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DEGnext: classification of differentially 
expressed genes from RNA‑seq data using 
a convolutional neural network with transfer 
learning
Tulika Kakati1,2, Dhruba K. Bhattacharyya2, Jugal K. Kalita3 and Trina M. Norden‑Krichmar1*  

Abstract 

Background: A limitation of traditional differential expression analysis on small data‑
sets involves the possibility of false positives and false negatives due to sample varia‑
tion. Considering the recent advances in deep learning (DL) based models, we wanted 
to expand the state‑of‑the‑art in disease biomarker prediction from RNA‑seq data 
using DL. However, application of DL to RNA‑seq data is challenging due to absence 
of appropriate labels and smaller sample size as compared to number of genes. Deep 
learning coupled with transfer learning can improve prediction performance on novel 
data by incorporating patterns learned from other related data. With the emergence of 
new disease datasets, biomarker prediction would be facilitated by having a general‑
ized model that can transfer the knowledge of trained feature maps to the new data‑
set. To the best of our knowledge, there is no Convolutional Neural Network (CNN)‑
based model coupled with transfer learning to predict the significant upregulating (UR) 
and downregulating (DR) genes from both trained and untrained datasets.

Results: We implemented a CNN model, DEGnext, to predict UR and DR genes from 
gene expression data obtained from The Cancer Genome Atlas database. DEGnext 
uses biologically validated data along with logarithmic fold change values to classify 
differentially expressed genes (DEGs) as UR and DR genes. We applied transfer learning 
to our model to leverage the knowledge of trained feature maps to untrained cancer 
datasets. DEGnext’s results were competitive (ROC scores between 88 and 99% ) with 
those of five traditional machine learning methods: Decision Tree, K‑Nearest Neighbors, 
Random Forest, Support Vector Machine, and XGBoost. DEGnext was robust and effec‑
tive in terms of transferring learned feature maps to facilitate classification of unseen 
datasets. Additionally, we validated that the predicted DEGs from DEGnext were 
mapped to significant Gene Ontology terms and pathways related to cancer.

Conclusions: DEGnext can classify DEGs into UR and DR genes from RNA‑seq cancer 
datasets with high performance. This type of analysis, using biologically relevant fine‑
tuning data, may aid in the exploration of potential biomarkers and can be adapted for 
other disease datasets.
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Background
Transcriptomic profiling is important in understanding how genes regulate biological 
functions and control the underlying mechanisms of diseases. Differential expression 
(DE) analysis is used to identify the genes which undergo changes in biological patterns 
across healthy and disease conditions. This analysis can help researchers identify the dif-
ferentially expressed genes (DEGs) which behave differently in disease conditions and 
help them prioritize these condition-specific genes as potential biomarkers for a par-
ticular disease. Numerous parametric and non-parametric statistical methods have 
been developed for DEG analysis based on logarithmic values of fold change (logFC) of 
gene expression in control state to disease state [1]. For instance, DESeq [2], DESeq2 
[3], edgeR [4], and voom [5] use variance (dispersion) in gene expression values to iden-
tify the DEGs. However, due to the biases incorporated during computation of disper-
sion results, high false positive and false negative rates occur in predicting DEGs from 
RNA-seq data. Recently, many machine learning (ML) methods have been developed 
to classify genes on the basis of gene expression. For example, Support Vector Machine 
(SVM) with mutual information was used to classify genes that distinguish colon can-
cer patients from healthy patients [6]. Similarly, Logistic Regression (LR) has been used 
to classify gene expression from microarray experiments between acute lymphoblas-
tic leukemia (ALL) and acute myeloid leukemia (AML) of Golub leukemia data, and 
between cervical cancer and normal tissues [7]. A Random Forest based method was 
proposed to classify genes in microarray data [8]. Additionally, an empirical study was 
carried out to assess various state-of-the-art supervised ML methods, namely Decision 
Tree (DTC), Linear Regression(LR), Naïve Bayes (NB), Random Forest (RFC), Support 
Vector Machine (SVC) in classifying gene expression in RNA-seq datasets [9]. However, 
these ML methods required selection of gene features as prior knowledge to train the 
classifier.

Deep learning (DL) coupled with transfer learning, on the other hand, has the abil-
ity to classify novel data by directly learning complex non-linear relationships among 
the features of the training data in one end-to-end classification system [10]. A Con-
volution Neural Network (CNN) is a type of deep learning, which applies mathemati-
cal convolutional approaches in one of more internal layers of the network. CNNs have 
architectures which enable massive computations and learning of non-linear relations 
between input and output data [11]. It has been recently demonstrated that the CNN 
is a powerful tool for classification in both image and non-image data because of char-
acteristics, such as feature extraction, efficient hierarchical filtering with internal layers 
to deeply train a model, weight sharing capability to mitigate memory requirements, 
and utilization of neighborhood information [12–17]. For example, DeepInsight [17] 
is a CNN-based model, which has also shown promising results in feature extraction 
from non-image data, such as gene expression, text data, or synthetic data. Application 
of DL to RNA-seq data is challenging due to absence of appropriate labels and smaller 
sample sizes (n) as compared to the number of genes (g) [18]. Kakati et  al. [19], pro-
posed the first DL-based method to predict upregulating (UR) and downregulating 
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(DR) genes from RNA-seq breast cancer and Parkinson’s disease datasets. Additionally, 
recent papers [20–22] have reported the use of transfer learning to predict cancer types 
or survival of cancer patients. Moreover, recently, many modified versions of ML based 
methods, such as SVC, RFC, and DTC have been reported which use learned knowledge 
to implement transfer learning between different domains of images [23–27]. However, 
with the increase in gene-expression data availability, there is the opportunity to create 
a generalized model which can use the trained features to identify potential biomarkers 
from UR and DR genes from small or large untrained datasets. To the best of our knowl-
edge, currently there is no Convolutional Neural Network (CNN)-based model coupled 
with transfer learning to predict the gene expression directionality from both trained 
and untrained RNA-seq datasets.

