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A rational model of syntactic bootstrapping
Jon Gauthier, Roger P. Levy, Joshua B. Tenenbaum

Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology

jon@gauthiers.net, {rplevy,jbt}@mit.edu

Abstract

Children exploit regular links between the meanings of words
and the syntactic structures in which they appear to learn about
novel words. This phenomenon, known as syntactic bootstrap-
ping, is thought to play a critical role in word learning, espe-
cially for words with more opaque meanings such as verbs.
We present a computational word learning model which re-
produces such syntactic bootstrapping phenomena after expo-
sure to a naturalistic word learning dataset, even when under
substantial memory constraints. The model demonstrates how
experimental syntactic bootstrapping effects constitute rational
behavior given the nature of natural language input. The model
unifies computational accounts of word learning and syntactic
bootstrapping effects observed in the laboratory, and offers a
path forward for demonstrating the broad power of the syntax–
semantics link in language acquisition.

Keywords: syntactic bootstrapping; word learning; computa-
tional models

Children face multiple challenges of induction when ac-
quiring their first language. They must work out the most
fundamental features of language: that words exist, and that
they can be used to refer to entities and relations out in the
world. At a higher level, they must work out what words ac-
tually mean, and how those words can productively combine
with other words to form phrases and sentences.

A successful research program has identified how children
as young as 13 months can learn the meanings of a particular
class of words — concrete nouns — from noisy observations
of adult language use (Smith and Yu, 2008; Trueswell et al.,
2013). While nouns often pick out concrete referents which
are easily identifiable by a listener, other classes of words
pose more substantial learning problems. Verbs, for exam-
ple, often have no concrete reference in the perceptual world
which the child directly observes. Certain verb meanings may
also be under-determined by the perceptual facts: verb pairs
such as chase and flee or hit and kick often pick out the same
events, though they have vastly different meanings (Gleitman
et al., 2005).

These features make learning verb meanings a challenge
for both children and adults. The productive vocabularies
of young children are heavily skewed toward frequent nouns
with concrete referents (Fenson et al., 1994). Adult subjects
in laboratory language learning experiments also routinely
struggle to identify verb meanings from observations of their
use (Gillette et al., 1999). But children somehow climb over
these learning barriers to become adults who can give and

take or hit and kick. We must account, then, for how that
learning goes through. First, because verbs make reference
to abstract events and relations between entities, we must ac-
count for the representations of such events and relations in
the mind of the child. In other words, we must account for
the target representations of word learning. Second, we must
explain what information sources children exploit in order to
learn which words pick out which events and relations. Be-
cause perceptual information under-determines the solution
to this learning problem, there must be other sources of infor-
mation in the learner’s experience which help determine the
meanings of these words.

This paper addresses the theory of syntactic bootstrapping,
which claims that children exploit systematic relations be-
tween the syntactic structures in which verbs are used and
their semantics in order to learn about the meanings of novel
words (Landau and Gleitman, 1985; Fisher et al., 2010). Af-
ter reviewing corpus and experimental evidence regarding the
syntax–semantics link, we formalize syntactic bootstrapping
in a probabilistic computational model, proceeding from min-
imal assumptions about the structure of the lexicon to a model
which replicates the qualitative behavior of children in syn-
tactic bootstrapping experiments. We show how the knowl-
edge assumed by this model can be learned from scratch on
naturalistic data, as it constructs both a concrete lexicon and
abstract beliefs about the correspondence between verb form
and meaning.

