Title

Generalizing the KYP Lemma to Multiple Frequency Intervals

Permalink

https://escholarship.org/uc/item/15w287ig

Journal

SIAM Journal on Control and Optimization, 52(6)
ISSN
0363-0129

Authors

Pipeleers, Goele Iwasaki, Tetsuya
Hara, Shinji

Publication Date

2014
DOI
10.1137/130938451

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0

Peer reviewed

GENERALIZING THE KYP LEMMA TO MULTIPLE FREQUENCY INTERVALS

GOELE PIPELEERS *, TETSUYA IWASAKI ${ }^{\dagger}$, AND SHINJI HARA \ddagger

Abstract

A recent generalization of the Kalman-Yakubovich-Popov (KYP) lemma establishes the equivalence between a semi-infinite inequality on a segment of a circle or straight line in the complex plane and a linear matrix inequality. In this paper we further generalize the KYP lemma to particular curves in the complex plane, described by a polynomial equality and inequality that satisfy certain conditions. The considered set of curves is shown to include the union of segments of a circle or line as a special case.

Key words. Kalman-Yakubovich-Popov (KYP) lemma

AMS subject classifications. 90C22, 93C05

1. Introduction. The Kalman-Yakubovich-Popov (KYP) lemma [11, 16, 20] is a key result in modern system and control theory. The classical version of the lemma states the equivalence between a semi-infinite inequality on an entire circle or straight line in the complex plane and a finite-dimensional linear matrix inequality (LMI). Recently, the KYP lemma has been generalized to allow for semi-infinite inequalities on only a segment of a circle or straight line [9, 18]. Such segments can be described by quadratic equality and inequality:

$$
\boldsymbol{\Lambda}(\Phi, \Psi)=\left\{\lambda \in \mathbb{C}:\left[\begin{array}{l}
\lambda \\
1
\end{array}\right]^{*} \Phi\left[\begin{array}{c}
\lambda \\
1
\end{array}\right]=0,\left[\begin{array}{l}
\lambda \\
1
\end{array}\right]^{*} \Psi\left[\begin{array}{l}
\lambda \\
1
\end{array}\right] \geq 0\right\}
$$

with given Hermitian $\Phi, \Psi, \operatorname{det}(\Phi)<0$. The generalized KYP lemma of $[9,18]$ then states that, given matrices A, B and Hermitian matrix Θ, the inequality

$$
\left[\begin{array}{c}
(\lambda I-A)^{-1} B \tag{1.1}\\
I
\end{array}\right]^{*} \Theta\left[\begin{array}{c}
(\lambda I-A)^{-1} B \\
I
\end{array}\right] \prec 0
$$

holds for all $\lambda \in \boldsymbol{\Lambda}(\Phi, \Psi)$ if and only if there exist Hermitian matrices P, Q, such that $Q \succ 0$ and

$$
\left[\begin{array}{cc}
A & B \\
I & 0
\end{array}\right]^{*}(\Phi \otimes P+\Psi \otimes Q)\left[\begin{array}{cc}
A & B \\
I & 0
\end{array}\right]+\Theta \prec 0
$$

With $\Psi=0, \boldsymbol{\Lambda}(\Phi, \Psi)$ corresponds to an entire circle or straight line in \mathbb{C} and the original KYP lemma is retrieved.

In this paper we take a first step in extending the KyP lemma to semi-infinite inequalities of the form (1.1) on curves in \mathbb{C} that are characterized by a higher-degree polynomial equality and inequality. Such curves for instance appear when considering multiple segments on a circle or straight line, which correspond to multiple frequency ranges for discrete-time and continuous-time systems, respectively. The more interesting situation that fits into our setting is the frequency domain analysis of linear

[^0]time-invariant systems with a generalized frequency variables [6, 8]. The transfer function of such systems is expressed by $C(\lambda I-A)^{-1} B+D$ where the generalized frequency variable $\lambda=p(s)$ varies on the Nyquist plot of $p(s)$ in the complex plane. This class of systems was proposed to treat a class of linear homogeneous multi-agent systems, where $1 / p(s)$ is the common proper transfer function of the agents and (A, B, C, D) captures the interaction or information exchange structure. When $p(s)$ is a rational function, its Nyquist plot coincides with the set of roots of a polynomial equality $[6,8]$.

We generalize the KYP lemma to a particular subset of such higher-degree polynomial curves, characterized in terms of two assumptions on the describing polynomial equality and inequality. The union of multiple segments of a circle or straight line in \mathbb{C} is shown to be included in the considered set of curves. Although an LMI equivalent to a semi-infinite inequality on a union of segments can also be obtained by application of the results of $[9,18]$ to each of the segments separately, the LMI obtained by our novel result is generally smaller in both dimension and number of variables. The application of our result to the analysis of systems with a generalized frequency variable is still under investigation. As the polynomial equality describing the Nyquist plot of $p(s)$ does generally not satisfy our two assumptions, only a sufficient LMI condition is currently obtained.

The paper is organized as follows: Section 2 describes our generalization of the KYP lemma and elaborates its proof. In Section 3 we discuss the application of our result to the union of segments of a circle or straight line, while Section 4 concludes the paper. A preliminary version of this paper appeared in [14]. In the current paper we present a more general formulation of our result, allowing for nonstrict inequalities and the state matrix A to have eigenvalues on the curve, and complete some technical proofs.
Notation. The set of positive integers is denoted by \mathbb{I}, and its subset up to $n \in \mathbb{I}$ is $\mathbb{I}_{n}=\{1, \ldots, n\} . \mathbb{R}_{+}$and \mathbb{R}_{++}correspond to the set of nonnegative, respectively positive, real numbers. The sets of $n \times n$ real symmetric and complex Hermitian matrices are indicated by \mathbb{S}^{n} and \mathbb{H}^{n}, respectively. For a matrix $X \in \mathbb{C}^{n \times m}, \bar{X}$ denotes its complex conjugate, X^{\top} its transpose, and X^{*} its complex conjugate transpose: $X^{*}=\bar{X}^{\top}$. For a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ we write $x^{F}=\left(x_{n}, \ldots, x_{1}\right) .0_{n, m}$ is the $n \times m$ zero matrix, and I_{n} the $n \times n$ identity matrix. The subscripts are omitted when the dimensions can be inferred from the context. The matrix Kronecker product is indicated by \otimes, and the imaginary unit is denoted by $\mathrm{i}=\sqrt{-1}$. For vectors x, y, $\operatorname{conv}(x, y)$ is the vector convolution, while $\operatorname{conv}^{1}(x)=x$ and for $k \geq 2, \operatorname{conv}^{k}(x)$ is defined by the recursion $\operatorname{conv}^{k}(x)=\operatorname{conv}\left(x, \operatorname{conv}^{k-1}(x)\right)$.
2. Further Generalization of the KYP Lemma. In this section, we generalize the KYP lemma to a particular subset of curves in \mathbb{C} that are described by a polynomial equality and inequality. The considered subset is specified in Section 2.1, while Section 2.2 presents the corresponding generalized KYP lemma. Section 2.3 elaborates the proof of our result.
2.1. Curves in the Complex Plane. The considered curves are of the form

$$
\begin{equation*}
\boldsymbol{\Lambda}(\Phi, \Psi)=\left\{\lambda \in \mathbb{C}: l_{\ell}(\lambda)^{*} \Phi l_{\ell}(\lambda)=0, l_{\ell}(\lambda)^{*} \Psi l_{\ell}(\lambda) \geq 0\right\} \tag{2.1}
\end{equation*}
$$

Fig. 2.1. Decomposition (2.3) defines a mapping between $\boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$ and $\boldsymbol{\Lambda}(\Phi, \Psi)$, where $s \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$ is mapped onto $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}=\mathcal{R}_{T}(s) \subset \boldsymbol{\Lambda}(\Phi, \Psi)$. Assumption 1 requires the roots $\lambda_{1}, \lambda_{2}, \lambda_{3}$ to be distinct for every $s \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$.
where $\ell \in \mathbb{I}$ is a given positive integer, $\Phi, \Psi \in \mathbb{H}^{\ell+1}$ are given Hermitian matrices, and the mapping $l_{\ell}(\lambda): \mathbb{C} \rightarrow \mathbb{C}^{\ell+1}$ is defined as

$$
\begin{align*}
l_{\ell}(\lambda) & =\left[\begin{array}{lllll}
\lambda^{\ell} & \lambda^{\ell-1} & \cdots & \lambda & 1
\end{array}\right]^{\top}, \quad \text { for } \ell \in \mathbb{I}, \tag{2.2}\\
l_{0}(\lambda) & =1 .
\end{align*}
$$

In case $\boldsymbol{\Lambda}(\Phi, \Psi)$ is unbounded, it is extended with ∞. We agree that for $\ell \in \mathbb{I}$,

$$
l_{\ell}(\infty)=\left[\begin{array}{ll}
1 & 0_{1, \ell}
\end{array}\right]^{\top} .
$$

We will enforce the following two assumptions on the matrices Φ and Ψ :
Assumption 1. The matrices $\Phi, \Psi \in \mathbb{H}^{\ell+1}$ admit a decomposition of the form

$$
\Phi=T^{*} \Phi_{\mathrm{o}} T, \quad \Psi=T^{*} \Psi_{\mathrm{o}} T,
$$

where

$$
\Phi_{o}=\left[\begin{array}{ll}
0 & 1 \tag{2.3b}\\
1 & 0
\end{array}\right], \quad \Psi_{o}=\left[\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right], \quad \begin{aligned}
& 0 \leq \alpha \leq \gamma, \text { or } \\
& \alpha<0<\gamma,
\end{aligned}
$$

for some matrix $T \in \mathbb{C}^{2 \times(\ell+1)}$ of full row rank, and some $\alpha, \beta, \gamma \in \mathbb{R}$. In addition, for each $s \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$, the ℓ th degree polynomial equality in λ given by

$$
\begin{array}{rr}
{\left[\begin{array}{ll}
1 & -s
\end{array}\right] T l_{\ell}(\lambda)=0,} & \text { for } s \neq \infty, \\
{\left[\begin{array}{ll}
0 & 1
\end{array}\right] T l_{\ell}(\lambda)=0,} & \text { for } s=\infty, \tag{2.4}
\end{array}
$$

has ℓ distinct roots. These roots are grouped in the set $\mathcal{R}_{T}(s)$.
Assumption 2. When $\ell \geq 2$, there exists a Hermitian matrix $R \in \mathbb{H}^{\ell}$ such that

$$
\begin{array}{ll}
l_{\ell-1}(\lambda)^{*} R l_{\ell-1}(\lambda)>0, & \forall \lambda \in \boldsymbol{\Lambda}(\Phi, \Psi), \\
l_{\ell-1}\left(\lambda_{i}\right)^{*} R l_{\ell-1}\left(\lambda_{j}\right)=0, & \forall \lambda_{i}, \lambda_{j} \in \mathcal{R}_{T}(s), i \neq j, \forall s \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right) . \tag{2.5b}
\end{array}
$$

As illustrated in Figure 2.1, decomposition (2.3) defines a mapping between the curve $\boldsymbol{\Lambda}(\Phi, \Psi)$ and $\boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$, which corresponds to (a segment of) the imaginary axis.

