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Genome-wide association study identifies 74 loci associated 
with educational attainment

A full list of authors and affiliations appears at the end of the article.

Summary

Educational attainment (EA) is strongly influenced by social and other environmental factors, but 

genetic factors are also estimated to account for at least 20% of the variation across individuals1. 

We report the results of a genome-wide association study (GWAS) for EA that extends our earlier 

discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an 

independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-

wide significant loci associated with number of years of schooling completed. Single-nucleotide 

polymorphisms (SNPs) associated with educational attainment are disproportionately found in 

genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially 

expressed in neural tissue, especially during the prenatal period, and enriched for biological 

pathways involved in neural development. Our findings demonstrate that, even for a behavioral 

phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable 

associated genetic variants that suggest biologically relevant pathways. Because EA is measured in 

large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to 

characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric 

disease.

We study educational attainment (EA), which is measured in all main analyses as the 

number of years of schooling completed (EduYears, N = 293,723, mean = 14.33, SD = 3.61; 

Supplementary Information sections 1.1-1.2). All genome-wide association studies (GWAS) 

were performed at the cohort level in samples restricted to individuals of European descent 
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whose EA was assessed at or above age 30. A uniform set of quality-control (QC) 

procedures was applied to the cohort-level summary statistics. In our GWAS meta-analysis 

of ∼9.3M SNPs from the 1000 Genomes Project, we used sample-size weighting and 

applied a single round of genomic control at the cohort level.

Our meta-analysis identified 74 approximately independent genome-wide significant loci. 

For each locus, we define the “lead SNP” as the SNP in the genomic region that has the 

smallest P-value (Supplementary Information section 1.6.1). Fig. 1 shows a Manhattan plot 

with the lead SNPs highlighted. This includes the three SNPs that reached genome-wide 

significance in the discovery stage of our previous GWAS meta-analysis of EA1. The 

quantile-quantile (Q-Q) plot of the meta-analysis (Extended Data Fig. 1) exhibits inflation 

(λGC = 1.28), as expected under polygenicity3.

Extended Data Fig. 2 shows the estimated effect sizes of the lead SNPs. The estimates range 

from 0.014 to 0.048 standard deviations per allele (2.7 to 9.0 weeks of schooling), with 

incremental R2 in the range 0.01% to 0.035%.

To quantify the amount of population stratification in the GWAS estimates that remains even 

after the stringent controls used by the cohorts (Supplementary Information section 1.4), we 

used LD Score regression4. The regression results indicate that ∼8% of the observed 

inflation in the mean χ2 is due to bias rather than polygenic signal (Extended Data Fig. 3a), 

suggesting that stratification effects are small in magnitude. We also found evidence for 

polygenic association signal in several within-family analyses, although these are not 

powered for individual SNP association testing (Supplementary Information section 2 and 

Extended Data Fig. 3b).

To further test the robustness of our findings, we examined the within-sample and out-of-

sample replicability of SNPs reaching genome-wide significance (Supplementary 

Information sections 1.7-1.8). We found that SNPs identified in the previous EA meta-

analysis replicated in the new cohorts included here, and conversely, that SNPs reaching 

genome-wide significance in the new cohorts replicated in the old cohorts. For the out-of-

sample replication analyses of our 74 lead SNPs, we used the interim release of the U.K. 

Biobank 5 (UKB) (N = 111,349). As shown in Extended Data Fig. 4, 72 out of the 74 lead 

SNPs have a consistent sign (P = 1.47×10−19), 52 are significant at the 5% level (P = 

2.68×10−50), and 7 reach genome-wide significance in the U.K. Biobank dataset (P = 

1.41×10−42). For comparison, the corresponding expected numbers, assuming each SNP's 

true effect size is its estimated effect adjusted for the winner's curse, are 71.4, 40.3, and 0.6. 

(Supplementary Information section 1.8.2). We also find out-of-sample replicability of our 

overall GWAS results: the genetic correlation between EduYears in our meta-analysis 

sample and in the UKB data is 0.95 (s.e. = 0.021; Supplementary Table 1.14).

