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Abstract—HPC workflows consist of multiple phases and
components executed collaboratively to reach the same goal.
They perform necessary computations and exchange data, of-
ten through system-wide POSIX-compliant parallel file systems.
However, POSIX file systems pose challenges in performance
and scalability, prompting the development of alternative storage
systems like object stores. Despite their potential, object stores
face adoption barriers in HPC workflows due to their lack of
workflow awareness and the structured nature of HPC data. This
work presents a case study using the Proactive Data Containers
(PDC), a framework focusing on object-centric runtime data
management, to support a real-world astronomy workflow that
runs on HPC systems, called Montage. Due to its user-space
deployment feature, PDC is flexible to be adopted transparently
with existing I/O libraries. This study explores the use of PDC
with Montage’s existing FITS-based I/O methods and discusses
workflow-oriented optimizations such as caching, prefetching,
and write aggregation, and provides insights and lessons learned
throughout the porting process.

Index Terms—Parallel I/O, Object Stores, HPC Workflow

I. INTRODUCTION

High-performance computing (HPC) workflows are com-
posed of multiple phases executed in coordination to achieve
a common objective. These phases may execute sequentially
or in parallel, depending on control and data dependencies.
Within each phase, multiple tasks may concurrently execute
to perform necessary computations. When running on an HPC
system, these tasks frequently exchange data within and across
phases, typically utilizing parallel file systems. Most HPC
workflows need a POSIX-compliant [1] file system for data
exchange. Tasks within the workflow can either execute direct
POSIX calls or use high-level I/O libraries such as HDF5 [2]
and ADIOS [3].

POSIX file systems have long been criticized for hinder-
ing HPC I/O performance and scalability [4]–[6]. Over the
years, several alternative storage systems have emerged [7]–
[9]. Among these, object stores have become increasingly
popular due to their scalability and flexibility in managing
large datasets. These characteristics present significant op-
portunities for improving the performance of I/O-intensive
workflows. However, general-purpose object stores may prove
unsatisfactory for HPC workflows as they lack awareness
of workflow structures. They tend to treat different phases

of a workflow as unrelated applications, hindering I/O op-
timizations such as caching and prefetching. Consequently,
it is challenging for users to convey information about their
workflow to the underlying system. Additionally, running a
workflow across multiple sites, each with a different storage
system, complicates data transfer. For instance, a user might
execute computation-intensive phases on an HPC system while
performing analysis-oriented phases on a cloud system that
offers better AI support. In such cases, users often must
manually transfer large volumes of data between the HPC
system and the cloud, placing a significant burden on them
and consuming valuable time.

To address these challenges, we have proposed and devel-
oped PDC (Proactive Data Container) [8], an object-centric
runtime data management system. In contrast to object-based
file systems such as DAOS [9] and storage layer-focused
file systems such as UnifyFS [7], PDC is designed to work
with different types of underlying hardware and file systems,
leveraging new storage techniques while abstracting away
the increasingly complex storage hierarchies (storage-class
memory, NVRAM, traditional disks, and remote storage).
Nevertheless, the structured nature of data in HPC workflows
and the potentially substantial effort required to utilize data
stores often make users hesitant to switch. Specifically, porting
existing POSIX-dependent applications and workflows to a
new non-POSIX object-based system is challenging. In this
work, we examine this issue by exploring the use of PDC
to support a real-world astronomy workflow, Montage [10],
which uses CFITSIO [11] for storing and reading data.

In the rest of the paper, we briefly describe the Montage
workflow, discuss PDC’s object-centric non-POSIX interface,
and detail the efforts required to run Montage using PDC.
Additionally, we explore potential optimizations for workflow-
aware systems. Finally, we share insights and lessons learned
from the process of porting Montage to PDC.