Syntactic bootstrapping
On the syntactic bootstrapping account, children analyze the
syntactic structures in which verbs appear in order to predict
aspects of their meaning not well determined by the percep-
tual context. At a high level, this theory is a claim about the
relation between two representational spaces in the mind of
the learner: the space of meanings M and the space of syn-
tactic representations S. As such, these theories must make
assumptions about the structure of these spaces. As we will
see, many theories regarding the syntax–semantics link pre-
suppose the existence of core meaning predicates such as
CAUSE and BECOME (Levin and Rappaport Hovav, 2011;
Pinker, 1989). While such predicates have been motivated
by theoretical work elsewhere in cognitive development (see
e.g. Hespos and Spelke, 2004; Muentener and Carey, 2010),
the continued success of the syntactic bootstrapping paradigm
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Figure 1: From Kline et al. (2017), fig. 2. Scene pairs contrast
minimally in the presence or absence of a causation event. In
the “causal” scene, the puppet moves to contact the toy, which
immediately activates; in the “noncausal” scene, the puppet
moves but does not contact the toy, and the toy only activates
after a delay.
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Figure 2: From Kline et al. (2017). Children point to the
“causal” scene when given a positive sentence with a novel
transitive verb (can you find where she wugged the round
thing?), and to the “noncausal” scene for a negative sentence
with a novel transitive verb (... didn’t wug the round thing?).

provides orthogonal positive evidence for the reality of these
structures in the mind of the child.

Corpus studies have shown how aspects of verb mean-
ing both coarse-grained (causation and movement) and fine-
grained (movement of liquids vs. movement of solids) can
be predicted from the constructions in which verbs appear
(Naigles and Hoff-Ginsberg, 1995; Levin, 1993). Decades of
experimental evidence also support the idea that children ex-
ploit such structural relationships between a verb’s syntactic
behavior and its meaning. One of the most productive lines of
research has focused on the correspondence between a verb’s
appearance in transitive syntactic constructions (the X Ys the
Z) and a semantic predicate CAUSE (Naigles, 1990). Some
of the most recent experimental evidence argues for such a
fine-grained link between transitive syntax and physical cau-
sation (Kline et al., 2017). Kline et al. presented children
with pairs of scenes, each involving a moving puppet and a
toy which activated or lit up. An example scene pair is shown
in Figure 1. While each scene pair involved similar motion
events, a “causal” scene in each pair also exhibited an event
of external causation, using cues known to be salient to young
children (spatial and temporal continuity between an agent’s
action and an object’s response) (Michotte, 1963; Muentener
and Carey, 2010). In two-alternative forced choice test tri-
als, children were given a sentence containing a novel verb
and asked to pick the scene it referred to: either in a positive

frame (Can you find where she wugged the round thing?) or
a negative frame (... didn’t wug the round thing?). Figure 2
shows the main effect in the experiment of Kline et al. (2017).
Across several tested minimal-contrast scene pairs, children
preferred to point at the causal scene when queried with the
positive frame and at the non-causal scene when queried with
the negative frame.

The findings of Kline et al. show that 3- and 4-year-olds
latch onto a reliable relationship in English between transitive
syntax and the semantic predicate CAUSE documented else-
where in the cognitive development literature. This is a case
of syntactic bootstrapping: children exploit a word’s syntactic
behavior in order to make guesses about its meaning.

As a broad theory regarding the construction of the lexi-
con, though, syntactic bootstrapping needs to eventually do
quite a bit more work. Taken to its extreme, it needs to ex-
plain how each of the semantic contrasts present in a mean-
ing space M can be explained by corresponding contrasts in
a syntactic representation S. In the absence of other good ac-
counts of verb meaning, the contrast between chase and flee
and the contrast between hit and kick, for example, must be
predictable from contrasts in syntactic behavior. To test the
full power of syntactic bootstrapping as a theory of the con-
struction of the lexicon, then, we must further formalize our
assumptions about the structure of the syntactic space S and
the meaning space M, and provide clear proof of the learn-
ability of relations between the two spaces.

The remainder of this paper takes some first steps in that di-
rection. We first formalize syntactic bootstrapping in a prob-
abilistic model, showing how we can proceed from minimal
assumptions about the structure of the lexicon to a model
which replicates the qualitative behavior of children in syn-
tactic bootstrapping experiments. We next show how this
probabilistic model can be learned from scratch on natural-
istic data, constructing both a concrete lexicon and abstract
beliefs about the syntax–semantics link through only unsu-
pervised experience of ambiguous language use in grounded
contexts.

