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Robust StabilityAnalysis for LTISystems

withGeneralizedFrequencyVariables and

ItsApplication toGeneRegulatoryNetworks 1

Shinji Hara a, Tetsuya Iwasaki b, Yutaka Hori c,

aResearch and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

bMechanical and Aerospace Engineering, University of California, 420 Westwood Plaza, Los Angeles, CA 90095

cApplied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522,
Japan

Abstract

A class of networked dynamical systems with multiple homogeneous agents can be represented by a linear system with a
generalized frequency variable. This paper is concerned with robust stability analysis of such class of systems under perturba-
tions in the dynamics of agents. The perturbed agents no longer share the same dynamics and thus the analysis encompasses
heterogeneous multi-agent systems consisting of slightly different agents. We first present nominal stability conditions for the
system of interconnected MIMO agents. We then focus on robust stability, where we consider three types of perturbations,
leading to homogeneous agents, heterogeneous agents with and without uncertain interconnections. For each case, we show
that a necessary and sufficient condition for robust stability is given by an H∞-norm bound on a set of transfer functions
parametrized by the eigenvalues of the interconnection matrix, provided the nominal interconnections have a certain structure.
The robust stability condition is interpreted as the requirement that the eigenvalues of the interconnection matrix be located
in a particular region on the complex plane. The usefulness of the results is demonstrated through an application to robust
stability analysis for gene regulatory networks.

Key words: Large-scale systems, Linear control systems, Robust stability, Biomedical systems, Networks

1 Introduction

Recently, much attention has been paid to large scale
or complex dynamical systems in a variety of science
and engineering fields including control. One of the main
issues in control is to systematically design decentral-
ized cooperative controllers for multi-agent networked
dynamical systems. There are many research results ad-
dressing this issue in the form of proposing a specific
approach within a particular problem formulation (see
e.g., [8,28] and references therein). However, very few re-
sults are available so far to provide a unifying theoretical
framework along this line of research.

Email addresses: Shinji Hara@ipc.i.u-tokyo.ac.jp
(Shinji Hara), tiwasaki@ucla.edu (Tetsuya Iwasaki),
yhori@appi.keio.ac.jp (Yutaka Hori).
1 Corresponding author S. Hara. Tel. +81-3-3817-1602. Fax.
+81-3-3817-1677.

To establish a unified framework for the analysis and
synthesis of multi-agent networked dynamical systems,
our research group recently proposed a linear time-
invariant (LTI) system with a generalized frequency
variable as one of the unifying expressions for multi-
agent dynamical systems [10,11]. Specifically, the trans-
fer function G(s) representing the overall dynamics of a
multi-agent system with homogeneous agent dynamics
h(s) is described by simply replacing s by a rational
function ϕ(s) := 1/h(s) in a transfer function G(s),
i.e., G(s) := G(ϕ(s)). We call ϕ(s) the generalized fre-
quency variable, because s in a continuous-time transfer
function represents the frequency variable.

The system description has a potential to provide a
theoretical foundation for analyzing and designing ho-
mogeneous large-scale networked dynamical systems in
a variety of areas including central pattern generators
(CPGs) [18] , gene-protein regulatory networks [3,7], and
automobile platoons [34] as well as consensus and for-
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mation problems as surveyed in [28]. The very funda-
mental properties on LTI multi-agent systems including
controllability/observability [10,11], graphical stability
tests [28,30], an algebraic and LMI conditions for Hur-
witz stability [14,32], and H2-norm and H∞-norm com-
putations [13,24,25] have been investigated. However,
most of those researches treat homogeneous multi-agent
systems, while agents in practical applications in gen-
eral do not share common dynamics and the commu-
nication time delay may be different. Hence the results
can not be directly applied to those problems in which
the assumption on homogeneity of the agent dynamics
is unrealistic.

To relax the assumption accordingly and cope with such
practical situations, reference [22] considered symmet-
ric networks of heterogeneous agents with an unstruc-
tured uncertainty in the interconnections, and provided
scalable robust stability conditions exploiting the sym-
metry. The idea was also used to address consensus
problems [23]. References [19,20] considered systems of
heterogeneous agents with interconnections specified by
a class of normal matrices with uncertain eigenvalues,
and provided scalable robust stability conditions ex-
ploiting the normality. All these results are focused on
single-input-single-output (SISO) agents. Reference [33]
considered uncertain multi-input-multi-output (MIMO)
multi-agent systems and proposed robustly synchroniz-
ing dynamic protocols under heterogeneous (resp. ho-
mogeneous) perturbations in the agent dynamics with
symmetric (resp. asymmetric) interconnections.

Here we provide a unified perspective on the robust sta-
bility analysis of MIMO multi-agent systems exploit-
ing the framework of LTI systems with generalized fre-
quency variables [14]. We consider several classes of un-
certain multi-agent systems containing cases that have
not been addressed in the previous works. In particular,
we consider three types of perturbations, leading to (a)
uncertain homogeneous agents with arbitrary intercon-
nections, (b) uncertain heterogeneous agents with diag-
onally normalizable interconnections (a precise defini-
tion will be given later), and (c) heterogeneous agents
and arbitrary interconnections that are uncertain but
nominally homogeneous and normal, respectively. Case
(b) captures one of realistic situations of the multi-agent
system consisting of the same type of agents with inde-
pendent uncertainties such as multi-robot systems and
multi-wheel electric vehicles [5]. Case (a) represents the
fully idealized situation for homogeneous multi-agent
system with uncertain dynamics of the agent, which is
mainly introduced for deriving the results for Case (b).
Case (c) allows uncertainties in the interaction among
agents due to the change of environments.

For each case, we show that a necessary and sufficient
condition for robust stability is given by an H∞-norm
bound on a set of transfer functions parametrized by the
eigenvalues of the interconnection matrix. It should be

emphasized that the classes of interconnections specified
in Cases (b) and (c) are not so restrictive in practice.
We have at least two real applications which meet the
class specified for Case (b), namely cyclic gene regulatory
networks [16] and multi-wheel electric vehicles [5], as will
be shown in Section 3.2. Any networked system with
undirected interconnection graph satisfies the condition
specified for Case (c).

The robust stability condition is interpreted as the re-
quirement that the eigenvalues of the interconnection
matrix be located in a particular region on the com-
plex plane. The computational issues are also discussed
by investigating the case of normalized coprime factor
perturbations, which can take both the sensitivity and
complementary sensitivity functions into account.While
a state space formulation captures the general case of
MIMO agents, a transfer function formulation provides
an analytical characterization of the robust stability re-
gion for the SISO case. We then demonstrate robust sta-
bility analysis for gene regulatory networks as a biolog-
ical application to show the effectiveness of the theoret-
ical results to get the analytical formula of the robust
stability condition.

A preliminary investigation on the robust stability anal-
ysis was done for SISO agents with multiplicative per-
turbations in the authors’ conference paper [12]. The
present paper treats MIMO agents with general class of
perturbations and provides necessary and sufficient ro-
bust stability conditions with complete proofs. The ap-
plication to gene regulatory networks is also new in this
paper, which clearly shows the effectiveness of the the-
oretical results to get an analytical condition for the ro-
bustness that leads to new biological insights.