In this paper, we propose a robust CNN-based model, DEGnext, in conjunction with 
transfer learning to classify the UR and DR genes from RNA-seq cancer datasets.

Results
In this section, we report the experimental results of DEGnext for both general and 
transfer learning. In the Methods section , we describe each step of the DEGnext work-
flow and CNN architecture in detail, so we will only give a brief overview here to aid in 
the interpretation of the results. Fig. 1 contains the workflow of DEGnext, while in Fig. 2, 
we illustrate the CNN architecture that we used in DEGnext to train and classify test 
data as UR and DR genes.

We used TCGABiolinks R package [28] to download 17 datasets (listed in Table 1).
For labeling the genes in the datasets, we used logFC values in addition to disease-

related knowledge from Ingenuity Pathway Analysis (IPA) to divide the data into biologi-
cally or non-biologically validated data. First, we use general learning on DEGnext, to 
predict the directionality of DEGs from all 17 datasets. Second, we divide 17 datasets 
into 9 training datasets and 8 testing or untrained datasets and use transfer learning to 
leverage the knowledge (features, weights) acquired from the previously trained DEG-
next model to predict UR and DR genes from rest 8 testing datasets. Third, we evalu-
ate the performance of the DEGnext model for general and transfer learning against five 
ML methods, namely Decision Tree (DTC), Linear Regression(LR), Naïve Bayes (NB), 
Random Forest (RFC), Support Vector Machine (SVC), and XGBoost in terms of accu-
racy, recall, precision, F-measure, Matthews correlation coefficient (MCC), and Receiver 
Operating Characteristic (ROC) scores. Fourth, we test the robustness of DEGnext by 
augmenting the datasets with seven levels of Gaussian noise data (1, 10, 50, 100, 500, 
1000, 1500) and compare it with other ML methods. Fifth, we obtain the Gene Ontol-
ogy (GO) term enrichment and pathway enrichment of the predicted up/down regulated 
genes from cancer datasets. Finally, we identify the potential biomarkers mapped to the 
significant pathways related to BRCA and UCEC datasets. Throughout the text and fig-
ures, we will be using the following abbreviations for the testing and training data. The 
non-biologically validated data is labeled as P (“non-bio data”), and the biologically vali-
dated is labeled as Q (“bio data”). The P data were split as non-biologically validated train 
data (“non-bio train data” or T1) and non-biologically validated test data (“non-bio test 
data” or T2) in the ratio of 80:20. Similarly, the Q data were split in the ratio of 80:20 as 
fine-tune (F1) and biologically-validated test data (“bio-test data” or T3), respectively.
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Performance of DEGnext in general learning experiment

In the general learning experiment, we first trained the model with non-bio train data 
(T1) for all 17 datasets with fivefold cross-validation. Then, we took the best fold mod-
els for each dataset and further trained the model with fine-tune data (F1). To evalu-
ate the overall DEGnext output quality in general learning, we calculated the mean of 

Fig. 1 Workflow of DEGnext methodology. In this workflow, there are three main phases. The first phase 
involves data collection, preprocessing, labelling, and splitting of the data. Here, we split the data into two 
parts: non‑biologically validated data (“non‑bio data” or P) and the biologically validated data (“bio data” or Q). 
T1 is the non‑biologically validated train data of P (“non‑bio train data”, 80% of P). T2 is the non‑biologically 
validated test data of P (“non‑bio test data”, 20% of P). F1 is the fine‑tune data of biologically validated data 
(“fine‑tune data”, 80% of Q). T3 is the biologically validated test data of Q (“bio‑test data”, 20% of Q). The 
second phase includes training (first level training) and fine‑tuning (second level training) and testing of 
CNN model to predict UR and DR genes. The third phase includes downstream enrichment analyses of the 
predicted UR and DR genes to identify potential biomarkers related to a cancer dataset. The CNN architecture 
is illustrated in Fig. 2
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five metrics, namely accuracy, recall, precision, F-measure, and MCC across fivefolds of 
bio-test data (T3). In Table 2, we report the performance of DEGnext on bio-test data 
(T3) for all 17 datasets. We find that the mean of all the three metrics, namely accuracy, 
recall, and precision scores for all the datasets was within the range of 95-100% . The 
F-measure and MCC scores for all the 17 datasets were above 0.85. This demonstrates 