Related work
Most past computational models of word learning have fo-
cused on the acquisition of words with concrete referents, ex-
plaining the learning dynamics and characteristic patterns of
success and failure observed in adults and children (Frank
et al., 2009; Trueswell et al., 2013; Stevens et al., 2017). Our
model will replicate the important structural features of these
models — explicit representations of uncertainty over pos-
sible lexica, stored under strong resource limitations — and
further extend to the more challenging task of acquiring verb
meanings, which have either ambiguous reference or no con-
crete reference at all in the world of the learner.

While other computational models have been used to repli-
cate verb learning and syntactic bootstrapping phenomena
(Abend et al., 2017; Barak et al., 2014; Alishahi and Steven-
son, 2008), they have been deployed only in simplified learn-
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Syntactic types: {S,N}
Semantic predicates: {BECOME(·, ·),CAUSE(·, ·),CONTACT(·, ·),MOVE(·), . . .}

Form w Syntax sw Meaning mw Weight θw

push S\N/N λy.λx.CAUSE(x,MOVE(y)) 0.3
activate S\N/N λy.λx.CAUSE(x,BECOME(y,ACTIVE)) 0.5
touch S\N/N λy.λx.CONTACT(x,y) 0.5

go S\N λx.MOVE(x) 0.4
sneeze S\N λx.SNEEZE(x) 0.4

the N/N λx.ι(x) 1.1
girl N λx.FEMALE(x) 0.6
toy N λx.TOY(x) 0.8
toy N λx.FEMALE(x) 0.3

Lexicon Λ

X/Y : m1 Y : m2
>

X : m1(m2)

Forward application

Y : m2 X\Y : m1
<

X : m1(m2)

Backward application
Ruleset
R

the girl pushes the toy

sw = N/N N S\N/N N/N N
: mw = ι : λx.FEMALE(x) : λy.λx.F(x,y) : ι : λx.TOY(x)

> >

N : ι(λx.FEMALE(x)) N : ι(λx.TOY(x))
>

S\N : λx.F(x, ι(λx.TOY(x)))
<

S : F(ι(λx.FEMALE(x)), ι(λx.TOY(x)))

Analysis AU

L

Figure 3: A CCG combines a learned lexicon Λ with a fixed
ruleset R in order to yield analyses of input utterances. The
bottom of the figure shows an analysis of the utterance the
girl pushes the toy (read from top to bottom), which jointly
yields syntactic and semantic representations of the sentence.

ing situations, where a learner is shown utterances explicitly
paired with their ground-truth meaning representations (or
a set of possible meaning representations). In contrast, our
model learns in a distantly supervised setting: it is only ex-
plicitly told that the utterances have meanings which are true
in the current scene, and must work out word-level meanings
and utterance-level meanings on its own. Because no word-
level meanings are ever explicitly presented to the learner, it
must induce word meanings by searching through the infinite
space of possible lambda-calculus meaning representations.
This learning setting is thus qualitatively different than the
direct-supervision setting studied in past bootstrapping work.

We see our model as complementary to those of Sadeghi
and Scheutz (2018) and Gauthier et al. (2018), who show how
more minimal syntactic representations can support specific
types of early syntactic bootstrapping. Our model integrates
both a full syntactic formalism and a general ability to track
probabilistic links between syntactic and semantic represen-
tations. As such, the model is able to scale to the more com-
plex syntactic bootstrapping phenomena studied in this pa-
per, using syntactic features to resolve finer-grained features
of verb meaning.

A formal model

We visualize the major details of our model in Figure 3. A
learner constructs a lexicon Λ, associating particular word-

w

sw mw Γ

|U |

T LU

w Wordform
sw Syntactic type of

wordform w
mw Meaning of word-

form w
Γ Scene/context
U Utterance (word se-

quence)
T Derivation (syntactic

analysis)
L Logical form (se-

mantic analysis)

Figure 4: A generative model of an utterance U situated in a
scene Γ, drawing on lexical items (w,sw,mw) ∈ Λ.

forms w with syntactic types sw and meanings mw.1 The
syntactic types of words are represented using the formal-
ism of combinatory categorial grammar (CCG; Steedman and
Baldridge, 2006). Word meanings are represented as expres-
sions in a typed lambda calculus, built from core semantic
predicates ranging from concrete properties (e.g. FEMALE)
to abstract relations (e.g. CAUSE). These representations
draw on the lexical conceptual structures often discussed in
literature on the syntax–semantics link (see e.g. Levin and
Rappaport Hovav, 2011).