II. MONTAGE WORKFLOW

Montage [10] is a versatile toolkit designed for the cre-
ation of custom science-grade astronomical image mosaics by
assembling FITS images. Users specify the desired mosaic
through a set of parameters encompassing dataset selection,
wavelength designation, sky location, and size, coordinate
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system, projection method, and spatial sampling rate. A typical
execution of a Montage workflow comprises multiple phases,
including image projection, background correction, and image
coaddition. These phases involve significant data exchange,
generating and consuming a considerable number of image
files. The high I/O demands within each phase, coupled with
extensive and small amounts of data exchange across phases,
make the Montage workflow an ideal as well as challenging
subject for our case study.

mImgtbl mOverlaps

mBgModel

mProjectPP

mProjExecMPI

Image Metadata Overlap Sepcs Different Parameters Corrections Table

Background Fit
Model Parameters

Mosaic C
or

re
ct

ed
 Im

ag
es

mDiff

mDiffExecMPI

mFitplane

mFitExecMPI

mBackground

mBgExec

mAdd

mAddMPI

A
rc

hi
ve

 Im
ag

es

Pr
oj

ec
te

d 
Im

ag
es

D
iff

er
en

ce
 Im

ag
es

Fig. 1: An example Montage workflow. Rounded rectangles
represent components in Montage. The arrows indicate I/O
between application memory and file systems.

An example Montage workflow is illustrated in Fig. 1.
Rounded rectangles, all beginning with an “m”, represent com-
ponents within Montage. Components labeled with an “MPI”
suffix (e.g., mProjExecMPI) are MPI programs intended for
execution in a distributed environment. Other components are
serial and executable using a single process on a single node.
Unlike traditional HPC applications, the MPI components
in Montage do not directly engage in computation. Instead,
they operate in an embarrassingly parallel manner: each MPI
process spawns a child process responsible for executing
the actual serialized computation component. For instance,
mProjExecMPI may execute N instances of mProjectPP,
where N denotes the number of MPI processes. The parent
MPI program solely manages the collection of results from
child processes and their subsequent reporting.

The discussion of the detailed functionality of each com-
ponent is beyond the scope of this paper. We refer readers to
papers [10], [12] for more details. Here, we mainly focus on
their I/O behaviors. In Fig. 1, each arrow denotes a directional
data flow involving either the reading or writing of single or
batches of files. When executed on a file system, Montage
generates and consumes two primary types of files: image files
and metadata files. Metadata files, depicted in database shapes,
encapsulate metadata information pertaining to the image files.
These metadata files are small in size and require minimal
time for reading or writing. In contrast, the bulk of the I/O
operations are dedicated to accessing image files, as indicated
by the green boxes in Fig. 1. With only a few exceptions, all
image files involved in the execution of the Montage workflow
are in the Flexible Image Transport System (FITS) format.
FITS is an open standard archival data format for astronomical
data sets and it is currently the most commonly used digital

file format in astronomy. The majority of these FITS files are
intermediate files that can be safely deleted after the execution
of the workflow. Although the number of files produced may
vary from phase to phase, it typically ranges from one to five
times the number of input files. In most scenarios, the number
of files significantly exceeds the number of processes, ensuring
each process has ample work to perform.

Montage workflows can be executed phase by phase using
job schedulers or dedicated workflow managers such as Pe-
gasus [13]. In this study, we focus on scheduling Montage
workflows using the system-wide job scheduler. Incorporating
PDC in workflow managers is a promising direction, which
we leave to our future work.

III. PROACTIVE DATA CONTAINERS (PDC)

Proactive Data Containers (PDC) is an object-centric meta-
data and data management system designed for transparent,
asynchronous, and autonomous data movement, taking ad-
vantage of the memory/storage hierarchy (i.e., main memory,
NVRAM, disks). Moving away from file-oriented, PDC relies
on three abstractions: containers, objects, and regions. A
container is a meta-object that stores a collection of objects
and provides a convenient way to access a group of data and
metadata objects. An object, which describes any byte stream
of information, can belong to multiple containers.