Fig. 2 CNN architecture of DEGnext. The input to the model is a 1D input vector ( x1 , x2 , . . . , xn ), which 
represents each gene row of a cancer dataset. This 1D vector is converted to a 2D matrix of channel 1 using 
np.reshape(). We used a sequence of eight 2D convolutional neural network (CNN) layers ( C1 , C2 , . . . , C8 ) with 
ReLU() as activation function. Each CNN layer uses kernel‑size (3, 3), stride of 1, and padding equal to 1. We 
used a 2D Maxpool layer of kernel‑size 2. In order to make the model inclusive for any input size, we used a 
2D AdaptiveMaxPool layer with target output size of 1 × 1. The output of the CNN layers is fed to a sequence 
of 5 linear layers ( L1 , L2 , . . . , L5 ) with ReLU() as activation function. We used Softmax() to the output of linear 
layers, to find the probabilities of each class in the range of [0, 1]

Table 1 Dataset abbreviations for cancer datasets used in DEGnext

Dataset 
abbreviation

Cancer type Dataset 
abbreviation

Cancer type

BLCA Bladder urothelial carcinoma LIHC Liver hepatocellular carcinoma

BRCA Breast invasive carcinoma LUAD Lung adenocarcinoma

CHOL Cholangiocarcinoma LUSC Lung squamous cell carcinoma

COAD Colon adenocarcinoma PRAD Prostate adenocarcinoma

ESCA Esophageal carcinoma READ Rectum adenocarcinoma

HNSC Head and neck squamous cell carci‑
noma

STAD Stomach adenocarcinoma

KICH Kidney Chromophobe THCA Thyroid carcinoma

KIRC Kidney renal clear cell carcinoma UCEC Uterine Corpus endometrial carcinoma

KIRP Kidney renal papillary cell carcinoma – –
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that the proposed model is effective in classifying the up/down regulated genes from 
bio-test data of the respective TCGA cancer datasets. For instance, the MCC score for 
datasets CHOL, KICH, KIRC, KIRP, LUAD, LUSC, and THCA is 1, which signifies per-
fect prediction of up/down regulated genes by DEGnext.

Performance of DEGnext in transfer learning

General learning results for DEGnext are nearly perfect. However, most RNA-seq data-
sets do not have appropriate labels and have smaller sample sizes (n) compared to num-
ber of genes (g). In those situations, a general model cannot be obtained using supervised 
learning and we must rely on models trained on another datasets. This motivated us to 
make DEGnext generalizable for RNA-seq datasets, irrespective of dataset size or appro-
priate labels. Instead of training a CNN from scratch for any new dataset, we wanted 
to use the pretrained DEGnext model on new datasets without labels to predict signifi-
cant UR and DR genes. Transfer learning can leverage the knowledge of trained feature 
maps from trained model to untrained cancer datasets . Moreover, general learning on 
17 datasets is time-consuming since we need to train and fine-tune the model for each 
dataset separately to predict UR and DR genes from bio-test data of respective dataset. 
In order to analyze the effectiveness of DEGnext in transfer learning, we divided the 17 
datasets into two groups based on the sample sizes: 9 training datasets with large size 
(BRCA, LIHC, LUAD, LUSC, KIRC, KIRP, PRAD, THCA, and UCEC) and 8 testing 
or untrained datasets with smaller size (BLCA, CHOL, COAD, ESCA, HNSC, KICH, 
READ, and STAD). We used this dataset splitting strategy so that features learned dur-
ing training generalized to any unknown or new dataset regardless of size. The testing 
datasets comprised of 100% of biologically validated data (Q). Since the testing datasets 
are smaller in size than the training datasets, we first use non-bio train data (T1) and 

Table 2 Performance of DEGnext on bio‑test data (T3) of all 17 datasets using general learning 
considering fivefold cross validation

Dataset Accuracy Recall Precision F-measure MCC

BLCA 98.42 98.42 98.49 0.98 0.97

BRCA 98.80 98.80 98.83 0.99 0.98

100.00 100.00 100.00 1.00 1.00

CHOL
COAD

99.64 99.64 99.65 1.00 0.99

ESCA 97.95 97.95 98.10 0.98 0.96

HNSC 99.32 99.32 99.34 0.99 0.98

KICH 100.00 100.00 100.00 1.00 1.00

KIRC 99.78 99.78 99.78 1.00 1.00

KIRP 100.00 100.00 100.00 1.00 1.00

LIHC 95.93 95.93 96.23 0.96 0.85

LUAD 99.82 99.82 99.83 1.00 1.00

LUSC 99.88 99.88 99.88 1.00 1.00

PRAD 99.35 99.35 99.36 0.99 0.99

READ 95.39 95.39 96.54 0.95 0.92

STAD 96.89 96.89 97.06 0.97 0.93

THCA 99.87 99.87 99.87 1.00 1.00

UCEC 99.60 99.60 99.61 1.00 0.99
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fine-tune data (F1) to train DEGnext model on all 9 training datasets sequentially. The 
trained model is then tested on biologically validated data (Q) of the untrained datasets 
to predict UR and DR genes from untrained datasets.