It is known that EA, cognitive performance, and many neuropsychiatric phenotypes are 

phenotypically correlated, and several studies of twins find that the phenotypic correlations 

partly reflect genetic overlap6–8 (Supplementary Information section 3.3.4). Here, we 

investigate genetic correlation using our GWAS results for EduYears and published GWAS 

results for 14 other phenotypes, using bivariate Linkage-Disequilibrium (LD) Score 
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regression9 (Supplementary Information section 3). First, we estimated genetic correlations 

with EduYears. As shown in Fig. 2, based on overall summary statistics for associated 

variants, we find genetic covariance between increased EA and increased cognitive 

performance (P = 9.9×10-50), increased intracranial volume (P = 1.2×10-6), increased risk of 

bipolar disorder (P = 7×10-13), decreased risk of Alzheimer's (P = 4×10-4), and lower 

neuroticism (P = 2.8×10-8). We also found positive, statistically significant, but very small, 

genetic correlations with height (P = 5.2×10-15) and risk of schizophrenia (P = 3.2×10-4).

Second, we examined whether our 74 lead SNPs are jointly associated with each phenotype 

(Extended Data Fig. 5 and Supplementary Information section 3.3.1). We reject the null 

hypothesis of no enrichment at P < 0.05 for 10 of the 14 phenotypes (all the exceptions are 

subcortical brain structures).

Third, for each phenotype, we tested (in the published GWAS results) each of our 74 lead 

SNPs or proxy for association at a significance threshold of 0.05/74. We found a total of 25 

SNPs meeting this threshold for any of these phenotypes, but only one reaching genome-

wide significance. While these results provide suggestive evidence that some of these SNPs 

may be associated with other phenotypes, further testing of these associations in independent 

cohorts is required (Supplementary Tables 3.2-3.4, Extended Data Fig. 6).

To consider potential biological pathways, we first tested whether SNPs in particular regions 

of the genome are implicated by our GWAS results. Unlike what has been found for other 

phenotypes, SNPs in regions that are DNase I hypersensitive in the fetal brain are more 

likely to be associated with EduYears by a factor of ∼5 (95% confidence interval 2.89–7.07; 

Extended Data Fig. 7). Moreover, the 15% of SNPs residing in regions associated with 

histones marked in the central nervous system (CNS) explain 44% of the heritable variation 

(Extended Data Fig. 8a and Supplementary Table 4.4.2). This enrichment factor of ∼3 for 

CNS (P = 2.48×10−16) is greater than that of any of the other nine tissue categories in this 

analysis.

Given that our findings disproportionately implicate SNPs in regions regulating brain-

specific gene expression, we examined whether genes located near EduYears-associated 

SNPs show elevated expression in neural tissue. We tested this hypothesis using data on 

mRNA transcript levels in the 37 adult tissues assayed by the Genotype-Tissue Expression 

Project (GTEx)10. Remarkably, the 13 GTEx tissues that are components of the CNS—and 

only those 13 tissues—show significantly elevated expression levels of genes near 

EduYears-associated SNPs (FDR < 0.05; Extended Data Fig. 8b and Supplementary Table 

4.5.2).

To investigate possible functions of the candidate genes from the GWAS associated loci, we 

examined the extent of their overlap with groups of genes (“gene sets”) whose products are 

known or predicted to participate in a common biological process11. We found 283 gene sets 

significantly enriched by the candidate genes identified in our GWAS (FDR < 0.05; 

Supplementary Table 4.5.1). To facilitate interpretation, we used a standard procedure11 to 

group the 283 gene sets into “clusters” defined by degree of gene overlap. The resulting 34 

clusters, shown in Fig. 3, paint a coherent picture, with many clusters corresponding to 
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stages of neural development: the proliferation of neural progenitor cells and their 

specialization (the cluster npBAF complex), the migration of new neurons to the different 

layers of the cortex (forebrain development, abnormal cerebral cortex morphology), the 

projection of axons from neurons to their signaling targets (axonogenesis, signaling by Robo 
receptor), the sprouting of dendrites and their spines (dendrite, dendritic spine organization), 

and neuronal signaling and synaptic plasticity throughout the lifespan (voltage-gated 
calcium channel complex, synapse part, synapse organization).

Many of our results implicate candidate genes and biological pathways that are active during 

distinct stages of prenatal brain development. To directly examine how the expression levels 

of candidate genes identified in our GWAS vary over the course of development, we used 

gene expression data from the BrainSpan Developmental Transcriptome12. As shown in 

Extended Data Fig. 9, these candidate genes exhibit above-baseline expression in the brain 

throughout life but especially higher expression levels in the brain during prenatal 

development (1.36 times higher prenatally than postnatally, P = 6.02×10−8).

A summary overview of some promising candidate genes for follow-up work is provided in 

Table 1.