In scientific applications, a data object stores vast amounts
of information, typically in multi-dimensional arrays (e.g., a
2D image, variables in a 3D grid, or animations). A metadata
object stores data associated with the data object, including
the object’s name, time of data generation, ownership, and
relations to other objects. Metadata objects can have a large
set of attributes used for identifying or enhancing data object
information. Further, objects that are multi-dimensional arrays
can be partitioned into smaller regions to enable parallel
processing and flexible data placement. When applications
map their data objects to PDC objects using PDC’s object-
focused interface and initiate transfers, PDC runtime moves
them to storage layers asynchronously and transparently.

A. Object-focused Interface

Applications express their data access intent using PDC’s
object-focused APIs, and the PDC runtime system performs
scalable metadata operations to locate data objects and asyn-
chronously move the data across the memory and storage
hierarchy.

To be specific, HPC applications interact with PDC using
the following APIs. PDCinit initializes the client-side PDC
library and connects to the PDC servers. PDCprop_create
creates container and object properties, PDCprop_set_* set
the property values such as object dimensions and data type.
PDCcont_create and PDCobj_create create con-

tainers and objects, respectively. Key-value tags can be added,
retrieved, queried, and deleted with PDCobj_put_tag,
PDCobj_get_tag, PDCquery_tag, and PDCdel_tag.

Regarding actual I/O functionalities, PDC uses the re-
gion abstraction for data management. For each object data



transfer, applications need to define a local and a global
region using PDCregion_create. Both regions include
information such as offsets and sizes of a multi-dimensional
array (with units depending on the object data type). The
local region represents the local data buffer (client-side), while
the global region represents the global object space (server-
side). The data transfer process is broken down into three
calls to achieve asynchronous I/O and provide more flex-
ibility. First, PDCregion_transfer_create takes the
local and global regions as input and creates a transfer
request. Then, the data transfer is started asynchronously
using PDCregion_transfer_start, which takes the
previously created transfer request as input. This call allows
applications to perform other tasks, such as computation and
communication, while the data is being transferred to the PDC
servers. The PDC servers may decide to cache the data in
the memory or flush them to the storage system. Lastly, the
application can explicitly wait for the transfer to complete
using PDCregion_transfer_wait. This call guarantees
that the update associated with the transfer request becomes
visible to all subsequent transfers.

IV. MONTAGE WITH PDC

Here, we conduct a case study on running Montage using
PDC. This case study offers insights into how a storage system
can be tailored to accommodate workflow requirements, the
benefits of proactive data management compared to general-
purpose storage systems, and the available optimizations for
I/O-intensive workflows.

As previously noted, a significant portion of Montage’s I/O
time is dedicated to accessing FITS files. Therefore, our study
primarily focuses on using PDC to facilitate the I/O access
of these FITS files. In a Montage workflow execution, the I/O
operations on these FITS files are executed using the CFITSIO
library [11]. CFITSIO is a library of C and Fortran subroutines
designed for reading and writing data files in FITS format.
CFITSIO operates as a serial library, meaning there are no
concurrent accesses to a single FITS file within a process.
The MPI components in Montage work in an embarrassingly
parallel manner, with each rank handling their assigned files.

A. CFITSIO PDC Driver

CFITSIO provides multiple drivers for accessing FITS files
in various locations. For instance, FITS files can be stored on
remote servers and accessed using NFS or FTP protocols. Ad-
ditionally, CFITSIO offers a mechanism for implementing cus-
tom drivers to support different storage backends. Leveraging
this feature, we developed a driver for storing and accessing
FITS files on PDC servers. Since nearly all accesses to FITS
files in Montage are routed through CFITSIO, integrating the
CFITSIO PDC driver enables seamless execution of Montage
on PDC without any modification to its I/O logic. Furthermore,
as CFITSIO is widely used in astronomy applications requiring
access to FITS files, the PDC driver is reusable for supporting
these applications as well.