Each $s \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$ is mapped onto the ℓ roots of (2.4), grouped in $\mathcal{R}_{T}(s) \subset \boldsymbol{\Lambda}(\Phi, \Psi)$, while all $\lambda \in \mathcal{R}_{T}(s)$ are mapped onto the same s :

$$
\begin{align*}
s & =\frac{\left[\begin{array}{ll}
1 & 0
\end{array}\right] T l_{\ell}(\lambda)}{\left[\begin{array}{ll}
0 & 1
\end{array}\right] T l_{\ell}(\lambda)}=\frac{t_{1}(\lambda)}{t_{2}(\lambda)}, & & \text { if } t_{2}(\lambda) \neq 0 \tag{2.6}\\
& =\infty, & & \text { otherwise }
\end{align*}
$$

Using the polynomials $t_{1}(\lambda)$ and $t_{2}(\lambda)$ as defined above, equation (2.4) can be reformulated as

$$
1-s \frac{t_{2}(\lambda)}{t_{1}(\lambda)}=0
$$

Hence, the curve $\Lambda(\Phi, \Psi)$ corresponds to the set of complex numbers λ that solve this root locus equation for some $s \in \Lambda\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$. As for every $s \in \Lambda\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$ the roots in $\mathcal{R}_{T}(s)$ must be distinct, only root loci without branching points are allowed.

Assumption 2 implies that $R \succ 0$ as it states that every congruence transformation with a matrix of the form

$$
\left[\begin{array}{lll}
l_{\ell-1}\left(\lambda_{1}\right) & \cdots & l_{\ell-1}\left(\lambda_{\ell}\right)
\end{array}\right]
$$

with $\left\{\lambda_{1}, \ldots, \lambda_{\ell}\right\}=\mathcal{R}_{T}(s)$ for some $s \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$, yields a positive definite diagonal matrix. Whereas (2.5a) can be satisfied by an arbitrary positive definite matrix R, requirement (2.5 b) constrains the considered set of curves to great extent. While Assumption 1 still allows for a large variety of curves in \mathbb{C}, only the union of segments of a circle or straight line has been found to comply with Assumption 2 as well.

For $\ell=1$, Assumption 2 is irrelevant, and the curves considered in the generalized KYP lemma of $[9,18]$ are retrieved: $\boldsymbol{\Lambda}(\Phi, \Psi)$ corresponds to a nonempty and nonsingleton segment of a circle or straight line in \mathbb{C}. If in addition $\Psi=0$ is considered, the curve corresponds to the entire circle or line, retrieving the original KyP lemma [11, 16, 20].
2.2. The Corresponding Generalized KYP Lemma. To formulate our generalized KYP lemma, we define, for given $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{n \times m}$ and $\ell \in \mathbb{I}$, the matrix $F_{\ell}(A, B) \in \mathbb{C}^{(\ell+1) n \times(n+m \ell)}$ as follows:

$$
F_{\ell}(A, B)=\left[\begin{array}{ccccc}
A^{\ell} & A^{\ell-1} B & A^{\ell-2} B & \cdots & B \tag{2.7}\\
A^{\ell-1} & A^{\ell-2} B & \cdots & B & 0 \\
\vdots & \vdots & . \cdot & . \cdot & \vdots \\
A & B & 0 & & 0 \\
I & 0 & \cdots & \cdots & 0
\end{array}\right]
$$

and the matrix $G_{\ell}(A, B) \in \mathbb{C}^{\ell(n+m) \times(n+m \ell)}$ as

$$
\begin{align*}
& G_{\ell}(A, B)=\left(I_{\ell} \otimes\left[\begin{array}{c}
I_{n} \\
0_{m, n}
\end{array}\right]\right)\left[\begin{array}{ll}
F_{\ell-1}(A, B) & 0_{n \ell, m}
\end{array}\right]+ \tag{2.8}\\
&\left(I_{\ell} \otimes\left[\begin{array}{c}
0_{n, m} \\
I_{m}
\end{array}\right]\right)\left[\begin{array}{ll}
0_{m \ell, n} & F_{\ell}\left(0_{m, m}, I_{m}\right)
\end{array}\right] .
\end{align*}
$$

For instance for $\ell=3$:

$$
G_{3}(A, B)=\left[\begin{array}{cccc}
A^{2} & A B & B & 0 \\
0 & 0 & 0 & I \\
A & B & 0 & 0 \\
0 & 0 & I & 0 \\
I & 0 & 0 & 0 \\
0 & I & 0 & 0
\end{array}\right]
$$

In addition, for $\lambda \in \mathbb{C}$ we define the set $\mathcal{N}_{A, B}(\lambda)$ as follows:

$$
\begin{aligned}
\mathcal{N}_{A, B}(\lambda) & =\left\{(x, u) \in \mathbb{C}^{n} \times \mathbb{C}^{m}:(\lambda I-A) x=B u\right\}, & & \text { for } \lambda \neq \infty \\
& =\{0\} \times \mathbb{C}^{m}, & & \text { for } \lambda=\infty
\end{aligned}
$$

Note that if $\operatorname{det}(\lambda I-A) \neq 0$, every element of $\mathcal{N}_{A, B}(\lambda)$ is of the form

$$
\left[\begin{array}{c}
(\lambda I-A)^{-1} B \\
I
\end{array}\right] u
$$

for some $u \in \mathbb{C}^{m}$.
We are now ready to state our generalized KYp lemma:
Theorem 2.1 (Generalized Kyp Lemma, strict inequalities). Let Hermitian matrices $\Phi, \Psi \in \mathbb{H}^{\ell+1}$ and $\Theta \in \mathbb{H}^{m+n}$, and matrices $A \in \mathbb{C}^{n \times n}$ and $B \in \mathbb{C}^{n \times m}$ be given, with B of full column rank. Suppose Φ and Ψ satisfy Assumptions 1 and 2, and let $R \in \mathbb{H}^{\ell}$ be a matrix satisfying (2.5). Then, the following statements are equivalent:
(i) The inequality

$$
\left[\begin{array}{l}
x \tag{2.9}\\
u
\end{array}\right]^{*} \Theta\left[\begin{array}{l}
x \\
u
\end{array}\right]<0
$$

holds for all nonzero $(x, u) \in \mathcal{N}_{A, B}(\lambda)$ and all $\lambda \in \boldsymbol{\Lambda}(\Phi, \Psi)$.
(ii) There exist $P, Q \in \mathbb{H}^{n}$ that satisfy $Q \succ 0$ and

$$
\begin{align*}
& F_{\ell}(A, B)^{*}(\Phi \otimes P+\Psi \otimes Q) F_{\ell}(A, B)+ \\
& \quad G_{\ell}(A, B)^{*}(R \otimes \Theta) G_{\ell}(A, B) \prec 0 . \tag{2.10}
\end{align*}
$$

Under the additional assumption that (A, B) is controllable, the nonstrict version of this theorem also holds:

ThEOREM 2.2 (Generalized KYp Lemma, nonstrict inequalities). Let Hermitian matrices $\Phi, \Psi \in \mathbb{H}^{\ell+1}$ and $\Theta \in \mathbb{H}^{m+n}$, and matrices $A \in \mathbb{C}^{n \times n}$ and $B \in \mathbb{C}^{n \times m}$ be given, with B of full column rank and (A, B) controllable. Suppose Φ and Ψ satisfy Assumptions 1 and 2, and let $R \in \mathbb{H}^{\ell}$ be a matrix satisfying (2.5). Then, the following statements are equivalent:
(i) The inequality

$$
\left[\begin{array}{l}
x \tag{2.11}\\
u
\end{array}\right]^{*} \Theta\left[\begin{array}{l}
x \\
u
\end{array}\right] \leq 0
$$

holds for all $(x, u) \in \mathcal{N}_{A, B}(\lambda)$ and all $\lambda \in \boldsymbol{\Lambda}(\Phi, \Psi)$.
(ii) There exist $P, Q \in \mathbb{H}^{n}$ that satisfy $Q \succeq 0$ and

$$
\begin{align*}
& F_{\ell}(A, B)^{*}(\Phi \otimes P+\Psi \otimes Q) F_{\ell}(A, B)+ \\
& \qquad G_{\ell}(A, B)^{*}(R \otimes \Theta) G_{\ell}(A, B) \preceq 0 . \tag{2.12}
\end{align*}
$$

Irrespective of Assumptions 1 and 2, and with an arbitrary $R \succ 0$, the LMI (2.10), respectively (2.12), provide a sufficient condition for the semi-infinite inequality (2.9), respectively (2.11), to hold. To reduce conservatism, the matrix $R \succ 0$ can be considered an additional optimization variable.

As further elaborated below, Assumptions 1 and 2 are needed to prove the necessity of the LMI conditions, which is done by contradiction. Herein, Assumption 1 plays a major role, as it allows constructing vectors (x, u) of the form considered in the semi-infinite inequality $(2.9,2.11)$ from the LMI's infeasibility certificate. In the last step of the necessity proof Assumption 2 is used to show that at least one of these vectors must violate the inequality $(2.9,2.11)$. Although this violation is no longer guaranteed in case Assumption 2 doesn't hold, it may still occur. Hence, in case the LMI condition $(2.10,2.12)$ is found infeasible, one can assess the conservatism of the LMI by constructing vectors (x, u) of the appropriate form as outlined in the proof below. For all these vectors the inequality $(2.9,2.11)$ is checked and the smallest margin to constraint violation provides an indication of the conservatism involved.
2.3. Proof of the Generalized KYP Lemma. To lighten the notation, we will omit the arguments (A, B) in $F_{\ell}(A, B)$ and $G_{\ell}(A, B)$ below. In the proof of our generalized KYP lemma we rely on the following auxiliary results:

Lemma 2.3. Let matrices $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{n \times m}$ and $T \in \mathbb{C}^{2 \times(\ell+1)}$ be given, and assume B has full column rank and T full row rank. In addition, let $s \in \mathbb{C} \cup\{\infty\}$ be given and assume that the ℓ roots $\lambda_{i}, i \in \mathbb{I}_{\ell}$, in $\mathcal{R}_{T}(s)$ are all distinct. Then, a vector $z \in \mathbb{C}^{n+m \ell}$ satisfies

$$
\begin{align*}
\left(\left[\begin{array}{ll}
1 & -s
\end{array}\right] \otimes I_{n}\right)\left(T \otimes I_{n}\right) F_{\ell} z=0, & \text { for } s \neq \infty \\
\left(\left[\begin{array}{ll}
0 & 1
\end{array}\right] \otimes I_{n}\right)\left(T \otimes I_{n}\right) F_{\ell} z=0, & \text { for } s=\infty \tag{2.13}
\end{align*}
$$

if and only if it can be decomposed as

$$
z=\sum_{i=1}^{\ell}\left[\begin{array}{c}
x_{i} \tag{2.14}\\
l_{\ell-1}\left(\lambda_{i}\right)^{\mathrm{F}} \otimes u_{i}
\end{array}\right],
$$

with $\left(x_{i}, u_{i}\right) \in \mathcal{N}_{A, B}\left(\lambda_{i}\right)$, for all $i \in \mathbb{I}_{\ell}$.
The proof of this lemma is presented in Appendix A.
LEMMA 2.4. Let $\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}} \in \mathbb{H}^{2}$ of the form (2.3b) be given, as well as $X, Y \in$ $\mathbb{C}^{n \times m}$. Then