This paper is organized as follows. In Section 2, we briefly
review (nominal) stability conditions for LTI systems
with generalized frequency variables as a preliminary
study, where previous SISO results are generalized to
the MIMO case in a straightforward manner. Section 3
is devoted to robust stability analysis. We first introduce
three different types of perturbations which correspond
to three typical situations for multi-agent systems con-
sisting of slightly different dynamic agents with commu-
nication time delays. We then derive necessary and suf-
ficient conditions for the robust stability. The computa-
tional issues are discussed in Section 4. Section 5 demon-
strates the usefulness of the robust stability conditions
by an application to gene regulatory networks. Finally,
we make concluding remarks in Section 6.

We use the following notation. The sets of real, complex
and natural numbers, are denoted by R, C, and N, re-
spectively. The complex conjugate of z ∈ C is denoted
by z̄. For a matrix A, its transpose and complex conju-
gate transpose are denoted by AT and A∗, respectively.
For a square matrix A, the set of eigenvalues is denoted
by σ(A). The symbols Sn and S+

n stand for the sets of
n × n real symmetric matrices and its positive definite
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subsets. For matrices A and B, A⊗B means their Kro-
necker product. The open left-half complex plane and
the closed right-half complex plane are denoted by C−
and C+, respectively. The upper and lower linear frac-
tional transformations (LFTs) are denoted by Fu and
Fℓ, respectively. The set of p×m proper stable real ra-
tional functions is denoted by RHp×m

∞ .

Summary of symbols: Matrix A represents the general
interconnections of homogeneous MIMO agents H(s)
with (B,C,D) specifying the input-output structure.
Matrix A specifies an instance of the interconnection
structure by A = A⊗ Iq, on which our analysis focuses.

For robust stability analysis, the uncertain agent H̃i(s)
is expressed as the LFT of G(s) and ∆i(s), and their

block-diagonal assembly is denoted by H̃(s), which is
the LFT of G(s) and ∆(s). The generalized plant G(s)
under the influence of the interconnections by A is
denoted by Gλ where λ is an eigenvalue of A.

2 LTI SystemwithGeneralizedFrequencyVari-
able

2.1 System Representation

Consider the linear time-invariant system described by
an upper LFT representation

G(s) = Fu

([
A B

C D

]
, In ⊗H(s)

)
, (1)

where A ∈ Rnq×nq, B ∈ Rnq×m, C ∈ Rp×nq, D ∈ Rp×m,
and H(s) is a MIMO square strictly proper rational
transfer function matrix with q inputs and q outputs,
of which a minimal realization is given by (Ah, Bh, Ch),
where Ah ∈ Rν×ν , Bh ∈ Rν×q, Ch ∈ Rq×ν , and ν is the
McMillan degree of H(s).

The system G(s) can be viewed as an interconnection of
n identical agents, each of which has the common inter-
nal dynamics H(s), and the interconnection structure is
specified by A, and the input-output structure for the
whole system is specified by B, C, and D. The assump-
tion on the squareness of H(s) is not quite restrictive,
since H(s) represents not necessarily the original agent
dynamics but a locally modified agent. One of typical
and fairly general form of the modified agent is given by

H(s) = Fu

([
Ffb(s) Fpre(s)

Fpst(s) 0

]
, P (s)

)
, (2)

where P (s) denotes the possibly non-square original
agent transfer function, and Ffb(s), Fpre(s) and Fpost(s)
respectively correspond to the local feedback controller,

In ⊗H(s)

A⊗ Iq

wa - f - - f wb�

�
zb

-
za

�

6

Fig. 1. Feedback system Σ(In ⊗H(s), A⊗ Iq)

and the pre- and post- filters for adjustments of before
and after communications.

Let us consider the SISO case where q = 1 and define a
transfer function

Go(s) = C(sIn −A)−1B+D, (3)

then system G(s) can be expressed as

G(s) = Go(ϕ(s)), ϕ(s) := 1/H(s). (4)

Note that the variable “s” in (3) characterizes frequency
properties of the continuous-time transfer function
Go(s) and that G(s) is generated by simply replacing s
by ϕ(s) in Go. Hence, we call system G(s) represented
by (4) an LTI system with generalized frequency variable
ϕ(s) [10,11].

2.2 Stability Analysis

We here show that our previous results for the SISO case
[32] can be extended to the MIMO case. In order to in-
vestigate the internal stability of G(s), we will focus on
the feedback system Σ(In ⊗ H(s), A ⊗ Iq) depicted in
Fig. 1. 2 We say that Σ(In ⊗ H(s), A ⊗ Iq) is Hurwitz
stable if all the roots of its characteristic polynomial be-
long to C−, i.e., det(Inq − A ⊗H(s)) = 0 has no roots
in the closed right half complex plane.

We can derive stability conditions similar to those ob-
tained in [32] for the SISO case.

Theorem 1 Let a matrix A ∈ Rn×n, and a strictly
proper rational function H(s) with a minimal realization
(Ah, Bh, Ch) be given and define p(λ, s) by

p(λ, s) := det(sIν −Ah − λBhCh). (5)

Then, the following five statements are equivalent, where
the positive integer ℓk ∈ N and Φk ∈ Sℓk for k =

2 Amore general interconnection structure of the formA⊗K
with an arbitrary q × q matrix K can be reformulated as in
Fig. 1 with A ⊗ Iq by absorbing K into H(s). Hence, the
essential restriction is only to share, among agents, common
weighted outputs for information exchanges.
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1, 2, . . . , ν are specified by applying the Hurwitz-type sta-
bility test for polynomials with complex coefficients to
the corresponding closed-loop characteristic polynomial
p(λ, s) in the same way as Theorem 1 with Appendixes B
and C in [14]:

(i) Σ(In ⊗H(s), A⊗ Iq) is Hurwitz stable.
(ii) σ(A) ⊂ Λs := { λ ∈ C | p(λ, s) is Hurwitz }.
(iii) For each λ ∈ σ(A), all the eigenvalues of Ah +

λBhCh belong to the open left-half complex plane.
(iv) σ(A) ⊂ Λs, where

Λs =
∩ν

k=1{ λ ∈ C | lℓk(λ)∗Φklℓk(λ) > 0 }.
(v) For each k = 1, 2, . . . , ν, there exists Xk ∈ S+

n such
that

Lℓk(A)
T (Φk ⊗Xk)Lℓk(A) > 0. (6)

Here lℓ(λ) and Lℓ(A) are defined by

lℓ(λ) :=


1

λ
...

λℓ−1

 , Lℓ(A) :=


I

A
...

Aℓ−1

 .

