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ABSTRACT OF THE DISSERTATION

Robust Mixed-Effects Segmented Regression Models and Independent Component
Analysis

by

Xiaoyang Zhou

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, December 2017

Dr. Weixin Yao, Chairperson

In Chapter 2, Renewable energy production has been surging in the United States

and around the world in recent years. To mitigate increasing renewable generation uncer-

tainty and intermittency, proactive demand response algorithms and programs are proposed

and developed to further improve utilization of load flexibility and increase power system

operation efficiency. One of the biggest challenges to efficient control and operation of

demand response resources is how to accurately forecast the load impact from demand re-

sponse resources. In Chapter 2, we propose a mixed-effect segmented regression model and

its robust estimate for forecasting the the load impact of demand response resources in

Southern California by combining the ideas of random effect regression model, segmented

regression model, and trimmed likelihood estimation. Since the log-likelihood of the new

model is not differentiable at breakpoints, we propose a new backfitting algorithm to esti-

mate the unknown parameters of the new model. The estimation performance and predictive

power of the new model have been demonstrated with both simulation studies and real data

application.
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In Chapter 3, a new data analysis tool called Fisher Discriminant Information

Matrix (FDIM) is developed to find best directions that separate two densities via a simple

eigen-analysis. Based on FDIM, we propose a new estimation procedure for Independent

Component Analysis (ICA). The new ICA algorithm can recover the independent compo-

nents via a simple eigenanalysis of the new defined information matrix. Different from

existing ICA algorithms, the new method can also detect whether there is any “uninterest-

ing” Gaussian component in the original signal. In addition, the new method can rank the

recovered signals in terms of their density information. To estimate the FDIM, we propose

both a kernel density estimation and Gaussian mixture model estimation methods to ap-

proximate the unknown density, and utilize the density square transformation to avoid the

numerical integrations and reduce the computation cost. We demonstrate the performance

of the proposed ICA algorithms using the simulation studies and four real data applications.
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Chapter 1

Introduction

The dissertation contains two main chapters. In Chapter 2, I focus on a Robust

Mixed-effect Segmented model. This model is originated from a practical problem in electric

industry. The renewable energy sector has experienced exponential growth in the past five

to ten years. The global annual growth rates of solar photovoltaic and wind energy are 42%

and 17% from 2010 through 2015 Adib et al. (2016). The renewable penetration level in

certain parts of the world are much higher than the global average penetration level. For

example, the renewable energy penetration level in California has reached 30% in 2017. The

recently passed California Senate Bill 350 will further boost renewable penetration level to

50% by 2030. To mitigate increasing renewable generation uncertainty and intermittency,

demand response resources are in critical need. In the past ten years, traditional and

passive price-based and incentive based demand response programs have been implemented

throughout United States. In recent years, proactive demand response algorithms and

programs are proposed and developed to further improve utilization of load flexibility and
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dispatchability. Accurate load impact forecasts are needed to effectively leverage the load

flexibility from the demand response resources. The load impact from a demand response

resource is defined as the difference between load baselines and metered load when demand

response event is triggered. In practice it is very challenging to develop a good estimation

of the load baseline which represents the electric load that would have occurred without

demand response event.

A good baseline estimation methodology should represent an appropriate tradeoff

between simplicity and accuracy. The existing baseline methodology can be categorized

into two types. In Type-I baseline methodology, the baseline is estimated by using similar

day-based algorithm which depends on historical interval meter data and similarity metrics

such as weather and calendar data. Simplicity is the biggest advantage of Type-I baseline

method (Wei et al. , 2016; Yu et al. , 2015). In Type-II baseline methodology, more so-

phisticated statistical methods are adopted to estimate and forecast the baseline electricity

consumption. Typically, Type-II baseline method yields better forecasting accuracy. Most

of the existing Type-II baseline method is based on multiple linear regressions.

The proposed mixed effects segmented regression model belong to Type-II baseline

methodology and is motivated by forecasting the hourly electric load in Southern Califor-

nia area. The hourly electric consumption data are aggregated to 52 220 kV transformer

banks from 12/31/2012 to 11/1/2013 in Southern California Edison’s service territory. One

commonly used method for electric power demand prediction at each hour is to use a mul-

tiple linear regression with hour as a categorical variable and weather data as continuous

covariates. Note that the electric consumption data are essentially longitudinal/panel data.
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The electric load data exhibits very strong spatio-temporal dependencies Yu & Jie (2017).

In order to incorporate the correlation among observations from each transformer banks,

we propose to use the random effects regression model (Laird & Ware, 1982a). An alterna-

tive model for hour is to include it as a linear predictor. However, it is expected that the

linear effect of hour on electric demand does not hold in the whole range of hour. To this

end, we propose to model the hour effect by a segmented regression model (Feder, 1975a),

which can be considered as a comprise between modeling hour as a global linear predictor

and modeling hour as a categorial variable. The nonlinear relationship with breakpoints

are said to be piece-wised, segmented, broken-line or multi-phased. The breakpoints are

also called change-points, transition-points or switch-points in some applications. Using the

segmented regression model for hour, the hour’s effect on the electric consumption changes

continuously across the time and we can borrow the information from other hours when

estimating the hour’s effect. The estimated breakpoints can also tell us how the hour’s

linear effect changes across different areas. Segmented regression have been widely used in

many areas. In medication area, this method is a powerful statistical tool for estimating

intervention effects of interrupted time series studies (Wagner et al. , 2002a). Also, seg-

mented regression is used to identify the changes in the recent trend of cancer mortality

and incidence data analysis (Kim et al. , 2000a). In ecology area, segmented regression is a

widely used statistical tool to model ecological thresholds (Toms & Lesperance, 2003a). For

the geometric purpose, segmented regression statistically models the trends in groundwater

levels (Shao & Campbell, 2002a).

Note that it is not trivial to compute the maximum likelihood estimate (MLE) for

3



the new model since the log-likelihood of the new model is not differentiable at breakpoints.

Many standard computational algorithms, such as Newton-Raphson algorithm, can not

be used directly. In this dissertation, we propose a backfitting algorithm to combine the

segmented regression estimation method proposed by Muggeo (2003) and the mixed effect

regression estimation method proposed by Bates (2011) to maximize the non-differentiable

log-likelihood of the new mixed effects segmented regression model. Note that the MLE

is sensitive to outliers, which is the case of our electric consumption data collected in

Southern California area. We further propose a robust estimation procedure for the new

model by extending the idea of the least trimmed squares (LTS) estimate. The simulation

study demonstrate the effectiveness of the proposed estimation procedures. The LTS also

provides much better prediction performance than the standard MLE for the testing data

when forecasting the hourly electric power demand in Southern California area.

The rest of the Chapter 2 is organized as follows. Section 2.1 introduces the new

mixed-effects segmented model and describes the proposed estimation algorithms. Section

2.2 illustrates the finite sample performance of the proposed estimation method using a

simulation study. In Section 2.3 we apply the new model to forecast the hourly electric

power demand in Southern California area.

The other part of dissertation discusses the independent component analysis via

density information matrix. Independent Component Analysis (ICA) is a widely used un-

supervised machine learning method. Usually, people exploit ICA algorithm to solve Blind

Source Separation (BSS) problem. The BSS problem is an inductive inference problem

which relies on limited available information to infer the most probable solutions (Naik &
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Kumar, 2011). This problem is prevalent in many areas such as neuroscience, face recogni-

tion and audio signal processing. Generally, the BSS problem contains three components;

original source, mixing matrix and mixed signals. The existing algorithms solving BSS

problem all confront the same problem that the parameters of mixing or filtering process

are unknown.

ICA is a powerful tool for solving BSS problem since it only assumes the inde-

pendence and nonGaussianity of original source. The concept of ICA is firstly introduced

as a BSS method by Jutten & Herault (1991) using neuro-mimetic architecture. The ICA

algorithm is later applied to recover the independent components from the linear mixture

of statistically independent sources through different optimizing criteria (Comon, 1994).