$$
\left[\begin{array}{ll}
X & Y
\end{array}\right]\left(\Phi_{\mathrm{o}} \otimes I\right)\left[\begin{array}{l}
X^{*} \tag{2.15}\\
Y^{*}
\end{array}\right]=0, \quad \text { and } \quad\left[\begin{array}{ll}
X & Y
\end{array}\right]\left(\Psi_{\mathrm{o}} \otimes I\right)\left[\begin{array}{l}
X^{*} \\
Y^{*}
\end{array}\right] \succeq 0
$$

hold if and only if X and Y can be factored as

$$
\begin{equation*}
X=W \operatorname{diag}\left(s_{1}, \ldots, s_{m}\right) V^{*}, \quad Y=W V^{*} \tag{2.16}
\end{equation*}
$$

with some $W \in \mathbb{C}^{n \times m}$, unitary $V \in \mathbb{C}^{m \times m}$, and $s_{i} \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$ for all $i \in \mathbb{I}_{m}$.
The proof of this lemma is presented in Appendix B.
Proof. [Proof of Theorem 2.1] To prove that (ii) implies (i) we multiply (2.10) by z^{*} on the left and z on the right, where z is a vector of the form

$$
z=\left[\begin{array}{c}
x \\
l_{\ell-1}(\lambda)^{\mathrm{F}} \otimes u
\end{array}\right],
$$

with arbitrary $\lambda \in \boldsymbol{\Lambda}(\Phi, \Psi)$ and arbitrary $(x, u) \in \mathcal{N}_{A, B}(\lambda)$. Straightforward calculations reveal that for such z

$$
\begin{align*}
& F_{\ell} z=l_{\ell}(\lambda) \otimes \chi(x, u), \quad \text { with } \quad \chi(x, u)= \begin{cases}x, & \text { if } \lambda \neq \infty \\
B u, & \text { if } \lambda=\infty\end{cases} \tag{2.17a}\\
& G_{\ell} z=l_{\ell-1}(\lambda) \otimes\left[\begin{array}{l}
x \\
u
\end{array}\right] . \tag{2.17b}
\end{align*}
$$

Combining these equalities with the mixed-product property of the matrix Kronecker product, the multiplication of (2.10) by z^{*} and z yields

$$
\begin{aligned}
& l_{\ell}(\lambda)^{*} \Phi l_{\ell}(\lambda) \cdot \chi(x, u)^{*} P \chi(x, u)+l_{\ell}(\lambda)^{*} \Psi l_{\ell}(\lambda) \cdot \chi(x, u)^{*} Q \chi(x, u)+ \\
& l_{\ell-1}(\lambda)^{*} R l_{\ell-1}(\lambda) \cdot\left[\begin{array}{l}
x \\
u
\end{array}\right]^{*} \Theta\left[\begin{array}{l}
x \\
u
\end{array}\right]<0 .
\end{aligned}
$$

By definition (2.1) of $\boldsymbol{\Lambda}(\Phi, \Psi)$ and the constraint $Q \succ 0$, the first term equals zero for all $\lambda \in \boldsymbol{\Lambda}(\Phi, \Psi)$, while the second term is nonnegative. In addition, $l_{\ell-1}(\lambda)^{*} R l_{\ell-1}(\lambda)$ >0 for all $\lambda \in \boldsymbol{\Lambda}(\Phi, \Psi)$ on account of Assumption 2, and hence, (2.9) holds for all $\lambda \in \boldsymbol{\Lambda}(\Phi, \Psi)$ and $(x, u) \in \mathcal{N}_{A, B}(\lambda)$.

We prove that (i) implies (ii) by contradiction, using a theorem of alternatives [1, Theorem 1] [2, Theorem 1.3]: from the infeasibility certificate of (2.10) we construct a $\lambda \in \boldsymbol{\Lambda}(\Phi, \Psi)$ and $(x, u) \in \mathcal{N}_{A, B}(\lambda)$ that violates (2.9). Suppose (2.10) is infeasible. Then there exists a nonzero positive semidefinite matrix $Z \in \mathbb{H}^{n+m \ell}$ such that

$$
\begin{align*}
\operatorname{tr}\left(G_{\ell}^{*}(R \otimes \Theta) G_{\ell} Z\right) & \geq 0 \tag{2.18a}\\
\tilde{F}_{\ell}(\bar{\Phi} \otimes Z) \tilde{F}_{\ell}^{*} & =0 \tag{2.18b}\\
\tilde{F}_{\ell}(\bar{\Psi} \otimes Z) \tilde{F}_{\ell}^{*} & \succeq 0 \tag{2.18c}
\end{align*}
$$

The matrix $\tilde{F}_{\ell} \in \mathbb{H}^{n \times(\ell+1)(n+m \ell)}$ is defined as

$$
\tilde{F}_{\ell}=\left[\begin{array}{lll}
F_{\ell, 1} & \cdots & F_{\ell, \ell+1}
\end{array}\right],
$$

where $F_{\ell, i} \in \mathbb{H}^{n \times(n+m \ell)}, i \in \mathbb{I}_{\ell+1}$, denote the block rows of F_{ℓ} :

$$
F_{\ell}=\left[\begin{array}{c}
F_{\ell, 1} \\
\vdots \\
F_{\ell, \ell+1}
\end{array}\right]
$$

Let $Z=\Upsilon \Upsilon^{*}$ with $\Upsilon \in \mathbb{C}^{(n+m \ell) \times r}$ be a full-rank factorization of Z, where r is the rank. Equality (2.18b) and inequality (2.18c) can then be written as

$$
\begin{equation*}
\tilde{E}_{\ell}\left(\bar{\Phi} \otimes I_{r}\right) \tilde{E}_{\ell}^{*}=0, \quad \tilde{E}_{\ell}\left(\bar{\Psi} \otimes I_{r}\right) \tilde{E}_{\ell}^{*} \succeq 0 \tag{2.19}
\end{equation*}
$$

where

$$
\tilde{E}_{\ell}=\left[\begin{array}{lll}
F_{\ell, 1} \Upsilon & \cdots & F_{\ell, \ell+1} \Upsilon
\end{array}\right] .
$$

Substituting decomposition (2.3) of Φ and Ψ in (2.19) transforms the equality and inequality to the form (2.15) with

$$
\left[\begin{array}{ll}
X & Y
\end{array}\right]=\tilde{E}_{\ell}\left(T^{\boldsymbol{\top}} \otimes I\right), \quad \rightarrow \quad\left[\begin{array}{l}
X \\
Y
\end{array}\right]=(T \otimes I) F_{\ell} \Upsilon
$$

By Lemma 2.4, matrices X, Y admit a decomposition of the form (2.16), which yields

$$
(T \otimes I) F_{\ell} \Upsilon=\left[\begin{array}{c}
W \operatorname{diag}\left(s_{k}\right) \\
W
\end{array}\right] V^{*}
$$

for some $W \in \mathbb{C}^{n \times r}$, unitary $V \in \mathbb{C}^{r \times r}$, and $s_{k} \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$ with $k \in \mathbb{I}_{r}$. Let w_{k} and v_{k} denote the k th column of W and V, respectively, then this equality corresponds to

$$
\left[\begin{array}{c}
s_{k} \\
1
\end{array}\right] \otimes w_{k}=(T \otimes I) F_{\ell} \Upsilon v_{k}, \quad \forall k \in \mathbb{I}_{r}
$$

Let $\lambda_{k, i}$ with $i \in \mathbb{I}_{\ell}$ be the distinct roots in $\mathcal{R}_{T}\left(s_{k}\right)$. Then by Lemma 2.3, there exist $\left(x_{k, i}, u_{k, i}\right) \in \mathcal{N}_{A, B}\left(\lambda_{k, i}\right)$ such that

$$
\Upsilon v_{k}=\sum_{i=1}^{\ell}\left[\begin{array}{c}
x_{k, i} \\
l_{\ell-1}\left(\lambda_{k, i}\right)^{\mathrm{F}}
\end{array} u_{k, i}\right]=\sum_{i=1}^{\ell} z_{k, i} .
$$

Because V is unitary, we have

$$
Z=\Upsilon V V^{*} \Upsilon^{*}=\sum_{k=1}^{r}\left(\sum_{i=1}^{\ell} z_{k, i}\right)\left(\sum_{i=1}^{\ell} z_{k, i}\right)^{*}
$$

Substituting this decomposition into (2.18a) yields

$$
\begin{equation*}
\sum_{k=1}^{r} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} z_{k, i}^{*} G_{\ell}^{*}(R \otimes \Theta) G_{\ell} z_{k, j} \geq 0 \tag{2.20}
\end{equation*}
$$

Elaborating $z_{k, i}^{*} G_{\ell}^{*}(R \otimes \Theta) G_{\ell} z_{k, i}$ using (2.17b) yields

$$
\left(z_{k, i}\right)^{*} G_{\ell}^{*}(R \otimes \Theta) G_{\ell} z_{k, j}=l_{\ell-1}\left(\lambda_{k, i}\right)^{*} R l_{\ell-1}\left(\lambda_{k, j}\right) \cdot\left[\begin{array}{l}
x_{k, i} \\
u_{k, i}
\end{array}\right]^{*} \Theta\left[\begin{array}{l}
x_{k, j} \\
u_{k, j}
\end{array}\right]
$$

On account of (2.5b), this contribution vanishes for $i \neq j$ such that (2.20) amounts to

$$
\sum_{k=1}^{r} \sum_{i=1}^{\ell} l_{\ell-1}\left(\lambda_{k, i}\right)^{*} R l_{\ell-1}\left(\lambda_{k, i}\right) \cdot\left[\begin{array}{l}
x_{k, i} \\
u_{k, i}
\end{array}\right]^{*} \Theta\left[\begin{array}{l}
x_{k, i} \\
u_{k, i}
\end{array}\right] \geq 0
$$

Combining this with (2.5a) we obtain that at least for one $\left(x_{k, i}, u_{k, i}\right),(2.9)$ cannot hold and we reach a contradiction with statement (i).