The contents of this lexicon are combined with parsing
rules in order to produce joint syntactic and semantic repre-
sentations of full utterances. Figure 3 shows how entries from
the lexicon Λ combine with a ruleset R to analyze a sentence.

The grammar’s syntactic types describe how words com-
bine with their arguments. These syntactic types may be of
either a primitive type (e.g. N) or of functional type (e.g.
S/N). Functional types combine with syntactic arguments to
their left or right, eventually yielding a phrase of a particular
primitive type.

The CCG rule set R, shown in the middle of Figure 3, spec-
ifies these combination rules.2 Figure 3 (lower section) shows
how the two rules in our ruleset are used to analyze the ex-
ample sentence the girl pushes the toy. After first retrieving
lexical entries for each of the tokens in the sentence (top row),
we iteratively run the application rules, composing functional
types with primitive types to their left or right. Whenever
such syntactic composition occurs, we likewise unify the cor-
responding semantic expressions by function application.

Each CCG analysis yields a tree structure (bottom of Fig-
ure 3) whose root contains the syntactic type and semantic
analysis of the entire input string. We call this final semantic
representation the logical form of a sentence, and the partic-
ular tree structure of rule applications the derivation (analo-
gous to a syntactic parse). We let A = 〈L,T 〉 denote the full
analysis of an utterance, where L is the logical form and T is
the derivation.

1This walkthrough involves a minimal amount of equations, fo-
cusing instead on applications to concrete word learning problems.
Model details are provided in the appendix of this paper.

2See Steedman and Baldridge (2006) for a full description.
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Scene Events

Γ1 CAUSE(girl,BECOME(toy,active))
CONTACT(girl, toy); MOVE(girl)

Γ2 BECOME(toy,active); MOVE(girl)

Table 1: Two sample scene representations from our model
of the two-alternative forced choice test trial of Kline et al.
(2017).

We next design a minimal probabilistic model on top of
this CCG formalism which can realize, among other things,
the behavior of the children in the experiment of Kline et al.
(2017). Our model adapts past work on probabilistic CCGs
(see e.g. Zettlemoyer and Collins, 2007; Artzi and Zettle-
moyer, 2013), adding a critical inductive bias linking syn-
tactic and semantic representations within the lexicon. We
illustrate the model as a plate diagram in Figure 4, and walk
through its behavior in the following paragraphs.

We will walk through this model in the context of the Kline
et al. (2017) paradigm, showing how it can realize the sub-
jects’ observed behavior. For the rest of this section, we as-
sume the provisional lexicon shown in the top of Figure 3, as-
sociating particular words with candidate syntactic types and
meanings. Later, we will remove this assumption and show
how such a lexicon can be learned from experience alone.

Consider an utterance U = the girl pushes the toy given in
a grounded context Γ.3 We can combine the CCG framework
with our weighted lexicon to compute the probability of an
arbitrary analysis:

P(A = 〈L,T 〉 | Λ,Γ) ∝ P(Γ)P(L | Γ)exp( ∑
(w,sw,mw)∈T

θw) (1)

where P(Γ) is a uniform prior over potential contexts, and
P(L | Γ) is one only when a logical form L is true of the con-
text Γ. The final term in the above equation does the ma-
jority of the work, combining the weights θw of lexical en-
tries involved in the derivation T . The lexicon in Figure 3
licenses multiple analyses of the sentence the girl pushes the
toy, since it contains two candidate entries for the word toy.
Equation (1) can be used to rank the resulting analyses —
one of which is shown in the bottom section of Figure 3 —
according to the constituent lexical weights θw.

In the experiment of Kline et al. (2017), a child hears the ut-
terance U = the girl gorps the toy and is asked to pick which
of two scenes Γ1,Γ2 the utterance refers to. We represent the
scenes as lists of propositions like those in Table 1.