Since then, ICA algorithm is defined as a method to reveal the hidden factors of underly-

ing random variables, measurements and signals. The existing ICA algorithms are usually

generated from two ICA assumptions, mutual independence and nonGaussianity. Based

on the first assumption, Comon (1994) proposed an ICA algorithm using Edgeworth ex-

pansion of Kullback-Leibler divergence. Another popular ICA algorithm, Infomax (Bell &

Sejnowski, 1995), was also derived from independence assumption utilizing mutual infor-

mation as the objective function. Please also see, for example, Amari et al. (1996) and

Lee et al. (1999) for some extensions of Infomax. Many other ICA algorithms rely on the

non-Gaussianity assumption. For example, Hyvärinen et al. (2004) proposed the FastICA

algorithm with a fixed-point iteration to find the maximum nonGaussianity of the objec-

tive function. The Joint Approximate Diagonalization of Eigenmatrices (JADE) algorithm

(Cardoso & Souloumiac, 1993) is constructed via fourth-order cumulants array with kurto-
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sis function. The flexible ICA algorithm is generated by the Gaussian exponent based on

estimated kurtosis of unmixing matrix (Choi et al. , 2000).

In this dissertation, we develop a novel and computationally fast ICA algorithm

based on a simple eigen-decomposition of the newly introduced Fisher discriminant infor-

mation matrix (FDIM). Different from existing ICA algorithms, the new method can also

detect whether there is any “uninteresting” Gaussian component in the original sources.

In addition, the new method can rank the recovered signal in terms of their density in-

formation. When estimating the FDIM, we propose both a kernel density estimation and

Gaussian mixture model estimation methods to estimate the unknown density, and utilize

the density square transformation to avoid the numerical integrations and reduce the com-

putation cost. The simulation study and real data applications demonstrate the superior

or comparable performance of the new ICA algorithm compared to some existing methods.

The remainder of Chapter is organized as follows. A general description of ICA

model with its underlying assumptions is discussed in Section 3.1. Section 3.2 introduces

the density information matrix and its application to ICA. Section 3.3 illustrates the per-

formance of the new ICA algorithm using simulation study. In Section 3.4, we apply the

proposed ICA algorithm to four real data examples.
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Chapter 2

A Robust Mixed Effects Segmented

Regression Model for Forecasting

Electric Power Demand

2.1 Model

Given a random sample {yij ,xij , sij , zij , i = 1, . . . , n, j = 1, . . . , ni}, where n is

the number of subjects and ni is the number of observations collected for ith subject, the

proposed mixed effects segmented regression model can be written as

yij = xTijα+ sTijγi + β0zij +

l∑
k=1

βk(zij − ϕk)+ + εij , (2.1)

where yij is the response, xij is the p dimension fixed-effect covariates, sij is the q dimen-

sional random-effect covariates, zij is the breakpoint variable with breakpoints {ϕk, k =

1, . . . , l}, t+ equals to t if t ≥ 0 and 0 otherwise, γi ∼ Nq(0,Σγ), and εi = (εi1, . . . , εini) ∼
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Nni(0,Σε). In this paper, we assume that Σε = σ2Ini . The new model (2.1) consists of

three parts: multiple linear regression xTijα, random-effects sTijγi, and segmented regression

β0zij +
∑l

k=1 βk(zij−ϕk)+, which models the heterogeneous linear effect of zij on yij across

different areas of z. βk measures the difference of slopes (linear effect of zij on yij) before

and after the breakpoint ϕk.

Let yi = (yi1, . . . , yini)
T ,Xi = (xi1, . . . ,xini)

T ,Si = (si1, . . . , sini)
T and Zi =

(z∗i1, . . . , z
∗
ini

)T , where z∗ij = (zij , (zij −ϕ1)+, . . . , (zij −ϕl)+)T . Then (2.1) can be rewritten

in matrix format as

yi = Xiα+ Siγi + Ziβ + εi, (2.2)

where β = (β0, . . . , βl)
T . Based on (2.2), E(yi | Xi, zi,Si) = Xiα + Ziβ and var(yi |

Xi, zi,Si) = SiΣγS
T
i +σ2εIni , Σi. Therefore, the random effects γi make the observations

within each subject correlated.

The log-likelihood function of {yij ,xij , sij , zij , i = 1, . . . , n, j = 1, . . . , ni} is

`(θ) =
n∑
i=1

log[(2π|Σi|)−1/2 exp{−1

2
(yi −Xiα− Ziβ)TΣ−1i (yi −Xiα− Ziβ)}], (2.3)

where θ collects all unknown parameters. Unlike the traditional mixed effects model, max-

imizing (2.3) is not trivial since it is not differentiable at ϕk. We propose a backfitting

algorithm to maximize (2.3) by alternately updating the segmented regression part and the

linear mixed effects part when fixing the other. Next we discuss in detail how to perform

such two estimation procedures.
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2.1.1 Estimating breakpoints

If the breakpoints are fixed, the model is usually a linear model. Then, the es-

timation is simple without any problems of estimation and inference. In this paper, we

are mainly interested in the situation where the number of breakpoints is known but their

locations are unknown. Breakpoints and slopes in segmented regression can be estimated

through many ways such as regression spline as well as Bayesian MCMC methods (Gössl &

Küchenhoff, 2001a; Hastie & Tibshirani, 1990a). We will extend the linearization technique

proposed by Muggeo (2003) to our new model (2.1) due to its simplicity of computation.

According to the definition of breakpoint, the log-likelihood is not differentiable at ϕk. The

breakpoint estimation can be performed via a first-order Taylor expansion of (zij − ϕk)+

around an initial value ϕ
(0)
k ,

(zij − ϕk)+ = (zij − ϕ(0)
k )+ + (ϕk − ϕ

(0)
k )(−1)I(zij > ϕ

(0)
k ),

where (−1)I(zij > ϕ
(0)
k ) is the first derivative of (zij − ϕk)+ assessed in ϕ

(0)
k .

Let vij = ((−1)I(zij > ϕ
(0)
1 ), . . . , (−1)I(zij > ϕ

(0)
l ))T , z̃ij = (zij , (zij−ϕ(0)

1 )+, . . . , (zij−

ϕ
(0)
l )+)T , and δk = βk(ϕk − ϕ

(0)
k ). Define Vi = (vi1, . . . , vini)

T , δ = (δ1, . . . , δl)
T and

Z̃i = (z̃i1, . . . , z̃ini)
T . Given the estimate {α̂, Σ̂i}, plugging them into the model (2.2), we

have

ỹi = Z̃iβ + Viδ + ε̃i, (2.4)

where ỹi = yi−Xiα̂ and ε̃i ∼ Nni(0, Σ̂i). β and δ in (2.4) can be easily found by weighted

least squares estimate. Note that ϕk = (δk/βk)+ϕ0
k. The iterative algorithm will terminate

at δk = 0. The algorithm to estimate the breakpoints, given the estimate {α̂, Σ̂i}, is

summarized as follows:

9



Algorithm A Segmented regression estimation

1 Set initial value of all breakpoints ϕ
(0)
k , for k = 1, ..., l and calculate the

variable Z̃i and the variable Vi

2 Fit the regression model of ỹi on Z̃i and Vi using the model (2.4).

3 Update the breakpoint with equation ϕ
(s+1)
k = (δ

(s)
k /β

(s)
k ) + ϕ

(s)
k , where

ϕ
(s)
k is the estimate of ϕk at sth iteration.

4 Repeat step 2-3 until converge.

2.1.2 Estimating covariance matrix of random effects

In this section, we discuss how to maximize (2.3) given the estimate β̂ and ϕ̂,

where ϕ = (ϕ1, . . . , ϕl)
T . Let Ẑi be the estimate of Zi after replacing ϕk by ϕ̂k. Plugging

in the estimate {Ẑi, β̂} into the model (2.1), we have

y∗i = Xiα+ Siγi + εi, (2.5)

where y∗i = yi − Ẑiβ̂. Then, the model (2.5) is reduced to a traditional mixed-effects

model. The parameters are optimized the objective function, maximum likelihood function.

Because the objective function must be evaluated at many different values of the model

parameters during the optimization process, we employ the penalized, weighted least square

(PWLS) method to determine the solution (Bates, 2011). If the dimension of solution is

tremendous, the solution must be evaluated with repeatedly optimization problem. Then,

we can choose PWLS to determine parameter estimates with the Cholesky decomposition.

In model (2.5), the variance-covariance matrix Σγ of γ must be positive definite.