Proof. Let T be an n × n non-singular matrix
so that TAT−1 is an upper triangular matrix and
λi (i = 1, 2, . . . n) be eigenvalues of A. Then we have

det(In ⊗ Iq −A⊗H(s)) = 0

⇔ det((TInT
−1)⊗ Iq − (TAT−1)⊗H(s)) = 0

⇔
n∏

i=1

det(Iq − λiH(s)) = 0 (7)

In other words, we can check the stability of the MIMO
LTI system with generalized frequency variable by
checking the stability of n independent feedback sys-
tems consisting of H(s) and the eigenvalues of A, or
Σ(H(s), λiI) for i = 1, . . . , n. Standard determinant
formulas 3 can be used to express the condition in
terms of state space matrices:

det(Iq − λH(s)) = det(Iq − λCh(sIν −Ah)
−1Bh) = 0

⇔ det(

[
sIν −Ah Bh

λCh Iq

]
) = 0

⇔ det(sIν −Ah − λBhCh) = 0.

This clearly shows the equivalence of (i), (ii), and (iii).
The equivalence with (iv) and (v) can be proved by the

3 det

A B

C D

 = 0 is equivalent to D − CA−1B = 0

or A − BD−1C = 0 assuming non-singularity of A or D,
respectively (See e.g., [4]).

same technique as in Theorem 1 in [14] for the SISO
case. 2

Conditions (iv) and (v) in Theorem 1 provide two types
of systematic ways of checking the stability, namely an
algebraic stability test and a numerical method (LMI
feasibility problem), respectively. Note that p(λ, s) is a
polynomial with respect to s and λ and that the degrees
with respect to s and λ are ν and r, respectively, where

r := rank(BhCh) ≤ min{rank(Bh), rank(Ch)} ≤ q.

It should be noticed that the degree with respect to λ is
essentially irrelevant for computational complexity for
the stability test as seen in Theorem 1.

3 Robust Stability Analysis

3.1 Analysis Problems

This section is devoted to setting up appropriate robust
stability problems which properly capture the nature
of multi-agent networked dynamical systems. We first
introduce three classes of perturbations in multi-agent
dynamical systems, which correspond to three different
situations. Among the three cases we will mainly focus
on the case where the same type of agents with slightly
different dynamics are connected to each other through
slightly different communication time delays, since it is
most fit to practical situations.

We consider a general representation of unstructured
perturbations for the common nominal (modified) agent
H(s). Note that H(s) may include a factor associated
with the nominal communication time delay τc, or the
Pade approximation of the time delay say (2− τcs)/(2+
τcs), and the ∆i(s) captures the gap between the actual
system with time delay and H(s) in a certain way.

As seen in Fig. 2, the perturbed i-th agent (i =
1, 2, . . . , n) is described by

H̃i(s) = Fu

([
G11(s) G12(s)

G21(s) H(s)

]
,∆i(s)

)
, (8)

where G11(s) ∈ RHp̃×m̃
∞ , G12(s) ∈ RHp̃×q

∞ , G21(s) ∈
RHq×m̃

∞ , and ∆i(s) ∈ RHm̃×p̃
∞ represents the unstruc-

tured norm-bounded perturbations for the i-th agent.
We may consider a variety of classes of perturbations
by setting G11(s), G12(s), and G21(s) appropriately. For
examples,

• Additive Perturbations: Setting G11(s) = 0,
G12(s) = W2(s), and G21(s) = W1(s) leads to

H̃i(s) = H(s) +W1(s)∆i(s)W2(s).

4
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G11(s) G12(s)

G21(s) H(s)

∆i(s)

� �

�

-

yi ui

zi wi

Fig. 2. Perturbed agent H̃i(s)

• Multiplicative Perturbations: Setting G11(s) =
0, G12(s) = W2(s), and G21(s) = H(s)W1(s) leads

to H̃i(s) = H(s)(Iq +W1(s)∆i(s)W2(s)). In order to
make G21(s) = H(s)W1(s) stable for unstable H(s),

W1(s) should have a form W1(s) = DH(s)Ŵ1(s) with

a certain Ŵ1(s) ∈ RHq×m̃
∞ , where DH(s) is the de-

nominator of a right coprime factorization of H(s)
over RH∞, i.e., H(s) = NH(s)DH(s)−1.

• Multiple Perturbations: There are several other
popular classes of perturbations. One of typical exam-
ples of multiple perturbations is a combination of mul-
tiplicative and feedback perturbations, which respec-
tively correspond to the numerator and the denomi-
nator perturbations, as seen later in (37) for the appli-
cation of gene regulatory networks in Section 5 . An-
other example is so called normalized coprime factor
perturbations, which relates to the loop shaping H∞
design. This case will be investigated in Section 4.2.
Note that the same technique for the multiplicative
perturbations for unstable H(s) using DH(s) is also
available for these cases.

Then, the overall perturbed system without intercon-
nection can be expressed as

H̃(s) := Fu (G(s),∆(s)) , ∆(s) := diag(∆i(s)), (9)

where

G(s) :=

[
In ⊗G11(s) In ⊗G12(s)

In ⊗G21(s) In ⊗H(s)

]
. (10)

In addition to the class of block diagonal perturbations
above, we will treat two additional classes of perturba-
tions, namely full perturbations and identical/repeated
perturbations. More precisely, we will investigate robust
stability conditions for H̃(s) in (9) with the following
three different classes of perturbations:

∆γ := { ∆(s) ∈ ∆p | ∥∆∥∞ ≤ 1/γ }, (11)

∆dγ := { ∆(s) ∈ ∆γ | ∆(s) = diag(∆i(s)) }, (12)

∆Iγ := { ∆(s) ∈ ∆γ | ∆(s) = In ⊗ δ(s) }, (13)

where ∆p denotes the class of proper stable rational
functions, i.e., ∆p(s) ∈ RHm̃×p̃

∞ .

The total feedback system Σ(H̃(s), A⊗ Iq), with in-
terconnection specified by A, is then expressed as
Fℓ(Fu (G(s),∆(s)) , A⊗ Iq).

Clearly,
∆Iγ ⊂ ∆dγ ⊂ ∆γ .

The set ∆Iγ represents a class of homogeneous diagonal
perturbations, and the robust stability was investigated
in [30]. It should be noticed that the agents still share
the same dynamics even if it includes perturbation, or
the perturbation as well as the nominal dynamics should
be coincident among all the agents. This assumption is
too strong for many practical applications, and hence we
have introduced another class ∆dγ which represents a
class of heterogeneous diagonal perturbations with com-
mon nominal dynamics to address the practical situa-
tions. The main purpose of this paper is to investigate
the robust stability for this class. On the other hand,
∆γ corresponds to the full perturbation, where the exis-
tence of off-diagonal perturbations implies that multiple
agents may physically interact with each other in an un-
certain manner. The robust stability conditions for full
perturbations were derived when A is a normal matrix,
i.e., AA∗ = A∗A, in [12].

We are now ready to define a notion of robust stability
investigated in this paper.