The extension of this proof to Theorem 2.2 is discussed in Appendix C.
3. Union of Segments of a Circle or Straight Line. As a particular application of our result, the union of ℓ nonintersecting, nonempty and nonsingleton segments of a circle or straight line in \mathbb{C} admits a description of the form (2.1) with Hermitian matrices $\Phi, \Psi \in \mathbb{H}^{\ell+1}$ that satisfy Assumptions 1 and 2. In Section 3.1 we elaborate the construction of these Φ, Ψ, and in Section 3.2 we apply our result to obtain a sum-of-squares certificate for the positivity of a univariate polynomial on a union of intervals. Section 3.3 compares our result to existing results from the literature.
3.1. Description as $\Lambda(\Phi, \Psi)$ with Φ, Ψ Satisfying Assumptions 1 and 2. We first elaborate the construction of Φ, Ψ for the union of segments of the real axis. The extension to other lines and circles in \mathbb{C} relies on a Möbius transform that maps the circle or line to the real axis [9], and is discussed at the end of this section. To clarify our elaborations, we define the matrices $\Phi_{\mathrm{r}}, \Psi_{\mathrm{r}}$ as follows:

$$
\Phi_{\mathrm{r}}=\left[\begin{array}{cc}
0 & \mathrm{i} \tag{3.1}\\
-\mathrm{i} & 0
\end{array}\right], \quad \Psi_{\mathrm{r}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

such that $\boldsymbol{\Lambda}\left(\Phi_{\mathrm{r}}, \Psi_{\mathrm{r}}\right)=\mathbb{R}_{+} \cup\{\infty\}$. In addition, for $\ell \in \mathbb{I}$, the matrix $J_{\ell} \in \mathbb{R}^{2 \ell \times(\ell+1)}$ is defined as

$$
J_{\ell}=\left[\begin{array}{cc}
I_{\ell} & 0_{\ell, 1} \tag{3.2}\\
\hline 0_{\ell, 1} & I_{\ell}
\end{array}\right]
$$

Lemma 3.1. Let 2ℓ scalars $\alpha_{i}, \beta_{i} \in \mathbb{R} \cup\{\infty\}, i \in \mathbb{I}_{\ell}$, be given that satisfy

$$
\begin{equation*}
\alpha_{1}<\beta_{1}<\alpha_{2}<\ldots<\beta_{\ell-1}<\alpha_{\ell}<\beta_{\ell} \tag{3.3}
\end{equation*}
$$

Let the vectors $a, b \in \mathbb{R}^{\ell+1}$ be defined by

$$
\begin{equation*}
\prod_{i=1}^{\ell}\left(\lambda-\alpha_{i}\right)=a^{\top} l_{\ell}(\lambda), \quad \prod_{i=1}^{\ell}\left(\lambda-\beta_{i}\right)=b^{\top} l_{\ell}(\lambda) \tag{3.4}
\end{equation*}
$$

where $\left(\lambda-\alpha_{1}\right)=1$ for $\alpha_{1}=-\infty$ and $\left(\lambda-\beta_{\ell}\right)=-1$ for $\beta_{\ell}=\infty$, and set $\tilde{T}=\left[\begin{array}{ll}-a & b\end{array}\right]^{\top}$. Then, the matrices $\Phi, \Psi \in \mathbb{H}^{\ell+1}$ given by

$$
\begin{equation*}
\Phi=\tilde{T}^{*} \Phi_{\mathrm{r}} \tilde{T}, \quad \Psi=\tilde{T}^{*} \Psi_{\mathrm{r}} \tilde{T} \tag{3.5}
\end{equation*}
$$

satisfy Assumptions 1 and 2, and

$$
\begin{equation*}
\boldsymbol{\Lambda}(\Phi, \Psi)=\bigcup_{i=1}^{\ell}\left[\alpha_{i}, \beta_{i}\right] \tag{3.6}
\end{equation*}
$$

In particular, a matrix $R \in \mathbb{S}^{\ell}$ satisfying (2.5) is given by the unique solution of

$$
\begin{equation*}
\Phi=J_{\ell}^{*}\left(\Phi_{\mathrm{r}} \otimes R\right) J_{\ell} \tag{3.7}
\end{equation*}
$$

Proof. Decomposition (3.5) defines a mapping between $\kappa \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{r}}, \Psi_{\mathrm{r}}\right)=\mathbb{R}_{+} \cup\{\infty\}$ and $\lambda \in \boldsymbol{\Lambda}(\Phi, \Psi)$, similar to (2.6), where every κ is mapped onto the ℓ roots of

$$
\left[\begin{array}{cc}
1 & -\kappa
\end{array}\right] \tilde{T} l_{\ell}(\lambda)=-a^{\top} l_{\ell}(\lambda)-\kappa b^{\top} l_{\ell}(\lambda)=0
$$

while for $\kappa=\infty$, this equation reads as $b^{\top} l_{\ell}(\lambda)=0$. Hence, $\boldsymbol{\Lambda}(\Phi, \Psi)$ corresponds to the 180° root locus of

$$
\frac{b^{\top} l_{\ell}(\lambda)}{a^{\top} l_{\ell}(\lambda)}=\frac{\prod_{i=1}^{\ell}\left(\lambda-\beta_{i}\right)}{\prod_{i=1}^{\ell}\left(\lambda-\alpha_{i}\right)}
$$

which indeed corresponds to the union of the intervals $\left[\alpha_{i}, \beta_{i}\right], i \in \mathbb{I}_{\ell}$. Consequently, (3.6) holds. To show that the matrices Φ, Ψ given by (3.5) satisfy Assumption 1 we substitute the following common congruence transformation of $\Phi_{\mathrm{r}}, \Psi_{\mathrm{r}}$:

$$
\begin{equation*}
\Phi_{\mathrm{r}}=T_{\mathrm{r}}^{*} \Phi_{\mathrm{o}} T_{\mathrm{r}}, \quad \Psi_{\mathrm{r}}=T_{\mathrm{r}}^{*} \Psi_{\mathrm{o}} T_{\mathrm{r}} \tag{3.8a}
\end{equation*}
$$

FIG. 3.1. To compute the mapping between $s \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}} \Psi_{\mathrm{o}}\right)$ and $\lambda \in \boldsymbol{\Lambda}(\Phi, \Psi)$, s is first mapped onto $\kappa \in \mathbb{R}_{+} \cup\{\infty\}$, which is subsequently mapped onto ℓ distinct roots $\lambda_{i} \in\left[\alpha_{i}, \beta_{i}\right]$, $i \in \mathbb{I}_{\ell}$.
with

$$
T_{\mathrm{r}}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \tag{3.8b}\\
\mathrm{i} & \mathrm{i}
\end{array}\right], \quad \Psi_{\mathrm{o}}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

in (3.5) to obtain Φ, Ψ in the form (2.3) with Ψ_{o} given above and $T=T_{\mathrm{r}} \tilde{T}$. T_{r} defines a bijective mapping between $s \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$ and $\kappa \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{r}}, \Psi_{\mathrm{r}}\right)$, and by the root locus argument above, every $\kappa \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{r}}, \Psi_{\mathrm{r}}\right)$ is mapped onto ℓ roots $\lambda_{i} \in\left[\alpha_{i}, \beta_{i}\right], i \in \mathbb{I}_{\ell}$. This composition of mappings is illustrated in Figure 3.1. As the intervals $\left[\alpha_{i}, \beta_{i}\right]$ are nonintersecting, the roots λ_{i} are distinct.

Solving (3.7) for $R \in \mathbb{S}^{\ell}$ amounts to solving a set of linear equations in the $0.5 \ell(\ell+1)$ entries of R. Since both Φ_{r} and Φ are pure imaginary, the only nontrivial constraints relate to the off-diagonal entries of the imaginary part of Φ. The corresponding $0.5 \ell(\ell+1)$ linear constraints are readily verified to be linearly independent, and hence, the corresponding solution R is unique. The proof that this R satisfies (2.5) is presented in Appendix D \square

Next, we consider the union of ℓ nonempty, nonsingleton, nonintersecting segments $\boldsymbol{\Lambda}\left(\phi, \psi_{i}\right), i \in \mathbb{I}_{\ell}$, on an arbitrary circle or line $\boldsymbol{\Lambda}(\phi, 0)$. To transfer the results of Lemma 3.1 to $\bigcup_{i=1}^{\ell} \boldsymbol{\Lambda}\left(\phi, \psi_{i}\right)$ we rely on a Möbius transform that maps $\boldsymbol{\Lambda}(\phi, 0)$ onto the extended real axis $\boldsymbol{\Lambda}\left(\Phi_{\mathrm{r}}, 0\right)$, and every segment $\boldsymbol{\Lambda}\left(\phi, \psi_{i}\right)$ onto an interval of the form $\left[\alpha_{i}, \beta_{i}\right]$ with $\beta_{i}>\alpha_{i}$. One way to compute such a Möbius transform is illustrated in Figure 3.2. For given distinct points $z_{1}, z_{2}, z_{3} \in \mathbb{C} \cup\{\infty\}$, the Möbius transform

$$
\begin{equation*}
\mu(\lambda)=\frac{\left(\lambda-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(\lambda-z_{3}\right)\left(z_{2}-z_{1}\right)} \tag{3.9}
\end{equation*}
$$

maps $\left\{z_{1}, z_{2}, z_{3}\right\}$ onto $\{0,1, \infty\}$ and the circle or line through z_{1}, z_{2} and z_{3} onto the real axis [12]. Hence, with any set of distinct points $\left\{z_{1}, z_{2}, z_{3}\right\} \subset \boldsymbol{\Lambda}(\phi, 0), z_{3} \notin$ $\bigcup_{i=1}^{\ell} \boldsymbol{\Lambda}\left(\phi, \psi_{i}\right)$, this transformation satisfies the requirements. Let $\hat{\Phi}, \hat{\Psi} \in \mathbb{H}^{\ell+1}$ and $\hat{R} \in \mathbb{H}^{\ell}$ be the result of Lemma 3.1 applied to the image of $\bigcup_{i=1}^{\ell} \boldsymbol{\Lambda}\left(\phi, \psi_{i}\right)$ under the Möbius transform (3.9). In addition, set

$$
M=\left[\begin{array}{ll}
z_{2}-z_{3} & -z_{1}\left(z_{2}-z_{3}\right) \\
z_{2}-z_{1} & -z_{3}\left(z_{2}-z_{1}\right)
\end{array}\right]=\left[\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right]
$$

Fig. 3.2. For $\left\{z_{1}, z_{2}, z_{3}\right\} \subset \boldsymbol{\Lambda}(\phi, 0), z_{3} \notin \bigcup_{i=1}^{\ell} \boldsymbol{\Lambda}\left(\phi, \psi_{i}\right)$, the Möbius transform $\mu(\lambda)$ maps $\boldsymbol{\Lambda}(\phi, 0)$ onto $\boldsymbol{\Lambda}\left(\Phi_{\mathrm{r}}, 0\right)$, and every segment $\boldsymbol{\Lambda}\left(\phi, \psi_{i}\right)$ onto an interval of the form $\left[\alpha_{i}, \beta_{i}\right]$ with $\alpha_{i}=$ $\mu\left(\eta_{i}\right)<\beta_{i}=\mu\left(\zeta_{i}\right)$.
and for $k \in \mathbb{I}$ we define the matrix $\mathbf{M}_{k} \in \mathbb{R}^{(k+1) \times(k+1)}$ as follows:

$$
\mathbf{M}_{k}=\left[\begin{array}{c}
\operatorname{conv}^{k}\left(M_{1}\right) \\
\operatorname{conv}\left(\operatorname{conv}^{k-1}\left(M_{1}\right), M_{2}\right) \\
\vdots \\
\operatorname{conv}^{k}\left(M_{2}\right)
\end{array}\right]
$$

Then, it is readily verified that $\Phi, \Psi \in \mathbb{H}^{\ell+1}$ and $R \in \mathbb{H}^{\ell}$ defined by

$$
\Phi=\mathbf{M}_{\ell}^{*} \hat{\Phi} \mathbf{M}_{\ell}, \quad \Psi=\mathbf{M}_{\ell}^{*} \hat{\Psi} \mathbf{M}_{\ell}, \quad R=\mathbf{M}_{\ell-1}^{*} \hat{R} \mathbf{M}_{\ell-1}
$$

satisfy $\boldsymbol{\Lambda}(\Phi, \Psi)=\bigcup_{i=1}^{\ell} \boldsymbol{\Lambda}\left(\phi, \psi_{i}\right)$ and $\Phi=J_{\ell}^{*}(\phi \otimes R) J_{\ell}$. In addition, R satisfies (2.5) and Φ, Ψ admit a decomposition of the form (2.3)