It is convenient to transform the matrix in terms of a relative covariance factor, Λλ, which
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is a q × q matrix relying on the parameter λ, such that

Σγ = σ2ΛλΛTλ

γi = Λλui,ui ∼ Nq(0, σ
2Iq)

Then (2.5) can be written as

y∗i = Xiα+ SiΛλui + εi. (2.6)

Given Γ = (γT1 , . . . ,γ
T
n )T , the conditional distribution of y∗ is

y∗ | Γ ∼ N(Xα+ SΛu, σ2IN ), (2.7)

where y∗ = (y∗T1 , . . . ,y∗Tn )T , X = (XT
1 , . . . ,X

T
n )T , S = diag(S1, . . . ,Sn)T , Λ = diag(Λλ, . . . ,Λλ),

u = (uT1 , . . . ,u
T
n )T and N =

∑n
i=1 ni. Since the value of y∗ is observable, the goal of sta-

tistical inference is f(γ|y∗), or the linear transformation f(u|y∗). The density f(u|y∗)

is proportional to the product of f(u) and f(y∗|u). Thus, the unnormalized conditional

density f(u|y∗) is defined as

h(u|y∗,λ,α, σ) = f(y∗|u)f(u) (2.8)

with the deviance as

−2 log(h(u|y∗,λ,α, σ)) = (N + nq) log(2πσ2) +
‖y∗ − SΛλu−Xα‖2 + ‖u‖2

σ2

= (N + nq) log(2πσ2) +
d(u|y∗,λ,α)

σ2

(2.9)

In (2.9), d(u|y∗,λ,α) = ‖y∗ − SΛλu−Xα‖2 + ‖u‖2 is called the discrepancy

function, where ‖y∗ − SΛλu−Xα‖2 is the residual sum of squares and the second term,

‖u‖2, is a penalty on the size of u. It is minimized at the conditional mode, ũ(λ), and the
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conditional estimate, α̃(λ), which are the solutions to the sparse, positive-definite linear

system ΛTλSTSΛλ + Inq ΛTλSTX

XTSΛλ XTX


ũ(λ)

α̃(λ)

 =

ΛTλSTy

XTy

 . (2.10)

In the process of solving the positive definite linear system (2.10), we introduce

Cholesky factor with the form LS 0

LXS LX


 LS 0

LXS LX


T

=

PS 0

0 PX


ΛTλSTSΛλ + Inq ΛTλSTX

XTSΛλ XTX


PS 0

0 PX


T

,

(2.11)

where PS and PX are permutation matrices representing a fill-reducing permutation matrix.

Substituting (2.11) and (ũ(λ), α̃(λ)) into (2.9), the new version of deviance is

−2 log(h(u|y∗,λ,α, σ)) = (N+nq) log(2πσ2)+

d̃(y∗,λ) +

∥∥∥∥∥∥∥∥
 LS 0

LXS LX


PS(u− ũ)

PX(α− α̃)


∥∥∥∥∥∥∥∥
2

σ2
,

(2.12)

where d̃(y∗,λ) = d(ũ(λ)|y∗,λ, α̃(λ)) is the minimum discrepancy function assuming λ is

known. Since the integral of a quadratic form is easily evaluated, we integrate (2.12) with

respect to random-effects coefficients u. Then, the profile likelihood is,

−2`(λ,α, σ|y∗) = N log(2πσ2) + log(|LS|2) +
d̃(y∗,λ) + ||LTXPX(α− α̃)||2

σ2
. (2.13)

Substituting the conditional estimates β̃(θ) and σ̃2(θ) = d̃(y∗,λ)/N , the profile likelihood

is

−2`(λ|y∗) = log(|LS(λ)|2) +N(1 + log(
2πd̃(y∗,λ)

N
)). (2.14)

12



Then, the maximum likelihood estimated of λ is

λ̂L = arg min
λ

(log(|LS|2) +N(1 + log(
2πd̃(y∗,λ)

N
))). (2.15)

Given λ, the equation (2.13) is a ML estimates are

σ̂2L =
d̃(y∗, λ̂L)

N

α̂L = α̃(λ̂L).

(2.16)

The mixed-effect regression model estimation, given the estimate of segmented

regression, can be summarized as follows.

Algorithm B Random-effects Estimation

1 Set initial covariance factor λ(0) and obtain Λ
(0)
λ .

2 With the current λ(s), solve the normal equation for α̃(s) and ũ(s) and
then calculate discrepancy function d̃(y∗,λ(s)).

3 Using discrepancy function, calculate σ
2(s)
L and update the covari-

ance factor paramter λ(s+1) via optimization method such as Newton-
Raphson method.

4 Repeat 2 - 3 until the algorithm reaching the convergence criterion.

2.1.3 Mixed-effects breakpoint estimation

By combining Algorithm A and Algorithm B, we propose the following backfitting

algorithm to maximizing the log-likelihood (2.3) for the model (2.2).

Algorithm MLE

1 Set initial value of breakpoint ϕ
(0)
k and β(0) .

2 Given current breakpoint values ϕ
(s)
k and slopes β(s), calculate y

∗(s)
i =

yi − Ẑ
(s)
i β̂

(s)
.

3 Fit mixed-effect model with Algorithm B to obtain covariance matrix

Σ
(s)
r and the fixed effect regression estimate α(s).

4 Calculate ỹ
(s)
i = yi −Xiα

(s).

5 Fit segmented regression model with ỹ
(s)
i using Algorithm A and update

segmented regression parameter estimate to ϕ(s+1) and β(s+1).
6 Repeat 2 - 5 until convergence.

13



2.1.4 Robust mixed-effects breakpoint estimation

It is well known that the MLE is sensitive to outliers and might give misleading

results when there are outliers in the data, which is the case for our collected electric power

demand data in Southern California area. Please see Section 2.3 for more detail. Next we

propose to use the idea of least trimmed squares estimate (Rousseeuw, 1984) to provide

a robust estimate of the model (2.1). Given an integer trimming parameter h ≤ N , the

least trimmed squares minimizes the sum of the smallest h squared residuals with objective

function
h∑
k=1

(r2)k:N , (2.17)

where (r2)1:N ≤ ... ≤ (r2)N :N are the ordered squared residuals {yij − ŷij , i = 1, . . . , n; j =

1, . . . , ni} with ŷij = xTijα̂ + sTijγ̂i + β̂0zij +
∑l

k=1 β̂k(zij − ϕ̂k)+. Let θ collect all the un-

known parameters {α,β,ϕ, σ,Σγ} in the model (2.1). The robust mixed-effects breakpoint

algorithm based on LTS is described in the following table.

Algorithm LTS

1 A subsample of size h∗ is selected randomly from the data sample and
then the model (2.1) is fitted to the that subsample using Algorithm
MLE. Let θ(0) be the initial parameter estimate .

2 Based on current model parameter estimate θ(s), make prediction of

N responses: ŷ
(s)
ij = and calculate the residuals rij = yij − ŷij . Rank

the squared residuals {r2ij , i = 1, . . . , n; j = 1, . . . , ni} from smallest to
largest and select the first h observations that correspond to the smallest
h squared residuals.

3 Fit the model (2.1) to the subsample selected in Step 2 using Algorithm
MLE and get the model parameter estimate θ(s+1).

4 Repeat 2 - 3 until convergence.

To increase the chance of finding the global minimum, one might run Algorithm

LTS from many random subsamples and choose the solution which has the smallest trimmed

squares. Let r be the dimension of θ. The initial sample size h∗ can be any small number

14



larger than r as long as the initial parameter estimate θ(0) can be computed based on the

subsample. The maximum breakpoint (i.e., the smallest fraction of contamination that

can cause the estimator to take arbitrary large values) of LTS is 0.5 and is attained when

h = [(N + r+ 1)/2]. If we have the prior that the proportion of outliers is no more than α,

we can also set h = [N(1− α) + 1], where α is called the trimming proportion. In practice,

one might also try several α values to evaluate LTS and check how the estimate behaves

with different trimming proportions.

2.2 Simulation Study

In this section, we use a simulation study to illustrate the performance of the esti-

mation procedure for the proposed mixed-effect segmented regression model. We generate

observations {yij ,xij , sij , zij , i = 1, . . . , n, j = 1, . . . , ni}, from the following model

yij = α0 + α1xij + γi0 + sijγi1 + β0zij + β1(zij − ϕ1)+ + β2(zij − ϕ2)+ + εij , (2.18)

where xij ∼ Pois(10), sij ∼ Uniform(5, 10), zij ’s are ni arithmetic sequence range from (0, 20), εij ∼

N(0, 0.5), γ0
γ1

 ∼ N

0

0

 ,

 σ2r1 ρσr1σr2

ρσr1σr2 σ2r2


 ,

with σr1 = σr2 = 1, ρ = 0.5. The other parameters in (2.18) are set to be

α0 = -2.5 β0 = 1.5 ϕ1 = 6.67
α1 = 1.5 β1 = 1.5 ϕ2 = 13.33

β2 = -2.5

We consider the following two simulation scenarios: 1) n = 50, ni is randomly chosen from (90, 110);

2) n = 200, ni is randomly chosen from (450, 550).
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α0 = −2.5 α1 = 1.5

MLE Mean Median SD Mean Median SD

Scenario 1 -2.505 -2.508 0.125 1.500 1.499 0.002
Scenario 2 -2.498 -2.497 0.064 1.500 1.500 0.001

Table 2.1: Simulation results for Model 2.18 without outliers. It presents the fixed-effect

parameter estimates with Algorithm MLE for both simulation scenarios.