Unlike our previous example, this utterance contains a
novel word which has no corresponding entries in the lexi-
con. We must induce candidate syntactic types sw and mean-
ings mw using the remainder of the probabilistic model.

We begin by enumerating the possible syntactic types sw of
the novel word. Given the contents of the provisional lexicon

3Contexts will become relevant later in the paper. See Table 1
for an example context representation.

Λ (shown in the top left of Figure 3) and our parsing ruleset,
there is just one syntactic analysis of gorps which yields a
valid parse. This parse has the same structure as that shown
in bottom section of Figure 3. The parse assigns the word the
syntactic type S\N/N: the syntactic type of a transitive verb.4

We next make predictions about the candidate meanings of
gorps. This prediction process is visualized in Figure 5. We
begin by sampling meanings mw conditioned on the possible
syntactic representations sw. This is the point at which syn-
tactic bootstrapping plays a critical role: the model calculates
a distribution P(mw | sw = S\N/N), which we expect should
favor meanings involving the predicate CAUSE:

P(predicatei | sw) ∝ C+ ∑
(si,mi,θi)∈Λ

:sw=si∧predicate∈mi

θi (2)

P(mw | sw) ∝ ∏
predicatei∈mw

P(predicatei | sw) (3)

where C is a smoothing constant, fit as a hyperparameter.
Equation (2) aggregates the total weight mass in the lexicon
allocated to any particular predicate for lexical entries with
syntactic type sw. The product term of Equation (3) combines
these individual predicate probabilities in order to score pos-
sible complete meanings mw of the word gorps. The left panel
of Figure 5 shows a ranked list of meanings computed by this
equation under our provisional lexicon.

Each candidate meaning and syntactic representation of the
word gorps, when combined with the rest of the words in the
sentence, yields a full syntactic derivation T and logical form
L. These utterance-level meaning representations are scored
based on the scene Γ. Here we incorporate the critical con-
straint that logical forms L must consist of messages which
are true of the scene Γ. This effectively filters the candidate
complete meanings L, yielding a renormalized distribution
over full sentence meanings as shown in the middle panel of
Figure 5.

We can combine the above distributions in order to per-
form the critical inverse inference P(Γ |U,Λ): which scene
does the utterance the girl gorps the toy refer to? This dis-
tribution is computed via Bayes’ rule, yielding the posterior
distribution shown in the right panel of Figure 5. The positive
sentence containing the novel word gorps is predicted to refer
to the scene with a salient causation event. By a similar logic
as shown in this walkthrough, the negative sentence the girl
doesn’t gorp the toy is taken to refer to the scene missing the
salient causation event.

This section has demonstrated how the probabilistic model
sketched in Figures 3 and 4 reproduces syntactic bootstrap-
ping behavior, using the transitive syntax of novel words
to predict meanings containing the semantic predicate of
CAUSE. The model integrates the CCG parsing formalism
with a statistical mechanism for tracking the relations be-

4In cases where there are multiple syntactic types for a novel
word, they are scored according to a distribution P(sw | Λ), given in
Equation (9).
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Word meaning mw Mass

λy.λx.BECOME(x,y) 0.0091
λy.λx.CONTACT(x,y) 0.0091
λy.λx.CAUSE(x,MOVE(y)) 0.0079
. . .

Meaning given
transitive syntax:

P(mw | sw = S\N/N)

Logical form L Mass

CONTACT(girl, toy) 0.869
CAUSE(girl,BECOME(toy,active)) 0.131

Full sentence meanings P(L | mw)

gorps

doesn’t gorp
0

0.5

1

P
(Γ

1
|U

,Λ
)

2AFC choice P(Γ | L)

Figure 5: Computation of the meaning of a novel word gorps in the sentence the girl gorps the toy proceeds in three steps:
word meanings are enumerated according to a distribution P(mw | sw) (Equation (3)), full sentence meanings L are produced
via CCG parsing, and the candidate scenes Γ1, Γ2 are scored according to which sentence meanings are true of which scene.

tween syntactic structures and their semantic correlates, help-
ing the learner to make predictions about the meanings of
novel words.

