated by (2) and (3).
Refinement can then be checked by checking that C⊗M
is compatible, and that C ⊗ M � C, which can be
performed compositionally, by matching the elements of
C with the ones of C ⊗M.

• The interaction between the specification and the im-
plementation platforms can also be modeled using the
contract conjunction C ∧ M. In this case, assumptions
and guarantees combine as in (16), and C ∧M is assured
to refine C by construction. However, being a conjunction,
it can still be a source of inconsistencies. Therefore,
to guarantee that the design can be implemented, the
consistency of C ∧M must be checked or enforced by
the designer.

Composite contracts such as C ⊗ M and C ∧ M are
both called vertical contract, and can be used to formalize
mechanisms for mapping a specification over an execution
platform, such as the ones adopted in the METROPOLIS [22],
METROII [23], and, more recently, the METRONOMY frame-
works [24].

We exemplify the use of vertical contracts by referring to
the virtual model of a simple system pictured in Fig. 3. The
specification platform architecture, at the top of the figure,
consists of two interconnected components. At startup, the
Controller interacts with an external subsystem through its
in and out ports to perform some high-priority task. Then,
it switches on a safety-critical electric power system EPS,
by asserting its output on, and makes sure that the system
is actually powered, i.e. the signal powered is asserted, by the
deadline td.

At the application level, to conveniently explore different
control strategies, the designer abstracts the physical system
EPS using a simple delay block, which propagates the value of
its input on to its output powered with a delay ∆. We therefore
obtain tpow − ton = ∆, where tpow and ton are, respectively,
the times at which powered and on are asserted, and ∆ is

Controller

in

on

EPS

powered ∆ out

C

HW

in

on

powered
out

M

v(t)

vref

Comparator

Fig. 3. Specification and implementation platform examples used to illustrate
vertical contracts.

selected to accommodate the delay of the physical platform.
Then, the designer implements the required functionality by
allocating the Controller to its higher priority task, while
guaranteeing a worst case switch-on time tmaxon = td − ∆
to meet the deadline on the powered signal.

While the functional platform described above is very
convenient to explore different control strategies, it is not
sufficient to determine the correctness of the final design. In
fact, the satisfaction of the timing viewpoints heavily relies
on the assumptions on the delay of the physical system,
which can only be discharged by the implementation platform.
The architecture of the implementation platform is shown at
the bottom of Fig. 3. The functionality of the Controller is
mapped to a hardware execution platform HW, while the EPS
is modelled by a cascade of a first order filter with time
constant τ , represented in the figure as an electrical network,
and an ideal Comparator block, with reference voltage vref . If
the filter output voltage v is larger than vref , the Comparator
asserts its output powered. The reference vref corresponds to
90% of the final value vf reached by v at steady state.

To show that the implementation platform refines the spec-
ification platform, hence satisfies the system requirements, we
can formalize the interaction between the two levels in terms
of the composition Ct ⊗Mt between two timing contracts:

• Ct = ({δon, ton, tpow}, δon ≤ ∆, (ton ≤ td − ∆) →
(tpow ≤ td)) specifies the timing behavior of the specifi-
cation platform, by emphasizing its vertical assumptions
on the implementation platform. If the implementation
platform provides a delay δon less than or equal to ∆
when on is asserted, then the application guarantees to
satisfy the requirement on the powered signal, if on is
asserted by at least an interval ∆ before the deadline td.

• Mt = ({δon, ton, tpow},T, (δon = τ ln 10) ∧ (tpow =
ton + δon)) exposes the timing behavior of the imple-
mentation platform, as derived from the step response of
a first-order filter.Mt states that, whenever on is asserted,
the delay at which v reaches 90% of its steady-state level,
hence tpow is asserted, is δon = τ ln 10.

PROCEEDINGS OF IEEE 10

In this simple example, the assumptions and guarantees of both
Ct and Mt are assertions over variables denoting the time of
occurrence of certain events, or their separation.

Resting on the above contracts, because the assumptions of
Ct trivially imply the ones of Mt, we obtain Ct ⊗Mt � Ct.
Moreover, for the contracts in this example, it is also possible
to show that Mt � Ct ⊗ Mt holds. Therefore, checking
the correctness of the design finally requires checking that
the vertical contract Ct ⊗ Mt is compatible. In this case,
by applying (9) in Section II-C2, where Mt and Ct act,
respectively, as C1 and C2, we conclude that it is enough to
check the satisfiability of ∀δon : ∀tpow : (δon = τ ln 10) ∧
(tpow = ton + δon)→ (δon ≤ ∆), which provides

τ ln 10 ≤ ∆. (17)

This inequality can also be used at design time, as a practical
guideline to dimension either the specification platform, by
increasing its margin ∆, or the implementation platform, by
decreasing its time constant τ , to deploy a correct design.

It is also possible to obtain the same result as above, by
following an alternative formulation based on contract con-
junction. In particular, we suppose that the designer chooses
instead to describe the timing behaviors of the system in Fig. 3
using a different contract pair:
• C̃t = ({ton, tpow}, ton ≤ (td −∆), tpow ≤ td), the spec-

ification contract, is no longer bound to the implemen-
tation platform. It simply states that the requirement on
tpow is satisfied if on is asserted by at least an interval
∆ before the deadline td.

• M̃t = ({ton, tpow},T, tpow = ton + τ ln 10), the imple-
mentation contract, is also independent of the specifica-
tion platform (except for being defined on the same vari-
ables), and exposes the timing behavior of the powered
signal. M̃t states that, whenever on is asserted, powered
will be asserted with a delay τ ln 10, due to the physical
system (a first-order filter).

Then, to check the correctness of the refinement, a binding
mechanism between the two contracts, each linked to its own
platform, can now be provided by the conjunction of M̃t and
C̃t. C̃t ∧ M̃t ensures that both contracts are jointly satisfied,
and refines C̃t by construction. Therefore, all we need to check
is that M̃t does not create inconsistencies in C̃t ∧ M̃t, in the
sense that (∀ton : ∃tpow : GM̃t ∩GC̃t) is true5, where GM̃t

and GC̃t are the guarantees of the two contracts in saturated
form. In our case,

∀ton : ∃tpow : (tpow = ton + τ ln 10) ∧ ((ton > td −∆)

∨ (tpow ≤ td))
= ∀ton : (∃tpow : tpow = ton + τ ln 10) ∧ (ton > td −∆)

∨ (ton ≤ td − τ ln 10)

= ∀ton : (ton > td −∆) ∨ (ton ≤ td − τ ln 10)

5We are actually interested in checking consistency ∀ton : ton ≤ (td−∆),
which is the set of legal environments for C̃t. In fact, we want to show that,
for each ton satisfying the assumptions of the specification contract C̃t, there
exists an implementable tpow , according to the implementation contract M̃t,
which also satisfies the deadline td, as required by C̃t. When ton > (td−∆),
C̃t∧M̃t is trivially consistent, since the guarantees of C̃t are vacuously true.

leads to the condition τ ln 10 ≤ ∆, which is the result found
in (17). Intuitively, this amounts to requiring that, if ton and
tpow have to synchronize so that M̃t refines C̃t and the overall
system satisfies the timing requirement on tpow, then the delay
implemented by the physical system in M̃t must be smaller
than or equal to the one defined by the application platform
in C̃t.

The approach illustrated above has been previously adopted
in the design of analog and mixed-signal integrated cir-
cuits [25], [5], by leveraging effective approximations of
implementation constraints to formulate vertical contracts rep-
resenting different viewpoints (e.g., timing, energy, noise), and
then checking their compatibility or consistency during design
space exploration. More recently, a similar approach has also
been advocated in the context of AUTOSAR [10]. Alternatively,
when vertical assumptions and guarantees cannot be effec-
tively expressed by compact models, compatibility and con-
sistency of vertical contracts can be checked by co-simulation
of the application and implementation platforms under a
mapping mechanisms, such as the one in the METRONOMY
framework [24], in which tuples of signals in the two platforms
are synchronized. In the context of our example, this technique
can be applied by unifying both occurrences and values of
the on and powered signals, as shown in red in Fig. 3,
and then checking that the synchronized models satisfy the
requirements.

We finally observe that the formal notion of vertical con-
tracts we have presented is general, in that it encompasses
other notions of contracts that were previously introduced in
a control setting to capture the interactions between the con-
troller and its execution platform [9], [26]. In this scenario, a
controller takes as assumptions several aspects that include the
timing behavior of the control tasks and of the communication
between tasks, e.g., delay, jitter, as well as the accuracy and
resolution of the computation (vertical assumptions in C). On
the other hand, the controller provides guarantees in terms of
the amount of requested computation, activation times and data
dependencies (vertical guarantees in C). Vertical contracts can
then be effectively used to formalize the agreement between
control, software, and hardware engineers, when specifying
both system functionality and timing requirements. As a result,
several design approaches and guidelines, which have been
previously established in the literature in terms of “design con-
tracts” [26], can be derived by formulating vertical contracts
for both the software and control layers, and by enforcing their
compatibility and consistency as illustrated by the example in
Fig. 3.

III. REQUIREMENT FORMALIZATION AND VALIDATION
USING CONTRACTS

We use contracts to formalize top-level requirements, allo-
cate them to lower-level components, and analyze them for
early validation of design constraints. Requirement analysis
can often be challenging, because of the lack of familiarity
with formal languages among system engineers. Moreover,
it is significantly different from traditional formal verifica-
tion, where a system model is compared against a set of

PROCEEDINGS OF IEEE 11

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Top-Level Requirements
(Contracts)

Component/
Contract
Library

Discrete Event
(LTL)
Hybrid

Continuous Time
and Hybrid

Simulation-Based System Verification and

Optimization

Control Synthesis

System Architecture and Control
(Lower abstraction level)

Architecture

Synthesis

(e.g.

Temporal

Logic)

(e.g.

Temporal

Logic)

Control

Algorithm

(DE/FSM)

(e.g.

Static/

Topological)

Static/
Non-functional
(e.g. Reliability,

Connectivity)

System

Architecture

(e.g. graph)

Domain-Specific
Primitives

CA,syn CC,syn Cver/sim

Fig. 4. (a) Structure of the proposed contract-based methodology for CPS design, from top-level requirements to the definition of system architecture and
control algorithm. Demonstration of the different design steps on the aircraft electric power system example in Section VI [14]: (b) requirement formalization;
(c) plant architecture selection; (d) reactive control synthesis; (e) simulation-based verification; (f) simulation-based design exploration; (g) hybrid power
system model in SIMULINK for further refinement.

requirements. Since there is not yet a system at this stage,
requirements themselves are the only entity under analysis. By
formalizing requirements as contracts, it is instead possible to
provide effective tests to check for requirement consistency,
i.e. whether a set of contracts is realizable, or whether, in
contrast, facets of these are inherently conflicting, and thus
no implementation is feasible. Moreover, it is possible to
exclude undesired behaviors, e.g. by adding more contracts, by
strengthening assumptions, or by considering additional cases
for guarantees. Since contracts are abstractions of components,
their concrete representations are typically more compact than
a fully specified design [15]. The above tests can then be
performed more efficiently than traditional verification tasks.

A framework for requirement engineering has been recently
developed by leveraging modal interfaces, an automata-based
formalism, as the underlying specification theory [10]. How-
ever, to retain a correspondence between informal require-
ments and formal statements, declarative, “property-based”
approaches using some temporal logic are gaining increasing
interest. They contrast imperative, “model-based” approaches,
which tend to be impractical for high-level requirement valida-
tion. In fact, constructing a model to capture all the behaviors
allowed by the requirements often entails considering all
possible combinations of system variables. Moreover, these
models are usually hard to parametrize, and small changes in
the requirements become soon hard to map into changes in
the corresponding models.

In this paper, we follow an approach based on A/G con-
tracts as introduced in Section II-B, which allows specifying
different kinds of requirements using different formalisms, fol-
lowing both the declarative and imperative styles, to reflect the
different viewpoints and domains in a heterogeneous system,
as well as the different levels of abstraction in the design
flow. As shown in Fig. 4 (a), to facilitate reasoning at the
level of abstraction of requirement engineers, a viable strategy
is to drive engineers towards capturing requirements in a
structured form, using a set of predefined high-level primitives,
or patterns, from which formal specifications can be automat-
ically generated. This approach is similar to the one advo-
cated in the STATEMATE verification environment [27], within
the European projects SPEEDS and CESAR [13] (linked to
automata-based formalisms), or to the higher-level domain-
specific language (DSL) exemplified in Section VI [14].

From a set of high-level primitives, different kinds of
contracts can be generated. When specifying the system ar-
chitecture, steady-state (static) requirements, interconnection
rules, component dimensions can be captured by static con-
tracts, expressed via arithmetic constraints on Boolean and
real variables to model, respectively, discrete and continuous
design choices. Then, compatibility, consistency and refine-
ment checking translate into checking feasibility of conjunc-
tions or disjunction of constraints, which can be solved via
queries to Satisfiability Modulo Theory (SMT) solvers [28],
[29] or mathematical optimization software, such as mixed

PROCEEDINGS OF IEEE 12

integer-linear, mixed integer-semidefinite-positive, or mixed
integer/non-linear program solvers.