From Table 3, we show that except for COAD and READ, all other TCGA untrained 
datasets, attain an overall performance above 84% when using our DEGnext model on 
biologically validated data (Q).

The MCC scores for these datasets, such as BLCA, CHOL, HNSC, KICH, and STAD 
was above 0.9, which signified the better prediction of UR and DR genes from the 
untrained datasets. This process leverages the optimization and reduces the amount of 
data and time required to train new models for new datasets. Thus, we conclude that 
DEGnext was able to transfer the knowledge of learned feature maps from the trained 
datasets to untrained datasets effectively.

Comparison of DEGnext performance with other ML methods

We assessed the performance of DEGnext for both general and transfer learning in pre-
dicting UR and DR against five ML methods. In particular, we compared DEGnext to 
DTC, KNC, RFC, SVC, and XGBoost in terms of mean of accuracy, recall, precision, 
F-measure, MCC, and ROC scores. For general learning, we trained and fine tuned 
DEGnext and the ML methods with non-bio train data (T1) and fine-tune data (F1) for 
each dataset. Then, we tested the models with bio-test data (T3) of all 17 datasets with 
fivefold cross validation. In Additional file 1: Table S1, we see that DEGnext’s results on 
general learning are competitive with the other ML methods for all 17 datasets. In Fig. 3, 
ROC scores for all 17 datasets were 0.96 or above. Similarly, we found XGBoost outper-
formed for most of the datasets as compared to other traditional ML-methods, such as 
DTC, KNC, and SVC.

For transfer learning, we trained DEGnext and the ML methods on 80% of non-bio 
train data (T1) and 80% of fine-tune data (F1) of the 9 training datasets sequentially. We 
then tested the pretrained model on 100% of the biologically validated data (Q) of the 
untrained datasets. In Additional file 1: Table S2, we show that except for COAD and 
READ datasets, DEGnext’s results are consistent with those of the other ML methods 
in terms of accuracy, recall, precision, F-measure, MCC, and ROC-scores for all the 
untrained datasets. In Fig. 4, the ROC scores were above 0.85 for DEGnext and XGBoost 
for all testing datasets in line with to other ML methods. Therefore, from our results, we 

Table 3 Performance of DEGnext on biologically validated data (Q) of 8 testing or untrained 
datasets using transfer learning

Dataset Accuracy Recall Precision F-measure MCC

BLCA 95.69 95.69 95.76 0.96 0.91

CHOL 98.26 98.26 98.49 0.98 0.94

COAD 84.21 84.21 88.44 0.84 0.72

ESCA 92.97 92.97 94.68 0.93 0.61

HNSC 98.44 98.44 98.49 0.98 0.96

KICH 98.75 98.75 98.79 0.99 0.97

READ 86.05 86.05 89.23 0.86 0.75

STAD 97.77 97.77 97.89 0.98 0.95
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can conclude that DEGnext is competitive or better in both general learning and transfer 
learning.

Robustness of DEGnext

To demonstrate that DEGnext is robust to noise, we tested the performance of DEGnext 
with increasing Gaussian noise in 7 levels: 1 % , 10% , 50% , 100% , 500% , 1000% , and 1500% . 
In Fig. 5A, we show that for all the datasets, DEGnext was quite robust to the increasing 
levels of noise up to 500% standard deviation. However, for READ, COAD, and UCEC 
datasets, the accuracy decreased with the increase levels of noise. On the other hand, 
in Fig. 5B, we show that DEGnext performs competitively better in terms of the mean 
accuracy for bio-test data (T3) of all the 17 datasets.

GO enrichment analysis of predicted UR and DR genes

After classifying the DEGs into UR and DR genes using our DEGnext model, we 
assessed the GO enrichment of the predicted UR and DR genes using ToppGene 

Fig. 3 ROC curves of 17 datasets for general learning. Comparison of ROC scores for general learning of 
bio‑test data (T3) for all 17 datasets



Page 9 of 18Kakati et al. BMC Bioinformatics           (2022) 23:17  

Suite. As shown in Table 4, the predicted UR and DR genes were enriched with some 
common GO terms associated with carcinogenesis.

For instance, we observed that the predicted UR and DR genes from BRCA datasets 
were related to GO terms such as cellular adhesion and cell morphogenesis, which 
are associated with cancer cell invasion and metastasis [29]. On the other hand, for 
the UCEC dataset, the GO terms mapped from the predicted UR and DR genes were 
mainly focused on reproductive processes, reproduction, and positive regulation of 
plasminogen activation and had more significant p-values and q-values. There is evi-
dence [30] that activation of plasminogen from cancer cells leads to breakdown of 
cellular components, which in turn leads to invasion of cancer cells into other areas of 
the body. These results suggest that the predicted UR and DR genes for the breast and 

Fig. 4 ROC curves of 8 untrained datasets for transfer learning. Comparison of ROC scores for transfer 
learning on 100% of bio data data (Q) for all test datasets, namely BLCA, CHOL, COAD, ESCA, HNSC, KICH, 
READ, and STAD

Fig. 5 Robustness comparison for DEGnext. A Robustness of DEGnext to noisy data for bio‑test data (T3) of 
all the 17 datasets. B Comparison with other ML methods in terms of the mean accuracy for bio‑test data (T3) 
of all the 17 datasets in presence of different levels of Gaussian noise
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uterine cancer datasets were functionally enriched with significant GO terms with 
lower p-values and q-values associated with cancer.