ϕ1 = 6.667 ϕ2 = 13.333

MLE Mean Median SD Mean Median SD

Scenario 1 6.667 6.666 0.022 13.334 13.332 0.012
Scenario 2 6.667 6.667 0.006 13.333 13.333 0.003

Table 2.2: Simulation results for Model 2.18 without outliers. It presents the breakpoints

estimates with Algorithm MLE for both simulation scenarios.

First, we utilize model (2.18) to simulate dataset without outliers. The model is

estimated with the Algorithm MLE. In Table 2.1-2.4, we report the Mean, Median, and

Standard Deviation for the estimates of fixed-effects regression parameters, breakpoints,

segmented regression parameters, and random-effects covariance matrix, respectively based

on 500 replications.

β0 = 1.5 β1 = 1.5 β2 = −2.5

MLE Mean Med SD Mean Med SD Mean Med SD

Scenario 1 1.499 1.500 0.006 1.499 1.499 0.008 -2.499 -2.499 0.008
Scenario 2 1.500 1.500 0.001 1.500 1.500 0.001 -2.500 -2.500 0.002

Table 2.3: Simulation results for Model 2.18 without outliers. It presents the breakpoint

slope estimates with Algorithm MLE for both simulation scenarios.
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σr1 = 1 σr2 = 1 ρ = 0.5

MLE Mean Med SD Mean Med SD Mean Med SD

Scenario 1 0.969 0.959 0.108 0.978 0.976 0.101 0.504 0.503 0.121
Scenario 2 0.990 0.991 0.050 0999 0.999 0.056 0.499 0.499 0.001

Table 2.4: Simulation results for Model 2.18 without outliers. It presents the random-effect

estimates with Algorithm MLE for both simulation scenarios.

From Table 2.1-2.4, we can see that the proposed MLE algorithm performs well

when the dataset does not contain any outliers. Also, when the sample size increases,

standard deviation of each parameter estimate decreases.

Next, we simulate dataset with outliers based on model (2.18). Model parameters

are estimated by both Algorithm MLE and Algorithm LTS. In order to check how robust

each estimate is against the outliers, we randomly choose 5% of each simulated data and

add 30 to the response Y (the range of Y is (15, 69)) and 10 to the value of X (the range

of X is (0, 10)). When applying LTS, we need to choose the trimming proportion α, which

has long been a difficult problem. However, LTS can provide a robust model estimate as

long as the proportion of outliers is less than α but with low efficiency if the α is too large.

Usually a conservative choice of α is recommended in practice. For our examples, we report

the results for both α = 0.1 and α = 0.2. Note that the results of LTS will be better if

α = 0.05 is used.

In Table 2.5-2.8, we report the simulation results for the estimates of fixed-effects

regression parameters, breakpoints, segmented regression parameters, and random-effects

covariance matrix, respectively based on 200 replications. From the tables, we can see that

the standard MLE fails to provide reasonable estimates of fixed-effects regression parameters
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α0 = −2.5 α1 = 1.5

Scenario 1 Mean Median SD Mean Median SD

MLE 3.332 3.334 0.663 1.019 1.017 0.026
LTS α = 0.2 -2.535 -2.539 0.283 1.500 1.500 0.004
LTS α = 0.1 -2.521 -2.522 0.210 1.500 1.500 0.003

Scenario 2 Mean Median SD Mean Median SD

MLE 3.310 3.314 0.180 1.017 1.017 0.006
LTS α = 0.2 -2.502 -2.507 0.130 1.500 1.500 0.001
LTS α = 0.1 -2.502 -2.505 0.089 1.500 1.500 0.001

Table 2.5: Simulation results for Model 2.18 with outliers. The table presents the fixed-

effect estimates for both simulation scenarios via Algorithm MLE and Algorithm LTS with

different α level.

and random-effects covariance matrix when the data contains 5% outliers while LTS can

provide reasonable estimates for all parameters with both α = 0.1 and α = 0.2.

2.3 Real Data Analysis

In this Section, we illustrate the application of the proposed mixed-effects seg-

mented regression model to forecast the electric load in Southern California.

2.3.1 Data

The electric consumption data are aggregated to 52 220 kV transformer banks from

12/31/2012 to 11/1/2013 in Southern California Edison’s service territory. The objective

is to build a prediction model for the total residential customer electricity consumption at

each 220 kV transformer bank on weekdays.
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ϕ1 = 6.667 ϕ2 = 13.333

Scenario 1 Mean Median SD Mean Median SD

MLE 6.647 6.679 0.546 13.322 13.317 0.324
LTS α = 0.2 6.670 6.38 0.755 13.351 13.342 0.519
LTS α = 0.1 6.670 6.677 0.415 13.323 13.332 0.283

Scenario 2 Mean Median SD Mean Median SD

MLE 6.671 6.673 0.172 13.333 13.337 0.098
LTS α = 0.2 6.670 6.685 0.293 13.325 13.330 0.166
LTS α = 0.1 6.670 6.677 0.166 13.328 13.330 0.094

Table 2.6: Simulation results for Model 2.18 with outliers. The table presents the break-

point estimates for both simulation scenarios via Algorithm MLE and Algorithm LTS with

different α level.

β0 = 1.5 β1 = 1.5 β2 = −2.5

Scenario 1 Mean Med SD Mean Med SD Mean Med SD

MLE 1.493 1.494 0.109 1.521 1.518 0.154 -2.516 -2.522 0.163
LTS α = 0.2 1.501 1.502 0.123 1.510 1.500 0.166 -2.519 -2.505 0.168
LTS α = 0.1 1.506 1.503 0.070 1.505 1.501 0.0083 -2.509 -2.507 0.071

Scenario 2 Mean Med SD Mean Med SD Mean Med SD

MLE 1.500 1.502 0.035 1.500 1.499 0.040 -2.500 -2.502 0.042
LTS α = 0.2 1.500 1.502 0.054 1.502 1.500 0.051 -2.499 -2.502 0.054
LTS α = 0.1 1.495 1.497 0.022 1.506 1.505 0.026 -2.506 -2.499 0.028

Table 2.7: Simulation results for Model 2.18 with outliers. The table presents the breakpoint

slope estimates for both simulation scenarios via Algorithm MLE and Algorithm LTS with

different α level.

19



σr1 = 1 σr2 = 1 ρ = 0.5

Scenario 1 Mean Med SD Mean Med SD Mean Med SD

MLE 0.518 0.379 0.582 1.019 1.026 0.117 0.843 0.999 0.612
LTS α = 0.2 1.000 0.993 0.097 0.993 1.003 0.097 0.509 0.510 0.115
LTS α = 0.1 0.992 0.998 0.111 0.994 0.999 0.097 0.511 0.519 0.107

Scenario 2 Mean Med SD Mean Med SD Mean Med SD

MLE 0.769 0.897 0.435 1.013 1.015 0.056 0.619 0.592 0.272
LTS α = 0.2 0.992 0.990 0.048 0.998 0.998 0.047 0.495 0.496 0.050
LTS α = 0.1 0.992 0.989 0.048 0.998 0.997 0.047 0.496 0.496 0.049

Table 2.8: Simulation results for Model 2.18 with outliers. The table presents the random-

effect estimates for both simulation scenarios via Algorithm MLE and Algorithm LTS with

different α level.

The response variable is customers’ hourly electricity consumption, Usaget, recorded

through the smart meters. Usaget is an aggregated variable at the transformer bank level.