We constructed polygenic scores13 to assess the joint predictive power afforded by the 

GWAS results (Supplementary Information section 5.2). Across our two holdout samples, 

the mean predictive power of a polygenic score constructed from all measured SNPs is 3.2% 

(P = 1.18×10−39; Supplementary Table 5.2 and Supplementary Information section 5).

Studies of genetic analyses of behavioral phenotypes have been prone to misinterpretation, 

such as characterizing identified associated variants as “genes for education.” Such 

characterization is not correct for many reasons: EA is primarily determined by 

environmental factors, the explanatory power of the individual SNPs is small, the candidate 

genes may not be causal, and the genetic associations with EA are mediated by multiple 

intermediate phenotypes14. To illustrate this last point, we studied mediation of the 

association between the all-SNPs polygenic score and EduYears in two of our cohorts. We 

found that cognitive performance can statistically account for 23-42% of the association (P < 

0.001) and the personality trait “openness to experience” for approximately 7% (P < 0.001; 

Supplementary Information section 6).

It would also be a mistake to infer from our findings that the genetic effects operate 

independently of environmental factors. Indeed, a recent meta-analysis of twin studies found 

that genetic influences on EA are heterogeneous across countries and birth cohorts15. We 

conducted exploratory analyses in the Swedish Twin Registry to illustrate how 

environmental factors may amplify or dampen the impact of genetic influences 

(Supplementary Information section 7). We found that the predictive power of the all-SNPs 

polygenic score is heterogeneous by birth cohort, with smaller explanatory power in younger 

cohorts (Extended Data Fig. 10; see also Supplementary Information section 7.4 for 

discussion of the contrast between these results and findings from a seminal twin study that 

estimated EA heritability by birth cohort16).
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 Methods

All methods are described in the Supplementary Information.

 Extended Data

Extended Data Figure 1. Quantile-quantile plot of the genome-wide association meta-analysis of 
64 EduYears results files
Observed and expected P-values are on a –log10 scale. The grey region depicts the 95% 

confidence interval under the null hypothesis of a uniform P-value distribution. The 

observed λGC is 1.28. (As reported in Supplementary Information section 1.5.4, the 
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unweighted mean λGC is 1.02, the unweighted median is 1.01, and the range across cohorts 

is 0.95–1.15.)

Extended Data Figure 2. The distribution of effect sizes of the 74 lead SNPs
a, SNPs ordered by absolute value of the standardized effect of one more copy of the 

education-increasing allele, with 95% confidence intervals. b, SNPs ordered by R2. Effects 

on EduYears are benchmarked against the top 74 genome-wide significant hits identified in 

the largest GWAS conducted to date of height and body mass index (BMI), and the 48 

associations reported for waist-to-hip ratio adjusted for BMI (WHR). These results are based 

on the GIANT consortium's publicly available results for pooled analyses restricted to 

European-ancestry individuals: https://www.broadinstitute.org/collaboration/giant/

index.php/GIANT_consortium.
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Extended Data Figure 3. Assessing the extent to which population stratification affects the 
estimates from the GWAS
a, LD Score regression plot with the summary statistics from the GWAS. Each point 

represents an LD Score quantile for a chromosome (the x and y coordinates of the point are 

the mean LD Score and the mean χ2 statistic of variants in that quantile). The facts that the 

intercept is close to one and that the χ2 statistics increase linearly with the LD Scores 

suggest that the bulk of the inflation in the χ2 statistics is due to true polygenic signal and 

not to population stratification. b, Estimates and 95% confidence intervals from individual-

level and WF regressions of EduYears on polygenic scores, for scores constructed with sets 

of SNPs meeting different P-value thresholds. In addition to the analyses shown here, we 

conduct a sign concordance test, and we decompose the variance of the polygenic score. 

Overall, these analyses suggest that population stratification is unlikely to be a major 

concern for our 74 lead SNPs. See Supplementary Information section 3 for additional 

details.
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Extended Data Figure 4. Replication of 74 lead SNPs in the UK Biobank data
Estimated effect sizes (in years of schooling) and 95% confidence intervals of the 74 lead 

SNPs in the meta-analysis sample (N = 293,723) and the UK Biobank replication sample (N 
= 111,349). The reference allele is the allele associated with higher values of EduYears in 

the meta-analysis sample. SNPs are in descending order of R2 in the meta-analysis sample. 