Pathway enrichment analysis of predicted UR and DR genes

We performed a pathway enrichment analysis of the predicted UR and DR genes 
obtained from the bio-test data of BRCA and UCEC datasets using IPA. In Table 5, we 
report 10 significant pathways, mapped from predicted UR and DR genes of BRCA and 
UCEC, associated with progression of breast and cancer datasets. We discuss these 
below. 

1 BRCA dataset 

(a) RhoGDI signaling: The main functions of the Rho family of GTPase involve 
promoting cellular adhesion, proliferation, and metastasis of breast cancer 
cells. RhoB exerts positive effects on increasing expression of estrogen receptor 
alpha (ERα ) and progesterone receptor (PR), which correlate to the progres-
sion of breast cancer [31]. Pathway analysis shows that predicted upregulating 
genes such as RHOQ, CDH5, and FNBP1 are associated with signaling by Rho 
family GTPase. There is evidence in prior research that Cadherin-5 (CDH5) 
is a potential biomarker for metastasis of breast cancer [32]. The modulation 
of RHOB and RHOG regulates the proliferation and differentiation of cancer 
cells, which influences the prognosis of breast cancer [33].

(b) ILK pathway: Activation of oncogenes leads to overgrowth of cancer cells, 
which is the hallmark of the progression of a malignant tumor, like breast 
cancer. Over-expression of integrin-linked-kinase (ILK) promotes prolifera-
tion and growth of breast cancer cells [34]. Under normal conditions, ILK is 
involved in adhesion of cells, homeostasis of tissue and other critical cardiac 
functions. It has been found that upregulation of ILK leads to significant accel-
eration of tumor development in breast cancer. From the bio-test gene list, we 
find that ITGB7, which is predicted to be up-regulated by DEGnext is respon-
sible for altered ILK pathway. It leads to abnormal cell proliferation in breast 
cancer [35]. Similarly, DEGnext predicts upregulation of RHOB, which has 

Table 4 Analysis of GO enrichment of predicted UR and DR genes for BRCA and UCEC datasets

Dataset GO ID/attribute p value q value

BRCA Cellular component morphogenesis 1.72E−06 8.39E−03

Cellular response to endogenous stimulus 5.19E−06 8.39E−03

Cell adhesion 5.32E−06 8.39E−03

Biological adhesion 6.15E−06 8.39E−03

Cell morphogenesis 9.77E−06 1.07E−02

Negative regulation of response to stimulus 1.25E−05 1.14E−02

Negative regulation of intracellular signal transduction 4.77E−05 3.72E−02

UCEC Reproductive process 1.19E−05 2.61E−02

Reproduction 1.24E−05 2.61E−02

Positive regulation of plasminogen activation 3.18E−05 4.46E−02
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been reported to exert positive effects during carcinogenesis of breast tumors 
[33].

2 UCEC dataset 

(a) PTEN signaling: We found that within the significant PTEN signaling path-
way that some mapped genes, such as ITGA4, MCRS1, and SOS1 were pre-
dicted to be upregulated by the DEGnext model. In [36], it has been reported 
that ITGA4 is a potential target for carcinogenesis because overexpression of 
ITGA4 promotes invasion of tumor cells and metastasis. Similarly, in [37], it 
was found that genes like MCRS1 are overexpressed in the advanced stage of 
cervical cancer. Additionally, in [38], the authors confirmed that overexpres-
sion of the SOS1 gene correlates with the progression of cancer.

(b) Ephrin receptor signaling: In a significant pathway called the Ephrin Recep-
tor Signaling pathway, we found several mapped genes, namely ATF4, EPHA6, 
ITGA4, and SOS1, which were predicted to be upregulated by DEGnext and 
were related to carcinogenesis. For example, the gene Erythropoietin-produc-

Table 5 Ten significant pathways mapped from predicted UR and DR genes of BRCA and UCEC

Cancer Ingenuity canonical pathways Mapped predicted UR genes Mapped predicted DR genes