We use the following transformation to make it comparative among 52 subgroups

logUsageper,t = log(Usaget/Total AC tonnage). (2.19)

In equation (2.19), the transformed response variable is derived through dividing the aggre-

gated usage by total air conditioning tonnage of residential customer in the air conditioning

cycling program under the transformer bank and applying the log-transformation. The

new response variable indicates electricity consumption level per unit of air conditioning

tonnage. We collect several explanatory variables to perform the prediction listed in Ta-

ble 2.3.1. Two-day lagged electricity consumption variable is selected rather than one-day

lagged variable because the demand response resources load impact estimates need to be

submitted to the independent system operator one day before the actual operations. The

weather average temperature and humidity are included because they are highly correlated
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Notation Explanatory Variable

log(Usageper,t−48) two-day lagged electricity consumption

Temperaturet Daily average ambient temperature
Humidityt Humidity of the day
Hourt Hour/Time of the day
AC tonnageper,t Duty cycle percentage

Total Ac tonnage Total AC tonnage under the same transformer bank
A Bank The indicator variable of transformer bank

Table 2.9: Seven explanatory variables in real data application. Variable A Bank is the

random-effect variable. Variable Hour is the segmented variable.

with electricity consumption. The duty cycle option variable indicates the percentage of

participation rate of air conditioning load in the program and has strong influence over the

load impact for air conditioning cycling demand response program.

2.3.2 Model and Result

We apply the proposed mixed-effect segmented regression model to forecast the

electricity consumption. Figure 2.1 displays the hourly trend for average electric consump-

tion. Obviously, the curve indicates three segments with two breakpoints. We also tried the

model with three breakpoints (one more breakpoint in the middle area) but BIC for two

breakpoints is smaller. Also, the observations collected over time within the same trans-

former bank are correlated. Ignoring such correlation by fixed effect model would result

in inefficient estimates and lose prediction power. In order to incorporate such correction,

the transformer bank is treated as random-effects. Using a random-effects model can also

drastically reduce the number of unknown parameters in the model and thus has more effi-

cient parameter estimates. In addition, two-way and three-way interactions are considered
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Figure 2.1: The plot shows the trend between average hourly electric consumption Usage

with variable Hour for all A Bank. This plot shows two breakpoints. The first breakpoint

locates between 2am and 3am. The second breakpoints locates between 6pm and 8pm.

as potential explanatory variables. In order to further simplify the model, stepwise selec-

tion method is applied to simplify the model. The final selected mixed-effects segmented

regression model is shown in (2.20).

22



log(Usageper,t) =A Bank + Hourt + (Hourt − ϕ
1)+ + (Hourt − ϕ

2)+

+ Temperaturet + Humidityt + AC tonnageper,t

+ log(Usageper,t−48)

+
[
(Hour + (Hourt − ϕ

1)+ + (Hourt − ϕ2)+
]
× Temperaturet

+
[
(Hour + (Hourt − ϕ2)+

]
×Humidityt

+
[
(Hour + (Hourt − ϕ

1)+ + (Hourt − ϕ2)+
]
×AC tonnageper,t

+ [Temperaturet + Humidityt]×AC tonnageper,t

+ Temperaturet ×Humidityt,

(2.20)

where A Bank ∼ N(0, σ2ABankI). We apply both MLE and LTS algorithm to estimate the

model and compare their forecasting performance. Since the true proportion of outliers is

unknown, we choose three proportions α = 0.15, 0.10, 0.05 for LTS to fit the model (2.20). In

electric industry, the popular performance evaluation indexes are mean absolute percentage

error (MAPE) and mean absolute percentage error (RMSE) with the formula

MAPE =
1

N

∑ |yij − ŷij |
yij

,

RMSE =

√∑
(yij − ŷij)2

N
.

For better comparison, we also present the model forecasting results with quantiles. The

electricity consumption data in the last 10 observed weekdays (18720 observations) are

chosen as testing sample.

From Table 2.10 and 2.11, each evaluation criterion reaches the lowest value when
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Performance MAPE 25% APE 50% APE 75% APE

MLE 13.94% 4.55% 8.48% 13.66%
LTS α = 0.05 11.08% 2.78% 5.45% 9.37%
LTS α = 0.1 10.75% 2.46% 4.95% 8.77%
LTS α = 0.15 10.88% 2.55% 5.10% 9.01%

Table 2.10: Prediction results are evaluated by Absolute Percentage Error for the last 10-

days in October 2013. Algorithm MLE is compared with Algorithm LTS at different α

level.

Performance RMSE 25% RSE 50% RSE 75% RSE

MLE 672.88 5.78 42.19 164.08
LTS α = 0.05 449.68 3.98 27.01 97.45
LTS α = 0.1 414.42 3.65 24.73 86.33
LTS α = 0.15 420.00 4.75 25.26 88.84

Table 2.11: Prediction results are evaluated by Root Square Error for the last 10-days in

October 2013. Algorithm MLE is compared with Algorithm LTS at different α level.

24



breakpoint ϕ1 ϕ2

MLE 2.64 20.47
LTS α = 0.05 2.27 20.47
LTS α = 0.1 2.27 20.77
LTS α = 0.15 2.27 20.47

Table 2.12: Breakpoints estimation for electric power demand dataset via Algorithm MLE

and Algorithm LTS at different α level.

α = 0.1 and is much smaller than those of MLE. The breakpoint estimates shown in Table

2.12 confirm the locations of breakpoints plotted in Figure 2.1. Table 2.13 displays the fixed-

effects and breakpoints slope estimates and Table 2.14 shows the variances of random-effects

and the error term for LTS with α = 0.1.

According to Table 2.13, all the parameters are significant at level α = 0.05. The

variable Hour and its breakpoints have both positive and negative slopes and the signs

match the plot in Figure 2.1. Also, there is a positive relationship between AC tonnage and

electric power demand Usage.
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Parameter Estimate p-value

Intercept 1.063 < 0.0001
Hourt 2.100e-02 0.0003
(Hourt − ϕ1)+ -4.713e-02 < 0.0001
(Hourt − ϕ2)+ 6.665e-02 < 0.0001
Temperaturet -2.198e-02 < 0.0001
Humidityt 2.556e-02 0.0010
AC tonnageper,t 8.838e-01 < 0.0001

log(Usageper,t−48) -2.223e-00 < 0.0001

Hourt ×Humidityt -2.493e-05 < 0.0001
(Hourt − ϕ2)+ ×Humidityt 2.017e-04 < 0.0001
Hourt × Temperaturet -8.165e-04 < 0.0001
(Hourt − ϕ1)+ × Temperaturet 1.018e-03 < 0.0001
(Hourt − ϕ2)+ × Temperaturet -1.606e-03 < 0.0001
Hourt ×AC tonnaget 2.012e-02 0.0002
Temperaturet ×Humidityt -6.684e-05 < 0.0001
Temperaturet ×AC tonnageper,t 2.763e-02 < 0.0001

Humidityt ×AC tonnageper,t 1.926e-03 0.0124

Table 2.13: Parameter estimation for electric power demand dataset are evaluated with Al-

gorithm LTS method at α = 0.1. All the parameter estimates are significant at significance

level 0.05.

Groups Variance Std.Dev

A Bank 0.0015 0.0392
Error 0.0052 0.0718

Table 2.14: Random-effects estimation for electric power demand dataset are evaluated with

Algorithm LTS method at α = 0.1. The variance and standard deviation estimates stay

within a reasonable range.
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Chapter 3

Fisher Discriminant Information

Matrix and Its Application to

Independent Component Analysis

3.1 Background about ICA model

A general ICA model contains three components, which are original source s(t),

mixing matrix A and mixed signals x(t). Suppose we have p statistically independent

signals, si(t), i = 1, 2, ..., p, which are not observable. We assume that each signal is a

realization of a certain distribution at a time point t. Also, suppose p sensors are installed

for receiving signals, denoted by xi(t), i = 1, 2, ..., p, from sources. Without loss of generality,

we assume that both the source and the receiving signal are centered at zero. Let x(t) =

(x1(t), . . . , xp(t))
T and s(t) = (s1(t), . . . , sp(t))

T . Thus, a simple matrix multiplication could
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explain the relationship between x(t) and s(t) as follows

x(t) = As(t), (3.1)

where A is an unknown square mixing matrix, x(t) and s(t) are p × 1 vectors storing the

mixed signals and original sources, respectively. The ICA algorithm aims to estimate the

mixing matrix A based on the information only from x(t). ICA model usually assumes that

the mixing matrix A is an invertible square matrix. Then, the original source s(t) can be

easily recovered with s(t) = A−1x(t). Most ICA algorithms define an “unmixing” matrix

W to recover the original sources using

ŝ(t) = Wx(t). (3.2)

Here, W can be considered as an estimate of A−1.