When specifying the control algorithm, representing dy-
namic behaviors becomes the main concern; safety and real-
time requirements can then be captured by contracts expressed
using temporal logic constructs. For instance, linear temporal
logic (LTL) [30] can be used to reason about the temporal
behaviors of systems characterized by Boolean, discrete-time
signals or sequences of events (discrete event abstraction in
Fig. 4a). Signal temporal logic (STL) [31] can deal with
dense-time real signals and continuous dynamical models
(continuous abstraction in Fig. 4a). Sometimes, discrete and
continuous dynamics are so tightly connected that a discrete-
event (DE) abstraction would result inaccurate, while a contin-
uous abstraction would turn out to be inefficient, thus calling
for a hybrid system abstraction, mixing discrete and continuous
behaviors, such as Hybrid Linear Temporal Logic with Regular
Expressions (HRELTL) [32] and hybrid automata [33]. In the
sequel, we review the main formalisms for the specification of
dynamical systems, and the related tools, which can be used to
implement the algebra of contracts and perform requirement
analysis within our framework.

A. Temporal Logic

Temporal logic is a symbolism for representing and reason-
ing about the evolution of a system over time. Starting from
the ‘80s it has been successfully applied in formal verification,
and a flourishing family of temporal logics has been developed
both by academy and industry. Because of its “declarative”
flavor, temporal logic seems a “natural” language to formalize
high-level requirements in terms of contracts. Moreover, espe-
cially for discrete-time, discrete-state system representations,
the wealth of results and tools in temporal logic and model
checking can provide a substantial technological basis for
requirement analysis [6].

Classical discrete-time temporal logics like LTL and com-
putation tree logic (CTL) [6], originally developed to state
requirements of hardware and software electronic systems, can
indeed be effectively used to describe the DE abstraction of
CPS. As an example, in the abstraction offered by LTL, a
component can be represented as a set of Boolean variables
SDE . Then, the behaviors of a component can be described
by the infinite sequences of states of the form σ = s0s1s2 . . .
satisfying an LTL formula, each state s being a valuation
of the Boolean variables in SDE . A sample requirement
expressible by LTL is the property “An alert must be even-
tually resolved”, which can be formalized by the formula
�(alert→ 3 sys ok), where alert and sys ok are Boolean
component variables. This formula states that every occurrence
of the alert event (i.e. when alert is asserted), as denoted by
the always (�) operator, must eventually (3) be followed by
an occurrence of a sys ok event.

Discrete-time temporal logics, however, lack the expressive-
ness needed to capture the continuous aspects of the system
in a faithful way. To overcome this limitation, temporal logics
have been extended in many ways. A first extension, routinely
used in the verification of discrete-time hybrid systems, is to

replace Boolean variables with first order atoms, including
non-linear arithmetic constraints on real numbers [34]. In
this way, LTL can express properties like “If the temperature
reaches 90 degrees then it must eventually decrease below 60”,
using formulas of the form �(t ≥ 90 → 3 t < 60), which
constrains any state where the temperature t is greater or equal
to 90 to be followed by a state where the temperature is below
60.

A second possibility is to add operators to express timing
constraints between discrete events. This leads to the develop-
ment of real-time temporal logics such as Metric Temporal
Logic (MTL) [35]. For instance, real-time temporal logics
can express properties like “An alert must be resolved in
10 seconds”, by means of the MTL formula �(alert →
3[0,10] sys ok), which forces the sys ok event to occur at
most 10 time units after the alert event.

Real-time temporal logics have been further extended by
providing a continuous notion of time, and by making them
capable of expressing properties of continuous quantities. The
most relevant language in this family of continuous-signal
logics is STL [31], which combines first order atoms with
timing constraints and is able to express properties like “If the
temperature reaches 90 degrees then it must decrease below
60 in at most 10 seconds”. Such a property can be formalized
by the formula �(t ≥ 90→ 3[0,10] t < 60), which constrains
any time instant τ0 where the temperature t is greater or equal
to 90 to be followed by a time instant τ1 where the temperature
is below 60 and such that τ1 − τ0 ≤ 10.

More recently, some logics for hybrid-systems have been
introduced, which can express properties of both the discrete
and continuous behaviors of a system. Two relevant members
of this class are HRELTL [32], which extends the LTL with
regular expressions (RE), and Differential Dynamic Logic
(dL) [36], which can specify correctness properties for hybrid
systems given operationally as hybrid programs. An example
of a hybrid property is “If the temperature reaches 90 then
an alert is raised”, which can be formalized by the HRELTL
formula �(t ≥ 90→ # alert), where # is the “next discrete
event” operator. On the other hand, the hybrid property “for
the state of a train controller train, z ≤ 100 always holds
true when starting in a state where v2 ≤ 10 is true”, can be
expressed by the dL formula v2 ≤ 10 → [train]z ≤ 100,
where z and v are the position and the velocity of the train,
respectively.

Temporal Logic and Contracts: Consistent with the repre-
sentation of component behaviors, both assumptions A and
guarantees G of a contract C can be specified as temporal
logic formulas [18]. In this case, a component M satisfies
the contract C if it satisfies the logical implication A → G,
while it is a legal environment for C if it satisfies the formula
A. Contract satisfaction can thus be reduced to two specific
instances of model checking [6]. Composition and conjunction
of contracts C1 and C2 can be represented by appropriate
Boolean combination of the formulas A1, A2, G1 and G2.
Other operations on contracts, as defined in Section II-C, can
be reduced to special instances of the validity or satisfiability
checking problem for temporal logic (or quantified temporal
logic [18]), as follows:

PROCEEDINGS OF IEEE 13

Up

𝑦 = 4𝐴
𝑇

𝑡 = 1

0 ≤ 𝑡 ≤ 𝑇 2

Down

𝑦 = −4𝐴
𝑇

𝑡 = 1

𝑇 2 ≤ 𝑡 ≤ 𝑇

𝑡 ≥ 𝑇 2

𝑡 ≥ 𝑇

𝑡 →0

𝑡=0

Fig. 5. Hybrid automaton specifying a triangle wave generator.

• In its simplest formulation, compatibility and consistency
can be checked by testing whether A or G are satisfiable.
More complex instances of the problem, which rule out
contracts that are “trivially” compatible or consistent, can
be solved by vacuity checking [37];

• Refinement is an instance of validity checking: C1 � C2 if
and only if A1 → A2 and G2 → G1 are valid formulas
(i.e., tautologies for the language).

A solution of the above problems for HRELTL, based on SMT
techniques can be found in [32].

B. Hybrid Automata

Formalisms following an imperative style, such as hybrid
automata, can be used to specify functional requirements espe-
cially for system portions of limited complexity. For example,
describing the intended behavior of a controlled continuous
system together with its discrete controller. Then, one can
verify the intended behavior versus generic properties such
as safety, which requires the automata to stay away from a set
of “bad” states, as well as verify whether an implementation
is a refinement of the hybrid automaton.

Intuitively, a hybrid automaton is a “finite-state automaton”
with continuous variables that evolve according to dynamics
specified at each discrete location (or mode). The evolution of
a hybrid automaton alternates continuous and discrete steps.
In a continuous step, the location (i.e., the discrete state) does
not change, while the continuous variables change following
the continuous dynamics of the location. A discrete evolution
step consists of the activation of a discrete transition that can
change both the current location and the value of the state
variables, in accordance with the reset function associated
to the transition. The interleaving of continuous and discrete
evolutions is decided by the invariant of the location, which
must be true for the continuous evolution to proceed, and by
the guard predicate of the transition, which must be true for
a discrete transition to be active.

For example, the hybrid automaton in Fig. 5 can be used
to specify the required behaviors of a triangle wave generator
with period T and amplitude A. In the Up mode, the output y
of the generator is required to increase with a constant slope
until the internal variable t, initially set to zero, and increasing
with a slope of one, reaches T

2 . The generator will then switch
to the Down mode, where y is required to decrease with the
same slope, while t will keep on increasing until it crosses T .
Once this threshold is crossed, the generator commutes back
to the Up mode, while t is reset to zero.

Verifying safety of a hybrid automaton with respect to a
prescribed set of bad states is equivalent to verifying that all
legal behaviors of the automaton do not go through any of the
bad states, i.e., the bad states are unreachable. The computa-
tion of the reachable set, which consists of all the states that
can be reached under the dynamical evolution starting from a
given initial state set, is non-trivial for hybrid automata. Since
the states of a hybrid automaton are pairs made by a discrete
location together with a vector of continuous variables, they
have the cardinality of continuum. Therefore, in general, it is
not possible to perform exact reachability analysis.

Hybrid automata come in several flavors. The original model
allows for arbitrarily complex dynamics and was developed
primarily for algorithmic analysis of hybrid systems [33]. The
class of hybrid input/output automata enables compositional
analysis of systems [38]. In timed automata [39] all the contin-
uous variables are clocks (they have derivative 1) that can only
be reset to zero. Many verification problems are decidable for
this class, making it an interesting formalism for verification
and requirement analysis. Rectangular automata [40] extend
timed automata by allowing piecewise constant dynamics,
while still keeping decidability of the reachability problem.
Linear hybrid automata [41] extend rectangular automata by
allowing guards and resets to be general linear predicates, at
the price of losing decidability.

Hybrid Automata and Contracts: We can express contracts
with hybrid automata by following the approach proposed
by Benvenuti et al. [42]. We model the assumptions A with
a hybrid automaton that generates all the admissible input
sequences for a component (uniform assumptions), while we
model the guarantees G as the set of admissible output
sequences for the component. Then, a component M satis-
fies the contract if the behaviors of the composition of the
hybrid automata for A and M are contained in G. When
the guarantees are limited to safety guarantees (“nothing bad
can happen”), then the contract satisfaction problem can be
reduced to reachability analysis of a composition of automata.

Composition of contracts can be represented by appropriate
composition operators on automata. For instance, the con-
junction of assumptions corresponds to intersection of the
associated automata, while their disjunction can be expressed
by non-deterministic choice.

Under suitable restrictions, the other operations on con-
tracts, as defined in Section II-C, can also be reduced to special
instances of the reachability problem for timed or hybrid
automata. Indeed, compatibility and consistency can be solved
by checking whether the set of behaviors of the automaton
describing, respectively, A and G is empty.

Checking refinement between two contracts C1 and C2 is
more involved. For uniform assumptions and safety guar-
antees [42], it is possible to associate to each contract the
automaton HA ‖ HG, obtained by composition (‖) of the two
automata HA and HG, respectively describing the contract
assumptions and guarantees. HA ‖ HG models the behaviors
admitted by the contract in the context of its legal environ-
ments. Then, if A2 ⊆ A1, contract refinement can be verified
by checking the inclusion of the reachable sets of the two
hybrid automata HA1

‖ HG1
and HA2

‖ HG2
associated with

PROCEEDINGS OF IEEE 14

the contracts. When the evolution of the two hybrid automata
cannot be computed exactly, this becomes a difficult task, since
it requires computing both over-approximations and under-
approximations of the evolution, a capability supported by very
few tools.

C. Verification Tools
As shown in Section III-A and Section III-B, the operations

and relations on temporal logic and hybrid automata contracts
can be reduced to basic verification tasks. In this section,
we discuss some of the approaches reported in the literature
to perform these tasks, together with the tools embodying
them. Specifically, we focus on formal verification of hybrid
models, which generates, in general, intractable problems, and
classify the verification tools into five categories, based on the
strategies adopted to deal with intractability.

1) Tools Based on Exact Reachability Set Computation:
When the system dynamics are simple enough to be captured
by timed or rectangular automata, their evolution can be
computed exactly, and most of the verification techniques for
finite-state models can be used to obtain an exact answer to
verification problems.

A seminal tool in this category is KRONOS [43], which
verifies real-time systems modeled by timed automata with
respect to requirements expressed in the real-time logic TCTL
(Timed Computation Tree Logic), using a backward-forward
analysis approach.

The same approach was then extended to support rectan-
gular automata in HYTECH [44], by dealing with polyhedral
state sets. A key feature of HYTECH is its ability to perform
parametric analysis, that is, to determine the values of design
parameters for which a rectangular hybrid automaton satisfies
a temporal-logic requirement. It can then be used as an
evaluation engine for optimization-based design exploration,
as discussed in Section V.

Modern tools use a different approach, based on an on-
the-fly verification algorithm that does not need to build the
entire reached set of the system. The most relevant tool using
this approach is UPPAAL [45], written in Java and C++, and
equipped with a graphical user interface. It handles real-time
systems modeled as networks of timed automata, and complex
properties expressed in a subset of CTL. Since the dynamics
are represented just by clocks, it can support models with up
to 100 of them. A comparison of the performance of the three
tools above on the well-known railroad crossing example can
be found in the literature [46].

2) Tools Based on Reachable Set Approximations: When
the dynamics is more complex, the reachable set cannot be
computed exactly. Nevertheless, approximation techniques can
be used to obtain an answer in some cases. This approach is
mainly used to verify safety properties: the system is safe if
the reachable set is included in the safe set of states. Hence,
over-approximations may be used to obtain positive answers,
while under-approximations give negative answers.

One of the first tools that enabled verification of hybrid
systems with complex dynamics is d/dt [47]. The tool approx-
imates reachable states for hybrid automata where the con-
tinuous dynamics is defined by linear differential equations.