The implementation of the PDC driver involves defining a
set of CFITSIO interfaces. The complete set can be found
in [11]. Here, we discuss the most essential APIs, as listed
below. In CFITSIO, each FITS file is treated as a stream of
bytes similar to a POSIX file, and its APIs also resemble that
of POSIX.

fits_open(char* filename, int mode, int* handle)
fits_create(char* filename, int* handle)
fits_seek(int handle, long offset)
fits_remove(char* filename)
fits_read(int handle, void* buffer, long nbytes)
fits_write(int handle, void* buffer, long nbytes)
fits_flush(int handle)
fits_close(int handle)

1) open and create: We treat each FITS file as a PDC
object. Since each opened/created file is assigned a unique
CFITSIO handle, we associate this handle with the object ID
of the corresponding PDC object. This association is managed
by a hash table established at open/create time and released
at close time.

Each PDC object includes properties such as dimensions
and data types. Our current implementation designates all
objects as one-dimensional and sets PDC_CHAR as their data
type. These decisions are based on observations that Montage
predominantly accesses FITS files sequentially and rarely
performs sub-image selection. As there is no need for PDC
servers to merge requests from multiple regions or dimensions,
the 1D layout offers optimal performance.

Finally, in PDC, objects are always opened with both read
and write permissions, so mode is simply ignored.

2) seek and remove: CFITSIO maintains a file pointer
for each opened file. In our implementation, the file pointer
corresponds to the global region offset, which the seek call
modifies. This offset is also incremented after each successful
read or write. The remove call is implemented using the PDC’s
PDCobj_delete API.

3) read and write: Read and write operations are executed
using PDC’s transfer calls. A naive approach involves im-
mediately following PDCregion_transfer_start with
PDCregion_transfer_wait at each read and write time.
However, the wait call is expensive as it involves communica-
tion with PDC servers and data transfer from clients to servers.
Unlike POSIX systems, which offer sequential consistency, the
PDC’s interface enables flexible control over when to make
updates visible to others. This means that the PDC wait calls
do not necessarily need to occur at the same time as the write
call—they can be delayed until the close or flush time.

Additionally, knowing the I/O characteristics of Montage
and CFITSIO, specific optimizations can be enabled automat-
ically, such as aggregating writes and prefetching reads. These
optimizations will be discussed in the following subsection.

4) flush and close: The flush call is implemented using
the PDCregion_transfer_wait call, which ensures that
modifications become available to all subsequent reads. Before
performing any network communications, the wait call first
checks whether there are any ongoing transfers.



For the close call, we release any temporary data structures
and resources associated with the corresponding object. The
close call also implies a transparent flush.

B. Workflow-oriented Optimizations

Traditional HPC workflows like Montage rely on parallel
file systems (PFSs) such as Lustre and IBM Spectrum Scale for
data exchange across phases. As discussed earlier, these PFSs
are not designed to be workflow-aware. They are deployed
system-wide and shared by all users, potentially missing
significant opportunities for I/O optimizations specific to a
particular workflow execution.

In contrast, PDC is a proactive data management system
running at the user level and has the same lifespan as the
targeted workflow. PDC acts as a private storage solution
dedicated to supporting the I/O demands of a single workflow
execution, thereby enabling more workflow-specific I/O opti-
mizations. Here, we outline a few observations of the Montage
workflow and the optimizations we implemented based on
these observations.

• Server-side Caching: In Montage, some phases (e.g.,
projection) produce a large number of small files, which
will be read by subsequent phases. These intermediate
image files can be cached on the server side for fast
retrieval.

• Write Aggregation: Our study of Montage I/O patterns
using Recorder [14] revealed that Montage components
never perform read-back operations within a single file
open-close session. In other words, reads only occur once
the file has been updated and closed. Therefore, we can
aggregate and cache writes locally, performing a single
transfer at flush or close time.

• Read Prefetching: Knowing that CFITSIO often per-
forms small and contiguous reads, prefetching can be
performed on the client side to reduce future network
transfers.