The ICA problem has two main assumptions of the original sources, independence

and non-Gaussianity. The independence assumption requires that all the original sources

are mutually independent. The non-Gaussianity assumption demands that at most one

original source follows Gaussian distribution.

From model (3.2), the original sources are recovered by ŝ = Wx. Let y denote

the estimate of one coordinate in the sources, and it is trivial to get y = wTx where w is

one of the rows in unmixing matrix W. If W is the true inverse of mixing matrix A, this

linear combination wTx will present a real coordinate of sources. Since the absence of the

prior information in mixing matrix, it will be more clear if we define a vector z = ATw.

Then a trivial conclusion is only one element in z is nonzero if W perfectly recover the

mixing matrix. By simple linear algebra, we could rewrite y = wTx = wTAs = zT s,
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which indicates the estimated source is a linear combination of independent non-Gaussian

distributed sources (Hyvärinen et al. , 2004). According to Central Limit Theory, the sum

of independent sources is more Gaussian compared with the single element in the original

sources. However, based on the non-Gaussian assumption, we hope the estimated source

component y is non-Gaussian distributed. Therefore, the source components have to be

non-Gaussian with possible exception of at most one source component.

Without any prior information of the original sources and the mixing matrix,

it is impossible to perfectly recover the original sources. Thus, ICA algorithms usually

make a compromise by focusing on the independence quality of the original sources. As

a consequence of lacking prior information, the scale of sources and mixing matrix is not

identifiable. Moreover, the order of sources is also not identifiable. Thus, the estimated

sources are ambiguous up to the magnitude and permutation.

3.2 New ICA method

As we mentioned before, most ICA algorithms are designed to estimate the unmix-

ing matrix W based on certain objective functions that are usually derived from statistical

independence or non-Gaussianity. In this section, we propose a new ICA algorithm based on

a simple eigen-decomposition of newly proposed Fisher’s Discriminant Information matrix.

3.2.1 Introduction of Fisher’s Discriminant Information Matrix

Without loss of generality, we assume E(x) = 0 and var(x) = I. Suppose we want

to compare two possible densities f(x) and g(x), respectively, based on a data set. In the
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applications we will consider, the density f is defined as the true unknown density, to be

estimated nonparametrically, and g will be parametric or semiparametric density modeling

from the data. Alternatively, f and g could represent two distinct populations we wish to

compare.

Define the sample space score vector uf (x) for a density f to be uf (x) = ∇x log f(x).

We define the basic discrimination score for comparing f and g to be uf (x)−ug(x). Note,

if f and g are normal densities with means µf and µg, and with the same covariance Σ,

then uf − ug = Σ−1(µf − µg). This is exactly the Fisher’s linear discriminant direction.

We define Fisher discriminant information matrix (FDIM) to be the matrix quadratic

form in the discrimination scores, given by

Dw(f, g) =

∫
(uf (x)− ug(x))(uf (x)− ug(x))Tw(x)dx, (3.3)

where w(x) is a context-specific weighting density. For the normal example, this matrix is

rank 1, with the nonnull eigenvector being the linear discriminant Σ−1(µf−µg). The defined

matrix Dw(f, g) in (3.4) summarizes the local discrimination directions for separating f and

g, and will be zero if and only if f and g are the same.

Let’s use a simple example to see how Dw(f, g) works. Assuming that x =

(xT1 ,x
T
2 )T , the conventional definition of sufficiency indicates that x1 is sufficient for com-

paring f and g if the conditional densities for f and g are the same:

f(x2|x1) = g(x2|x1).

In this case, log f(x)−log g(x) = log f1(x1)−log g1(x1), so the optimal discriminant function
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only depends on x1. In this case it is obvious that

Dw(f, g) =

 Dw(f1, g1) 0

0 0

 .
That is, the discrimination information matrix identifies, through their positive information,

variables that are sufficient for discriminating between f and g as well as the set of variables,

in the null space, that are ignorable. The eigenanalysis of Dw(f, g) will tell us which linear

directions can best discriminate between f and g.

3.2.2 Application of Fisher discrimination information matrix to ICA

We use non-Gaussianity to perform ICA in (3.4) by letting g = φ(x) be the

standard multivariate normal density and f(x) be the true density of x, to be estimated

nonparametrically. If w(x) = f(x), using the fact that Ef{ufuTg } = Ef{uguTf } = 0, we get

Df (f, g) =

∫
(uf − ug)(uf − ug)

T f(x)dx = Jf − Ip, (3.4)

where

Jf = Ef{uf (x)uf (x)T } =

∫
5xf(x)×5xf

T (x)

f(x)
dx, (3.5)

where Jf is the so called Density Information Matrix (DIM) for f proposed by Hui &

Lindsay (2010). In the DIM we use the derivative with respect to x instead of the parameters

as done in traditional Fisher information matrix. So DIM can also be viewed as a measure

of the information in the density and can characterize the multivariate properties of f.

Statisticians are very familiar with the use of the covariance matrix Σf to help describe

f. It turns out that Jf provides a complementary description of f. Principal component

analysis uses the eigenanalysis of the covariance matrix to find directions that carry most of
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the variability of the data. We will demonstrate that an eigenanalysis of Jf can be used to

perform independent components analysis (ICA, Common 1994). Since D is non-negative

definite, the result (3.4) implies Jf ≥ Ip, with the equality holding if and only if f(x) is the

multivariate normal density. Therefore, we used the newly defined discrimination matrix

Df (f, g) to provide an alternative proof of the Fisher information inequality (Kagan et al.

, 1973).

Note that the eigen-space of Df (f, g) associated with eigenvalue λ is the same as

that of Jf associate with eigenvalue λ + 1. Specifically, the null space of Df (f, g) is the

same as the eigen-space of Jf associated with eigenvalue 1. Therefore, the eigen-analysis

of Df (f, g) can be also performed by the eigen-analsyis of Jf and it can find directions

of the original multivariate variable x that have the largest departure from Gaussianity.

Suppose ΓTJfΓ = Λ = diag{λ1, . . . , λp}. WLOG, we assume λ1 ≥ λ2 ≥ · · · ≥ λp. Then

z = ΓTx = (z1, . . . , zp)
T has density information matrix Λ, and the diagonal entries of Λ

measure the information in each z coordinate in terms of extent of discrimination between

z and the normal density.

We will use the notation Jx, expressed with a random variable, instead of Jf ,

using x′s density f, when it is useful for the clarity regarding different variables involved.

The eigenanalysis of DIM is usually performed in two stages.

Stage 1 Standardize the original variable x to the vector y = Σ
−1/2
x x. Based on the vari-

able y we then create the density information matrix for y, denoted Jy = Σ
1/2
x JxΣ

1/2
x ,

J∗x. We call J∗x standardized density information matrix since it is the DIM for the

standardized variable y.
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Note that var(y) = I, so the variables are uncorrelated and the y variables have no

principal components information. Therefore, after standardization, Jy will provide

the complimentary information about y that the principal component analysis can

not.

Stage 2 We create an orthogonal matrix Γ using the eigenanalysis of Jy such that Jy =

ΓΛΓT , where Λ = diag{λ1, . . . , λp} is diagonal matrix and λ1 ≥ λ2 ≥ · · · ≥ λp.

Then our interested projections are the new vector z = ΓTy = ΓTΣ
−1/2
x x. Note

that var(z) = I and Jz = ΓTJyΓ = diag{λ1, . . . , λp}. Therefore, z has a diagonal

covariance matrix and diagonal density information matrix.

Note that when the covariance Σx are diagonal, the density information matrix

Jx is not necessary diagonal. However, if the elements of x are independent, then both the

covariance Σx and information matrix Jx are diagonal. The new variables z thereby mimic

this dual property of independent variables. Lindsay & Yao (2012) proved such found z

after two stages of DIM analysis are the independent component variables.

Proposition 1 If the data x is generated by an independent components analysis model

with covariance matrix Σ, and the eigenvalues of the standardized DIM J∗x are distinct,

then the transformed variables z = ΓTΣ−1/2x are the independent components variables,

up to the permutation, where Γ is the matrix of eigenvectors of J∗x.