Being one of the first approaches, the tool does not allow the
composition of automata, and is limited in scalability.

PHAVER [48] handles affine dynamics and guards and
supports the composition of hybrid automata. The state space
is represented using polytopes. Results are formally sound
because of the exact and robust arithmetic with unlimited
precision. Scalability is, however, limited: models with more
than 10 continuous variables are usually out of the capabilities
of the tool.

SPACEEX [49] improves upon PHAVER in terms of scal-
ability: models with 100 variables have been analyzed with
this tool. It combines polyhedra and support functions to
represent the state space of systems with piecewise affine, non-
deterministic dynamics. Differently from PHAVER, the result
of SPACEEX is not guaranteed to be numerically sound. This
means that when the tool states that the system is safe, we can
only conclude that more sophisticated methods are necessary
to find bugs for that system.

FLOW* [50] supports systems with non-linear ODEs (poly-
nomial dynamics inside modes, polyhedral guards on discrete
transitions) by representing the state space using Taylor mod-
els (bounded degree polynomials over the initial conditions
and time, bloated by an interval). Results are guaranteed to
be numerically sound but scalability is limited to a dozen
variables.

ARIADNE [51], [42] uses numerical methods based on the
theory of computable analysis to manipulate real numbers,
functions and sets in the Euclidean space in order to verify
hybrid systems with non-linear dynamics, guards and reset
functions. It supports composition to build complex systems
from simpler components, and can compute both upper-
approximations and lower-approximations of the reachable
set, which play the role of over and under approximations.
By combining them, ARIADNE can provide both positive
and negative answers to the verification of safety properties
and other more complex problems. Its expressivity, however,
affects performance and scalability, which is currently limited
to models with up to 10 continuous variables.

An alternative approach to approximate the reachable set
of a hybrid automaton is to drop the standard infinite pre-
cision semantics, and adopt an ε-semantics where states
whose distance is less than a fixed ε are indistinguishable.
Under this assumption the reachability problem for hybrid
automata becomes decidable [52]. PYHYBRIDANALYSIS [53]
is a Python package that implements the ε-semantics approach
to symbolically compute an approximation of the reachability
region of hybrid automata with semi-algebraic dynamics.

3) Tools Based on Discrete Abstractions: In this setting,
the hybrid model under verification is first abstracted by a
finite-state discrete model that approximates the original one.
If the abstraction is not accurate enough to obtain an answer
to the verification problem, it is improved until either an
answer is found or the maximum number of refinement steps
is reached [54], [55]. The main advantage of this approach is
that, in some cases, an answer to the verification problem can
be obtained with few refinement steps, even for very complex
models.

The refinement algorithm proposed by Clarke et al. [55]

PROCEEDINGS OF IEEE 15

has been implemented by CHECKMATE [56], a MAT-
LAB/SIMULINK toolbox for the simulation and verification of
hybrid systems with linear and affine dynamics. The abstrac-
tion of the system is obtained with a method called flow pipe
approximation, where the reachable set over a bounded time
interval [0, t] is approximated by the union of a sequence of
convex polyhedra.

One of the first tools to extend this approach to non-linear
systems is HSOLVER [57], which uses constraint propagation
and abstraction-refinement techniques to discretize the state
space of the system and verify safety properties. HSOLVER
supports systems with complex non-linear dynamics and
guards, but it does not support the composition of automata.
Because of the particular state-space representation, it cannot
provide a graphical output of the reachable set, but only a
safe/possibly-unsafe answer to the verification problem.

HYBRIDSAL [58] uses predicate abstraction to abstract
the discrete dynamics and qualitative reasoning to abstract
the continuous dynamics of polynomial hybrid systems. The
algorithm can be applied compositionally to abstract a system
described as a composition of automata. Results are guaranteed
to be sound. Its scalability is limited: only 10 continuous
variables can be handled.

HYCOMP [59] uses a different approach, where the system
is abstracted with a discrete but infinite-state model using
an SMT approach. The abstraction is precise for piecewise
constant dynamics and is an over-approximation for affine
dynamics. Results are guaranteed to be sound (the SMT-
solver uses infinite-precision arithmetic). The tool was tested
successfully on models with 60 continuous variables with
piecewise constant dynamics and 150 Boolean variables.

4) Tools Based on Automated Theorem Proving: Given a
sufficiently expressive logic, the verification problem can be
reduced to test whether a formula of the form Sys → Prop
is valid (a logical tautology), where Sys is a representation
of the system under verification and Prop is the property of
interest. Automated theorem proving techniques can thus be
used to solve the problem. While in principle this approach
can easily manage parametric and partially specified systems,
and properties of arbitrary complexity, very few tools exploit
it in the context of hybrid systems. This is mainly due to the
need for a complex temporal logic to describe the system in
detail, and to the fact that automated theorem provers usually
need some intervention from the user to guide the proof search
and find an answer.

A robust tool using theorem proving techniques in the
context of hybrid systems is KEYMAERA [36], which com-
bines deductive, real algebraic, and computer algebraic prover
technologies. Systems and properties are specified using the
temporal logic dL. To automate the verification process,
KEYMAERA implements automatic proof strategies that de-
compose the hybrid system specification symbolically. The
tool is particularly suitable for verifying parametric hybrid
systems and has been used successfully for verifying collision
avoidance in case studies from train control to air traffic
management.

5) Tools Based on Simulation: A simulation-based ap-
proach can be used to verify black-box models (when the

internal dynamics is unknown), or models of more complex
systems, since simulation can be made more computationally
feasible. However, simulation is simply a virtual test bench
that gives answers as good as the questions that are asked,
hence there is no guarantee that the system behaves correctly
under all conditions. Simulation-based verification explores
the state space of the system by computing a set of trajectories
while hoping to cover as much as possible the relevant parts
of the state space. If one of the trajectories violates the
property, a counterexample is found and a negative answer
to the verification problem is given. Otherwise, no conclusion
can be made on the truth of the property, since simulation
cannot cover the entire state space. Similarly, simulation-
based verification cannot be used, in general, to certify the
satisfaction of a contract, but rather to monitor and detect
possible violations.

A first tool based on simulation is BREACH [60], a MAT-
LAB/C++ toolbox for the simulation, verification of temporal
logic properties and reachability analysis of dynamical sys-
tems, defined as systems of ordinary differential equations
(ODEs) or by external modeling tools such as SIMULINK. It
uses systematic simulation to compute an under-approximation
of the reachable set based only on a finite (though possibly
large) number of simulations. It supports complex properties
in STL and parameter synthesis.

S-TALIRO [61] is also a suite of tools for the analysis of
continuous and hybrid dynamical systems using linear time
temporal logic. Distributed as a MATLAB toolbox, it uses a ro-
bustness metric to guide the state space exploration, exploiting
randomized testing and stochastic optimization techniques to
maximize the chance of finding a counterexample. Similarly to
BREACH, it supports complex properties in Metric Temporal
Logic and parametric systems.

Finally, System Level Formal Verification (SLFV) [62]
can prove system correctness notwithstanding uncontrollable
events (such as faults, variation in system parameters, external
disturbances) by exhaustively considering all the relevant
simulation scenarios.

IV. PLATFORM COMPONENT-LIBRARY DEVELOPMENT

In the bottom-up phase of the design process, a library of
components, models and related contracts is developed for
the plant and the embedded system. As shown in Fig. 4
(a), components and contracts are hierarchically organized
to represent the system at different levels of abstraction,
e.g. steady-state, discrete-event, and hybrid levels. Typically,
at the highest levels of abstraction, a signal-flow approach is
more appropriate to CPS modeling, as is the case in signal pro-
cessing, feedback control based on sensor outputs and actuator
inputs, and in systems composed of unilateral devices [63].
In these cases, relations between system variables are better
viewed in terms of inputs and outputs, and interconnections
in terms of output-to-input assignments. Inputs are used to
capture the influence of the environment on the system, while
outputs are used to capture the influence of the system on
the environment. At the lowest levels of abstraction, acausal
models, without a-priori distinction between inputs and out-
puts, may be more suitable to model the majority of physical

PROCEEDINGS OF IEEE 16

(e.g. mechanical, electrical, hydraulic or thermal) components,
which are generally governed by laws that merely impose
relations (rather than functions) among system variables, and
where interconnections mean that variables are shared (rather
than assigned) among subsystems.

Reflecting the taxonomy of requirements, the component
library is also viewpoint and domain dependent, following a
similar approach as in the “rich component” libraries which
were first proposed for automotive embedded systems [12]. At
each level of abstraction, components are capable of exposing
multiple, complementary viewpoints, associated with different
design concerns and different formalisms (e.g. graphs, linear
temporal logic, algebraic differential equations). Moreover,
following the platform component definition in Section II-C,
models include extra-functional (performance) metrics, such
as timing, energy and cost, in addition to the description of
their behaviors.

Components and contracts can then be expressed using the
same formalisms introduced in Section III, in the context of
requirement analysis and system verification. A major chal-
lenge in this multi-view and hierarchical modeling scenario
remains to maintain consistency among models and views,
often developed using domain-specific languages and tools,
as the library evolves [3]. In this respect, the algebra of
contracts can offer an effective way to incrementally check
consistency or refinement among models. This information
can then be stored in the library to speed up verification tasks
at design time [15]. Moreover, vertical contracts can be used
to establish conditions for an abstract, approximate model, to
be a sound representation of a concrete model, i.e. to define
when a model still retains enough precision to address specific
design concerns, in spite of the vagueness required to make it
manageable by analysis tools [5]. In the following, we briefly
review the main languages and tools for system modeling and
simulation, as well as a few attempts at their integration.

A. Languages and Tools for System Modeling and Simulation

A number of modeling and interchange languages have
been proposed over the years to enable checking system prop-
erties, exploring alternative architectural solutions for the same
set of requirements, and exchanging the system descriptions
between the different tasks of the design flow (e.g. controller
design, validation, verification, testing, and code generation).
An exhaustive survey is out of the scope of this paper. Among
the several languages and tools, we recall here:
• Generic modeling and simulation frameworks, such as

MATLAB/SIMULINK6 and PTOLEMY II7;
• Hardware description languages, such as Verilog8,

VHDL9, or transaction-level modeling languages, such as
SystemC10, together with their respective analog-mixed-
signal extensions11;

6http://www.mathworks.com/products/simulink
7http://ptolemy.eecs.berkeley.edu
8http://www.verilog.com/
9http://www.vhdl.org
10http://www.accellera.org/downloads/standards/systemc
11http://www.eda.org/verilog-ams/, http://www.eda.org/vhdl-ams/, http://

www.accellera.org/downloads/standards/systemc/ams

• Modeling languages specifically tailored for acausal
multi-physics systems, such as Modelica12, supported by
tools such as DYMOLA13 or JMODELICA14;

• Languages for architecture modeling, such as the Sys-
tems Modeling Language (SysML)15 and the Architecture
Analysis & Design Language (AADL)16.

While some of these languages and tools mostly focus on
simulation, some others are also geared towards modeling,
analysis and verification of extra-functional properties.

A number of proposals have also appeared towards model-
ing languages specifically tailored to CPS. One of the first ex-
amples of these languages is Charon [64]. Charon supports the
hierarchical description of system architectures via the opera-
tions of instantiation, hiding, and parallel composition. Con-
tinuous behaviors can be specified using differential as well as
algebraic constraints, all of which can be declared at various
levels of the hierarchy. A few years later, Giotto [65] provided
an abstract programming model for the implementation of
embedded control systems with real-time constraints. Giotto
allows the designer to specify time-triggered sensor readings,
task invocations, actuator updates, and mode switches in a way
that is independent from the implementation details. The code
can then be annotated with platform-dependent constraints to
automatize the validation of the model and the synthesis of the
control software. A more recent modeling language proposal is
the Hierarchical Timing Language (HTL) [66]. In HTL critical
timing constraints are specified within the language, and forced
by the compiler. Programs in HTL are extensible by adding
new program modules, and by refining individual program
tasks. This mechanism is invariant under parallel composition,
and allows individual tasks to be implemented using external
languages to ease interoperability.

All the above languages are not intended to be interchange
formats, in that they generally lack the capability to easily
interface with other tools. A first proposal for a truly platform-
independent interchange format based on hybrid automata is
the Hybrid System Interchange Format (HSIF) [67]. HSIF
can represent networks of hybrid automata, albeit without
hierarchy or modules. Variables can be shared or local, and
the communication mechanism is based on broadcasting of
Boolean signals. Other examples are the METROPOLIS meta-
model [68], which also accounts for implementation consid-
erations, such as equation sorting and event detection, and
the interchange format for switched linear systems defined
by Di Cairano et al. [69]. More recently, the Compositional
Interchange Format (CIF) has been proposed to overcome
some of the limitations of previous languages [70], such
as the absence of hierarchy in HSIF, and the limitation to
linear dynamics only [69]. CIF is a generic exchange format,
integrating compositional semantics with automata, process
communication and synchronization based on shared events,

12https://www.modelica.org/
13www.dynasim.se/
14http://www.jmodelica.org/
15SysML is an object oriented modeling language largely based on the

Unified Modeling Language (UML) 2.1, which also provides useful extensions
for systems engineering (http://www.omg.org/spec/SysML).