Definition 1 Consider the interconnected system
Σ(H̃(s), A⊗ Iq), where the nominal system Σ(In ⊗
H(s), A⊗ Iq) consists of n agents with identical dynam-
ics H(s) interconnected by an n × n real matrix A and
we have the perturbations ∆(s) in a class ∆# (= ∆Iγ ,
∆dγ , ∆γ). We assume that the nominal system is Hur-
witz stable. Then, the perturbed interconnected system
Σ(H̃(s), A ⊗ Iq) is said to be robustly Hurwitz stable
against ∆# if it is Hurwitz stable against all perturba-
tions ∆(s) ∈ ∆#.

3.2 Robust Stability Conditions

The following theorem provides necessary and sufficient
conditions for the robust stability with three different
types of perturbations, namely ∆Iγ , ∆dγ , and ∆γ .

Theorem 2 We consider the following three cases:

(a) ∆(s) ∈ ∆Iγ and A ∈ Rn×n,
(b) ∆(s) ∈ ∆dγ and A ∈ Rn×n

DN ⊂ Rn×n,
(c) ∆(s) ∈ ∆γ and A ∈ Rn×n is normal, i.e., AA∗ =

A∗A,

where

Rn×n
DN := {A ∈ Rn×n | ∃ a diagonal matrix D ∈ Rn×n

such that DAD−1 is normal }, (14)

5
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and we assume that the nominal systemΣ(In⊗H(s), A⊗
Iq) is Hurwitz stable. Then for all three cases (a), (b), and

(c), the perturbed interconnected system Σ(H̃(s), A⊗ Iq)
is robustly Hurwitz stable for the corresponding classes
of perturbations ∆#, if and only if

∥Gλ∥∞ < γ (15)

holds for all λ ∈ σ(A), where

Gλ(s) := Fℓ

([
G11(s) G12(s)

G21(s) H(s)

]
, λIq

)
. (16)

Proof. We here assume that the matrix A is diagonal-
izable just for notational simplicity, because any small
perturbation to A preserves the robustness property due
to the continuity of eigenvalues and we can find a small
perturbation which makes the perturbed A diagonaliz-
able. Then, there exists an n×n non-singular matrix T
satisfying

Λ := TAT−1 = diag{λi},
and this leads to

(T ⊗ Iq) (A⊗ Iq) (T
−1 ⊗ Iq) = diag{λiIq}. (17)

In order to adopt this transformation T , we define

GT (s) := diag{T ⊗ Ip̃, T ⊗ Iq} × G(s) ×
diag{T−1 ⊗ Im̃, T−1 ⊗ Iq}

and
∆T (s) := (T ⊗ Im̃)∆(s)(T−1 ⊗ Ip̃). (18)

We can see that GT (s) = G(s), and hence we have

(T ⊗ Iq) Fu(G(s),∆(s)) (T−1 ⊗ Iq)

=Fu(GT (s),∆T (s)) = Fu(G(s),∆T (s)). (19)

This together with (17) implies that the original ro-
bust stability problem is equivalent to that of an inter-
connected system consisting of Fu(G(s),∆T (s)) and
diag{λiIq} or equivalently consisting of ∆T (s) and
Fℓ(G(s), diag{λiIq}) .

• Proof for Case (a):

If ∆(s) belongs to ∆Iγ , then we have ∆T (s) :=
T∆(s)T−1 = ∆(s) = In ⊗ δ(s). Hence, the intercon-

nected system Σ(H̃(s), A⊗ Iq) can be equivalently
transformed into Σ(Fu(G(s), In ⊗ δ(s)), diag{λiIq}),
of which the robust stability is equivalent to that of
Σ(In ⊗ δ(s),Fℓ(G(s), diag{λiIq}). Note that both the
components of the system are block diagonal, and hence
checking the component-wise robust stability condi-
tion, i.e., robust stability condition for Σ(δ(s),Gλi) for
all i = 1, 2, . . . , n gives the robust stability condition

for the total system. Since the nominal system is sta-
ble and ∥δ(s)∥∞ ≤ 1/γ, we can apply the small gain
theorem (e.g., Theorem 9.1 in [35]) which shows that
the H∞-norm condition given by (15) is the necessary
and sufficient condition for robust stability. This is the
proof for case (a) and the same technique was used in
[30] for the similar problem.

• Proof for Case (b):

We need more investigation for the proof of case (b),
although the necessity is obvious due to ∆Iγ ⊂ ∆dγ .
We will prove the sufficiency by introducing a class of
transformations T represented by

TUD := { T = UD ∈ Cn×n | U ∈ Cn×n : unitary,

D ∈ Rn×n : nonsingular & diagonal }. (20)

We readily see that A ∈ Rn×n
DN is equivalent to the ex-

istence of T ∈ TUD so that TAT−1 is diagonal. If T is
chosen as T = UD, then

(T ⊗ Im̃)∆(s)(T−1 ⊗ Ip̃)

= (U ⊗ Im̃)(D ⊗ Im̃) diag{∆i(s)}(D−1 ⊗ Ip̃)(U
∗ ⊗ Ip̃)

= (U ⊗ Im̃) diag{∆i(s)} (U∗ ⊗ Ip̃)

holds for ∆(s) ∈ ∆dγ with any nonsingular diagonal
matrix D ∈ Rn×n. Also note that

∥U∆i(s)U
∗∥∞ = ∥∆i(s)∥∞ ≤ 1/γ (i = 1, 2, . . . , n)

or equivalently

∥(U ⊗ Im̃) diag{∆i(s)} (U∗ ⊗ Ip̃)∥∞ ≤ 1/γ (21)

holds for ∆(s) ∈ ∆dγ with any unitary matrix U ∈
Cn×n. This shows that theH∞-norm of the perturbation
block of the system transformed by T = UD is bounded
by 1/γ. We need to evaluate the H∞-norm of the nomi-
nal system, which is represented byFℓ{GT , (T⊗Iq) (A⊗
Iq) (T

−1 ⊗ Iq) } in order to apply the small gain theo-
rem (Theorem 9.1 in [35]). Since TAT−1 = diag{λi} or
(17) holds, we have

Fℓ{GT , (T ⊗ Iq) (A⊗ Iq) (T
−1 ⊗ Iq) }

=Fℓ{G, diag{λiIq}}

=diag {Fℓ

([
G11(s) G12(s)

G21(s) H(s)

]
, λiIq

)
}.

Hence, we can see from the small gain theorem (Theorem
9.1 in [35]) that the robust stability is guaranteed if (15)
is satisfied. This completes the proof of sufficiency.

• Proof for Case (c):
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The proof for case (c) is similar to that for case (b).
The necessity is again obvious due to ∆Iγ ⊂ ∆γ . The
sufficiency can be proved by choosing a unitary matrix U
as a candidate of T whichmakesA diagonal and applying
the small gain theorem (Theorem 9.1 in [35]) to the
transformed interconnected system. 2

There are three remarks on Theorem 2.
• The theorem shows that the robust stability condi-

tions for the three cases (a), (b), and (c) are the same.
This implies for instance that one of the worst case
perturbations is an identical diagonal perturbation
when A is normal or A belongs to RDN .