Example 1 (Union of two continuous-time frequency intervals). To clarify the elaborations above let us derive the matrices Φ, Ψ and R corresponding to the union of two continuous-time frequency intervals:

$$
\boldsymbol{\Lambda}(\Phi, \Psi)=\left\{\lambda=i \omega: \omega \in\left[\alpha_{1}, \beta_{1}\right] \cup\left[\alpha_{2}, \beta_{2}\right]\right\}
$$

with $-\infty<\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\infty$. A Möbius transform $\mu(\lambda)$ that maps the imaginary axis to the real axis is given by

$$
\mu(\lambda)=-i \lambda \quad \rightarrow \quad M=\left[\begin{array}{cc}
-i & 0 \\
0 & 1
\end{array}\right]
$$

which is of the form (3.9) with $z_{1}=0, z_{2}=i$ and $z_{3}=\infty$. Combination of the results above yields

$$
\Phi=\tilde{T}^{*} \Phi_{\mathrm{r}} \tilde{T}, \quad \Psi=\tilde{T}^{*} \Psi_{\mathrm{r}} \tilde{T}, \quad \text { with } \quad \tilde{T}=\left[\begin{array}{ccc}
-1 & i \alpha_{1}+i \alpha_{2} & \alpha_{1} \alpha_{2} \\
1 & -i \beta_{1}-i \beta_{2} & -\beta_{1} \beta_{2}
\end{array}\right]
$$

The corresponding matrix R equals

$$
R=M^{*}\left[\begin{array}{cc}
\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2} & \alpha_{1} \alpha_{2}-\beta_{1} \beta_{2} \\
\alpha_{1} \alpha_{2}-\beta_{1} \beta_{2} & \beta_{1} \beta_{2}\left(\alpha_{1}+\alpha_{2}\right)-\alpha_{1} \alpha_{2}\left(\beta_{1}+\beta_{2}\right)
\end{array}\right] M
$$

and can also be solved from

$$
\Phi=J_{\ell}^{*}\left(\left(M^{*} \Phi_{\mathrm{r}} M\right) \otimes R\right) J_{\ell}
$$

Example 2 (Union of two discrete-time frequency intervals). Next, we consider the union of two discrete-time frequency intervals:

$$
\boldsymbol{\Lambda}(\Phi, \Psi)=\left\{\lambda=e^{i \theta}: \theta \in\left[\eta_{1}, \zeta_{1}\right] \cup\left[\eta_{2}, \zeta_{2}\right]\right\}
$$

with $-\pi<\eta_{1}<\zeta_{1}<\eta_{2}<\zeta_{2}<\pi$. A Möbius transform that maps the unit circle to the real axis is given by

$$
\mu(\lambda)=-i \frac{\lambda-1}{\lambda+1} \quad \rightarrow \quad M=\left[\begin{array}{cc}
-i & i \tag{3.10}\\
1 & 1
\end{array}\right]
$$

which is of the form (3.9) with $z_{1}=1, z_{2}=i$ and $z_{3}=-1$. The two frequency intervals are mapped into the real intervals $\left[\alpha_{i}, \beta_{i}\right]$, with $\alpha_{i}=\mu\left(e^{i \eta_{i}}\right)$ and $\beta_{i}=\mu\left(e^{i \zeta_{i}}\right)$, $i \in \mathbb{I}_{2}$. The corresponding matrices Φ and Ψ can be reformulated as

$$
\Phi=\tilde{T}^{*}\left[\begin{array}{cc}
0 & i c \\
-i \bar{c} & 0
\end{array}\right] \tilde{T}, \quad \Psi=\tilde{T}^{*}\left[\begin{array}{cc}
0 & c \\
\bar{c} & 0
\end{array}\right] \tilde{T}
$$

with

$$
\tilde{T}=\left[\begin{array}{ccc}
-1 & e^{i \eta_{1}}+e^{i \eta_{2}} & -e^{i \eta_{1}} e^{i \eta_{2}} \\
1 & -e^{i \zeta_{1}}-e^{i \zeta_{2}} & e^{i \zeta_{1}} e^{i \zeta_{2}}
\end{array}\right], \quad c=\left(1+i \alpha_{1}\right)\left(1+i \alpha_{2}\right)\left(1-i \beta_{1}\right)\left(1-i \beta_{2}\right)
$$

The computation of the corresponding matrix R is similar to the continuous-time case, yet with the matrix M from (3.10) filled in.
3.2. Application to Univariate Polynomials. To provide more insight in the LMI condition obtained from our generalized KYP lemma, we apply Theorem 2.2 to obtain a sum-of-squares certificate for the nonnegativity of a real univariate polynomial on a union of intervals. The ring of real polynomials in $\lambda \in \mathbb{R}$ is denoted by $\mathbb{R}[\lambda]$ and Σ is its subset of sum-of-squares polynomials:

$$
\Sigma=\left\{\sum_{i} p_{i}^{2}: p_{i} \in \mathbb{R}[\lambda]\right\}
$$

As exposed in e.g. [3, 17], Σ_{n}, the set of polynomials in Σ of degree less than or equal to $2 n$, is related to \mathbb{S}^{n+1} :

$$
\begin{equation*}
p \in \Sigma_{n} \quad \Leftrightarrow \quad \exists P \in \mathbb{S}^{n+1}: P \succeq 0, \quad p(\lambda)=l_{n}(\lambda)^{\top} P l_{n}(\lambda) \tag{3.11}
\end{equation*}
$$

For statement (i) of Theorem 2.2 to correspond to a polynomial inequality, we select $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times 1}$ as follows [7]:

$$
\left[\begin{array}{ll}
A & B
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{3.12}\\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 1 & 0 \\
0 & \ldots & \cdots & 0 & 1
\end{array}\right]
$$

such that

$$
\left[\begin{array}{c}
(\lambda I-A)^{-1} B \\
I
\end{array}\right]=\frac{1}{\lambda^{n}} l_{n}(\lambda)^{\mathrm{F}} .
$$

Let Φ, Ψ be constructed according to Lemma 3.1, then statement (i) of Theorem 2.2 is equivalent to

$$
\left(l_{n}(\lambda)^{\mathrm{F}}\right)^{\mathrm{T}} \Theta l_{n}(\lambda)^{\mathrm{F}} \leq 0, \quad \forall \lambda \in \bigcup_{i=1}^{\ell}\left[\alpha_{i}, \beta_{i}\right]
$$

Hence, to relate this condition to the nonnegativity of a given polynomial $\theta \in \mathbb{R}[\lambda]$ of degree $2 n$, we compute a matrix $\Theta \in \mathbb{S}^{n+1}$ such that

$$
\begin{equation*}
\theta(\lambda)=-\left(l_{n}(\lambda)^{\mathrm{F}}\right)^{\mathrm{T}} \Theta l_{n}(\lambda)^{\mathrm{F}} \tag{3.13}
\end{equation*}
$$

The corresponding sum-of-squares certificate is obtained from statement (ii) of Theorem 2.2. Let us denote the left-hand side of (2.12) by Z. Then, with the help of (2.17), one readily verifies that

$$
\begin{array}{r}
\left(l_{n+\ell-1}(\lambda)^{\mathrm{F}}\right)^{\top} Z l_{n+\ell-1}(\lambda)^{\mathrm{F}}=l_{\ell}(\lambda)^{\top} \Psi l_{\ell}(\lambda) \cdot\left(l_{n-1}(\lambda)^{\mathrm{F}}\right)^{\top} Q l_{n-1}(\lambda)^{\mathrm{F}}- \\
l_{\ell-1}(\lambda)^{\top} R l_{\ell-1}(\lambda) \cdot \theta(\lambda)
\end{array}
$$

Using decomposition (3.5) of Ψ and the equivalency (3.11), the result is interpreted as follows:

Corollary 3.2. Let a polynomial $\theta \in \mathbb{R}[\lambda]$ of degree $2 n$ be given, as well as 2ℓ scalars $\alpha_{i}, \beta_{i} \in \mathbb{R}, i \in \mathbb{I}_{\ell}$, that satisfy (3.3). Let R be the solution of (3.7). Then, the following statements are equivalent:
(i) $\theta(\lambda) \geq 0$ for all $\lambda \in \bigcup_{i=1}^{\ell}\left[\alpha_{i}, \beta_{i}\right]$.
(ii) There exist $q \in \Sigma_{n-1}$ and $z \in \Sigma_{n+\ell-1}$ such that

$$
\begin{equation*}
r(\lambda) \theta(\lambda)=z(\lambda)+q(\lambda) \psi(\lambda) \tag{3.14}
\end{equation*}
$$

where

$$
\begin{aligned}
& \psi(\lambda)=l_{\ell}(\lambda)^{\top} \Psi l_{\ell}(\lambda)=-\prod_{i=1}^{\ell}\left(\lambda-\alpha_{i}\right)\left(\lambda-\beta_{i}\right) \\
& r(\lambda)=l_{\ell-1}(\lambda)^{\top} R l_{\ell-1}(\lambda)=\sum_{i=1}^{\ell}\left(\beta_{i}-\alpha_{i}\right) \prod_{j \neq i}\left(\lambda-\beta_{j}\right)\left(\lambda-\alpha_{j}\right) .
\end{aligned}
$$

The elaboration of $r(\lambda)$ is derived in Appendix D. As Assumption 2 implies $R \succ 0, r$ is a positive sum-of-squares polynomial. Since Φ, A, B, and Θ are real and Ψ is pure imaginary, we may select Q real and P imaginary in (2.12) without loss of generality. To expose the role of the imaginary matrix P, we use (3.7) and definitions $(2.7,2.8)$ to elaborate its contribution:

$$
F_{\ell}^{\top}(\Phi \otimes P) F_{\ell}=G_{\ell}^{\top}\left(R \otimes\left(F_{1}^{\top}\left(\Phi_{\mathrm{r}} \otimes P\right) F_{1}\right)\right) G_{\ell}
$$

As noted in [7], with A, B given by $(3.12), \Theta(P)=\Theta+F_{1}^{\top}\left(\Phi_{\mathrm{r}} \otimes P\right) F_{1}$ corresponds to an explicit parametrization of all matrices Θ that satisfy (3.13)
3.3. Comparison of Computational Aspects to Existing Results. The generalization of the KYP lemma presented in [9, 18] provides an LMI equivalent for an inequality of the form (2.9) on a segment of a circle or straight line in \mathbb{C}, i.e. a curve of the form $\boldsymbol{\Lambda}(\Phi, \Psi)$ for $\Phi, \Psi \in \mathbb{H}_{2}$ that satisfy Assumption 1. In case the inequality must hold on a union of ℓ segments, an LMI reformulation can be obtained by applying the result of $[9,18]$ for each of the intervals separately. This LMi involves 2ℓ matrix variables in \mathbb{H}_{n}, and comprises ℓ inequalities in \mathbb{H}_{n} and ℓ inequalities in \mathbb{H}_{n+m}. Theorem 2.1 provides an alternative LMI condition, involving only 2 matrix variables in \mathbb{H}_{n} and comprising one inequality in \mathbb{H}_{n}, and one in $\mathbb{H}_{n+m \ell}$. Consequently, this LMI is generally smaller in both dimension and number of variables.