BRCA RhoGDI signaling ARHGEF17, CDH18, CDH5, 
FNBP1, PPP1R12C, RDX, RHOQ

CREBBP, RHOB, CD44, CDH6, SRC, 
ESR1, RAC1

ILK signaling CCND1, FNBP1, ITGB7, MYH6, 
RHOQ, VIM

CREBBP, MYH11, CREB3, RHOB, 
IRS2, ACTN2, RAC1

Glioblastoma multiforme 
signaling

CCND1, FNBP1, FZD7, ITPR1, 
PLCZ1, RHOQ

CDK6, CDKN1A, PLCH2, RHOB, 
SRC, RAC1

Leukocyte extravasation signal‑
ing

CDH5, PRKCG, RDX, VCAM1 PRKCH, CLDN12, CD44, SRC, 
MMP27, CLDN2, RAP1GAP, ACTN2, 
RAC1

Wnt/β‑Catenin signaling CCND1, CDH5,FZD7, PIN1, 
TGFBR1, TLE4

CREBBP, CD44, SRC, CSNK1D, 
DVL3, POU5F1

Cholecystokinin/gastrin‑medi‑
ated signaling

FNBP1, ITPR1, PRKCG, RHOQ PRKCH, RHOB, SRC, CCKBR, RAC1

Factors promoting cardiogen‑
esis in vertebrates

CCND1, FZD7, MYH6, PLCZ1, 
PRKCG, TGFBR1

CREBBP, CREB3, PRKCH, PLCH2

Wnt/Ca+ pathway FZD7,PLCZ1 CREBBP, CREB3, PLCH2, DVL3

Dopamine‑DARPP32 feedback 
in cAMP signaling

GRIN2D, ITPR1, PLCZ1, PRKCG CREBBP, CREB3, PRKCH, PLCH2, 
CSNK1D, CACNA1S

UVC‑induced MAPK signaling PRKCG, SMPD1 PRKCH, ARAF, SRC

UCEC PTEN signaling ITGA4, MCRS1, SOS1 INPP5K, CBL

Ephrin receptor signaling ATF4, ITGA4, SOS1 CREBBP, EPHA6

Integrin signaling ACTN1, CAPN2, ITGA4, SOS1 ZYX, ITGA2B, ITGB8

ERK/MAPK signaling ATF4, DUSP9, ITGA4, KSR1, 
NFATC1,SOS1

CREBBP

PPAR signaling PPARA, SOS1 CREBBP, TNFRSF11B, NCOR2

FLT3 signaling in hematopoietic 
progenitor cells

ATF4, SOS1 CREBBP, CBL

Calcium signaling ATF4, ATP2B1, MYH10, NFATC1 CREBBP, CACNA1C

ILK signaling ACTN1, ATF4, MYH10 CREBBP, ITGB8

B Cell receptor signaling ATF4, NFATC1, SOS1 CREBBP, INPP5K

IL‑6 signaling ABCB1, SOS1 TNFRSF11B, CYP19A1
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ing human hepatocellular (EPH) receptors, such as EPHA6 has pro-tumori-
genic effects and induces a number of cellular processes, such as adhesion, pro-
liferation, differentiation during carcinogenesis of cervical cancer [39].

Discussion
We developed a CNN model called DEGnext to classify UR and DR genes from the 
DEGs of TCGA RNA-seq cancer datasets. We established that transfer-learning com-
bined with the DEGnext model made the model effective in classifying UR and DR 
genes from untrained datasets. We compared the performance of DEGnext with 5 other 
ML methods, and DEGnext is competitive in terms of accuracy, sensitivity, specific-
ity, F-measure, MCC, and ROC scores. In particular, for general learning, in Fig. 3 and 
in Additional file 1: Table S1, we show that DEGnext performs competitively or better 
than other existing ML methods for all 17 datasets. For transfer learning, in Fig. 4 and 
in Additional file 1: Table S2, we show that except for the COAD and READ datasets, 
DEGnext prediction results are better than existing ML methods. For the COAD and 
READ datasets, a similar discrepancy in precision and recall has been reported in the 
results for models based on CNNs [12, 13]. The DEGnext model was robust in terms of 
accuracy and was able to withstand the addition of Gaussian noise.

We validated the biological enrichment of the predicted UR and DR genes from the 
BRCA and UCEC datasets in terms of GO and pathway enrichment. We found that 
the predicted UR and DR genes were enriched with GO terms related to cancer with 
significant p-values and q-values. Similarly, for biological pathways, we found that the 
predicted UR and DR genes were enriched in pathways associated with breast cancer, 
such as the ILK pathway and the Rho GTPase signaling pathway. Pathways mapped from 
the predicted UR and DR genes of the UCEC dataset also play significant roles in car-
cinogenesis of cervical cancer such as PTEN signaling and Ephrin receptor signaling 
pathways.

Conclusions
The proposed CNN model, DEGnext provides a novel approach for prediction of UR 
and DR genes from both trained and untrained datasets using both logFC values and 
disease-related biological knowledge. The downstream analysis of the predicted UR and 
DR genes has provided insights into the underlying mechanisms and aided in the iden-
tification of the prime regulators of carcinogenesis of breast cancer and uterine cancer. 
Therefore, through the prediction and classification of DEGs, DEGnext may aid in the 
exploration of potential biomarkers of a disease from other RNA-seq datasets.

Methods
Dataset collection and preprocessing

We used TCGABiolinks R package [28] to download 17 datasets (listed in Table 1) from 
TCGA portal. Figure  1 is a schematic depiction of the workflow of the methodology 
which is described below. 
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1 Although each of the 17 downloaded datasets had different sample sizes, there were 
60,483 mRNA transcripts in each dataset. We used the following queries and data 
categories: Transcriptome Profiling; data type: Gene Expression Quantification; 
workflow type: HTSeq-Counts; sample type: Primary Tumor and Solid Tissue Nor-
mal; legacy: FALSE, to download the cancer datasets from the TCGA portal. First, we 
prepared the dataset to represent it as an expression matrix with genes as rows and 
samples as columns. Out of 60,483 mRNA transcripts, we obtained 56,493 mRNA 
transcripts, which were mapped to the human genome (Genome Reference Consor-
tium Human Build 38, GRCh38).