16http://www.aadl.info/aadl/currentsite

PROCEEDINGS OF IEEE 17

differential algebraic equations, different forms of urgency,
and process definition and instantiation to support re-use and
large scale system modeling. It can interface with a number of
other languages and tools (e.g. UPPAAL, PHAVER, ARIADNE,
MODELICA, MATLAB), and is currently used in both academia
and industry.

As an alternative approach to facilitate the integration of
different domains and models within a unifying framework,
Shah et al. [71] propose the customization of SysML [72]
by using profiles and domain specific languages to support
multiple representations (or architectures) of the system, and
graph transformations to describe the relations between them.

Finally, particularly appealing for CPS modeling and simu-
lation is the Functional Mockup Interface (FMI), an evolving
standard for composing component models, which are better
realized and characterized using distinct modeling tools [73],
[74]. Initially developed within the MODELISAR project,
and currently supported by a number of industrial partners
and tools17, FMI shows promise for enabling the exchange
and interoperation of model components. The FMI standard
supports both co-simulation, where a component called FMU
(Functional Mock-up Unit) implements its own simulation
algorithm, and model exchange, where an FMU exports suffi-
cient information for an external simulation algorithm to ex-
ecute simulation. However, while in principle FMI is capable
of composing components representing timed behaviors, in-
cluding physical dynamics and discrete events, several aspects
of the standard, e.g. to guarantee that a composite model does
not exhibit non-deterministic and unexpected behaviors, are
currently object of investigation [75].

V. MAPPING SPECIFICATIONS TO IMPLEMENTATIONS

In the absence of a unified framework for automated
synthesis of CPS simultaneously subject to a heterogeneous
set of requirements, we reason about different aspects or
representations of the design by using specialized analysis
and synthesis (mapping) frameworks that can operate with
different formalisms. During design space exploration, both
horizontal and vertical contracts can be used to define both the
specification and the implementation platforms, thus playing
an essential role in checking or enforcing that an aggregation
of components is compatible, and that the implementation is
a correct refinement of the specification.

At each abstraction level, mapping to a lower level can be
performed by either leveraging a synthesis tool, or by solving
an optimization problem that uses constraints from both the
specification and the implementation layers to evaluate global
tradeoffs among components. Accordingly, we denote as Csyn
a contract that can be used as input of a specialized synthesis
tool, and as Copt a contract that serves as a conjunction of
constraints in a more generic optimization problem. Copt can
be further characterized as Cver ∧ Csim, where Cver denotes a
contract whose satisfaction can be formally verified, e.g. using
the tools introduced in Section III, while Csim refers to a
contract that can only be checked by simulation. In the

17https://www.fmi-standard.org/

following, we provide examples of mapping techniques and
tools for the different design tasks in our methodology.

A. Architecture Design

In the design of the system architecture, CA,syn in Fig. 4
(a) includes the specification contract, e.g. expressed in terms
of linear (or quadratic) arithmetic constraints on Boolean
and real variables, as well as the steady-state models of the
architecture, e.g. represented as constraints on a graph. Then,
an implementation can be directly synthesized by solving
a mixed integer-linear (or quadratic) program to minimize
a cost function (e.g. component number, weight, cost, en-
ergy) while satisfying the constraints above [14]. It has been
shown that the formulation above can encompass a variety
of requirements, such as connectivity, safety, reliability, and
energy balance [14]. These requirements are mapped on a
representation of the system architecture, e.g. in terms of
a labelled graph, where nodes represent the (parameterized)
components and edges represent their interconnections.

To handle reliability requirements, the ARCHEX frame-
work [14], [76] implements two algorithms to decrease the
complexity of exhaustively enumerating all failure cases on
all possible graph configurations, namely, Integer-Linear Pro-
gramming Modulo Reliability (ILP-MR) and Integer-Linear
Programming with Approximate Reliability (ILP-AR). ILP-
MR “lazily” combines an ILP solver with a background exact
reliability analysis routine, inspired by similar approaches
previously reported in the literature [77], [29]. The solver itera-
tively provides candidate configurations that are analyzed and
accordingly modified to satisfy the reliability requirements.
Although exact reliability analysis is an NP-hard problem, the
idea is to perform it only when needed, i.e. a small number
of times, and possibly on smaller graph instances. Conversely,
ILP-AR efficiently generates a monolithic problem instance
using an “eager” approach, by leveraging approximate reliabil-
ity computations that can still provide estimates to the correct
order of magnitude, and with an explicit theoretical bound on
the approximation error. The synthesized architecture can then
serve as a specification for the control design step.

B. Control Synthesis

Control synthesis deals with the problem of mapping
(synthesizing) high-level formal requirements (e.g. CC,syn in
Fig. 4 (a)), and a description of the plant, into a lower-
level, correct-by-construction, controller that implements the
desired requirements once it is composed with the plant. We
review below the main techniques for the synthesis of control
algorithms for CPS.

1) Reactive Synthesis: When requirements are expressed
using a discrete-time temporal logic (e.g. LTL or CTL), con-
troller synthesis can be solved using techniques from reactive
synthesis, which has been an active area of research since the
late 1980s, and it is still attracting a considerable attention
today [78], [79], [80], [81]. In this case, the specifications are
mapped on a DE implementation of the controller, e.g. in terms
of a state machine that represents a lower level of abstraction
in the design refinement process.

PROCEEDINGS OF IEEE 18

Let E and D be sets of environment (input) and con-
trolled (output) variables, respectively, of a DE controller. Let
s = (e, d) ∈ E × D be its state, and CLTL an LTL contract
of the form (E ∪ D,ϕe, ϕe → ϕs), where ϕe characterizes
the assumptions on the environment and ϕs characterizes the
system requirements. Reactive synthesis can then be viewed
as a two-player game between an environment that attempts
to falsify the specification in CLTL and a controlled plant
that tries to satisfy it. A control strategy is a partial function
f : (s0s1 . . . st−1, et) 7→ dt, which selects the value of the
controlled variables based on the state sequence so far and the
behavior of the environment so that the (controlled) system
satisfies ϕs as long as the environment satisfies ϕe. If such a
strategy exists, the specification is said to be realizable. For
general LTL, the synthesis problem has a doubly exponential
complexity. However, a subset of LTL, namely generalized
reactivity (1) (GR(1)), generates problems that are polynomial
in |E × D|, the number of valuations of the variables in E
and D [78]. Given a GR(1) specification, there are game
solvers and digital design synthesis tools that generate a finite-
state automaton that represents the control strategy for the
system [82], [81], [83], [84], [85].

When the requirements also involve continuous variables,
by “replacing” continuous dynamics by discrete abstractions it
is possible to reduce the synthesis problem to a purely discrete
one and therefore within the realm of reactive synthesis, or
other established DE system control synthesis methods [86],
[87], as available for instance in the third revision of the CIF
language for supervisory control synthesis [88]. More recently,
a synthesis method for discrete-time CPS subject to STL
specifications has been proposed based on a model predictive
control framework [89], [90]. The STL specifications are
encoded as mixed integer-linear constraints on the system
variables of an optimization problem that is solved at each
step, following a receding horizon approach.

2) Synthesis by Abstraction: Because of the limited appli-
cability of existing tools to large-scale CPS hybrid models,
constructing effective abstractions in a compositional way is
key in order to tackle the synthesis problem. Indeed, the notion
of approximate bisimulation [91] has been recently introduced
to obtain correct and complete abstractions of differential
equations that can be used to solve controller design problems.
PESSOA [92] is a software toolbox, which exploits approxi-
mate bisimulation to implement efficient synthesis algorithms
operating over the equivalent finite-state machine models. The
resulting controllers are also finite-state and can be readily
transformed into code for any desired digital platform. This
transformation assigns the finite-state controller operation to a
processor, where code is the result of mapping the controller
equations into the instruction set of the processor.

Another approach to mapping a controller into a processor
is the control software synthesis tool QKS [93]. Given the
sampling time of the controller and the precision of the
analog-to-digital conversion of state measurements, QKS can
compute both the controllable region and an implementation
in C code of a controller driving the system into a goal region
in finite time.

A library-based compositional synthesis approach that di-

rectly conforms to the PBD paradigm has recently been
presented to solve high-level motion planning problems for
multi-robot systems [94]. The desired behavior of a group
of robots is specified using a set of safe LTL properties
(top-down step of the flow). The closed-loop behavior of the
robots under the action of different lower-level controllers
is abstracted using a library of motion primitives, each of
which corresponds to a controller that ensures a particular
trajectory in a given configuration (bottom-up step of the flow).
By relying on these primitives, the mapping problem is then
encoded as an SMT problem and solved by using an off-the-
shelf SMT solver to efficiently generate control strategies for
the robots.

3) Hybrid Controller Synthesis: Several real-time con-
straints, mostly related to the physical plant and the hardware
implementation of the controller, may require the full expres-
siveness of continuous and hybrid models. However, solving
the controller synthesis problem by directly mapping to these
abstractions is a very difficult task [95]. Even in the context of
timed automata, where the synthesis problem is known to be
solvable in an exact way [96], efficient and practical tools are
lacking. One of the few exceptions is UPPAAL-TIGA [97],
[98], an extension of UPPAAL that implements on-the-fly al-
gorithms for solving the controller synthesis problem on timed
automata with respect to reachability and safety properties
expressed using timed computation tree logic.

Most of the algorithms for controller synthesis of hybrid
automata subject to a safety specification are based on solving
a differential game in which the environment is trying to
drive the system into its target set at the same time as
avoiding the target set of the controller. A general formulation
for this problem can be found in the literature [99], [100].
Examples include the symbolic semi-algorithm to compute the
controllable region of a linear hybrid automaton with respect
to a safety goal [101], and a procedure to synthesize the
maximal safe controller for more general hybrid systems with
a lower bound on event separation [100]. One of the few
publicly available tools implementing this two-person game
approach is PHAVER+ [102], an extension of PHAVER that
can automatically synthesize discrete controllers for linear
hybrid automata with respect to safety and reachability goals.

Two synthesis (mapping) approaches have also been pre-
sented that can incorporate finite-precision sensors and actua-
tors as well as the finite response time of the controller [103],
[104]. In these works, the synthesis problem is addressed for
two sub-classes of hybrid automata, namely elastic controllers,
and lazy linear hybrid automata, operating in an environment
represented by hybrid automata. Elastic controllers are timed
automata without invariants and with closed guards [105],
[106]. They were introduced together with a parametric se-
mantics for timed controllers called the Almost ASAP seman-
tics, which relaxes the standard idealized ASAP (As Soon
As Possible) semantics that cannot be implemented by any
physical device no matter how fast it is. The result is that
any correct Almost ASAP controller can be implemented by
a program on a hardware if this hardware is fast enough.
The first paper [103] presents a corresponding automated tool
chain that can extract from an elastic controller a correct-by-

PROCEEDINGS OF IEEE 19

construction HW/SW implementation described in SystemC.
On the other hand, lazy linear hybrid automata [107] are
used to model the discrete-time behavior of control systems
containing finite-precision sensors and actuators interacting
with their environment under bounded delays. A methodology
and a corresponding tool chain to synthesize an implementable
control strategy for LLHA is discussed in the second pa-
per [104].

C. Optimized Mapping and Design Space Exploration

Whenever correct-by-construction synthesis from require-
ments results into intractable problems, it is still possible to
cast the design exploration problem, in its more general terms,
as an optimization problem, where the system specifications
are checked by a formal verification engine or by monitoring
simulation traces. For instance, let Csim = (V, φe, φe → φs)
be a contract that must be checked by simulation, where φe and
φs are temporal logic formulas. Then, given an array of costs
C, the mapping problem can be cast as a multi-objective robust
optimization problem, to find a set of configuration parameter
vectors κ∗ that are Pareto optimal with respect to the objectives
in C, while guaranteeing that the system satisfies φs for all
possible traces s satisfying the environment assumptions φe.
More formally,

min
κ∈K,π∈Π

C(κ, π) (18)

s.t.
{
F(s, κ) = 0
s |= φs(π) ∀s s.t. s |= φe(π)

where π is a set of formula parameters used to capture degrees
of freedom that are available in the system specifications, and
whose final value can also be determined as a result of the
optimization process. For a given parameter valuation κ, sκ is
shorthand notation for sκ(t) = {u(t), yκ(t), xκ(t)}, the set of
traces of input, output and internal signals (which are also
represented as sets of traces over time t ∈ R≥0) that are
obtained by simulating the behavioral model F(.), defined in
Section II-C. A multi-objective optimization algorithm with
simulation in the loop can then be implemented to find the
Pareto optimal solutions κ∗. While this may be expensive
in general, it becomes the only affordable approach in many
practical cases.

The mapping methodology above can also encompass con-
tracts of the form Cver = (V, φe, φe → φs) whose satisfaction
can still be efficiently verified via formal methods, even if
the synthesis problem is intractable. Moreover, it can be used
to perform joint design exploration of the controller and
its execution platform, while guaranteeing that their speci-
fications, captured by vertical contracts, are consistent. As
mentioned in Section II-C, the association of functionality
to architectural services to evaluate the characteristics (such
as latency, throughput, power, and energy) of a particular
implementation by co-simulation of both a functional model
and an architectural model of the system is supported by
frameworks such as METRONOMY.