V. EVALUATION

This section presents the preliminary performance results of
running Montage on PDC. All experiments were conducted
on Perlmutter, a heterogeneous system at the National En-
ergy Research Scientific Computing Center (NERSC), which
includes 3,072 CPU-only nodes and 1,792 GPU-accelerated
nodes. Our experiments utilized only the CPU nodes. Each
node is equipped with 2 AMD EPYC 7763 (Milan) 64-core
CPUs, 512 GB of DDR4 memory, a PCIe 4.0 NIC-CPU
connection with a 25 GB/s bandwidth, and an HPE Slingshot
11 NIC.

The Montage workflow we evaluated is identical to the one
shown in Fig 1. We ported all components within the workflow
and ran it on 4 nodes, with 32 processes per node. The input
dataset consisted of 91 FITS images, and the final output
was a single mosaic image. During the workflow’s execution,
hundreds of intermediate FITS images were produced and
consumed. Figure 2 reports the timing results of four compo-
nents: mProjecExecMPI, mDiffExecMPI, mFitExecMPI, and

mBgExec. These components exhibit diverse I/O access pat-
terns. The first three are MPI programs that run on all allocated
processes, while the last is a serial program running on a single
process.

We enabled server-side caching for all runs, as it always
leads to better performance, provided sufficient caching space
is available. Our focus was on examining the effects of
the other two optimizations—aggregation and prefetching—
on different components. Aggregation consistently improved
performance by reducing the number of writes and network
transfers. For this specific workflow, aggregation is always
feasible as conflicting reads only occur after the modified
files have been closed and reopened. In other words, there is
no need for strict POSIX consistency. Consequently, the ag-
gregation optimization can leverage PDC’s transfer_all
and wait_all APIs to merge and delay writes effectively.
Furthermore, components such as mBgExec and mDiffEx-
ecMPI benefit from both aggregation and prefetching due to
their extensive contiguous write and read operations. Take
mBgExec as an example, enabling both optimizations reduced
the average execution time by a factor of 6 compared to the
version with no optimizations.

Conversely, performing prefetching blindly can negatively
impact performance. In scenarios where a process reads only
a small portion of the object (e.g., mFitExecMPI and mPro-
jExecMPI), prefetching may load unnecessary data, potentially
reducing bandwidth. In these cases, an online tunable prefetch-
ing chunk size or an autonomous learning system during
execution would yield better read performance.
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Fig. 2: Montage on PDC. Different components benefit from
different optimizations, decided by their access patterns.

VI. LESSONS LEARNED AND FUTURE DIRECTIONS

Throughout the process of porting Montage to PDC, we
have encountered and addressed several challenges. Here are
some key lessons we have learned:

• Object Creation: The dimensions and size of an object
are often unknown at the time of creation. The object
creation interface and implementation should account for
this uncertainty.

• Global Synchronizations: The client side of the object
store should handle global synchronizations carefully. In
workflows, tasks may follow different execution paths,



potentially causing global synchronizations to be blocked
indefinitely.

• Workflow I/O Patterns: Workflow I/O patterns are
often simple. For example, as seen in Montage, reads
may not occur until the modified file has been closed,
which means strict POSIX consistency is not required.
Optimizations such as write aggregation can be performed
to improve performance. These optimizations relax the
provided consistency semantics without breaking the
workflow.

• Intermediate Files: Intermediate files can be deleted
safely after execution. They can be cached on the server
side for faster retrieval during future read phases.

• POSIX Support: In Montage, most I/O is handled by
CFITSIO, but some operations are performed directly
using POSIX calls. These include checking file existence
and using files to communicate with spawned child pro-
cesses. A non-POSIX system needs to manage POSIX
operations (which may require workflow modifications)
to ensure execution correctness.

Our future tasks include: (1) testing with larger datasets
on more nodes, (2) identifying and enabling additional opti-
mizations for Montage, and (3) conducting a comprehensive
comparison with existing parallel file systems such as IBM
Spectrum Scale and Lustre.
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