Therefore, stage 1 will first transform x to the uncorrelated variable y = Σ
− 1

2
x x with

diagonal covariance matrix, which is only independent if x is multivariate Gaussian. The

stage 2 makes the transformed variable z even closer to independent variables by forcing

its DIM Jz to be diagonal. The above results tell us if x is generated by ICA model, such
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created z can recover the independent component variables. Based on the above arguments,

we can also see why the DIM can provide complement information of the covariance matrix.

Compared to existing ICA methods, the new method can further detect whether

there is any Gaussian component by checking whether any diagonal value of Jz is equal to

1. In addition, we can also rank the recovered independent components of z in term of the

defined density information using the corresponding diagonal values of Jz with Gaussian

component has the least information. The next proposition validates the above claim.

Proposition 2 Under the assumption of Proposition 1, the jth diagonal value λj of Jz is

exactly the density information of the jth marginal distribution of z, i.e, the distribution of

zj.

Proof. Since, z1, . . . , zp are independent, f(z) = f1(z1) · · · fp(zp) and log f(z) =
∑p

j=1 log f(zj).

Then

U(z) = ∇z log f(z) = (∇z1 log f(z1), . . . ,∇zp log f(zp))
T .

Therefore, the jth diagonal term of Jz can be expressed as E[Uj(z)2] = E[∇zj log f(zj)
2] =

Jzj .

3.2.3 Density square transformation

So far our discussion has been at the population level. In practice, in order to

recover z = ΓTΣ−1/2x, we need to replace Γ and Σ by some estimate. Σ can be usually

estimated by sample covariance. The main difficult lies on the estimation of Γ and thus

Jx. Since the variable x’s density f(x) is unknown, an appropriate non-parametric or

semi-parametric estimation method is needed. However, based on (3.5), there is a second
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computational problem that the integration will not have an explicit form due to the density

function in denominator and thus the numerical integration would generally be required.

Although one could proceed with a simulation based method, we will instead use the idea of

the density square transformation proposed by Hui & Lindsay (2010) to make the calculation

fast and explicit. They did so by slightly altering the information problem as follows. Let

the variable s have the density

f2(s) ≡ f2(s)∫
f2(x)dx

,

where f(x) is the density of x. They proposed to estimate the information in the density

f2(s), which we can denote as Js or Jf2

Jf2 =

∫
5xf ×5xf

Tdx∫
f2(x)dx

. (3.6)

Then Γ can be estimated by the eigenanalysis of Σ
1/2
f2

Jf2Σ
1/2
f2

. If f(x) is estimated by a

kernel density estimate with normal kernel or Gaussian mixture models, then Jf2 and Σf2

have an explicit formula. Estimating the most informative directions for s turned out to be

a very useful surrogate for estimating the most informative directions for x. There is good

intuition for this: as argued by Hui & Lindsay (2010), the square density f2(s) has the same

contour lines as the original f(x) and in particular the same peaks and valleys. In addition,

x is normal if and only if s is normal, so the white noise subspaces are preserved again by the

density square transformation, regardless of bandwidth. This property makes the method

work well even when the dimension of x is moderately large. Finally, as a weighting factor,

f2(s) puts more weight on the peaks and less weight in the tails than f(x); this seems to

improve the robustness of the method based on the empirical studies. We will call this the

f2 method of computation. Please see Hui & Lindsay (2010) for examples of the success of
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this methodology in higher dimensions.

With Kernel density estimation, suppose a multivariate sample x1,x2, ...,xn are

drawn from a density f . We propose to estimate f by the multivariate kernel estimate

f̂H(x) =

n∑
i=1

1

n|H|
φp(x− xi ; 0,H2),

where φp(· ; 0,H2) is the p-variate Gaussian density with mean 0 and covariance H2.

Here, we choose normal density as Kernel function K
¯

and use the bandwidth

recommended by Bowman & Foster (1993),

Hopt = (
4

p+ 2
)

1
p+4 Σ

1
2n
− 1

p+4 . (3.7)

where the unknown Σ is usually replaced by its sample estimate. Then, the estimated

density information matrix has the following form

Ĵf2 =

∫
5xf̂H ×5xf̂

T
Hdx∫

f̂2H(x)dx
. (3.8)

where

∫
f̂2H(x)dx =

1

n2

n∑
i=i

n∑
j=1

φp(xi − xj ; 0, 2H2),

∫
5xf̂H ×5xf̂

T
Hdx =

1

n2

n∑
i=i

n∑
j=1

φp(xi − xj ; 0, 2H2)

×
[
H−2

2
+

H−2

2
(xi − xj)(xi − xj)

T H−2

2

]
.

In addition, the variance of s can be estimated by

Σ̂s =

∫
xxT f̂2H(x)dx∫
f̂2H(x)dx

− (

∫
xf̂2H(x)dx∫
f̂2H(x)dx

)(

∫
xf̂2H(x)dx∫
f̂2H(x)dx

)T ,
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where

∫
xxT f̂2H(x)dx =

1

n2

n∑
i=1

n∑
j=1

φp(xi − xj ; 0, 2H2)

[
H2

2
+

(xi − xj)(xi − xj)
T

4

]
,

∫
xf̂2x(x)dx =

1

n2

n∑
i=1

n∑
j=1

φp(xi − xj ; 0, 2H2)
(xi + xj)

2
.

We will call the above ICA method DIM-KDE using the kernel density estimation and

f2 transformation to estimate DIM. Based on the above formula, we can see that one of

the major advantages of f2 computation method is that it provides explicit formula for all

integrations when normal kernel is used.

Alternatively, Gaussian mixture model (GMM) can be also applied to estimate

unknown density of f(x). It is well known that the mixture models can be used as a

nonparametric density estimate if the number of components is large enough. In fact,

the kernel density estimate is a special case of mixture models with n components. More

specifically, we estimate f(x) by

fGMM(x) =
k∑
i=1

πiφp(x;µi,Σi), (3.9)

where
∑k

i=1 πi = 1 and k is the number of mixture components and assumed to be unknown.

By data adaptively estimate πi,µi,σi, we can use much smaller k, compared to the n used

by kernel density estimate, to approximate the density of x.

The model (3.9) can be easily estimated by the EM algorithm (Dempster et al.

, 1977) and k can be selected by Bayesian information criteria (BIC). Using the estimate
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(3.9), we have

∫
f̂2GMM(x)dx =

k∑
l=1

k∑
m=1

πlπmφp(µl − µm; 0,Σl + Σm),

∫
5xf̂GMM ×5xf̂

T
GMMdx =

k∑
l=1

k∑
m=1

πlπmφp(µl − µm; 0,Σl + Σm)

×
[
(Σl + Σm)−1 + (Σl + Σm)−1(µl − µm)(µl − µm)T (Σl + Σm)−1

]
,∫

xxT f̂2GMM(x)dx =

k∑
l=1

k∑
m=1

πlπmφp(µl − µm; 0, (Σl + Σm)
[
Σc + µcµ

T
c

]
,

∫
xf̂2GMM(x)dx =

k∑
l=1

k∑
m=1

πlπmφp(µl − µm; 0,Σl + Σm)µc,

where Σc = (Σ−1l + Σ−1m )−1 and

µc = (Σ−1l + Σ−1m )−1(Σ−1l µl + Σ−1m µm).

Plugging in the above equations to (3.6), we can get the estimate of Jf2. We will call the

above ICA method DIM-GMM that uses Gaussian mixture model and f2 transformation

to estimate DIM.

3.3 Simulation study

In this section, a simulation study is conducted to investigate the finite sample

performance of DIM-KDE and DIM-GMM. The performance is evaluated via Amari Dis-

tance

E =

p∑
i=1

(

p∑
j=1

|pij |
maxk |pik|

− 1) +

p∑
i=j

(

p∑
i=1

|pij |
maxk |pkj |

− 1), (3.10)

where P = (pij) = WA with the range [0, p− 1] (Amari et al. , 1996). If W = A−1, then

E = 0. Thus, we want E as small as possible.
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Figure 3.1 displays 9 distributions, introduced by Bach & Jordan (2002), from

which the original source signals are generated. In this simulation study, all pairs of inde-

pendent components are drawn from different distributions. We simulate two dimensional
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Figure 3.1: The 9 distributions proposed by Bach & Jordan (2002) are used to generate the

original source signal s(t).

(p = 2) independent components s(t) with sample size n = 200 and 1000 and a random

mixing matrix A ∈ R2×2. The observations are generated by x(t) = As(t). We compared

DIM-KDE and DIM-GMM with FastICA, Infomax, and SteadyICA (Bell & Sejnowski,
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1995; Hyvärinen et al. , 2004; Matteson & Tsay, 2017). The following table lists the ICA

algorithms and the corresponding R Packages used.