Of the 74 lead SNPs, 72 have the anticipated sign in the replication sample, 52 replicate at 

the 0.05 significance level, and 7 replicate at the 5×10−8 significance level.
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Extended Data Figure 5. Q-Q plots for the 74 lead EduYears SNPs (or LD proxies) in published 
GWAS of other phenotypes
SNPs with concordant effects on both phenotypes are pink, and SNPs with discordant effects 

are blue. SNPs outside the gray area pass Bonferroni-corrected significance thresholds that 

correct for the total number of SNPs we tested (P < 0.05/74 = 6.8×10-4) and are labeled with 

their rs numbers. Observed and expected P-values are on a –log10 scale. For the sign 

concordance test: * P < 0.05, ** P < 0.01, and *** P < 0.001.
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Extended Data Figure 6. Regional association plots for four of the ten prioritized SNPs for 
MHBA phenotypes identified using EduYears as a proxy phenotype
a, cognitive performance; b, hippocampus; c, intracranial volume; d, neuroticism. The four 

were selected because very few genome-wide significant SNPs have been previously 

reported for these traits. Data sources and methods are described in Supplementary 

Information section 3. The R2 values are from the hg19 / 1000 Genomes Nov 2014 EUR 

references samples. The figures were created with LocusZoom (http://csg.sph.umich.edu/

locuszoom/). Mb, megabases.
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Extended Data Figure 7. Application of fgwas to EduYears. See Supplementary Information 
section 4.2 for further details
a, The results of single-annotation models. “Enrichment” refers to the factor by which the 

prior odds of association at an LD-defined region must be multiplied if the region bears the 

given annotation; this factor is estimated using an empirical Bayes method applied to all 

SNPs in the GWAS meta-analysis regardless of statistical significance. Annotations were 

derived from ENCODE and a number of other data sources. Plotted are the base-2 

logarithms of the enrichments and their 95% confidence intervals. Multiple instances of the 

same annotation correspond to independent replicates of the same experiment. b, The results 

of combining multiple annotations and applying model selection and cross-validation. 

Although the maximum-likelihood estimates are plotted, model selection was performed 

with penalized likelihood. c, Reweighting of GWAS loci. Each point represents an LD-
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defined region of the genome, and shown are the regional posterior probabilities of 

association (PPAs). The x-axis give the PPA calculated from the GWAS summary statistics 

alone, whereas the y-axis gives the PPA upon reweighting on the basis of the annotations in 

b. The orange points represent genomic regions where the PPA is equivalent to the standard 

GWAS significance threshold only upon reweighting.

Extended Data Figure 8. Tissue-level biological annotation
a, The enrichment factor for a given tissue type is the ratio of variance explained by SNPs in 

that group to the overall fraction of SNPs in that group. To benchmark the estimates for 

EduYears, we compare the enrichment factors to those obtained when we use the largest 

GWAS conducted to date on body mass index, height, and waist-to-hip ratio adjusted for 

BMI. The estimates were produced with the LDSC python software, using the LD Scores 

and functional annotations introduced in Finucane et al. (2015) and the HapMap3 SNPs with 

MAF > 0.05. Each of the 10 enrichment calculations for a particular cell type is performed 

independently, while each controlling for the 52 functional annotation categories in the full 

baseline model. The error bars show the 95% confidence intervals. b, We took 

measurements of gene expression by the Genotype-Tissue Expression (GTEx) Consortium 

and determined whether the genes overlapping EduYears-associated loci are significantly 

overexpressed (relative to genes in random sets of loci matched by gene density) in each of 
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37 tissue types. These types are grouped in the panel by organ. The colored bars 

corresponding to tissues where there is significant overexpression. The y-axis is the 

significance on a –log10 scale.

Extended Data Figure 9. Gene-level biological annotation
a, The DEPICT-prioritized genes for EduYears measured in the BrainSpan Developmental 

Transcriptome data (red curve) are more strongly expressed in the brain prenatally rather 

than postnatally. The DEPICT-prioritized genes exhibit similar gene-expression levels across 

different brain regions (gray lines). Analyses were based on log2-transformed RNA-Seq 

data. Error bars represent 95% confidence intervals. b, For each phenotype and disorder, we 

calculated the overlap between the phenotype's DEPICT-prioritized genes and genes 

believed to harbor de novo mutations causing the disorder. The bars correspond to odds 

ratios. EduYears, years of education; BMI, body mass index; WHR, waist-to-hip ratio 

adjusted for BMI. c, DEPICT-prioritized genes in EduYears-associated loci exhibit 

substantial overlap with genes previously reported to harbor sites where mutations increase 