Condition (3.14) differs from current sum-of-squares certificates for the nonnegativity of a univariate polynomial on a union of intervals. To compare, let us recall the existing result. Let $V \subset \mathbb{R}[\lambda]$ be given as:

$$
\begin{aligned}
V=\left\{\left(\beta_{\ell}-\lambda\right)\left(\lambda-\alpha_{1}\right),\left(\lambda-\beta_{1}\right)(\right. & \left.\lambda-\alpha_{2}\right), \ldots, \\
& \left.\left(\lambda-\beta_{\ell-1}\right)\left(\lambda-\alpha_{\ell}\right)\right\},
\end{aligned}
$$

and the corresponding preordering T_{V} :

$$
T_{V}=\left\{\sum_{e \in\{0,1\}^{\ell}} s_{e}(\lambda) \prod_{i=1}^{\ell} v_{i}(\lambda)^{e_{i}}: s_{e}(\lambda) \in \Sigma\right\}
$$

where $v_{i}(\lambda)$ are the elements of V. Let $T_{V, n}$ be the subset of T_{V} obtained by limiting the degree of the terms in the summation to $2 n$. Then, the following result is proven in [4]:

Lemma 3.3. Let V and $T_{V, n}$ be as defined above. Then, a polynomial $\theta(\lambda) \in \mathbb{R}[\lambda]$ of degree $2 n$ is nonnegative on $\bigcup_{i=1}^{\ell}\left[\alpha_{i}, \beta_{i}\right]$ if and only if $\theta(\lambda) \in T_{V, n}$.

For instance, for $\ell=3$ and $n \geq 3$, this condition involves $s_{0,0,0} \in \Sigma_{n}, s_{1,0,0}$, $s_{0,1,0}, s_{0,0,1} \in \Sigma_{n-1}, s_{1,1,0}, s_{0,1,1}, s_{1,0,1} \in \Sigma_{n-2}$, and $s_{1,1,1} \in \Sigma_{n-3}$. On the other hand, Corollary 3.2 yields a sum-of-squares certificate that involves $z \in \Sigma_{n+\ell-1}$ and $q \in \Sigma_{n-1}$. Converting the cones of sum-of-squares polynomials to positive semidefinite cones according to (3.11), the LMI corresponding to (3.14) is generally smaller in both dimension and number of variables compared to the LMI representation of the result of Lemma 3.3. In [5], a counterpart of Lemma 3.3 for trigonometric polynomials nonnegative on nonintersecting segments of the unit circle is presented.

To illustrate the computational advantage of our result to the LMIs obtained from $[9,18]$ and $[4,5]$, we apply all three approaches to a finite impulse response filter design example adopted from [9]. Herein, the coefficients $h_{i}, i=0, \ldots, n$ of the filter $H(z)=\sum_{i=0}^{n} h_{i} z^{-i}$ are computed by solving the following problem:

$$
\begin{align*}
\operatorname{minimize} & \varepsilon_{\mathrm{p}} & & \forall \theta \in\left[-\theta_{\mathrm{sl}}, \theta_{\mathrm{sl}}\right] \cup\left[\theta_{\mathrm{sh}}, 2 \pi-\theta_{\mathrm{sh}}\right] \tag{3.15a}\\
\text { subject to } & \left|H\left(e^{\mathrm{i} \theta}\right)\right| \leq \varepsilon_{\mathrm{s}}, & & \forall \theta \in\left[\theta_{\mathrm{pl}}, \theta_{\mathrm{ph}}\right] \tag{3.15b}
\end{align*}
$$

where we use $\varepsilon_{\mathrm{s}}=5 \cdot 10^{-3}, \theta_{\mathrm{sl}}=0.1 \pi, \theta_{\mathrm{sh}}=0.7 \pi, \theta_{\mathrm{pl}}=0.3 \pi, \theta_{\mathrm{ph}}=0.5 \pi$, and delay $d=15$. A filter of length $n=30$ is designed. While all three approaches yield the same LMI equivalent to (3.15c), they differ on (3.15b). In all cases, the LMI variables can be selected real symmetric instead of complex Hermitian without introducing conservatism [15]. The resulting SDPs are parsed with Yalmip [13] and solved with

Fig. 3.3. Solution of the optimal filter design example.
SDPT3 [19] on a general purpose laptop (Intel ${ }^{\circledR}$ Core $^{\mathrm{TM}} \mathrm{i} 7,2.8 \mathrm{GHz}, 8 \mathrm{~GB}$ of RAM). The optimal value is $\varepsilon_{\mathrm{p}}=2.5 \cdot 10^{-4}$ and Figure 3.3 shows the amplitude response of the optimal filter. When applying $[9,18]$ to each of the intervals considered in $(3.15 \mathrm{~b})$ separately, SDPT3 requires 22 CPU seconds to solve the resulting SDP. If [5] is used to convert (3.15b) to an LMI, the SDP is solved in 35 CPU seconds, while the SDP obtained from Theorem 2.2 is solved in 15 CPU seconds. Note that the three LMI equivalents to (3.15b) have very different structures, and we did not explore the computational benefits that can be obtained by exploiting these structures.
4. Conclusion. This paper generalizes the KYP lemma to particular curves in the complex plane that are characterized by a polynomial equality and inequality of degree largen than two. As a first application of our result we show that the considered set of curves includes the union of segments on a circle or line as a special case. When dealing with these special cases, the novel LMI condition is smaller in dimension and number of variables compared to existing results from the literature. Currently, we are investigating the potential of our result in cases where Assumption 2 does not hold, as well as its application to the frequency domain analysis of linear time-invariant systems with a generalized frequency variable. In the latter application, both assumptions are generally violated.

Acknowledgement. This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology in Japan through Grant-in-Aid for Scientific Research (A) No. 21246067. Tetsuya Iwasaki was supported in part by the National Science Foundation, No. 1068997. Goele Pipeleers is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO-Vlaanderen). Her work benefits from KU Leuven-BOF PFV/10/002 Center-of-Excellence Optimization in Engineering (OPTEC), and the Belgian Network Dynamical Systems, Control and Optimization (DYSCO) initiated by the Belgian Science Policy Office.

Appendix A. Proof of Lemma 2.3.

Based on the mixed-product property of the matrix Kronecker product, Eq. (2.13) amounts to

$$
\begin{align*}
\left(\left[\begin{array}{cc}
1 & -s
\end{array}\right] T \otimes I_{n}\right) F_{\ell} z=0, & \text { for } s \neq \infty \\
\left(\left[\begin{array}{ll}
0 & 1
\end{array}\right] T \otimes I_{n}\right) F_{\ell} z=0, & \text { for } s=\infty \tag{A.1}
\end{align*}
$$

To verify that a vector z of the form (2.14) satisfies (A.1) we elaborate $F_{\ell} z_{i}$, where z_{i} denotes the i th term in (2.14), from bottom to top, which yields

$$
F_{\ell}\left[\begin{array}{c}
x_{i} \\
l_{\ell-1}\left(\lambda_{i}\right)^{\mathrm{F}} \otimes u_{i}
\end{array}\right]=l_{\ell}\left(\lambda_{i}\right) \otimes \chi\left(x_{i}, u_{i}\right),
$$

where

$$
\chi\left(x_{i}, u_{i}\right)= \begin{cases}x_{i}, & \text { if } \lambda_{i} \neq \infty, \\ B u_{i}, & \text { if } \lambda_{i}=\infty,\end{cases}
$$

As λ_{i} are the ℓ roots of (2.4), each z_{i} satisfies (A.1), and consequently, so does $z=$ $\sum_{i=1}^{\ell} z_{i}$.

To show that (A.1) implies (2.14) we observe that the null space of $\left[\begin{array}{ll}1 & -s\end{array}\right] T$ for $s \neq \infty$ and $\left[\begin{array}{ll}0 & 1\end{array}\right] T$ for $s=\infty$ is spanned by $\left\{l_{\ell}\left(\lambda_{1}\right), \ldots, l_{\ell}\left(\lambda_{\ell}\right)\right\}$ with $\lambda_{i}, i \in \mathbb{I}_{\ell}$, the ℓ distinct roots in $\mathcal{R}_{T}(s)$. Hence, (A.1) holds if and only if there exist $x_{i} \in \mathbb{C}^{n}$ such that

$$
\begin{equation*}
F_{\ell} z=\sum_{i=1}^{\ell} l_{\ell}\left(\lambda_{i}\right) \chi_{i} . \tag{A.2}
\end{equation*}
$$

The vector z is partitioned as follows

$$
z=\left[\begin{array}{lllll}
x^{\top} & u^{\top} & v_{1}^{\top} & \cdots & v_{\ell-1}^{\top}
\end{array}\right]^{\top},
$$

with $x \in \mathbb{C}^{n}$ and $u, v_{1}, \ldots, v_{\ell-1} \in \mathbb{C}^{m}$. Let us first assume that $\infty \notin \mathcal{R}_{T}(s)$. Then, by elaborating (A.2) from bottom to top we obtain the following equalities

$$
\begin{aligned}
& x=\sum_{i=1}^{\ell} \chi_{i}, \quad \text { and } \\
& \left(\left[\begin{array}{lll}
l_{\ell-1}\left(\lambda_{1}\right)^{F} & \cdots & \left.\left.l_{\ell-1}\left(\lambda_{\ell}\right)^{F}\right] \otimes I_{n}\right)
\end{array}\left[\begin{array}{c}
\left(\lambda_{1} I-A\right) \chi_{1} \\
\vdots \\
\left(\lambda_{\ell} I-A\right) \chi_{\ell}
\end{array}\right]=\left[\begin{array}{c}
B u \\
B v_{1} \\
\vdots \\
B v_{\ell-1}
\end{array}\right] .\right.\right.
\end{aligned}
$$

As the Vandermonde matrix $\left[l_{\ell-1}\left(\lambda_{1}\right)^{\mathrm{F}} \quad \cdots \quad l_{\ell-1}\left(\lambda_{\ell}\right)^{\mathrm{F}}\right]$ is invertible, the last equation implies that all $\left(\lambda_{i} I-A\right) \chi_{i}$ lie in the range of B. Consequently, one can decompose u as follows

$$
u=\sum_{i=1}^{\ell} u_{i}, \quad \text { where } \quad\left(\lambda_{i} I-A\right) \chi_{i}=B u_{i}
$$

and hence, $\left(\chi_{i}, u_{i}\right) \in \mathcal{N}_{A, B}\left(\lambda_{i}\right)$. Similarly, v_{1} can be written as

$$
v_{1}=\sum_{i=1}^{\ell} v_{1, i}, \quad \text { where } \quad \lambda_{i} B u_{i}=B v_{1, i} .
$$

Since B is assumed to have full column rank, this implies $v_{1, i}=\lambda_{i} u_{i}$. Continuing this way up to $v_{\ell-1}$ yields decomposition (2.14). Let us now consider the case $\infty \in \mathcal{R}_{T}(s)$, where we take $\lambda_{\ell}=\infty$. Then, the elaboration of (A.2) yields

$$
\begin{aligned}
& x=\sum_{i=1}^{\ell-1} \chi_{i}, \quad \text { and } \\
& \left(\left[\begin{array}{lll}
{\left[l_{\ell-1}\left(\lambda_{1}\right)^{\mathrm{F}}\right.} & \cdots & \left.l_{\ell-1}\left(\lambda_{\ell}\right)^{\mathrm{F}}\right]
\end{array}\right] \otimes I_{n}\right)\left[\begin{array}{c}
\left(\lambda_{1} I-A\right) \chi_{1} \\
\vdots \\
\left(\lambda_{\ell-1} I-A\right) \chi_{\ell-1} \\
\chi_{\ell}
\end{array}\right]=\left[\begin{array}{c}
B u \\
B v_{1} \\
\vdots \\
B v_{\ell-1}
\end{array}\right],
\end{aligned}
$$

and similarly as above, we obtain

$$
\begin{aligned}
u & =\sum_{i=1}^{\ell-1} u_{i}, \quad \text { where } \quad\left(\lambda_{i} I-A\right) \chi_{i}=B u_{i} \\
v_{1} & =\sum_{i=1}^{\ell-1} \lambda_{i} u_{i}, \quad \ldots \quad v_{\ell-2}=\sum_{i=1}^{\ell-1} \lambda_{i}^{\ell-2} u_{i} \\
v_{\ell-1} & =\sum_{i=1}^{\ell-1} \lambda_{i}^{\ell-1} u_{i}+u_{\ell}, \quad \text { where } \quad \chi_{\ell}=B u_{\ell}
\end{aligned}
$$

This way, decomposition (2.14) is retrieved.