• It should be noticed that the class of normal matrices
includes Hermitian, skew-Hermitian, unitary, and cir-
culant matrices, and hence the results in Theorem 2
would address practical applications for which the in-
terconnections have such particular structures includ-
ing undirected graph structure.

• Although the meaning of class RDN is not clear, there
are at least two classes of matrices that are not normal
but belong to RDN , which fit to some practical appli-
cations. One is a class of cyclic matrices with nonuni-
form entries, which corresponds to any multi-agent
system with cyclic graph structure such as cyclic gene
regulatory networks [16,17] as seen in Section 5. The
other is a class of rank one matrices of the form a1T or
1aT , where a is an n dimensional vector with all posi-
tive entries and 1 is an n dimensional vector of which
all the elements are 1. This situation appears in hi-
erarchical networked systems having physical and/or
communication interactions based on the average or
sum of the lower level variables such as multi-wheel
electric vehicles [5], See below for the proper choices
of D for those two cases.

1)A class of cyclic matrices: LetA be an n×n real matrix
such that all the elements are zero except ai+1,i := αi,
(i = 1, 2, . . . , n − 1) and a1,n := αn. Suppose αi are all
nonzero, and the product α1α2 · · ·αn is positive if n is
even. Define a diagonal matrix D by its diagonal entries
di (i = 1, 2, . . . , n), where

d1 = 1, di =
αi−1
o

α1α2 · · ·αi−1
(i = 2, . . . , n)

with
αo := n

√
|α1α2 · · ·αn|.

Then we have

(DAD−1)(DAD−1)T = α2
oIn = (DAD−1)T (DAD−1),

i.e., DAD−1 is normal. It should be emphasized that
we do not need to know the exact values of αi (i =
1, 2, . . . , n), because showing A ∈ RDN is enough to ap-
ply Theorem 2.

2) A class of rank one matrices of the form a1T : Let A
be represented by a1T , where a = [a1, a2, . . . , an]

T and

ai > 0 (i = 1, 2, . . . , n). It can be seen that our choice of

d1 = 1, di =
√
a1/ai (i = 2, . . . , n)

makesDAD−1 symmetric, and henceDAD−1 is normal.
Note again that we do not need to know the exact values
of ai > 0 (i = 1, 2, . . . , n) to apply Theorem 2.

Before closing this section we here provide a straightfor-
ward generalization of Theorem 2. As seen in the proof
in the Appendix, D for case (b) corresponds to the D-
scaling in the µ-analysis. In fact, the class of A for each
case is specified so that DAD−1 is normal for some scal-
ing matrixD of the structure commuting with∆#. This
observation immediately leads to the result for a general
case where ∆(s) has a special block-diagonal structure
represented by

∆(s) =


∆homo 0 0

0 ∆hetero 0

0 0 ∆full

 ,

∆homo ∈ ∆Iγ

∆hetero ∈ ∆dγ

∆full ∈ ∆γ

(22)
with appropriate dimensions of diagonal blocks. We
readily see that the corresponding class of D-scaling
matrices is given by

Dgen := {D ∈ Rn×n | D =


Dhomo 0 0

0 Dhetero 0

0 0 I

} (23)

with symmetric Dhomo > 0 and diagonal Dhetero > 0.
Consequently, we have a generalization of Theorem 2 as
follows: If ∆(s) is in the class defined by (22) and A
belongs to a subclass of Rn×n defined by

Rn×n
DgN := {A ∈ Rn×n | ∃ D ∈ Dgen

such that DAD−1 is normal }, (24)

then we have the same robust stability condition as in
Theorem 2. This simple extension was made explicit in
[21] based on our previous conference publication [12].

4 Robust Stability Region

We define the robust stability region Λ such that the
H∞-norm condition ∥Gλ(s)∥∞ < γ is satisfied if and
only if λ ∈ Λ. The main purpose of this section is to
characterize Λ and translate the robust stability condi-
tion (15) into a condition on the eigenvalues of the in-
terconnection matrix A.

4.1 General case

The following result states that the robust stability re-
gion can be characterized in terms of polynomial inequal-
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ities. The constructive proof that follows show how such
inequalities can be obtained.

Proposition 3 Let a positive number γ and transfer
function Gλ(s) in (16) be given. Suppose Gλ(s) is stable
and H(s) is strictly proper. Then robust stability condi-
tion (15) holds if and only if all the eigenvalues λ of the
interconnection matrix A lie in a region Λ on the com-
plex plane characterized by polynomial inequalities of the
following form:

Λ =
r∩

k=1

{ λ ∈ C | lℓk(λ)∗Ψklℓk(λ) > 0 }

where Ψk are Hermitian matrices and lℓk(λ) is defined
in Theorem 1.

Proof. First note that there exists a minimal state space
realization Gλ(s) = Cλ(sIñ −Aλ)

−1Bλ +Dλ with coef-
ficient matrices affine in λ. The H∞-norm condition in
(15) holds if and only if the associated Hamiltonian ma-
trix defined by

Hλ :=

[
Aλ + BλR

−1D∗
λCλ BλR

−1B∗
λ

−C∗
λ(I +DλR

−1D∗
λ)Cλ −(Aλ + BλR

−1D∗
λCλ)

∗

]

with R := γ2Im̃−D∗
λDλ has no eigenvalues on the imag-

inary axis [35]. That is, det(jωI2ñ −Hλ) ̸= 0 or

det


jωIñ −Aλ 0 Bλ 0

0 jωIñ +A∗
λ 0 C∗

λ

0 B∗
λ γIm̃ D∗

λ

−Cλ 0 Dλ γIp̃

 ̸= 0, ∀ω ∈ R.

(25)
This requirement can be reduced to a polynomial in-
equality (sign definite) condition with respect to λ (and
its complex conjugate λ̄), which is required to be sat-
isfied for all ω ∈ R. Such reduction is possible because
µ ∈ σ(jωI−H) implies −µ̄ ∈ σ(jωI−H) for any Hami-
latonian matrix H and hence the determinant always
takes a real value. We can then apply symbolic compu-
tation methods such as quantifier elimination (QE) [2]
to remove the quantifier “∀ω,” resulting in polynomial
inequality conditions of the form indicated above. See
[9] for the details. 2

The robust stability region Λ is the set of λ ∈ C sat-
isfying condition (25). As shown in the above proof, Λ
can be analytically characterized, in principle, in terms
of polynomial inequalities with variables (x, y) where
λ = x+ jy, allowing for graphical visualization of Λ on
the complex plane. The stability requirement of Aλ be-
ing Hurwitz is equivalent to the polynomial condition
λ ∈ Λs in statement (iv) of Theorem 1. Similarly to the

stability condition, we can get the corresponding equiv-
alent LMIs by applying the generalized Lyapunov in-
equality formula in terms of A [14].

4.2 A special case: normalized coprime factor pertur-
bations

In the previous section, we considered the general case
and provided a rather conceptual characterization of the
robust stability regionΛ in terms of polynomial inequal-
ities, which can yield a set of LMIs in terms of A. Here,
we focus on a special case related to normalized coprime
factor perturbations in order to illustrate the idea clearly
and concretely. Other special cases have been studied
and reported in [13].