L1

GEN

HVAC Bus 1

RU

L

APU

HVAC Bus 2

R

APU

HVAC Bus 3

R1

GEN

HVAC Bus 4

RU RU RU

HVDC Bus 1 HVDC Bus 2

ACT

LVAC Bus 1

LVAC ESS Bus 3

LVAC Bus 2

LVAC ESS Bus 4

L2

GEN

R2

GEN

RU RU

LVDC ESS Bus 1

LVDC Bus 3

LVDC ESS Bus 2

LVDC Bus 4

TRU TRU

ACT

Batt Batt

Fig. 6. Single-line diagram of an aircraft electric power system (Figure
from [14]).

VI. AIRCRAFT POWER DISTRIBUTION DESIGN EXAMPLE

We illustrate the application of the methodology introduced
in this paper to the design of supervisory control systems for
aircraft power distribution [14], [108].

Figure 6 shows a sample structure of an aircraft electric
power system (EPS) in the form of a single-line diagram,
a simplified notation for three-phase power systems [109].
Generators (e.g., two on the left and two on the right side
of the aircraft, denoted as GEN in Fig. 6) deliver power to
the loads (e.g. avionics, lighting, heating and motors, not
represented in Fig. 6) via high-voltage and low-voltage AC
(HVAC, LVAC) and DC buses (HVDC, LVDC). Auxiliary
Power Unit (APU) generators or batteries (Batt) are instead
used when one of the primary generators fails. Essential buses
(ESS in Fig. 6) supply loads that cannot be unpowered for
more than a predefined period tmax, while non-essential buses
supply loads that may be shed in the case of a fault. Contactors
are electromechanical switches that are opened or closed to
determine the power flow from sources to loads, and are
shown as double bars in the figure. AC transformers (ACT)
convert high-voltage to low-voltage AC power. Rectifier Units
(RUs) convert and route AC power to DC buses. Transformer
Rectifier Units (TRUs) act both as transformers and rectifiers.

The goal of the supervisory controller (not represented in
Fig. 6) is to react to changes in system conditions or failures
and reroute power by appropriately actuating the contactors, to
ensure that essential buses are adequately powered. A pictorial
representation of the proposed design flow as instantiated
for the EPS is shown Fig. 4. In the following, we briefly
summarize the main steps followed to map the top-level
system requirements into a lower level representation of both
the plant architecture and the control algorithm, to be further
refined during subsequent design steps. Our overview is based
on the results reported by Nuzzo et al. [14].

A. Top-Level Requirements

As a first step, top-level requirements are captured in terms
of a system contract CS using an electric power system

PROCEEDINGS OF IEEE 20

domain-specific language (DSL), which enables automatic
translation of the specifications from a set of pre-defined
primitives to one (or more) of the back-end formalisms
mentioned in Section III. The DSL can smoothly interface
with pre-existing tools, such as visual programs for single-line
diagrams, typically used by system engineers. Representative
examples of system assumptions (A) and guarantees (G)
supported by the DSL are provided below.

A1: Reliability Level. A typical power system specification
would require that the failure probability for an essential bus
(i.e., the probability of being unpowered for longer than tmax
by any of the available generators) be smaller than a certain
target rS , e.g. corresponding to 10−9 per flight hour. We
denote the probability rS as the reliability level of the system.
To allow formalizing this requirement, a set of environment
assumptions must be provided to characterize the number and
kind of component failures allowed, assuming that component
failure events are all independent.

A2: Irreversible Failures. As a second set of environment
assumptions, we require that when a component fails during
the flight, it will not come back online.

G1: Reliability Level. As a first set of system-level guar-
antees, we need to ensure that the probability for an essential
bus to be unpowered by any of the available generators rT
(i.e. the probability that there is no possible interconnection
between the bus and any generator) is smaller than the required
reliability level rS , as defined above. We denote the probability
rT as the topology reliability level.
G2: Unhealthy Sources. We require that the set of con-

tactors directly connected to an unhealthy source be open to
isolate it from the rest of the system.

G3: Operation in Nominal Conditions. Under nominal
conditions (i.e., when all generators and rectifier units are
healthy), primary generators and rectifiers on each side of the
electric power system topology must provide power to the
buses on the same side; all other paths (and auxiliary power
units) stay inactive.

G4: No Paralleling of AC Sources. To avoid generator
damage, AC sources should never be paralleled, i.e. no AC
bus can be powered by multiple generators at the same time.

G5: System Reaction Time. A DC essential bus can stay
unpowered for no longer than tmax in case of failure.

The above system requirements are used to derive a con-
tract CT for the system architecture, in terms of arithmetic
constraints on Boolean variables and failure probabilities
(mixed integer-linear inequalities), and a contract CC for
the control algorithm, expressed as a conjunction of LTL
and STL contracts, as shown in Fig. 4 (b). Examples of
DSL constructs supporting the above requirements, and their
translation into mixed integer-linear constraints and temporal
logic formulas, to capture different levels of abstractions, can
be found in the above mentioned publication [14] and other
related works [108], [76].

Architecture and control protocol need to be consistently
designed to satisfy CS , which can be guaranteed by showing
that CT ⊗ CC is compatible and CT ⊗ CC � CS . However, as
discussed in Section II-C5, to enforce the correctness of the
refinement between different levels of abstraction of the design

platform, including different viewpoints, contract consistency
and compatibility should hold in both the horizontal and
vertical directions. While the composite contract CT ⊗ CC
can be effectively used to model the horizontal interaction
between the controller and its plant, to guarantee the overall
system reliability and real-time performance, we also need to
prove compatibility and consistency of the vertical contracts
between architecture and control for the timing and reliability
viewpoints. Specifically, the control protocol makes several
assumptions that must be discharged by the architecture, e.g. in
terms of the topology reliability level, due to the available
component redundancy, and the worst-case latency, due to
delays in both the physical plant and the execution platform.

While the proofs of compatibility and correctness of CT⊗CC
are performed manually [14], reasoning with contracts is
still instrumental to efficient co-design of architecture and
control. In particular, Propositions 6.1 and 6.2 in the afore-
mentioned paper [14] show that, if system-level requirements
are “partitioned” according to CT and CC , then the system
can be designed in a compositional way, i.e., the architecture
and control design steps summarized in Section VI-B and
Section VI-C can be independently refined while guaranteeing
that the assembled system satisfies CS .

More specifically, given a system reliability requirement rS ,
Proposition 6.2 states that, if the power system topology is
synthesized to implement the contract CT with a reliability
level rT ≤ rS , then there exists a time T ∗ (a function of the
synthesized topology and the contactor actuation delays) such
that a centralized controller implementing the contract CC for
the given topology, with a reliability level rS and tmax ≥ T ∗
can also be synthesized, and the resulting controlled system is
guaranteed to satisfy the top-level requirements.

B. Architecture Design

At the structural (steady-state) level of abstraction, the plant
architecture is modelled as a directed graph, where each node
represents a component (with the exception of contactors,
which are associated with edges) and each edge represents an
interconnection, oriented based on the direction of the power
flow. The platform library L includes, as attributes, generator
power ratings, component costs and failure probabilities, in
addition to a set of interconnection rules. The supervisory
controller is abstracted as one or more finite state machines,
which actuate the contactors in the plant to configure the
network and route power from the generators to the loads
based on the failure status of the components. The controller
is characterized by a reaction time Tr.

Based on the platform library described above, the con-
tract CT , including the safety, connectivity, power flow, and
reliability requirements for the system architecture, can be
expressed (both assumptions and guarantees) in terms of linear
inequalities on a set of Boolean variables, each denoting the
presence or absence of an interconnection in the topology
graph, as detailed in Section V. The trade-off between redun-
dancy and cost can then be explored using ARCHEX to select
an optimized system architecture, which is then offered as a
specification for the control refinement step.

PROCEEDINGS OF IEEE 21

(b) (a)

Fig. 7. Electric power system architecture design example. (a) Components
and attributes used in the topology: generator power ratings, load power
requirements, component costs. Generators, buses and rectifiers are assumed
to fail, during a mission, each with a probability of 2× 10−4. (b) Topology
obtained after running ARCHEX (ILP-MR algorithm) with a required reliabil-
ity level r∗T ≤ 2× 10−10. The topology diagram consists of rows of (from
top to bottom) generators, AC buses, rectifier units, DC buses, and DC loads.
Disconnected nodes are not used in the final topology. The resulting reliability
level is rT = 0.79× 10−10 [76].

As represented in Fig. 4 (c), the ILP-MR algorithm im-
plemented in ARCHEX, using CPLEX [110] as a back-end
optimization engine, is able to generate, in a few seconds,
architectures for the primary distribution of an electric power
system for different reliability requirements. Figure 7 (b)
shows the architecture obtained after executing the ILP-MR
algorithm using the parameters in Fig. 7 (a), for a required
reliability level r∗T ≤ 2 × 10−10. The resulting reliability
level is rT = 0.79 × 10−10, while the runtime is about 38 s
on an Intel Core i7 2.8-GHz processor with 8-GB memory.
Optimized architectures including up to 50 nodes can be
selected in about 3 minutes [76].

C. Control Design

For a given architecture, the controller requirements can be
defined as a contract CC , where the assumptions AC encode
the allowable behaviors of the environment (including the
physical plant) and the guarantees GC encode the desired
behaviors of the closed-loop system, i.e. the guarantees of the
system contract CS .

In this example, CC can be expressed as the conjunction
between an LTL contract CLTL and an STL contract CSTL.
The STL formulas in CSTL can either be obtained by hetero-
geneous refinement of a subset of LTL formulas in CLTL or
generated anew to capture design aspects related to the plant
and the hardware implementation of the control algorithm,
which cannot be expressed using the Boolean, untimed or
DE abstractions offered by LTL. CLTL ∧ CSTL is then a
vertical contract for the controller, since CLTL and CSTL refer
to two different controller representations, possibly involving
different viewpoints (e.g. functional and timing).

To further illustrate this concept, we consider a simple
power network topology consisting of a bus B connected with
generators G1 and G2 via contactors C1 and C2, respectively.
Moreover, we assume the following requirement for the con-
troller: “if G1 fails and G2 is healthy, then the controller shall
first open C1 and then close C2, while guaranteeing that B
does not lose power for more than tmax”. We can encode this
requirement as a conjunction of LTL and STL contracts as
follows:
• Let gi and ci (i = 1, 2) be Boolean variables

encoding the status of generators (healthy/unhealthy)
and contactors (open/closed). Then, the LTL contract
can be used to capture the desired sequence of ac-
tions prescribed by the requirement, i.e. CLTL =
({g1, g2, c1, c2},T,� {¬g1 ∧ g2 → ¬c1 ∧ (#c2)}).

• Furthermore, we can refine the “absence of power losses
on a bus for more than tmax” with the statement: “the bus
voltage VB deviates from the desired value Vd by more
than a margin ε for more than tmax”, and use the follow-
ing STL formula to state that the above faulty behavior
should never happen: φ = ¬(3[0,∞) �[0,tmax](|VB(t) −
Vd| ≥ ε)). This translates into the contract CSTL =
({VB},T, φ).

To guarantee the consistency of CLTL ∧ CSTL, and refine
it towards an implementation, the controller design process
consists of two steps:

1) Reactive Synthesis. As shown in Fig. 4 (d), CLTL is
first used together with DE models of the plant compo-
nents (also described by LTL formulas) to synthesize a
reactive control protocol in the form of one (or more)
state machines using reactive synthesis techniques, as
described in Section V-B1. The resulting controller will
satisfy CLTL by construction.

2) Optimized Mapping. The functional model of the synthe-
sized controller is embedded into a high-fidelity hybrid
model of the system, including an acausal representation
of the plant. The entire system is simulated, under the
assumption that the controller operates in a synchronous
fashion, according to its reaction time Tr.18 The satisfac-
tion of CSTL is then assessed by monitoring simulation
traces, while optimizing a set of system parameters and
costs, as described in Section V-C. The resulting optimal
controller and plant configurations are returned as the
final design, as shown in Fig. 4 (g).

We observe that the joint execution of the controller with
the plant in the mapping step effectively implements the syn-
chronization mechanism which is instrumental in: (i) check-
ing the consistency of the vertical contract, (ii) discharging
the timing assumptions made during the previous design
steps, and (iii) ultimately verifying the satisfaction of both
the functional and timing viewpoints. However, mapping via
simulation may be expensive to perform for certain kinds
of requirements; reactive synthesis is then key to make it
affordable, by guaranteeing that several functional, safety and
reliability requirements are already satisfied by construction.

18The synchronous operation of the controller is a design choice specific
to this case study; it is not meant to serve as a general design guideline.

PROCEEDINGS OF IEEE 22

In the following, we provide implementation details of the
design steps above, when applied to the system requirements
in Section VI-A and the topologies described in Section VI-B.

1) Reactive Synthesis: Because the formulas in CLTL can
be conveniently expressed using the GR(1) fragment of LTL,
a control protocol can be automatically synthesized using the
TULIP Toolbox [81]. For different topologies, as the one
shown in Fig. 7, and reliability levels (rS = rT) ranging from
4× 10−4 to 2.6× 10−15, a set of centralized and distributed
control protocols were synthesized in approximately 0.5 to 2 s,
with a number of states ranging from 4 to 113 [14], [108].