Learning

The previous section assumed that the learner already pos-
sessed a knowledge state as given in Figure 3, where word-
forms like girl and push already have correct meaning repre-
sentations. In this section, we show how such a lexicon can
be acquired across multiple instances of ambiguous language
use in context, in a manner that requires minimal long-term
memory capacity and remains robust to noise in the input.

We expose our model to a sequence of observations O =
(〈Ui,Γi〉) of utterances Ui grounded in particular scenes Γi.
We proceed by observing each data point Oi in sequence and
updating a lexicon Λ, inducing novel lexical entries as nec-
essary and updating weights θw in the lexicon. The learner
never directly observes the mapping between words and their
referents, or between sentences and their meanings. The task
of the learner is to derive word meanings, and methods for
composing words, such that each utterance Ui is true in its
context Γi.

We also constrain our word learner to encode only a lim-
ited number of lexical entries per word at all times. We label
this limit `, and evaluate its influence as a free parameter in
the following experiments. Concretely, after each observa-
tion Oi, we retain only the ` highest-weight lexical entries per
wordform.

Let Λi be a learner’s lexicon representation before observ-
ing the example Oi. Suppose that the utterance Ui is observed
in a context Γi which contains a novel word w = gorps: the
girl gorps the toy. The machinery already presented in the
previous section can be used to induce candidate novel mean-
ings for the word gorps. In order to support incremental
learning, we include an additional weight update step after
each utterance is observed. Given the utterance Ui, we up-
date the weights of each lexicon entry in order to increase
the probability of observing the utterance under the model
given in Figure 4. Further details on the learning algorithm
are given in the appendix.

Entity Properties

s AGENT,FEMALE
r AGENT
t TOY

Entities
MOVE(r)
CONTACT(s, t)
CAUSE(s,BECOME(t,

ACTIVE))

Events

“the torp pilks
the norp”

Utterance

Figure 6: An example observation. Utterances refer to objects
(the norp) or events (the torp pilks the norp).

Figure 7: Online accuracy in predicting sentence meanings
for word learning models with different numbers of allowed
stored meanings `. Shaded regions represent 95% CI.

Experiments
We deploy the above learning model on a synthetic dataset
in which short utterances pick out objects, events, and rela-
tions in a simulated environment. This environment is sim-
ilar to those used in artificial intelligence research on visual
question answering (see e.g. Johnson et al., 2017), but con-
tains more complex utterances which make reference to ab-
stract events and relations (such as causation, state change,
and movement). Figure 6 shows an example scene–utterance
pair drawn from this dataset.

We generate observations Oi by first sampling a context Γi.
Each context contains a random number of entities (agents
and objects), and a random number of events relating those
entities, structured as propositions like those shown in Ta-
ble 1. Contexts always contain multiple simultaneous events,
such that the learner is only ever exposed to ambiguous and
indirect observations of sentence meaning.

Each entity and event is assigned a fixed random word-
form throughout the experiment, and utterances are gen-
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erated by combining the wordforms for the involved enti-
ties and events according to pre-designed templates. For
example, if we sample a scene which contains an event
CAUSE(girl,MOVE(toy)), we might generate an utterance
the torp pilks the norp, where torp refers to female agents,
norp refers to toys, and the whole sentence must pick out the
complete event structure. We also randomly generate nega-
tive utterances, where verbs are modified by words to their
immediate left who function to negate the overall sentence
meaning. For example, the torp doesn’t pilks the norp has the
meaning ¬CAUSE(girl,MOVE(toy)).5

The task of the learner is to infer the meanings of each of
these words by observation of random scenes Oi = 〈Ui,Γi〉.
While we have access to the ground-truth correspondence be-
tween sentences and their full logical forms during scene gen-
eration, this mapping is not provided to the learner.