2 We preprocessed the gene expression data using TCGAanalyze_Preprocessing() with 
a gene expression cut off threshold = 0.6 and found that 56,493 number of mRNA 
transcripts above this threshold were within the inter-quartile range.

3 We mapped the ENSEMBL identifiers of the mRNA transcripts, and kept only those 
mRNA transcripts which had valid HGNC gene symbols. From the 56,493 mRNA 
transcripts, we found that 37,614 genes had valid HGNC symbols.

4 In RNA-seq data, different sample conditions have different sequencing depths and 
RNA compositions, which may cause complications in downstream analysis [40]. 
We performed data normalization using TCGAanalyze_Normalization() to adjust 
several gene-level effects, such as GC-content and sequencing depth. Internally, 
TCGAanalyze_Normalization() utilizes the EDASeq package [41] to perform within-
lane normalization and between-lane normalization [42]. 8686 genes remained after 
normalization for these gene-level effects.

5 For each of the 17 datasets, we filtered the genes using TCGAanalyze_Filtering(), 
with a quantile cut off 0.25 and found 6514 filtered genes (FG) above this threshold. 
We used a strict parameter cut off for preprocessing and filtering of the genes before 
DE analysis, because the main objective of our approach is to find significant pre-
dicted UR and DR genes related to cancer progression.

6 We used TCGAanalyze_DEA() to perform DE analysis on the filtered genes (FG) 
across normal versus tumor conditions with a false discovery rate (FDR) cutoff 0.01, 
yielding significant labeled DEGs (SDEGs) for each cancer dataset. Out of the 6514 
FGs, the non-significantly differentially expressed for FDR cutoff of 0.01 were labeled 
“2” as neutral genes.

7 The number of SDEGs for each dataset was different as shown in Table 6. Next, we 
labeled the SDEGs on the basis of logFC threshold = 0. That is, if the logFC value of a 
SDEG was below 0, then the DEG was labeled as “0” for down regulated (DR) gene. If 
it was above 0, then the DEG was labelled as “1” for up-regulated (UR) gene.

8 We input the SDEGs for each dataset into the IPA tool [43] to check if they were 
related to the specific cancer. We found that, between 4 and 47% of the significant 
DEGs were related to the respective cancer disease and we categorized them as bio-
logically validated data (“bio data” or Q). The neutral genes and non-biologically vali-
dated genes together formed the remaining data (“non-bio data” or P).

9 We split P and Q data as shown in Fig. 1. The non-bio data (P) were split as non-bio 
train data (T1) and non-bio test data (T2) in the ratio of 80:20. Similarly, the bio data 
(Q) were split in the ratio of 80:20 as bio-test data (T3) and fine-tune (F1) data. In 
order to avoid bias, we considered fivefold cross validation to test the model.
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10 We performed two experiments: one for general training and testing and the other 
experiment for transfer learning. We leveraged the knowledge (features, weights) 
learned from the previously trained DEGnext model to predict UR and DR genes 
from 8 untrained datasets.

11 For general learning, we tested the effectiveness of DEGnext model to classify UR 
and DR genes from respective bio-test data (T3) of all 17 datasets.

12 We checked the generalizability of DEGnext by using transfer learning of the signifi-
cant feature-maps into bio data (Q) of 8 untrained datasets.

13 We compared the performance of our DEGnext against five ML methods, DTC, 
KNC, RFC, SVC, and XGBoost in terms of accuracy, recall, precision, F-measure, 
MCC, and ROC scores.

Table 6 Number of genes and samples from preprocessed and filtered gene expression data used 
in labeling, training, fine‑tuning, and testing

Q: bio data; T1: non‑bio train data; T2: non‑bio test data; F1: fine tune data; T3: bio test data

Dataset Filtered 
genes (FG)#
gene× #
normal 
samples 
# tumor 
samples

Significant 
labeled 
DEGs 
(SDEGs)

Bio 
genes(Q)

Non-bio 
train 
data(T1)

Non-bio 
test(T2)

Fine-
tune(F1)

Bio-test(T3)

BRCA 6514× 113 
1102

4939 2327 3349 838 1861 466

BLCA 6514× 19 
414

2496 254 5008 1252 203 51

CHOL 6514× 9 36 2811 552 4768 1193 441 111

COAD 6514× 41 
478

4213 1399 4092 1023 1119 280

ESCA 6514× 11 
161

1420 193 5056 1265 154 39

HNSC 6514× 44 
500

3860 734 4624 1156 587 147

KICH 6514× 24 65 3422 306 4966 1242 244 62

KIRC 6514× 72 
538

4822 455 4847 1212 364 91

KIRP 6514× 32 
288

3535 337 4941 1236 269 68

LIHC 6514× 32 
288

4372 1498 4012 1004 1198 300

LUAD 6514× 59 
533

4387 566 4758 1190 452 114

LUSC 6514× 49 
502

4833 839 4540 1135 671 168

PRAD 6514× 52 
498

3803 1080 4347 1087 864 216

READ 6514× 10 
166

2678 121 5114 1279 96 25

STAD 6514× 32 
375

3379 388 4900 1226 310 78

THCA 6514× 58 
502

4292 3031 2786 697 2424 607

UCEC 6514× 35 
551

3992 999 4412 1103 799 200
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14 We tested the robustness of DEGnext by augmenting the datasets with seven levels 
of Gaussian noise data (1, 10, 50, 100, 500, 1000, 1500) and compared results with 
other ML methods.