Appendix B. Proof of Lemma 2.4.

Expanding (2.15) with $\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}$ of the form (2.3b) yields

$$
X Y^{*}+Y X^{*}=0, \quad \alpha X X^{*}+\gamma Y Y^{*} \succeq 0
$$

and $s_{i} \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$ means $s_{i}+\bar{s}_{i}=0$ and $\alpha\left|s_{i}\right|^{2}+\gamma \geq 0$. We distinguish two cases.

1. $0 \leq \alpha \leq \gamma$. In this case the inequality in (2.15) is redundant. The equality is equivalent to $(X+Y)(X+Y)^{*}=(X-Y)(X-Y)^{*}$. Therefore $X+Y$ and $X-Y$ have the same left singular vectors and singular values, so they can be written as

$$
X+Y=P \Sigma Q_{1}^{*}, \quad X-Y=P \Sigma Q_{2}^{*}
$$

with a unitary matrix $P \in \mathbb{C}_{n \times n}$, diagonal $\Sigma \in \mathbb{R}_{n \times m}$, and unitary $Q_{1}, Q_{2} \in$ $\mathbb{C}_{m \times m}$. The matrix $Q_{1} Q_{2}^{*}$ is unitary, and therefore has a Schur factorization $V \operatorname{diag}(\gamma) V^{*}$ with $\left|\gamma_{i}\right|=1, i=1, \ldots, m$. Defining $W=Y V$ and $s_{i}=$ $\left(1+\gamma_{i}\right) /\left(1-\gamma_{i}\right)$ provides the factorization (2.16).
2. $\alpha<0<\gamma$. It follows from lemma 5 in [10] that X can be written as $X=Y \Delta$, where $\Delta+\Delta^{*}=0$, and $\alpha \Delta \Delta^{*}+\gamma I \preceq 0$. The equality $\Delta+\Delta^{*}=0$ implies that Δ has a Schur factorization $\Delta=V \operatorname{diag}(s) V^{*}$ with imaginary eigenvalues s_{i} (i.e., $s_{i}+\bar{s}_{i}=0$). The inequality $\alpha \Delta \Delta^{*}+\gamma I \preceq 0$ implies that $\alpha\left|s_{i}\right|^{2}+\gamma \leq 0$. Defining $W=Y V$ gives (2.16).

Appendix C. Proof of Theorem 2.2.

To extend the proof of Theorem 2.1 presented in Section 2.3 to Theorem 2.2, we show that following LMIS are strong alternatives in case (A, B) is controllable:
(i) There exist $P, Q \in \mathbb{H}^{n}$ that satisfy $Q \succeq 0$ and

$$
F_{\ell}^{*}(\Phi \otimes P+\Psi \otimes Q) F_{\ell}+G_{\ell}^{*}(R \otimes \Theta) G_{\ell} \preceq 0
$$

(ii) There exists $Z \in \mathbb{H}^{n+m \ell}$ that satisfies $Z \succeq 0$ and

$$
\begin{aligned}
& \operatorname{tr}\left(G_{\ell}^{*}(R \otimes \Theta) G_{\ell} Z\right)>0 \\
& \tilde{F}_{\ell}(\bar{\Phi} \otimes Z) \tilde{F}_{\ell}^{*}=0 \\
& \tilde{F}_{\ell}(\bar{\Psi} \otimes Z) \tilde{F}_{\ell}^{*} \succeq 0
\end{aligned}
$$

We focus on the case where Ψ is of the form (2.3) with $\alpha<0<\gamma$. In case $0 \leq \alpha \leq \gamma$, without loss of generality $Q=0$ may be enforced in (i) and the last matrix inequality
in (ii) may be omitted. After these modifications, the proof proceeds along the same lines as outlined below.

To meet Slater's constraint qualification, we show that the controllability of (A, B) implies that there exists $Z \succ 0$ such that

$$
\begin{equation*}
\tilde{F}_{\ell}(\bar{\Phi} \otimes Z) \tilde{F}_{\ell}^{*}=0, \quad \tilde{F}_{\ell}(\bar{\Psi} \otimes Z) \tilde{F}_{\ell}^{*} \succ 0 \tag{C.1}
\end{equation*}
$$

To this end, we construct $n+m \ell$ linearly independent vectors $z_{i} \in \mathbb{C}^{n+m \ell}$ of the form

$$
z_{i}=\left[\begin{array}{c}
x_{i} \\
l_{\ell-1}\left(\lambda_{i}\right)^{\mathrm{F}} \otimes u_{i}
\end{array}\right], \quad \text { with } \quad \lambda_{i} \in \grave{\Lambda}(\Phi, \Psi),\left(x_{i}, u_{i}\right) \in \mathcal{N}_{A, B}\left(\lambda_{i}\right)
$$

where

$$
\grave{\boldsymbol{\Lambda}}(\Phi, \Psi)=\left\{\lambda \in \mathbb{C}: l_{\ell}(\lambda)^{*} \Phi l_{\ell}(\lambda)=0, l_{\ell}(\lambda)^{*} \Psi l_{\ell}(\lambda)>0\right\}
$$

It is then readily verified that

$$
Z=\sum_{i=1}^{n+m \ell} z_{i} z_{i}^{*}
$$

satisfies $Z \succ 0$ and (C.1). To construct the first n vectors $z_{i}, i \in \mathbb{I}_{n}$, we pick n distinct values $\lambda_{i} \in \AA(\Phi, \Psi)$ that correspond to n distinct values $s_{i} \in \AA\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$. Next, the matrix $K \in \mathbb{C}^{m \times n}$ is computed such that $A+B K$ has $\lambda_{1}, \ldots, \lambda_{n}$ as eigenvalues. The existence of K is guaranteed by the controllability of (A, B). The vector $x_{i}, i \in \mathbb{I}_{n}$, is set equal to the eigenvector of $A+B K$ corresponding to λ_{i}, and $u_{i}=K x_{i}$. This way, $\left(x_{i}, u_{i}\right) \in \mathcal{N}_{A, B}\left(\lambda_{i}\right)$ since

$$
A x_{i}+B u_{i}=(A+B K) x_{i}=\lambda_{i} x_{i}
$$

and the corresponding vectors $z_{i}, i \in \mathbb{I}_{n}$, are linearly independent since x_{i} are eigenvectors of $A+B K$ for distinct eigenvalues and hence, linearly independent. To construct the remaining $m \ell$ vectors $z_{i}, i \in n+\mathbb{I}_{m \ell}$, we pick $s_{0} \in \AA\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$ and $s_{0} \notin\left\{s_{1}, \ldots, s_{n}\right\}$. The corresponding roots in $\mathcal{R}_{T}\left(s_{0}\right)$ be denoted by $\lambda_{0, k}, k \in \mathbb{I}_{\ell}$. For ease of exposition, we assume $s_{0} \neq \infty$ and $\infty \notin \mathcal{R}_{T}\left(s_{0}\right)$. Next, we compute the matrices $X_{0, k} \in \mathbb{C}^{n \times m}$ and $U_{0, k} \in \mathbb{C}^{m \times m}$ such that

$$
\left[\begin{array}{ll}
A-\lambda_{0, k} I & B
\end{array}\right]\left[\begin{array}{l}
X_{0, k} \\
U_{0, k}
\end{array}\right]=0, \quad \text { and } \quad \operatorname{rank} U_{0, k}=m
$$

By the controllability of (A, B), such $X_{0, k}, U_{0, k}$ exist and the columns of $\left[\begin{array}{ll}X_{0, k}^{\top} & U_{0, k}^{\top}\end{array}\right]^{\top}$ constitute a basis for $\mathcal{N}_{A, B}\left(\lambda_{0, k}\right)$. The vectors $z_{i}, i \in n+\mathbb{I}_{m \ell}$ are then set as follows:

$$
\left[\begin{array}{llll}
z_{n+1} & z_{n+2} & \cdots & z_{n+m \ell}
\end{array}\right]=\left[\begin{array}{cccc}
X_{0,1} & X_{0,2} & \cdots & X_{0, \ell} \\
U_{0,1} & U_{0,2} & \cdots & U_{0, \ell} \\
\vdots & \vdots & & \vdots \\
\lambda_{0,1}^{\ell-1} U_{0,1} & \lambda_{0,2}^{\ell-1} U_{0,2} & \cdots & \lambda_{0, \ell}^{\ell-1} U_{0, \ell}
\end{array}\right]
$$

As the roots $\lambda_{0, k}, k \in \mathbb{I}_{\ell}$, are all distinct and matrices $U_{0, k}$ have full rank, the $m \ell \times m \ell$ bottom part of the right-hand side matrix has full rank, and consequently, the vectors $z_{i}, i \in n+\mathbb{I}_{m \ell}$ are linearly independent.

To complete the proof, we show that $S_{1} \cap S_{2}=\{0\}$, where

$$
S_{1}=\operatorname{span}\left\{z_{1}, \ldots, z_{n}\right\}, \quad S_{2}=\operatorname{span}\left\{z_{n+1}, \ldots, z_{n+m \ell}\right\}
$$

Suppose $v \in S_{1} \cap S_{2}$. The containment $v \in S_{1}$ is equivalent to the existence of scalars α_{i} such that

$$
v=\sum_{i=1}^{n} \alpha_{i} z_{i}
$$

Combining Lemma 2.3 with the property that the vectors $z_{n+(k-1) m+1}, \ldots, z_{n+k m}$ constitute a basis for $\mathcal{N}_{A, B}\left(\lambda_{0, k}\right)$ reveals that the vectors $z_{i}, i \in n+\mathbb{I}_{m \ell}$, constitute a basis for the nullspace of

$$
\left(\left[\begin{array}{ll}
1 & -s_{0}
\end{array}\right] \otimes I_{n}\right)\left(T \otimes I_{n}\right) F_{\ell} .
$$

Consequently, $v \in S_{2}$ is equivalent to

$$
\left(\left[\begin{array}{ll}
1 & -s_{0}
\end{array}\right] \otimes I_{n}\right)\left(T \otimes I_{n}\right) F_{\ell} v=0
$$

Elaborating the left-hand side using relations (2.17a) and (2.6) yields

$$
\sum_{i=1}^{n} \alpha_{i} \frac{\left(s_{i}-s_{0}\right)}{t_{2}\left(\lambda_{i}\right)} x_{i}=0
$$

Since $s_{0} \neq s_{i}$ for all $i \in \mathbb{I}_{n}$ and the vectors x_{1}, \ldots, x_{n} are linearly independent, this implies $\alpha_{i}=0$ for all $i \in \mathbb{I}_{n}$, and consequently, $v=0$.