2) Optimized Mapping: A hybrid model implemented in
SIMULINK, based on blocks from the SimPowerSystems li-
brary, as shown in Fig. 4 (g), was used to analyze and opti-
mize the closed-loop real-time performance of the controller,
imported as a MATLAB function. In this model, contactors
have a non-ideal response, affected by a fixed delay Td on
both the open and close commands. Therefore, it is possible
to explore the trade-off between controller reaction time Tr
and contactor delay Td and find, for instance, the maximum
allowed reaction time T ∗r for a fixed T ∗d , in such a way that
the essential DC bus is never out of range for more than
tmax. To do so, an optimization problem is cast following
the formulation in (18): the constraints are expressed using
STL formulas parametrized by Tr, and the system behavior
is the set of traces s = {u, VDC}, where VDC is the DC
bus voltage signal to be observed during simulation and u
spans the set of all admissible failure injection traces that are
consistent with the assumptions on the reliability level in CC .
The BREACH toolbox [60] was used to monitor the satisfaction
of STL formulas on the simulation traces.

As an example, for the architecture in Fig. 4 (g), Fig. 4
(e) shows the simulated voltage VB3

of bus B3 as a function
of time, for Tr = 15 ms, Td = 15 ms, tmax = 70 ms, and
in the worst case scenario of cascaded faults in generators
G1, G2 and rectifier R1 [108]. The red signal at the bottom
of the figure is interpreted as a Boolean signal, which is high
(one) when the requirement on the essential DC bus is violated
and low (zero) otherwise. The requirement on the DC bus is
violated for 32 ms. Therefore, (Tr = 15 ms, Td = 15 ms) is
an unsafe parameter set.

The Tr versus Td design space is explored in Fig. 4 (f) by
sampling the parameter space in approximately 4 hours (on
an Intel Core i7 2.3-GHz processor) to populate a 13 × 13
point grid [108]. The amount of elapsed time while the DC
bus voltage is out of range, i.e. when the requirement on
the DC bus is violated, is compared with the hard threshold
tmax = 70 ms, thus providing the designer with a “safe”
region (marked in blue in Fig. 4 (f)) for selecting the controller
reaction time Tr as a function of the contactor delay. As an
example, for Td = 20 ms the maximum controller reaction
time T ∗r allowed for safe operation and correct design is 4 ms.

VII. CONCLUSION

We presented a methodology that addresses the complexity
and heterogeneity of cyber-physical systems by leveraging
a contract framework to formalize the design process in a

hierarchical and compositional way, and interconnect different
modeling, analysis and synthesis tools, to ensure quality and
correctness of the final result. We surveyed formalisms and
tools that can support the methodology at different levels
of abstraction, from the level of discrete systems, to the
one of hybrid systems. To illustrate the application of the
methodology, we used a concrete example of controller design
in aircraft electric power systems.

The Way Forward: Extensions to the Methodology

Inspired by the design example, we envision a scenario in
which a design management feature that we call a front-end
orchestrator directly interacts with the designer, helps coordi-
nate the set of back-end specialized tools, and consistently pro-
cesses their results. For such an orchestrator to be developed, it
is essential to develop algorithms that can maximally leverage
the modularity offered by contracts, by directly working on
their representations to perform compatibility, consistency and
refinement checks on system portions of manageable size and
complexity. Moreover, these algorithms should take advantage
of any violation of the design constraints, i.e. a “counterexam-
ple” for system correctness, to provide meaningful feedback to
the designer, and possibly set up learning strategies to refine
or augment both the contract assumptions and guarantees until
a final implementation is reached.

To better illustrate our methodology, we considered an ab-
stract representation of a CPS in terms of composition between
a controller and a plant. However, the concepts discussed in
this paper are general enough to encompass several other, if
not all, categories of CPS. Specifically, because of the rigorous
formalization of both the horizontal and vertical interactions
between components, contracts seem to offer a “natural”
theoretical framework for the design of provably correct dis-
tributed and hierarchical control systems in a scalable way.
In this respect, to support the design of adaptive architectures,
in which components (agents) can dynamically reconfigure
themselves, e.g. by changing their locations or communication
patterns, the challenge is to provide mechanisms that can
efficiently export at the architectural exploration level the
most important constraints and metrics imposed by the lower-
level system dynamics, and network fabrics. Accordingly, as
an integral part of the execution platform refinement process,
which was not covered in this paper, our framework can
be extended to incorporate several design space exploration
methodologies across the hardware, software and communica-
tion layers, which are being consolidated over the years by the
joint effort of both academia and industry. Arguably, we can
further extend the design paradigm discussed in this paper
to systems whose main objective is to sense and monitor a
physical “plant”, and process the collected data, rather than
controlling it. In this case, contracts would rather be used to
capture the interaction of the physical world with the sensing,
identification, data analysis, or learning algorithms, and their
deployment on the embedded platform.

Finally, we observe that several parameters impacting the
behavior of CPS are subject to variability due to manufacturing
tolerances, usage and faults. Moreover, the models that are

PROCEEDINGS OF IEEE 23

normally used to design multi-physics systems inevitably
introduce inaccuracies [25]. A survey on formalisms and
tools for stochastic system design is out of the scope of this
paper. However, the importance of providing a better support
for reasoning about the probabilistic properties of systems
and the deployment of robust design techniques cannot be
overemphasized. In this context, advancing the state of the
art in compositional approaches for stochastic systems and
stochastic contract frameworks (e.g. see [111], [112], [113]) is
deemed as essential to improve on the scalability of stochastic
analysis and synthesis techniques (e.g. see [114], [115]), and
make their adoption actually feasible in current design flows.

REFERENCES

[1] J. Sztipanovits, “Composition of cyber-physical systems,” in Proc.
IEEE Int. Conf. and Workshops on Engineering of Computer-Based
Systems, March 2007, pp. 3–6.

[2] E. A. Lee, “Cyber physical systems: Design challenges,” in Proc. IEEE
Int. Symposium on Object Oriented Real-Time Distributed Computing,
May 2008, pp. 363–369.

[3] P. Nuzzo and A. Sangiovanni-Vincentelli, “Let’s get physical:
Computer science meets systems,” in From Programs to Systems. The
Systems perspective in Computing, ser. Lecture Notes in Computer
Science, S. Bensalem, Y. Lakhneck, and A. Legay, Eds. Springer
Berlin Heidelberg, 2014, vol. 8415, pp. 193–208. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-54848-2 13

[4] A. Sangiovanni-Vincentelli, “Quo vadis, SLD? Reasoning about the
trends and challenges of system level design,” Proc. IEEE, no. 3, pp.
467–506, 2007.

[5] P. Nuzzo, A. Sangiovanni-Vincentelli, X. Sun, and A. Puggelli,
“Methodology for the design of analog integrated interfaces using
contracts,” IEEE Sensors J., vol. 12, no. 12, pp. 3329–3345, Dec. 2012.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA: The MIT Press, 2008.

[7] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, “Multiple viewpoint contract-based specification and
design,” in Formal Methods for Components and Objects. Springer-
Verlag, 2008, pp. 200–225.

[8] L. de Alfaro and T. A. Henzinger, “Interface automata,” in Proc. Symp.
Foundations of Software Engineering. ACM Press, 2001, pp. 109–120.

[9] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems,”
European Journal of Control, vol. 18-3, no. 3, pp. 217–238, 2012.

[10] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier et al., “Contracts for System Design,” INRIA, Rapport
de recherche RR-8147, Nov. 2012.

[11] M. Masin, A. Sangiovanni-Vincentelli, A. Ferrari, L. Mangeruca,
H. Broodney, L. Greenberg, M. Sambur, D. Dotan, S. Zolotnizky,
and S. Zadorozhniy, “META II: Lingua franca design and
integration language,” IBM Research, Tech. Rep., Aug. 2011.
[Online]. Available: http://www.darpa.mil/uploadedFiles/Content/Our
Work/TTO/Programs/AVM/IBM META Final Report.pdf

[12] W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp,
and E. Böde, “Boosting re-use of embedded automotive applications
through rich components,” Proc. Foundations of Interface Technologies,
2005.

[13] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand, “Using
contract-based component specifications for virtual integration testing
and architecture design,” in Proc. Design, Automation and Test in
Europe, Mar. 2011, pp. 1–6.

[14] P. Nuzzo, H. Xu, N. Ozay, J. Finn, A. Sangiovanni-Vincentelli,
R. Murray, A. Donzé, and S. Seshia, “A contract-based methodology
for aircraft electric power system design,” IEEE Access, vol. 2, pp.
1–25, 2014.

[15] A. Iannopollo, P. Nuzzo, S. Tripakis, and A. L. Sangiovanni-
Vincentelli, “Library-based scalable refinement checking for contract-
based design,” in Proc. Design, Automation and Test in Europe, Mar.
2014.

[16] M. Maasoumy, P. Nuzzo, and A. Sangiovanni-Vincentelli, “Smart
buildings in the smart grid: Contract-based design of an integrated
energy management system,” in Cyber Physical Systems Approach
to Smart Electric Power Grid, ser. Power Systems, S. K. Khaitan,

J. D. McCalley, and C. C. Liu, Eds. Springer Berlin Heidelberg,
2015, pp. 103–132. [Online]. Available: http://dx.doi.org/10.1007/978-
3-662-45928-7 5

[17] P. Nuzzo, A. L. Sangiovanni-Vincentelli, and R. M. Murray, “Method-
ology and tools for next generation cyber-physical systems: The iCyPhy
approach,” in Proc. INCOSE Int. Symp., Jul. 2015.

[18] P. Nuzzo, A. Iannopollo, S. Tripakis, and A. L. Sangiovanni-
Vincentelli, “Are interface theories equivalent to contract theories?”
in Int. Conf. Formal Methods and Models for Co-Design, Oct. 2014.

[19] L. Benvenuti, A. Ferrari, E. Mazzi, and A. Sangiovanni-Vincentelli,
“Contract-based design for computation and verification of a closed-
loop hybrid system,” in Proc. Hybrid Systems: Computation and
Control, 2008, pp. 58–71.

[20] S. Graf, R. Passerone, and S. Quinton, “Contract-based reasoning
for component systems with rich interactions,” in Embedded Systems
Development, ser. Embedded Systems, A. Sangiovanni-Vincentelli,
H. Zeng, M. Di Natale, and P. Marwedel, Eds. Springer
New York, 2014, vol. 20, pp. 139–154. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4614-3879-3 8

[21] R. Alur and T. Henzinger, “Reactive modules,” Formal Methods in
System Design, vol. 15, no. 1, pp. 7–48, 1999. [Online]. Available:
http://dx.doi.org/10.1023/A%3A1008739929481

[22] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone, A. L. Sangiovanni-
Vincentelli, and Y. Watanabe, “Metropolis: an integrated electronic
system design environment,” Computer, vol. 36, no. 4, 2003.

[23] F. Balarin, A. Davare, M. D’Angelo, D. Densmore, T. Meyerowitz,
R. Passerone, A. Pinto, A. Sangiovanni-Vincentelli, A. Simalatsar,
Y. Watanabe, G. Yang, and Q. Zhu, “Platform-based design and
frameworks: METROPOLIS and METRO II,” in Model-Based Design
for Embedded Systems, G. Nicolescu and P. J. Mosterman, Eds. Boca
Raton, London, New York: CRC Press, Taylor and Francis Group,
November 2009, ch. 10, p. 259.

[24] L. Guo, Z. Qi, P. Nuzzo, R. Passerone, A. Sangiovanni-Vincentelli,
and E. A. Lee, “Metronomy: A function-architecture co-simulation
framework for timing verification of cyber-physical systems,” in Proc.
Int. Conf. Hardware-Software Codesign and System Synthesis, Oct.
2014.

[25] P. Nuzzo and A. Sangiovanni-Vincentelli, “Robustness in analog sys-
tems: Design techniques, methodologies and tools,” in Proc. IEEE
Symp. Industrial Embedded Systems, Jun. 2011.

[26] P. Derler, E. A. Lee, S. Tripakis, and M. Törngren, “Cyber-
physical system design contracts,” in Proc. Int. Conf. Cyber-
Physical Systems, 2013, pp. 109–118. [Online]. Available: http:
//doi.acm.org/10.1145/2502524.2502540

[27] T. Bienmüller, W. Damm, and H. Wittke, “The Statemate verification
environment,” in Proc. Int. Conf. Comput.-Aided Verification, ser.
Lecture Notes in Computer Science, E. A. Emerson and A. P. Sistla,
Eds. Springer Berlin Heidelberg, 2000, vol. 1855, pp. 561–567.
[Online]. Available: http://dx.doi.org/10.1007/10722167 45

[28] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, Satisfiability
Modulo Theories, Chapter in Handbook of Satisfiability. IOS Press,
2009.

[29] P. Nuzzo, A. Puggelli, S. Seshia, and A. Sangiovanni-Vincentelli,
“CalCS: SMT solving for non-linear convex constraints,” in Proc.
Formal Methods in Computer-Aided Design, Oct. 2010, pp. 71–79.