15 We used two tools, ToppGene Suite and IPA, for Gene Ontology (GO) and pathway 
enrichment analysis of the predicted UR and DR genes for BRCA and UCEC data-
sets, respectively.

In Table 6, for each dataset, we show the size of preprocessed and filtered datasets, 
number of significant labeled DEGs (sDEGs), number of genes in non-bio train data 
(T1), non-bio test data (T2), fine-tune data (F1), and bio test data (T3).

DEGnext model construction and implementation

The DEGnext is a CNN model proposed to predict UR and DR genes from RNA-seq 
cancer datasets. We implemented the CNN model using Pytorch in Python DL plat-
form [44], as shown in Fig. 2.

The input to the model is a 1D input vector ( x1 , x2 , . . . , xn ), which represents each 
gene row of the cancer dataset. This 1D vector is converted to a 2D matrix of channel 
1 using np.reshape() function. We used a sequence of eight 2D convolutional neural 
network (CNN) layers ( C1 , C2 , . . . , C8 ) with ReLU() as activation function. Each CNN 
layer uses kernel-size (3, 3), stride of 1, and padding equal to 1. We used a 2D Max-
pool layer of kernel-size 2. In order to make the model inclusive for any input size, 
we used a 2D AdaptiveMaxPool layer with target output size of 1 × 1. The output of 
the CNN layers is fed to a sequence of 5 linear layers ( L1 , L2 , . . . , L5 ) with ReLU() as 
activation function. In DEGnext, we have used the activation output from the last 
linear layer as feature representation and applied Softmax() to find the probabilities of 
each class in the range of [0, 1]. The values for the key hyperparameters are listed in 
Table 7.

We performed two experiments to test the effectiveness of our model.
Experiment 1 (General Learning): In the first experiment, we used all 17 cancer 

datasets to train, fine-tune and test the corresponding bio-test data (T3) from each 
dataset. Since the non-bio train data (P) has three labels ‘0’, ‘1’, and ‘2’, this training is 
for a three-class problem. For the first-level of training, DEGnext runs for 50 epochs 
with a batch size of 256 and it uses CrossEntropyLoss() as a loss function and optim.
Adam() as an optimizer to compute the cross entropy loss between the output ( ypred ) 

Table 7 Values of hyperparameters used in DEGnext model

Hyperparameters First level training Fine-tuning

Epoch 50 31

Loss function CrossEntropyLoss() BCEWithLogitsLoss()

Learning‑rate 1e−4 1e−4

Betas (0.9, 0.999) (0.9, 0.999)

eps 1e−08 1e−08

Weight‑decay 0 0

Batch‑size 256 64
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for a given input x and updates the parameters based on the gradients. For predicted 
classes 0, 1, 2, the input gene is classified as DR, UR or neutral gene.

For the second level of training, we use fine-tune data (F1) on the best model from first level 
of training for each dataset. Since fine-tune data (F1) have ‘0’ and ‘1’ labels, the second level 
of training is a two-class problem. Here, we used the BCEWithLogitsLoss() loss function to 
fine-tune the model with a batch size of 64 for each dataset. After training for 31 epochs, the 
respective models are then tested using bio-test data (T3) of each dataset. The second level of 
training incorporates both prior disease-related biological knowledge and log2FC estimates 
(sample variance) of the data to the CNN model, which enables capture of non-linear gene 
expression patterns and enhances prediction performance of the model in determining UR 
and DR genes. The major advantage of our CNN model is that it allows performing very effi-
cient transfer learning by reusing the feature-map signatures learned from the trained model.

Experiment 2 (Transfer learning): For the second experiment, we divided 17 datasets into 
two groups: training datasets (BRCA, LIHC, LUAD, LUSC, KIRC, KIRP, PRAD, THCA, 
and UCEC) and testing datasets (BLCA, CHOL, COAD , ESCA, HNSC, KICH, READ, 
and STAD). The training datasets are larger in size than the testing datasets. The testing 
datasets comprised of 100 % of biologically validated data. We choose the best fold data 
for each dataset and trained on 80% of non-bio train data (T1) of all 9 training datasets 
one after another with a batch size of 64. For training, since non-bio train data (T1) has 
three labels, ‘0’, ‘1’, and ‘2’, we used CrossEntropyLoss() as a loss function and optim.Adam() 
as an optimizer, with a batch size of 256 to train the model on the 9 training datasets one 
after another. For fine-tune, all we needed to do was to customize and modify the output 
layer L5 and remove the final softmax layer to classifying the DEGs as ‘0’ or ‘1’. We used the 
BCEWithLogitsLoss() loss function to fine-tune the model again with the fine-tune data 
(F1) for all 9 training datasets. For testing, we did not retrain the model, but instead used 
the pretrained model to predict UR and DR genes from all 8 testing datasets.
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