Appendix D. Proof of Lemma 3.1.

To complete the proof of Lemma 3.1, we show that the matrix $R \in \mathbb{S}^{\ell}$ defined by (3.7) satisfies the conditions (2.5) of Assumption 2. First we prove (2.5a) by showing that

$$
\begin{equation*}
l_{\ell-1}(\lambda)^{*} R l_{\ell-1}(\lambda)>0, \quad \forall \lambda \in \mathbb{R} \tag{D.1}
\end{equation*}
$$

From (3.7) and definition (3.2), we obtain

$$
l_{\ell}(\lambda)^{*} \Phi l_{\ell}(\lambda)=l_{1}(\lambda)^{*} \Phi_{\mathrm{r}} l_{1}(\lambda) \cdot l_{\ell-1}(\lambda)^{*} R l_{\ell-1}(\lambda)
$$

Solving this equation for the second term of the right-hand side yields

$$
\begin{equation*}
l_{\ell-1}(\lambda)^{*} R l_{\ell-1}(\lambda)=\sum_{i=1}^{\ell}\left(\beta_{i}-\alpha_{i}\right) \prod_{j \neq i}\left(\lambda-\beta_{j}\right)\left(\lambda-\alpha_{j}\right) \tag{D.2}
\end{equation*}
$$

To prove (D.1) we show that for given $\alpha_{i}, \beta_{i}, i \in \mathbb{I}_{\ell}$, that satisfy (3.3)

$$
\begin{equation*}
f_{k}(\lambda)=\sum_{i=1}^{k}\left(\beta_{i}-\alpha_{i}\right) \prod_{j \neq i}\left(\lambda-\beta_{j}\right)\left(\lambda-\alpha_{j}\right)>0, \forall \lambda \in \mathbb{R} \tag{D.3}
\end{equation*}
$$

holds for all $k \in \mathbb{I}_{\ell}$. We do this by induction on k. For $k=1, f_{1}(\lambda)=\left(\beta_{1}-\alpha_{1}\right)>0$ on account of the relations (3.3). Next, we assume that (D.3) holds for a given $k<\ell$ and
show that it then also holds for $k+1$. To this end, we elaborate $f_{k+1}(\lambda)$ as follows:

$$
\begin{align*}
f_{\ell+1}(\lambda)=(\lambda- & \left.\alpha_{\ell+1}\right)\left(\lambda-\beta_{\ell+1}\right) f_{\ell}(\lambda) \\
& +\left(\beta_{\ell+1}-\alpha_{\ell+1}\right) \prod_{j=1}^{\ell}\left(\lambda-\beta_{j}\right)\left(\lambda-\alpha_{j}\right), \tag{D.4a}\\
=-(\lambda & \left.-\alpha_{1}\right)\left(\lambda-\beta_{\ell+1}\right) \tilde{f}_{\ell}(\lambda) \\
& +\left(\beta_{\ell+1}-\alpha_{1}\right) \prod_{j=1}^{\ell}\left(\lambda-\tilde{\beta}_{j}\right)\left(\lambda-\tilde{\alpha}_{j}\right), \tag{D.4b}
\end{align*}
$$

where $\tilde{\alpha}_{j}=\beta_{j}$ and $\tilde{\beta}_{j}=\alpha_{j+1}, j \in \mathbb{I}_{\ell}$, and

$$
\tilde{f}_{k}(\lambda)=\sum_{i=1}^{k}\left(\tilde{\beta}_{i}-\tilde{\alpha}_{i}\right) \prod_{j \neq i}\left(\lambda-\tilde{\beta}_{j}\right)\left(\lambda-\tilde{\alpha}_{j}\right)
$$

On account of the induction hypothesis, both $f_{k}(\lambda)$ and $\tilde{f}_{k}(\lambda)$ are positive for all $\lambda \in \mathbb{R}$. From decomposition (D.4b) we readily obtain that $f_{k+1}(\lambda)>0$ for $\lambda \in$ $\bigcup_{i=1}^{k+1}\left[\alpha_{i}, \beta_{i}\right]$, as for these λ both terms in (D.4b) are nonnegative and at least one of them is positive. On the other hand, $f_{\ell+1}(\lambda)>0$ also holds for $\lambda \in \mathbb{R} \backslash \bigcup_{i=1}^{k+1}\left[\alpha_{i}, \beta_{i}\right]$ as for these λ both terms in (D.4a) are positive. This concludes the inductive step. Hence, (D.1) holds and condition (2.5a) of Assumption 2 is satisfied.

To show (2.5b) we consider arbitrary $\lambda_{i}, \lambda_{j} \in \mathcal{R}_{T}(s), i, j \in \mathbb{I}_{\ell}, i \neq j$, for some arbitrary $s \in \boldsymbol{\Lambda}\left(\Phi_{\mathrm{o}}, \Psi_{\mathrm{o}}\right)$. From the root-locus argument in the proof of Lemma 3.1 we note that $\lambda_{i} \in\left[\alpha_{i}, \beta_{i}\right]$ and $\lambda_{j} \in\left[\alpha_{j}, \beta_{j}\right]$, and hence $\lambda_{i} \neq \lambda_{j}$. Using the decomposition $\Phi=T^{*} \Phi_{\mathrm{o}} T$ and result (2.6), we obtain

$$
l_{\ell}\left(\lambda_{i}\right)^{*} \Phi l_{\ell}\left(\lambda_{j}\right)=t_{2}\left(\lambda_{i}\right)^{*} t_{2}\left(\lambda_{j}\right) \cdot l_{1}(s)^{*} \Phi_{\mathrm{o}} l_{1}(s)=0
$$

for $s \neq \infty$, while for $s=\infty$

$$
l_{\ell}\left(\lambda_{i}\right)^{*} \Phi l_{\ell}\left(\lambda_{j}\right)=t_{1}\left(\lambda_{i}\right)^{*} t_{1}\left(\lambda_{i}\right) \cdot l_{1}(s)^{*} \Phi_{\mathrm{o}} l_{1}(s)=0
$$

Elaborating the left-hand side using (3.7) yields

$$
\begin{aligned}
l_{\ell}\left(\lambda_{i}\right)^{*} \Phi l_{\ell}\left(\lambda_{j}\right) & =l_{1}\left(\lambda_{i}\right)^{*} \Phi_{\mathrm{r}} l_{1}\left(\lambda_{j}\right) \cdot l_{\ell-1}\left(\lambda_{i}\right)^{*} R l_{\ell-1}\left(\lambda_{j}\right) \\
& =\mathrm{i}\left(\lambda_{i}-\lambda_{j}\right) \cdot l_{\ell-1}\left(\lambda_{i}\right)^{*} R l_{\ell-1}\left(\lambda_{j}\right)
\end{aligned}
$$

As this must equal 0 while $\lambda_{i} \neq \lambda_{j}$, (2.5b) holds.

REFERENCES

[1] V. Balakrishnan and L. Vandenberghe, Semidefinite programming duality and linear timeinvariant systems, IEEE Transactions on Automatic Control, 48 (2003), pp. 30-41.
[2] A. Berman and A. Ben-Israel, More on linear inequalities with applications to matrix theory, Journal of Mathematical Analysis and Applications, 33 (1971), pp. 482-496.
[3] M. D. Choi, T. Y. Lam, and B. Reznick, Sums of squares of real polynomials, Proceedings of Symposia in Pure Mathematics, 58 (1995), pp. 103-126.
[4] L. Faybusovich, On Nesterov's approach to semi-infinite programming, Acta Applicandae Mathematicae, 74 (2002), pp. 195-215.
[5] ——, Semidefinite descriptions of cones defining spectral mask constraints, European Journal of Operational Research, 169 (2006), pp. 1207-1221.
[6] S. Hara, T. Hayakawa, and H. Sugata, LTI systems with generalized frequency variables: a unified framework for homogeneous multi-agent dynamical systems, SICE Journal of Control, Measurement, and System Integration, 1 (2009), pp. 001-008.
[7] S. Hara and T. Iwasaki, Sum-of-Squares decomposition via generalized KYP lemma, IEEE Transactions on Automatic Control, 54 (2009), pp. 1025-1029.
[8] S. Hara, H. Tanaka, and T. Iwasaki, Stability analysis of systems with generalized frequency variables, IEEE Transactions on Automatic Control, (2013). To appear.
[9] T. Iwasaki and S. Hara, Generalized KYP lemma: unified frequency domain inequalities with design applications, IEEE Transactions on Automatic Control, 50 (2005), pp. 41-59.
[10] T. Iwasaki, G. Meinsma, and M. Fu, Generalized S-procedure and finite frequency KYP lemma, Mathematical Problems in Engineering, 6 (2000), pp. 305-320.
[11] R. E. Kalman, Lyapunov functions for the problem of Lur'e in automatic control, Proc. of the National Academy of Sciences of the United States of America, 49 (1963), pp. 201-205.
[12] K. Knopp, Elements of the Theory of Functions, Dover books on advanced mathematics, Courier Dover Publications, 1952.
[13] J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.
[14] G. Pipeleers, T. Iwasaki, and S. Hara, Generalizing the KYP lemma to the union of invervals, in Proceedings of the 2013 European Control Conference, Zürich, Switzerland, July 2013.
[15] G. Pipeleers and L. Vandenberghe, Generalized KYP lemma with real data, IEEE Transactions on Automatic Control, 56 (2011), pp. 2940-2944.
[16] V. M. Popov, Absolute stability of nonlinear systems of automatic control, Automation and Remote Control, 22 (1962), pp. 857-875. Russian original in August 1961.
[17] V. Powers and T. Wörmann, An algorithm for sums of squares of real polynomials, Journal of Pure and Applied Algebra, 127 (1998), pp. 99-104.
[18] C. W. Scherer, LMI relaxations in robust control, European Journal of Control, 12 (2006), pp. 3-29.
[19] R. Tutuncu, K. Toh, and M. Todd, Solving semidefinite-quadratic-linear programs using SDPT3, Mathematical Programming Ser. B, 95 (2003), pp. 189-217.
[20] V. A. Yakubovich, Solution of certain matrix inequalities encountered in non-linear regulation theory, Doklady Akademii Nauk SSSR, 143 (1962), pp. 1304-1307. English translation in Soviet mathematics - Doklady, vol. 3, 1962, pp. 620-623.

[^0]: *Katholieke Universiteit Leuven, Dept. of Mechanical Engineering, Celestijnenlaan 300B, B-3001 Heverlee, Belgium (goele.pipeleers@mech.kuleuven.be).
 ${ }^{\dagger}$ University of California, Los Angeles, Dept. of Mechanical and Aerospace Engineering, 420 Westwood Plaza, Los Angeles, CA 90095-1597, USA (tiwasaki@ucla.edu).
 \ddagger The University of Tokyo, Dept. of Information Physics and Computing, Bunkyo-ku, Tokyo 113-8656, Japan (shinji_hara@ipc.i.u-tokyo.ac.jp).