Consider the feedback system depicted in Fig. 1, which
consists of a number of H(s) = Ch(sIν −Ah)

−1Bh in-
terconnected through a constant matrix specified by A.
We assume that perturbations ∆ai and ∆bi enter the
system as wai = ∆aizai and wbi = ∆bizbi . This type of
feedback system is used for theH∞ loop shaping design,
and is recognized as one of typical settings in robust con-
trol. The reasons are (i) it is related to the normalized
coprime factor perturbations, and (ii) it includes both
the sensitivity and complementary sensitivity functions.

Suppose that the interconnection matrix A satisfies the
assumption in Theorem 2. Then we see from Theorem 2
that the perturbed feedback system Σ(H̃(s), A ⊗ Iq) is
robustly stable against ∆# if and only if (15) holds for
all λ ∈ σ(A), where

Gλ(s) =

[
λIq

Iq

]
(Iq − λH(s))−1

[
H(s) Iq

]
. (26)

When H(s) is a scalar transfer function, the robust sta-
bility region Λ can be plotted without relying on sym-
bolic computations. The following result characterizes
the robust stability regionΛ for the scalar case and gives
a graphical test for the H∞-norm condition.

Proposition 4 Let a positive number γ, complex num-
ber λ, and scalar transfer function H(s) be given. De-
fine the generalized frequency variable ϕ(s) by ϕ(s) :=
1/H(s). Then the system Gλ(s) represented by (26) sat-
isfies ∥Gλ(s)∥∞ < γ if and only if λ ∈ Λ, where Λ is
the set of complex numbers λ such that p(λ, s) in (5) is
Hurwitz and{

(1− α)(|λ− cϕ|2 − r2ϕ) > 0, (if α ̸= 1)

1 + |λ|2 < |ϕ− λ|2, (if α = 1),
, (27)

hold for all ϕ ∈ Φ, where

Φ := {ϕ(jω)| ω ∈ R }, α := (1 + |ϕ|2)/γ2,
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cϕ :=
ϕ

1− α
, rϕ :=

√
α

1− α

(
|ϕ|2
1− α

+ 1

)
.

Proof. Assuming nominal stability (i.e. Aλ Hurwitz),
some straightforward calculations show that condition
(15) is satisfied if and only if

[
Hω Iq

]
(Ψλ ⊗ Iq)

[
H∗

ω

Iq

]
< 0 (28)

holds for all ω ∈ R, where Hω := H(jω) and

Ψλ :=

[
1 + (1− γ2)|λ|2 γ2λ

γ2λ̄ 1 + |λ|2 − γ2

]
. (29)

When H(s) is a scalar, (28) can be written as

(1 + |λ|2)(1 + |ϕ|2)
|ϕ− λ|2

< γ2, ∀ ϕ ∈ Φ. (30)

The result then follows directly from this inequality. 2

When α < 1, the corresponding inequality condition
holds if and only if λ is outside of the circle of radius
rϕ centered at cϕ. When α > 1, the inequality holds
if and only if λ is inside of the circle. It can be shown
using γ > 1 that the radius rϕ is always well defined
(i.e., real positive) unless α = 1. When α = 1, the set
of λ satisfying the corresponding inequality is the half
plane not containing ϕ with the boundary specified as
the straight line, orthogonal to the line connecting the
origin and ϕ, passing through the point ϕ(1− 1/|ϕ|2)/2.

Now consider a SISO numerical example with H(s) =
1

s2+s+1 . Figures 3 and 4 respectively illustrate the robust
stability region Λ for γ = 3 and 4. In each figure, the
black curve is the Nyquist plot of ϕ(s) and the region
to the left of the curve is Λs. The blue and the red
circles represent the conditions for α < 1 and α > 1
respectively, i.e., Λr is the region outside of the blue
circles and inside of the red circles. Hence, ∥Gλ(s)∥∞ < γ
holds if and only if λ lies in the intersection of Λs and
Λr, which is the white region including the origin. This
is exactly the robust stability region Λ in which all the
eigenvalues ofA should lie to ensure the robust stability.

We now try to get the analytical formula of the bound-
ary of the robust stability region. In principle, it can be
done by using the QE, one of the effective symbolic com-
putation methods, as seen in [9]. Here, we only show the
exact interval(s) of real axis which guarantee the robust
stability. We first see that the robust stability region is
empty if γ ≤

√
2. We also see that exact interval on the
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Fig. 4. Robust stability region
(γ = 4)

Repression

DNA

transcription

translation
mRNA

Protein

Transcriptional
regulation

ui(t)

pi(t)

�

c
?

?b

an1 2

Activation

Fig. 5. Cyclic gene regulatory network

eigenvalues of A for guaranteeing the robust stability for
specified γ >

√
2 is given by

xm < λ < xM ;
√
2 < γ <

√
4 + 2

√
2 ,

xm < λ <
γ2 − 2

√
γ2 − 1

γ2 − 2
; γ >

√
4 + 2

√
2 ,

where xm and xM are respectively the minimum and
maximum real roots of

f(x) = (4γ2 − 7)x4 − 4γ2x3 + 14(γ2 − 1)x2

+4(γ4 − γ2)x− 3γ4 + 10γ2 − 7.

Note that the two numbers
√
2 and

√
4 + 2

√
2 are the

best achievable control performances respectively for
single and double integrators in the H∞ loop shaping
design.

5 Application to Gene Regulatory Networks

Robustness is one of the distinctive properties of biolog-
ical systems. This section is concerned with robustness
analysis of cyclic gene regulatory networks. In particu-
lar, we apply the robust stability result in Section 3.2 to
analyze the robustness of the system systematically.

5.1 Model of Uncertain Gene Regulatory Networks

We consider biomolecular reactions for protein produc-
tion in Fig. 5, where mRNA and protein molecules are
produced by genetic transcription and translation, and
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the proteins activate or repress the transcription of other
genes to form a network of gene regulation called gene
regulatory network. The nominal dynamics of transcrip-
tion and translation are modeled by the following differ-
ential equations

d

dt

[
ri(t)

pi(t)

]
=

[
−a 0

c −b

][
ri(t)

pi(t)

]
+

[
β

0

]
ui(t) (31)

where ri and pi are the concentrations of mRNA and
protein associated with the i-th gene, respectively (i =
1, 2, . . . , n), and the constants a, b, c and β denote the
degradation rate of mRNA and protein, and the rate
of translation and transcription, respectively [6,7,16,17].
The variable ui(t) represents the effect of transcriptional
regulation by proteins.

We consider gene regulatory networks with cyclic feed-
back regulation, or cyclic gene regulatory networks, il-
lustrated in Fig. 5. For this class of networks, the vari-
able ui(t) is modeled by the Hill function

ui(t) = fi(pi−1(t)) =


Kϱ

Kϱ + pϱi−1

repression

pϱ

Kϱ + pϱi−1

activation,
(32)

where ϱ and K represent a Hill coefficient and
a Michaelis-Menten constant, respectively [1], and
p0(t) := pn(t). Note that fi(·) is a monotone function of
pi−1.