We evaluate the learner’s lexicon acquisition by two met-
rics: 1) its accuracy in predicting the ground-truth semantic
representations of test sentences, and 2) its accuracy in the
syntactic bootstrapping two-alternative forced choice task of
Kline et al. (2017). Figure 7 shows the model’s performance
on the first across learning time, as the model is incrementally
exposed to more examples Oi. Both graphs contrast models
with different settings of the hyperparameter `, which con-
trols the maximum number of entries that can be stored across
observations for any wordform in the lexicon. For all settings
of ` > 1, the model reaches high performance within 100 ex-
amples. All models reach perfect performance on the second
syntactic bootstrapping 2AFC task after just a few examples:
the correct acquisition of just one or two transitive verbs is
enough to support the induction of a productive belief about
the link between verb syntax and semantics.

The results in Figure 7 demonstrate that even highly
resource-constrained Bayesian learners can acquire an accu-
rate lexicon in a data-efficient manner. These same learners
quickly derive a syntactic bootstrapping capacity from their
own lexicons, supporting more efficient learning in the future.

Conclusion
This paper has presented a computational word learning
model which actively tracks the correspondences between the
syntactic and semantic behavior of words. We demonstrated
how this framework can capture experimentally observed
syntactic bootstrapping phenomena, and that such phenom-
ena can be explained as the rational behavior of a cross-
situational learner exposed to a corpus of naturalistic data.
Critically, both word learning (of nouns and verbs) and also
the acquisition of the high-level syntactic bootstrapping be-
havior still go through given substantial long-term memory
constraints, in which models store just a few candidate inter-
pretations per wordform in their language.

As a computational model of acquisition, this framework

5The training corpus is generated from a collection of 3 unique
referents and 5 unique event types, each of which has one fixed re-
ferring expression. This yields a total of 51 unique utterances.

makes predictions about how people should interpret and gen-
eralize novel words. Our framework allows us to make rigor-
ous and explicit statements about the structure of the mental
representational spaces underlying these generalizations. In
ongoing work, we are using the same model class presented
in this paper to detect candidate links between word syntax
and word semantics which a rational learner can (and should)
exploit.
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Model details
This final section provides mathematical details on the model for
completeness.

Reading from Figure 4, the probability of a full utterance is:

P(U | Γ,Λ) ∝ P(Γ)∑
L,T

P(T | Λ)P(U | T )P(L | T,Γ,Λ) (4)

We assume a uniform prior over scenes P(Γ), and let P(U | T ) be
1 exactly when the span of T is equivalent to U , and zero otherwise.
Lastly, we define the probability of a logical form L in terms of the
derivation T and context Γ as follows:

P(L | T,Γ,Λ) = P(L | T,Λ)P(L | Γ) (5)
P(L | T,Λ) ∝ 1{L is determined by T,Λ} (6)

P(L | Γ) ∝ 1{L is true in Γ} (7)

Novel word induction Given a novel word w, we resort to
the full Bayesian model to make predictions about its syntactic type
sw and meaning mw.

P(w→ (sw,mw) |U,Γ) ∝

P(sw | w)P(mw | sw)P(U | Γ,Λ∪ (w,sw,mw)) (8)

The only term not yet defined is the distribution over syntactic types
P(sw | w). This distribution is computed by simple inspection of
the lexicon. The probability mass assigned to a particular syntactic
category s is proportional to the total weight assigned to entries in Λ

with category s:

P(sw | Λ) ∝ C+ ∑
(w,sw,mw,θw)∈Λ

θw (9)

where C is a smoothing constant.
As shown in the earlier model walkthrough, Equation (8) is used

to initialize the weights for the lexical entries of novel words.

Weight updates Let g be the highest probability correct anal-
ysis of a sentence 〈L,T 〉, and let B be the set of the k most probable
incorrect analyses.6 For each lexical entry xi = (wi,si,mi,θi) with
weight θi, we perform the following perceptron update:

θi += η(1{xi ∈ g}− 1
|B| ∑b∈B

1{xi ∈ b}) (10)

where η denotes a learning rate, and xi ∈ A is true iff the lexical item
xi participates in the analysis A. Note that this update will only affect
lexical entries with wordforms used in the utterance Ui.

6Here a “correct” analysis is one which has nonzero probability
under Equation (1). Note that, consistent with the cross-situational
paradigm, only analyses with meanings that are true of Γi have
nonzero probability.
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