[30] A. Pnueli, “The temporal logic of programs,” in Annual Symp. on
Foundations of Computer Science, Nov. 1977, pp. 46–57.

[31] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Formal Modeling and Analysis of Timed Systems,
2004, pp. 152–166.

[32] A. Cimatti, M. Roveri, and S. Tonetta, “Requirements validation for
hybrid systems,” in Proc. Int. Conf. Comput.-Aided Verification, ser.
Lecture Notes in Computer Science, A. Bouajjani and O. Maler, Eds.
Springer Berlin Heidelberg, 2009, vol. 5643, pp. 188–203.

[33] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, “Hybrid Au-
tomata: An Algorithmic Approach to the Specification and Verification
of Hybrid Systems,” in Hybrid Systems, ser. LNCS, vol. 736. Springer,
1993, pp. 209–229.

[34] W. Damm, G. Pinto, and S. Ratschan, “Guaranteed termination
in the verification of LTL properties of non-linear robust discrete
time hybrid systems,” Int. J. Foundations of Computer Science,
vol. 18, no. 01, pp. 63–86, 2007. [Online]. Available: http:
//www.worldscientific.com/doi/abs/10.1142/S0129054107004577

[35] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Syst., vol. 2, no. 4, pp. 255–299, 1990.

[36] A. Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Heidelberg: Springer, 2010.

PROCEEDINGS OF IEEE 24

[37] O. Kupferman and M. Y. Vardi, “Vacuity detection in temporal model
checking,” Int. J. Software Tools for Technology Transfer, vol. 4, no. 2,
pp. 224–233, 2003.

[38] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O automata,”
Information and Computation, vol. 185, no. 1, pp. 105 – 157, 2003.

[39] R. Alur and D. L. Dill, “A theory of timed automata,” Theor.
Comput. Sci., vol. 126, no. 2, pp. 183–235, 1994. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(94)90010-8

[40] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s
decidable about hybrid automata?” J. Comput. Syst. Sci., vol. 57,
no. 1, pp. 94–124, 1998. [Online]. Available: http://dx.doi.org/10.
1006/jcss.1998.1581

[41] T. A. Henzinger, “The theory of hybrid automata,” in Proc. IEEE Symp.
Logic in Computer Science, Jul. 1996, pp. 278–292.

[42] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti, and
T. Villa, “Assume-guarantee verification of nonlinear hybrid systems
with ARIADNE,” Int. J. Robust Nonlinear Control, vol. 24, no. 4, pp.
699–724, 2014.

[43] S. Yovine, “KRONOS: a verification tool for real-time systems,” Int. J.
Software Tools for Technology Transfer, vol. 1, no. 1-2, pp. 123–133,
1997. [Online]. Available: http://dx.doi.org/10.1007/s100090050009

[44] T. A. Henzinger, P. Ho, and H. Wong-Toi, “HYTECH: A model checker
for hybrid systems,” Int. J. Software Tools for Technology Transfer,
vol. 1, no. 1-2, pp. 110–122, 1997.

[45] G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and
W. Yi, “Developing UPPAAL over 15 years,” Softw., Pract.
Exper., vol. 41, no. 2, pp. 133–142, 2011. [Online]. Available:
http://dx.doi.org/10.1002/spe.1006

[46] B. Bérard and L. Sierra, “Comparing verification with HyTech, KRO-
NOS and Uppaal on the railroad crossing example,” CNRS & ENS de
Chachan, France, Tech. Rep. LSV-00-2, 2000.

[47] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate
reachability analysis of piecewise-linear dynamical systems,” in Proc.
Hybrid Systems: Computation and Control, ser. LNCS. Springer
Berlin Heidelberg, 2000, vol. 1790, pp. 20–31. [Online]. Available:
http://dx.doi.org/10.1007/3-540-46430-1 6

[48] G. Frehse, “PHAVer: algorithmic verification of hybrid systems past
HyTech,” Int. J. Software Tools for Technology Transfer, vol. 10, pp.
263–279, 2008.

[49] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Proc. Int. Conf. Comput.-Aided
Verification, ser. LNCS. Springer Berlin / Heidelberg, 2011, vol. 6806,
pp. 379–395.

[50] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in Proc. Int. Conf. Comput.-Aided Ver-
ification, ser. Lecture Notes in Computer Science, vol. 8044. Springer
Berlin Heidelberg, 2013, pp. 258–263.

[51] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti, and
T. Villa, “Ariadne: Dominance checking of nonlinear hybrid automata
using reachability analysis,” in Reachability Problems, ser. Lecture
Notes in Computer Science, A. Finkel, J. Leroux, and I. Potapov, Eds.
Springer Berlin Heidelberg, 2012, vol. 7550, pp. 79–91. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33512-9 8

[52] A. Casagrande, C. Piazza, and A. Policriti, “Discrete semantics for
hybrid automata,” Discrete Event Dynamic Systems, vol. 19, no. 4, pp.
471–493, Dec. 2009. [Online]. Available: http://dx.doi.org/10.1007/
s10626-009-0082-7

[53] A. Casagrande and T. Dreossi, “pyHybrid analysis: A package for
semantics analysis of hybrid systems,” in Euromicro Conf. Digital
System Design, Sep. 2013, pp. 815–818.

[54] R. Alur, T. Dang, and F. Ivančić, “Counterexample-guided predicate
abstraction of hybrid systems,” Theoretical Computer Science, vol. 354,
no. 2, pp. 250 – 271, 2006.

[55] E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, J. Ouaknine,
O. Stursberg, and M. Theobald, “Abstraction and counterexample-
guided refinement in model checking of hybrid systems,” Int. J.
Found. Comput. Sci., vol. 14, no. 4, pp. 583–604, 2003. [Online].
Available: http://dx.doi.org/10.1142/S012905410300190X

[56] B. I. Silva, K. Richeson, B. H. Krogh, and A. Chutinan, “Modeling
and verification of hybrid dynamical system using CheckMate,” in Int.
Conf. Automation of Mixed Processes: Hybrid Dynamic Systems, 2000.

[57] S. Ratschan and Z. She, “Safety verification of hybrid systems by con-
straint propagation based abstraction refinement,” ACM Transactions
in Embedded Computing Systems, vol. 6, no. 1, 2007.

[58] A. Tiwari, “Abstractions for hybrid systems,” Formal Methods in
System Design, vol. 32, no. 1, pp. 57–83, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s10703-007-0044-3

[59] A. Cimatti, S. Mover, and S. Tonetta, “SMT-based scenario verification
for hybrid systems,” Formal Methods in System Design, vol. 42, no. 1,
pp. 46–66, 2013. [Online]. Available: http://dx.doi.org/10.1007/s10703-
012-0158-0

[60] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in Proc. Int. Conf. Comput.-Aided Verification.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 167–170.

[61] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A tool for temporal logic falsification for hybrid systems,” in
Proc. Int. Conf. Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2011, pp. 254–257.

[62] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci,
“System level formal verification via model checking driven simula-
tion,” in Proc. Int. Conf. Comput.-Aided Verification, ser. Lecture Notes
in Computer Science, vol. 8044. Springer - Verlag, 2013, pp. 296–312.

[63] J. C. Willems, “The behavioral approach to open and interconnected
systems,” Control Systems Magazine, pp. 46–99, 2007.

[64] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular specification
of hybrid systems in Charon,” in Proc. Hybrid Systems: Computation
and Control, ser. LNCS, vol. 1790. Springer, 2000, pp. 6–19.

[65] T. Henzinger, B. Horowitz, and C. Kirsch, “Giotto: a time-triggered
language for embedded programming,” Proc. IEEE, vol. 91, no. 1, pp.
84–99, Jan 2003.

[66] A. Ghosal, A. Sangiovanni-Vincentelli, C. M. Kirsch, T. A. Henzinger,
and D. Iercan, “A hierarchical coordination language for interacting
real-time tasks,” in Proc. ACM IEEE Int. Conf. Embedded Software.
New York, NY, USA: ACM, 2006, pp. 132–141. [Online]. Available:
http://doi.acm.org/10.1145/1176887.1176907

[67] MoBIES team, “HSIF semantics,” University of Pennsylvania, Tech.
Rep., 2002.

[68] A. Pinto, L. P. Carloni, R. Passerone, and A. L. Sangiovanni-
Vincentelli, “Interchange format for hybrid systems: Abstract seman-
tics,” in Proc. Hybrid Systems: Computation and Control. Springer,
Mar. 2006, pp. 491–506.

[69] S. Di Cairano, A. Bemporad, M. Kvasnica, and M. Morari, “An
architecture for data interchange of switched linear systems,” HYCON
Network of Excellence, Deliverable workpackage 3.D, 2006.

[70] D. E. N. Agut, D. A. van Beek, and J. E. Rooda, “Syntax and semantics
of the compositional interchange format for hybrid systems,” J. Log.
Algebr. Program., vol. 82, no. 1, pp. 1–52, 2013.

[71] A. A. Shah, D. Schaefer, and C. J. J. Paredis, “Enabling multi-view
modeling with SysML profiles and model transformations,” in Proc.
Int. Conf. Product Lifecycle Management, 2009.

[72] OMG Systems Modeling Language. [Online]. Available: http:
//www.sysml.org/

[73] T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist,
M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson,
and A. Viel, “Functional mockup interface 2.0: The standard for
tool independent exchange of simulation models,” in 9th International
Modelica Conference, 2012.

[74] MODELISAR Consortium and Modelica Association, Functional
Mock-up Interface for Co-Simulation. Version 1.0. Retrieved from
https://www.fmi- standard.org, Oct. 2010.

[75] D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin,
S. Tripakis, and M. Wetter, “Determinate composition of FMUs for
co-simulation,” in Proc. ACM IEEE Int. Conf. Embedded Software.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 2:1–2:12. [Online].
Available: http://dl.acm.org/citation.cfm?id=2555754.2555756

[76] N. Bajaj, P. Nuzzo, M. Masin, and A. L. Sangiovanni-Vincentelli, “Op-
timized selection of reliable and cost-effective cyber-physical system
architectures,” in Proc. Design, Automation and Test in Europe, Mar.
2015.

[77] C. Hang, P. Manolios, and V. Papavasileiou, “Synthesizing cyber-
physical architectural models with real-time constraints,” in Proc. Int.
Conf. Comput.-Aided Verification, Dec. 2011.

[78] N. Piterman and A. Pnueli, “Synthesis of reactive(1) designs,” in
In Proc. Verification, Model Checking, and Abstract Interpretation.
Springer, 2006, pp. 364–380.

[79] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Trans. Autom.
Control, vol. 53, no. 1, pp. 287–297, Feb. 2008.

[80] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Trans. Robot., vol. 25,
no. 6, pp. 1370–1381, Dec 2009.

PROCEEDINGS OF IEEE 25

[81] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“TuLiP: a software toolbox for receding horizon temporal logic plan-
ning,” in Proc. Int. Conf. Hybrid Systems: Computation and Control.
New York, NY, USA: ACM, 2011, pp. 313–314.

[82] A. Pnueli, Y. Saar, and L. D. Zuck, “JTLV: A framework for developing
verification algorithms,” in Proc. Int. Conf. Comput.-Aided Verification,
ser. Lecture Notes in Computer Science, T. Touili, B. Cook, and
P. Jackson, Eds. Springer Berlin Heidelberg, 2010, vol. 6174, pp.
171–174.

[83] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem, “Anzu: A tool
for property synthesis,” in Proc. Int. Conf. Comput.-Aided Verification,
ser. Lecture Notes in Computer Science, W. Damm and H. Hermanns,
Eds. Springer Berlin Heidelberg, 2007, vol. 4590, pp. 258–262.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-73368-3 29

[84] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Könighofer,
M. Roveri, V. Schuppan, and R. Seeber, “RATSY – a new
requirements analysis tool with synthesis,” in Proc. Int. Conf.
Comput.-Aided Verification, ser. Lecture Notes in Computer Science,
T. Touili, B. Cook, and P. Jackson, Eds. Springer Berlin
Heidelberg, 2010, vol. 6174, pp. 425–429. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14295-6 37

[85] R. Bloem, K. Chatterjee, K. Greimel, T. Henzinger, G. Hofferek,
B. Jobstmann, B. Könighofer, and R. Könighofer, “Synthesizing robust
systems,” Acta Informatica, vol. 51, no. 3-4, pp. 193–220, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s00236-013-0191-5

[86] P. Ramadge and W. Wonham, “The control of discrete event systems,”
Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan 1989.

[87] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
ser. SpringerLink Engineering. Springer, 2008.

[88] D. A. van Beek, W. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski,
J. M. van de Mortel-Fronczak, and M. A. Reniers, “CIF 3: Model-
based engineering of supervisory controllers,” in Proc. Int. Conf.
Tools and Algorithms for the Construction and Analysis of Systems,
E. Ábrahám and K. Havelund, Eds. Springer, 2014, pp. 575–580.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-54862-8 48

[89] M. Maasoumy, P. Nuzzo, F. Iandola, M. Kamgarpour, A. Sangiovanni-
Vincentelli, and C. Tomlin, “Optimal load management system for
aircraft electric power distribution,” in Int. Conf. Decision and Control,
Dec 2013, pp. 2939–2945.