The protein concentrations in cyclic gene regulatory net-
works converge to either a limit cycle or a constant at
steady state depending on the sign of the loop gain of
the network κ :=

∏n
i=1 dfi/dpi−1 and the stability of

equilibrium points. When κ > 0, the system has multi-
ple stable equilibria, i.e., multi-stable, and the concen-
trations always converge to one of equilibria [31]. When
κ < 0, on the other hand, the system has a unique equi-
librium, and the local instability of the equilibrium leads
to periodic oscillations of molecular concentrations [16].
A necessary and sufficient condition for local stability
was previously obtained in an analytic form with the re-
action rate parameters in (31) [16]. The condition was
experimentally tested by building cyclic gene regulatory
networks with n = 3 and n = 5 genes and tuning their
parameters [27].

In what follows, we further analyze the robustness of
the unique equilibrium of cyclic gene regulatory net-
works with κ < 0. We denote the unique equilibrium
by x∗ := [r∗1 , p

∗
1, r

∗
2 , p

∗
2, . . . , r

∗
n, p

∗
n]

T and consider a lin-
earized system of (31) at x∗. The linearized system can
be formulated by an LTI system with generalized fre-

quency variable as

H(s) =
1

(Tas+ 1)(Tbs+ 1)
, (33)

A=



0 0 0 · · · R2ζ1

R2ζ2 0 0 · · · 0

0 R2ζ3 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · R2ζn 0


(34)

where

Ta :=
1

a
, Tb :=

1

b
, R :=

√
cβ√
ab

, (35)

and for i = 1, 2, . . . , n

ζi :=
dfi
dp

(p∗i−1). (36)

It should be emphasized that we can readily see that A
defined in (34) belongs to Rn×n

DN due to its cyclic nature
as seen in the the third remark on Theorem 2. Hence,
we can apply Theorem 2 to the robust stability analysis
for the gene regulatory networks.

We investigate the case where the dynamics of each gene
has heterogeneous uncertainty and the i-th perturbed
system is represented by

H̃i(s) :=
1 + wmul∆mul,i(s)

1 + wfb∆fb,i(s)
H(s) (37)

The uncertainties ∆mul,i and ∆fb,i are multiplicative to
the numerator and denominator of H(s), respectively.
Note that ∆mul,i(s) and ∆fb,i(s) account for different
types of uncertainties. ∆mul,i(s) mainly accounts for (i)
uncertainty and heterogeneity of each gene’s gain, (ii)
variation of the linearized gain ζi due to perturbation of
the equilibrium point, and (iii) time delay in the interac-
tions between genes. On the other hand, ∆fb,i mainly ac-
counts for (i) heterogeneity and uncertainty of the degra-
dation time constants Ta := 1/a and Tb := 1/b, and (ii)
unmodeled dynamics associated with the transcription
and translation processes.

The block diagram of the closed-loop system is depicted
in Fig. 6, where ∆mul := diag[∆mul,1,∆mul,2, . . .∆mul,n],
∆fb := diag[∆fb,1,∆fb,2, · · · ,∆fb,n] and the overall per-
turbation is expressed as

∆ := blockdiag{[∆mul,i,−∆fb,i]}.

We hereafter assume that ∆ and [∆mul,i(s),∆fb,i(s)] re-
spectively belong to the following sets:

∆ := diag(δ, . . . , δ)

δ := {[δmul, δfb] ∈ RH1×2
∞ | ∥[δmul, δfb]∥∞ ≤ 1}
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Fig. 6. Block diagram of the system with uncertainty.

where the norm bound is normalized since the constants
wmul ∈ [0, 1) and wfb ∈ [0, 1) weigh the magnitude of
the uncertainty.

We can readily see that the heterogeneous gene reg-
ulatory network system depicted in Fig. 6 belongs to
Σ(H̃(s), A) with G(s) of the form

G11(s) =

[
0

wfb

]
, G12(s) =

[
wmul

wfb

]
H(s), G21(s) = 1.

This leads to

Gλ(s) =

[
wmulλH(s)

wfb

]
/(1− λH(s)). (38)

5.2 Graphical Robust Stability Condition

Applying robust stability condition (15) in Theorem 2 to
Gλ(s) represented by (38) with γ = 1 yields the following
robust stability condition:∥∥∥∥∥
[
wmulλH(s)

wfb

]
/(1− λH(s))

∥∥∥∥∥
∞

< 1 ; ∀ λ ∈ σ(A),

(39)
or equivalently

w2
fb|ϕ(jω)|2 + w2

mul|λ|2

|ϕ(jω)− λ|2
< 1 ; ∀ λ ∈ σ(A), (40)

hold for ∀ ω ∈ R, where ϕ(s) := 1/H(s).

Moreover, we can specifically write the robust stability
condition using the structure of A and the property of
ϕ(s) = 1/H(s). The set of eigenvalues of the matrix A
can be analytically written in the following form.

λi = Lej
(2i−1)

n π (i = 1, 2, . . . , n), L :=
n∏

i=1

|R2ζi|
1
n .

(41)

This implies that the eigenvalues of the matrix A are
located on a circle with radius L, which means that |λ| =
L. Regarding ϕ(s) we introduce a normalization of the
frequency variable s by s̃ :=

√
TaTbs, which leads to

ϕ̃(s) := s2 +
2

Q
s+ 1 , Q :=

√
TaTb

(Ta + Tb)/2
. (42)

Note that this normalization does not change the in-
equality condition, i.e., condition (40) can be written as

rω < |ϕ̃(jω)− λi|, (43)

where rω > 0 is defined by

r2ω :=w2
fb|ϕ̃(jω)|2 + w2

mulL
2

= w2
fb

(
ω4 + 2

(
2

Q2
− 1

)
ω2 + 1

)
+ w2

mulL
2.

Thus, the robust stability region is obtained as the in-
tersection of the regions outside of the circle at center
ϕ̃(jω) with radius rω, parametrized by ω ∈ R. When
wfb = 0, the perturbation can be regarded as the multi-
plicative perturbation of the form H(s)(1 + wmul∆mul)
with ∥∆mul∥∞ ≤ 1. In fact, the robust stability condi-
tion for the case of wfb = 0 agrees with the one derived
in [29].

The condition (43) implies that the robust sta-
bility condition is determined by five parameters
(Q,L, n,wmul, wfb), where Q ∈ [0, 1] is the criterion of
the discrepancy between the mRNA and protein degra-
dation time constants Ta and Tb, and Q approaches 1
as Ta and Tb become closer. In the following subsec-
tions, we further analyze this condition to reveal how
these parameters affect the robustness of cyclic gene
regulatory networks.

5.3 Analytic Robust Stability Condition

The graphical stability test developed in the previous
subsection is useful for examining given biochemical sys-
tems but requires numerical computations for each set
of parameter values. To gain deeper insights into the ro-
bustness of cyclic gene regulatory networks, we derive
analytic conditions for the robust stability using the re-
action rate parameters.