risk of intellectual disability and autism spectrum disorder (Supplementary Table 4.6.1).
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Extended Figure 10. The predictive power of a polygenic score (PGS) varies in Sweden by birth 
cohort
Five-year rolling regressions of years of education on the PGS (left axis in all four panels), 

share of individuals not affected by the comprehensive school reform (a, right axis), and 

average distance to nearest junior high school (b, right axis), nearest high school (c, right 

axis) and nearest college/university (d, right axis). The shaded area displays the 95% 

confidence intervals for the PGS effect.
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Figure 1. Manhattan plot for EduYears associations (N = 293,723)
The x-axis is chromosomal position, and the y-axis is the significance on a –log10 scale. The 

black line shows the genome-wide significance level (5×10-8). The red x's are the 74 

approximately independent genome-wide significant associations (“lead SNPs”). The black 

dots labeled with rs numbers are the 3 Rietveld et al.1 SNPs.
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Figure 2. Genetic correlations between EduYears and other traits
Results from bivariate Linkage-Disequilibrium (LD) Score regressions9: estimates of genetic 

correlation with brain volume, neuropsychiatric, behavioral, and anthropometric phenotypes 

using published GWAS summary statistics. The error bars show the 95% confidence 

intervals.
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Figure 3. Overview of biological annotation
34 clusters of significantly enriched gene sets. Each cluster is named after one of its member 

gene sets. The color represents the P-value of the member set exhibiting the most 

statistically significant enrichment. Overlap between pairs of clusters is represented by an 

edge. Edge width represents the Pearson correlation ρ between the two vectors of gene 

membership scores (ρ < 0.3, no edge; 0.3 ≤ ρ < 0.5, thin edge; 0.5 ≤ ρ < 0.7, intermediate 

edge; ρ ≥ 0.7, thick edge), where each cluster's vector is the vector for the gene set after 

which the cluster is named.
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Table 1
Selected candidate genes implicated by bioinformatics analyses

Fifteen candidate genes implicated most consistently across various analyses. To assemble this list, each gene 

in a DEPICT-defined locus (Supplementary Information section 4.5) was assigned a score equal to the number 

of criteria it satisfies out of ten (see Supplementary Table 4.1 for details). The DEPICT prioritization P-value 

was used as the tiebreaker. “SNP”: the SNP in the gene's locus with the lowest P-value in the EduYears meta-

analysis. “Syndromic”: which, if any, of three neuropsychiatric disorders have been linked to de novo 
mutations in the gene (Supplementary Information section 4.6). “Top-ranking gene sets”: DEPICT 

reconstituted gene sets of which the gene is a top-20 member (Supplementary Table 4.5.1). The three most 

significant gene sets are shown if more than three are available. ID, intellectual disability; ASD, autism 

spectrum disorder; SCZ, schizophrenia.

Gene SNP Syndromic Score Top-ranking gene sets

TBR1 rs4500960 ID, ASD 6 Developmental biology, decreased brain size, abnormal cerebral cortex morphology

MEF2C rs7277187 ID, ASD 5 ErbB signaling pathway, abnormal sternum ossification, regulation of muscle cell 
differentiation

ZSWIM6 rs61160187 – 5 Transcription factor binding, negative regulation of signal transduction, PI3K events in 
ErbB4 signaling

BCL11A rs2457660 ASD 5 Dendritic spine organization, abnormal hippocampal mossy fiber morphology, SWI/
SNF-type complex

CELSR3 rs11712056 SCZ 5 Dendrite morphogenesis, dendrite development, abnormal hippocampal mossy fiber 
morphology

MAPT rs192818565 ID 5 Dendrite morphogenesis, abnormal hippocampal mossy fiber morphology, abnormal 
axon guidance

SBNO1 rs7306755 SCZ 5 Protein serine/threonine phosphatase complex

NBAS rs12987662 – 5 –

NBEA rs9544418 SCZ 4 Developmental biology, signaling by Robo receptor, dendritic shaft

SMARCA2 rs1871109 ID 4 –

MAP4 rs11712056 ASD 4 Developmental biology, signaling by Robo receptor, SWI-SNF-type complex

LINC00461 rs10061788 – 4 Decreased brain size, abnormal cerebral cortex morphology, abnormal hippocampal 
mossy fiber morphology

POU3F2 rs9320913 – 4 Dendrite morphogenesis, developmental biology, decreased brain size

RAD54L2 rs11712056 SCZ 4 Decreased brain size, SWI/SNF-type complex, nBAF complex

PLK2 rs2964197 – 4 Negative regulation of signal transduction, PI3K events in ErbB4 signaling
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