[90] V. Raman, A. Donze, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Int. Conf. Decision and Control, Dec
2014.

[91] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic
models for incrementally stable switched systems,” IEEE Transactions
on Automatic Control, vol. 55, no. 1, pp. 116–126, Jan 2010.

[92] J. Mazo, Manuel, A. Davitian, and P. Tabuada, “PESSOA: A tool
for embedded controller synthesis,” in Proc. Int. Conf. Comput.-Aided
Verification, ser. LNCS, vol. 6174, 2010, pp. 566–569. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-14295-6 49

[93] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Model based synthesis of
control software from system level formal specifications,” ACM Trans.
on Software Engineering and Methodology, vol. 23, no. 1, p. Article
6, 2014.

[94] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia,
“Automated composition of motion primitives for multi-robot systems
from safe LTL specifications,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems (IROS), Sep. 2014.

[95] D. Bresolin, L. Di Guglielmo, L. Geretti, R. Muradore, P. Fiorini, and
T. Villa, “Open problems in verification and refinement of autonomous
robotic systems,” in Euromicro Conf. Digital System Design (DSD),
Sept 2012, pp. 469–476.

[96] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete
controllers for timed systems (an extended abstract),” in Proc.
Symp. Theoretical Aspects of Computer Science, 1995, pp. 229–242.
[Online]. Available: http://dx.doi.org/10.1007/3-540-59042-0 76

[97] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime, “UPPAAL-Tiga: Time for playing games!” in Proc. Int. Conf.
Comput.-Aided Verification. Springer, 2007, pp. 121–125.

[98] UPPAAL-Tiga, a synthesis tool for timed games. [Online]. Available:
http://people.cs.aau.dk/∼adavid/tiga/

[99] C. Tomlin, J. Lygeros, and S. Sastry, “A game theoretic approach to
controller design for hybrid systems,” Proc. IEEE, vol. 88, no. 7, pp.
949–970, July 2000.

[100] A. Balluchi, L. Benvenuti, T. Villa, H. Wong-Toi, and A. L.
Sangiovanni-Vincentelli, “Controller synthesis for hybrid systems with

a lower bound on event separation,” International Journal of Control,
vol. 76, no. 12, pp. 1171–1200, Aug. 2003.

[101] H. Wong-Toi, “The synthesis of controllers for linear hybrid automata,”
in Proc. IEEE Conf. Decision and Control, vol. 5, Dec 1997, pp. 4607–
4612.

[102] M. Benerecetti, M. Faella, and S. Minopoli, “Automatic synthesis
of switching controllers for linear hybrid systems: Safety control,”
Theor. Comput. Sci., vol. 493, pp. 116–138, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.tcs.2012.10.042

[103] D. Bresolin, L. Di Guglielmo, L. Geretti, and T. Villa, “Correct-by-
construction code generation from hybrid automata specification,” in
Int. Wireless Communications and Mobile Computing Conf. (IWCMC),
July 2011, pp. 1660–1665.

[104] L. Di Guglielmo, S. Seshia, and T. Villa, “Synthesis of implementable
control strategies for lazy linear hybrid automata,” in Federated Conf.
Computer Science and Information Systems (FedCSIS), Sept 2013, pp.
1381–1388.

[105] M. D. Wulf, “From timed models to timed implementations,” Ph.D.
dissertation, Universite Libre de Bruxelles, 2006-7.

[106] M. De Wulf, L. Doyen, and J.-F. Raskin, “Almost ASAP
semantics: From timed models to timed implementations,” in
Hybrid Systems: Computation and Control, ser. Lecture Notes in
Computer Science, R. Alur and G. Pappas, Eds. Springer Berlin
Heidelberg, 2004, vol. 2993, pp. 296–310. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24743-2 20

[107] M. Agrawal and P. Thiagarajan, “The discrete time behavior of lazy
linear hybrid automata,” in Hybrid Systems: Computation and Control,
ser. Lecture Notes in Computer Science, M. Morari and L. Thiele,
Eds. Springer Berlin Heidelberg, 2005, vol. 3414, pp. 55–69.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-31954-2 4

[108] P. Nuzzo, J. Finn, A. Iannopollo, and A. L. Sangiovanni-Vincentelli,
“Contract-based design of control protocols for safety-critical cyber-
physical systems,” in Proc. Design, Automation and Test in Europe,
Mar. 2014, pp. 1–4.

[109] I. Moir and A. Seabridge, Aircraft Systems: Mechanical, Electrical and
Avionics Subsystems Integration. Third Edition. Chichester, England:
John Wiley and Sons, Ltd, 2008.

[110] (2012, Feb.) IBM ILOG CPLEX Optimizer. [Online]. Available:
www.ibm.com/software/integration/optimization/cplex-optimizer/

[111] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu, “Assume-
guarantee verification for probabilistic systems,” in Proc. Int. Conf.
Tools and Algorithms for the Construction and Analysis of Systems,
ser. Lecture Notes in Computer Science, J. Esparza and R. Majumdar,
Eds. Springer Berlin Heidelberg, 2010, vol. 6015, pp. 23–37.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-12002-2 3

[112] B. Caillaud, B. Delahaye, K. Larsen, A. Legay, M. Pedersen, and
A. Wasowski, “Compositional design methodology with Constraint
Markov Chains,” in Quantitative Evaluation of Systems (QEST), 2010
Seventh International Conference on the, Sept 2010, pp. 123–132.

[113] G. Gössler, D. N. Xu, and A. Girault, “Probabilistic contracts
for component-based design,” Formal Methods in System Design,
vol. 41, no. 2, pp. 211–231, 2012. [Online]. Available: http:
//dx.doi.org/10.1007/s10703-012-0162-4

[114] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model check-
ing,” in Formal Methods for the Design of Computer, Communication
and Software Systems: Performance Evaluation (SFM’07), ser. LNCS
(Tutorial Volume), M. Bernardo and J. Hillston, Eds., vol. 4486.
Springer, 2007, pp. 220–270.

[115] ——, “PRISM 4.0: Verification of probabilistic real-time systems,” in
Proc. Int. Conf. Comput.-Aided Verification, ser. LNCS, G. Gopalakr-
ishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

PROCEEDINGS OF IEEE 26

Pierluigi Nuzzo is a Ph.D. candidate in Electrical
Engineering and Computer Sciences at the Univer-
sity of California at Berkeley. He received the Laurea
(M.Sc.) degree in electrical engineering (summa cum
laude) from the University of Pisa, Italy, in 2003
and the Diploma in engineering (summa cum laude)
from the Sant’Anna School of Advanced Studies,
Pisa, Italy, in 2004.

Before joining the University of California at
Berkeley, he was a Researcher at IMEC, Leuven,
Belgium, working on the design of energy-efficient

A/D converters and frequency synthesizers for reconfigurable radio. During
summer 2002, he was with the Fermi National Accelerator Laboratory,
Batavia, IL working on ASIC testing. From 2004 to 2006 he was with the
Department of Information Engineering, University of Pisa, and with IMEC,
as a visiting scholar, working on low power A/D converter design for wide-
band communications and design methodologies for mixed-signal integrated
circuits. His research interests include: methodologies and tools for cyber-
physical system and mixed-signal system design; contracts, interfaces and
compositional methods for embedded system design; energy-efficient analog
and mixed-signal circuit design.

Mr. Nuzzo received First Place in the operational category and Best Overall
Submission in the 2006 DAC/ISSCC Design Competition, a Marie Curie
Fellowship from the European Union in 2006, the University of California at
Berkeley EECS departmental fellowship in 2008, the University of California
at Berkeley Outstanding Graduate Student Instructor Award in 2013, and the
IBM Ph.D. Fellowship in 2012 and 2014.

Alberto L. Sangiovanni-Vincentelli received the
Laurea degree (summa cum laude) in electrical engi-
neering and computer sciences from the Politecnico
di Milano, Milan, Italy in 1971.

He currently holds the Edgar L. and Harold H.
Buttner Chair of Electrical Engineering and Com-
puter Sciences at the University of California at
Berkeley. He was a co-founder of Cadence and
Synopsys, the two leading companies in the area
of Electronic Design Automation (EDA), and the
founder and Scientific Director of the PARADES

(Project on Advanced Research on Architectures and Design of Electronic
Systems) research center in Rome. He has been a member of the Board of
Directors of Cadence, KPIT-Cummins, Sonics, and Expert Systems. He had
been a member of the ST Microelectronics Advisory Board for 10 years. He
was a member of the HP Strategic Technology Advisory Board (2005-2007),
a member of the Science and Technology Advisory Board of General Motors
(2003-2013), and he is a member of the Technology Advisory Council of
United Technologies Corporation. He is also member of the Scientific Council
of the Italian National Science Foundation (CNR). Since February 2010, he
has been a member of the Executive Committee of the Italian Institute of
Technology. Since July 2012, he has been named Chairperson of the Comitato
Nazionale Garanti per la Ricerca. He is an author of over 880 papers, 17
books and 3 patents in the area of design tools and methodologies, large-scale
systems, embedded systems, hybrid systems and innovation. Dr. Sangiovanni-
Vincentelli has been an IEEE Fellow since 1982, a Member of the National
Academy of Engineering since 1998, and ACM Fellow since 2014. In 1981,
he received the Distinguished Teaching Award of the University of California.
He received the worldwide 1995 Graduate Teaching Award of the IEEE for
“inspirational teaching of graduate students”. In 2002, he was the recipient of
the Aristotle Award of the Semiconductor Research Corporation. He received
numerous research awards including the Guillemin-Cauer Award (1982-1983),
the Darlington Award (1987-1988) of the IEEE for the best paper bridging
theory and applications, two awards for the best paper published in the IEEE
Transactions on Circuits and Systems and Computer-aided Design, five best
paper awards and one best presentation award at the Design Automation
Conference. In 2001, he was given the Kaufman Award of the Electronic
Design Automation Council for “pioneering contributions to EDA”. In 2008,
he was awarded the IEEE/RSE Wolfson James Clerk Maxwell Medal “for
pioneering innovation and leadership in electronic design automation that
have enabled the design of modern electronics systems and their industrial
implementation”. In 2009, he was awarded an honorary Doctorate by the
University of Aalborg in Denmark and he received the first ACM/IEEE
A. Richard Newton Technical Impact Award in Electronic Design Automation
to honor persons for an outstanding technical contribution within the scope of
electronic design automation. In 2012, he was awarded an honorary Doctorate
from the Royal Institute of Technology (KTH), Sweden, and he received the
Lifetime Achievement Award from EDAA.

Davide Bresolin is an Assistant Professor at the
Computer Science and Engineering Department of
the University of Bologna, Italy. He received the
Ph.D degree on Computer Science at the University
of Udine, Italy, in 2007. From 2007 to 2013 he
was a Research Fellow at the Computer Science
Department of the University of Verona, Italy, where
he collaborated with the Electronic Systems Design
Group (ESD) and the ALTAIR Robotics Group. His
research activity is focused on formal verification of
cyber-physical and embedded systems using hybrid

automata and temporal logics, on automata theory, and on temporal repre-
sentation and reasoning using interval-based temporal logics. He is actively
collaborating to the development of ARIADNE, an open source tool for the
numerical analysis of continuous and hybrid systems.

PROCEEDINGS OF IEEE 27

Luca Geretti was born in Udine, Italy, in 1979. He
received the Laurea degree in electrical engineering
in 2005 and the Ph.D. in computer engineering in
2009, both from the University of Udine. He was a
research fellow within the department of computer
science at the University of Verona, Italy, between
2009 and 2011. He is currently a research fellow
within the department of electrical, management
and mechanical engineering at the University of
Udine. His current research interests are in the fields
of formal verification and parallel and distributed

computing.

Tiziano Villa studied mathematics at the universities
of Milano, Pisa and Cambridge (UK), and electrical
engineering and computer science at the University
of California, Berkeley, where he completed a Ph.D.
in EECS in 1995. From 1980 to 1985 he worked as
a computer-aided design specialist in the integrated
circuits division of the CSELT Labs, Torino, Italy,
and then, from 1986 to 1996, he was a research
assistant with the Electronics Research Laboratory,
University of California, Berkeley. From 1997 to
2001 he was a research scientist with the PARADES

Labs, Rome, Italy. From 2002 to 2006 he was an associate professor
with the Department of Electrical, Industrial and Mechanical Engineering
(DIEGM), Universita’ degli Studi di Udine, Italy. Since October 2006 he
is a full professor with the Department of Computer Science, Università
degli Studi di Verona, Italy. His research interests include computer-aided
design of digital circuits (especially logic synthesis), formal verification,
cyberphysical systems and automata theory. In May 1991 he was awarded
the Tong Leong Lim Pre-doctoral Prize at the EECS Department of the
University of California, Berkeley. He co-authored the books: “Synthesis of
FSMs: Functional optimization”, Kluwer (now Springer), 1997, “Synthesis
of FSMs: Logic optimization”, Kluwer (now Springer), 1997, “The Unknown
Component Problem: Theory and Applications” (Springer, 2012); he co-edited
the book “Coordination Control of Distributed Systems” (Springer, 2015).