Proposition 5 Consider the linearized cyclic gene reg-
ulatory network system Σ(H̃(s), A) depicted in Fig. 6.
Suppose the nominal system Σ(In ⊗ H(s), A) is stable.

Then, Σ(H̃(s), A) is stable for all ∆ ∈ ∆ if and only if

w2
mul <

w̄2
fb

L2

(
pω2

∗ + 3qω∗ + 1−
2L cos(πn )

w̄2
fb

+
L2

w̄2
fb

)
(44)
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where
w̄2

fb := 1− w2
fb,

p :=
2

Q2
− 1 +

L cos (π/n)

w̄2
fb

, q := −L sin(π/n)

Qw̄2
fb

,

ω∗ :=
3

√
−q +

√
q2 + 4p3/27

2
+

3

√
−q −

√
q2 + 4p3/27

2
.

Proposition 5 is an analytic condition for robust stability
of Σ(H̃(s), A). This analytic condition allows for check-
ing the robust stability by just substituting the given
parameters into (44). In the next subsection, we demon-
strate the robust stability condition using an illustrative
example and numerically investigate the effect of param-
eters on robust stability.

5.4 Numerical Simulations and Biological Insights

We consider a cyclic gene regulatory network consisting
of n = 5 genes. Suppose the parameters of the nominal
dynamics are a = 3.0, b = 1.0, c = 1.0, β = 4.0, and
ϱ = 2.0. Given these parameters, the linearized gains
can be computed as ζi = −0.592 for all i = 1, 2, · · · , 5.
The nominal dynamics of each gene is written as

H(s) =
1

( 13s+ 1)(s+ 1)
, R2 =

4

3
,

thus Ta = 1/3, Tb = 1, Q = 0.866 and L = 0.789.

We first consider the case where wmul = wfb = 0.141(≃
0.2/

√
2), and apply the graphical robust stability test.

We see that the robust stability region Λ is the white
region containing the origin. Since all the eigenvalues of
A plotted by red points are inΛ as seen in Fig. 7 (left), we
conclude that the cyclic gene regulatory network system
is robustly stable. This can be also confirmed by the
analytic condition of (44), of which the right-hand side
is calculated as 0.123 > w2

mul = 0.02. We can prove that

Le±jπ/5 is the critical eigenvalue for robust stability, no
matter howwe increasewmul andwfb. Hence, the painted
region eventually includes the eigenvalues as we increase
the amplitude of uncertainty (see Figure 7 (right) for the

case of (wmul, wfb) = (0.567, 0.567) ≃ (0.8/
√
2, 0.8/

√
2)

).

The analytic robust stability condition in Proposition 5
enables in-depth investigation of the robustness of the
cyclic gene regulatory networks with respect to the re-
action rate parameters. Figure 8 illustrates the square
root value of the right-hand side of (44), the admissible
maximum value of wmul for robust stability, for the pa-
rameters n,Q and wfb. These figures provide two guide-
lines for the design of robustly stable synthetic biomolec-
ular systems: (i) the number of genes in the network, n,
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Fig. 7. The graphical robust stability tests.
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Fig. 8. The right-hand side of (44), (Left) n = 3, (Right)
n = 10.

should not be too large, and (ii) the dimensionless pa-
rameter Q ∈ (0, 1], which is interpreted as the difference
of the two degradation rates a and b, should be as small
as possible especially when wfb is small. The parameter
was previously introduced in [16] in the context of the
instability analysis of nominal systems, and it was shown
that the nominal stability also tends to be lost with in-
creasing Q. Thus, decreasing Q enhances both nominal
and robust stability of cyclic gene regulatory networks.

6 Conclusion

In this paper, we have investigated robust stability con-
ditions for linear time-invariant systems with general-
ized frequency variables. After a brief review of the sta-
bility analysis with an extension to the MIMO case, we
have treated three different types of perturbations and
derived necessary and sufficient conditions for the robust
stability. We then provided several methods of checking
the derived robust stability conditions by investigating
the case of normalized coprime factor perturbations as
a typical example. Finally we have shown an example of
robust stability analysis for gene regulatory networks to
confirm the utility of the theoretical results by getting
the exact analytical formula of the robustness condition.

The future research may include to extend the class of
interconnections to be handled and to analyze control
performances such as H2 andH∞ norms [13] .
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A Proof of Proposition 5

The robust stability condition (40) can be equivalently writ-
ten as F (ω, λi) > 0 for all ω ∈ R and i = 1, 2, · · · , n, where
F (ω, λ) is defined by

F (ω, λ) := ω4 + 2pλω
2 + 4qλω +

w̄2
fb + w̄2

mulL
2 − 2Re[λ]

w̄2
fb

with

w̄2
mul :=1− w2

mul, pλ :=
2

Q2
− 1 +

Re[λ]

w̄2
fb

and qλ :=− Im[λ]

Qw̄2
fb

,

and λi (i = 1, 2, · · · , n) is defined in (41). In what follows, we
show minω,i F (ω, λi) = F (ω∗, λ1) with ω∗ defined in Propo-
sition 5, and thus, F (ω∗, λ1) > 0 is the necessary and suffi-

cient condition for the robust stability of Σ(H̃(s), A) for all
∆ ∈ ∆.

It should be first noticed that F (ω, λi) = F (−ω, λn−i+1)

holds, and the robust stability of Σ(H̃(s), A) is equivalent to
F (ω, λi) > 0 for all ω ≥ 0 and i = 1, 2, · · · , ⌈n/2⌉. Thus, in
what follows, we consider to find the minimum of F (ω, λi)
for ω ≥ 0 and i = 1, 2, · · · , ⌈n/2⌉. For each fixed value of λi,
F (ω, λi) is minimized at the frequency ω that satisfies

∂F (ω, λi)

∂ω
= ω3 + pλiω + qλi = 0. (A.1)

It follows that there is a single positive solution to (A.1)
since ∂F/∂ω < 0 at ω = 0, and the two roots of

∂2F (ω, λi)

∂ω2
= 3ω2 + pλi = 0 (A.2)

are either real with opposite signs or a pair of complex conju-
gates for i = 1, 2, · · · , ⌈n/2⌉. Thus, the minimum of F (ω, λi)
is achieved by one of the pairs (ωi, λi), where ωi is the pos-
itive solution of (A.1). Substituting the definition (41) of
λi into F (ω, λi), we have minλ,i F (ωi, λi) = F (ω1, λ1) since

Re[λ1] = Re[Lej
π
n ] > Re[Lej

(2i−1)π
n ] for i = 2, · · · , ⌈n/2⌉.

Finally, we substitute i = 1 into (A.1) and calculate the
solution to the cubic equation to obtain ω1 = ω∗. The in-
equality (44) is obtained by simplifying F (ω∗, λ1) > 0 using
ω3
∗ = −pλ1ω∗ − qλ1 and defining p := pλ1 and q := qλ1 . 2
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