ICA Algorithm R package

FastICA a fast fixed-point ICA algorithm (R Package ‘fastICA’)
Infomax Information maximization ICA algorithm (R Package

‘ica’)
SteadyICA ICA via distance covariance (R Package ‘steadyICA’)
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Figure 3.2: The comparison results for two dimensional source signals with sample size 200

over 100 replications and DIM-KDE, DIM-GMM are compared with three existing ICA

algorithms.

In Figure 3.2 and 3.3, we compare our DIM ICA algorithms with the above three

ICA algorithm under each sample size. The horizontal axis indicates the pairs of distri-

bution, while the vertical axis presents the average Amari Distance over 100 replications.

In Figure 3.2, DIM-KDE shows a good performance in the upper plot, while in lower plot

the DIM-GMM works better. Overall, the DIM ICA algorithms have superior performance

compared with other algorithms. According to Figure 3.3, when increasing sample size, all
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Figure 3.3: The comparison results for two dimensional source signals with sample size

1000 over 100 replications and DIM-KDE, DIM-GMM are compared with three existing

ICA algorithms.

ICA algorithms achieve smaller average Amari Distance. In addition, DIM-KDE becomes

stable and has the overall best performance.

3.4 Application

In independent component analysis problem, we are interested in recovering the

original sources or finding “interesting” coordinates. ICA algorithm applies transformation

to convert the raw dataset into sets of independent variables. In this section, we present

four real data applications.
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3.4.1 Cocktail party problem

In this application, the famous Blind Source Separation (BSS) problem “Cocktail

Party Problem” is illustrated and resolved with DIM-KDE algorithm due to the large

sample size. Suppose there are four speakers placed in one room; three speakers play

different music and one speaker plays white noise sound. Figure 3.4 shows the shape of

original sound sources. As the music begins to play, all four sound sources are mixed

together. At the same time, four microphones which located in the same room record the

mixed sounds. Figure 5 displays the shape of mixed sounds. In order to illustrate the BSS
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Figure 3.4: “Cocktail Party Problem” consists of four original sound sources with one white

noise in the last position.

mechanism, we transform the music sound signals into a data matrix S. In BSS problem,

only the mixed sound recordings x(t) are observable from microphones. The target of ICA

algorithm is to recover the original music only with data matrix x(t).
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Figure 3.5: The plot shows the mixture of original sound sources with unknown mixing

procedure matrix A.

Figure 3.6 presents the result from DIM-KDE algorithm. Clearly, the DIM-KDE

algorithm recovers in great extend the shape of each the origin music sound. Due to the

permutation ambiguity, the recovered sound sources have different ordering from the original

one. Note, however, the proposed DIM-KDE algorithm ranks the four sound sources from

top to bottom in terms of their density information. In addition, DIM-KDE algorithm

successfully puts the white noise coordinate, that has the least information (λ = 0.26), in

the last coordinate. From Figure 3.6, it seems that the top three estimated sound sources

become closer to the noise sound when moving from top to bottom.
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Figure 3.6: The plot displays the recovered sound sources via DIM-KDE algorithm and

DIM-KDE algorithm automatically orders the recovered sound sources, also put the white

noise in the last position.

3.4.2 Imaging Processing with ICA

In practice, ICA is also a popular technique of image processing. Consider a grey-

scale image “boat” shown in Figure 3.7 a). We transform the image into a data matrix S1

(256 × 384). First, a white noise matrix S2 with the same dimension as S1 is generated.

Second, these two data matrices, S1 and S2, are converted into one data matrix S (98304×2).

With some unknown procedure X = AS, the observed image is shown in Figure 3.7 b) which

combines both original image and the white noise.

Due to the large sample size, we apply DIM-KDE algorithm as image filter and

the recovered image is presented in Figure 3.8. Obviously, DIM-KDE algorithm filters the

observed image and move out the white noise.
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a) Original Plot
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b) Plot mixed with White Noise
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Figure 3.7: The plot shows an ICA application with image boat with the left plot a) showing

the original plot and the right plot showing a combining plot via a white noise plot through

unknown procedure A.

3.4.3 Fisher’s Iris Flower

Also, as an unsupervised machine learning method, ICA algorithm is a widely used

tool for clustering. The following two examples illustrate the clustering application of ICA

algorithm. The Fisher’s Iris flower data set contains 50 samples from each of three species

of Iris (Iris setosa, Iris virginica and Iris versicolor) with four variables, the length and

the width of the sepals and petals. This dataset is popular as a benchmark in clustering

algorithm and the data are available in the R dataset library. The data is treated as

unlabeled with species with dimension 150× 4. If we consider the observable four variables

as mixed signals, the ICA algorithm recovers variables into distinct intrinsic characters

(original signals), and then clusters flower samples with the first two intrinsic variables.
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Recovered Plot
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Figure 3.8: The plot shows the recovered image via DIM-KDE algorithm and the plot is

generated by the first component in the estimated source matrix S. The second component

in S contains the white noise estimate.

Figure 3.9 a) shows the clustering results based on the first two independent components.

In comparison, we also present a similar plot using first two projections from principal

component analysis (PCA) in Figure 3.9 b). From the Figure 3.9, we can see that compared

with PCA method, the DIM-KDE algorithm has better performance as a clustering method.

Note that the new method can also rank the transformed directions in terms of their density

information. In Figure 3.9 a), it can be seen that the first direction is the most informative

direction that contains the most clustering information and the second direction shows the

heterogeneous variability among three clusters.
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Figure 3.9: The plot shows ICA application of clustering with Fisher’s Iris Flower data

with the left plot a) presenting the clustering result based on the first two components of

estimated sources S via DIM-KDE algorithm and the right plot b) presenting the clustering

result based on the first two components with PCA method.

3.4.4 Leptograpsus Crabs

The Leptograpsus Crabs is another popular data set used for comparing various

classifiers. The experimenter recorded five morphometric measurements on two crabs (blue

and orange) with two genders (Female and Male) and the data are available in the R

MASS library. Note that in this data there are four clusters. These five variables are highly

correlated. Thus, it is difficult to cluster the crabs only relying on these variables. In Figure

3.10 a) and b), we plot the first two projections from DIM-KDE and PCA, respectively.

Based on Figure 3.10, DIM-KDE has better clustering performance than PCA.
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Figure 3.10: The plot shows ICA application of clustering with Leptograpsus Crabs data

with The left plot a) presenting the result based on the first two components of estimated

sources S via DIM-KDE algorithm and the right plot b) presenting the clustering result

based on the first two components with PCA method.
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Chapter 4

Discussion

In Chapter 2, we propose a mixed-effects segmented regression model motivated by

forecasting the electric load in Southern California. When estimating unknown parameters,

we propose a backfitting algorithm by combining the ideas of the penalized least square

method for random-effects regression model and the linearization technique (Muggeo, 2003)

for segmented regression. In addition, we extend the idea of LTS to the new mixed-effects

segmented regression model to provide a robust model estimate. Both Simulation study

and real data application demonstrate the effectiveness of the proposed new model and its

estimation procedures.

Since the model was built up with hourly data, we could also aggregate the data

and construct a daily electric load model. In this paper, we assume that the number

of breakpoints is known. If the number of breakpoints is unknown, one could apply the

selection techniques proposed by Ben Aı̈ssa et al. (2004); Liu et al. (1997); Prodan (2008);

Strikholm & Teräsvirta (2005) to our model. In addition, for LTS, although an conservation
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α or serval α values can be used in practice, it requires more research to data adaptively

choose the optimal α so that LTS can have both the robustness property and the high

efficiency.

In Chapter 3, we introduce a new ICA method DIM based on a simple eigenanaly-

sis of density information matrix. To estimate the density information matrix, we proposed

two estimation methods: kernel density estimation and Gaussian mixture model.

The important advantages of DIM ICA method are that it has the ability to order

recovered coordinates in terms of the density information and also identify the white noise

coordinate which has the least density information. Simulation results demonstrate the

effectiveness of the DIM method in recovering sources drawn from different distributions.

As demonstrated by the simulations and real applications, DIM has overall superior per-

formance across sample size. Moreover, the performance of DIM-KDE is more stable with

large sample size.

There are several ways to extend the new ICA method. Note that one restriction

of the DIM method is the assumption that the source signals have different distributions.

It requires more research to relax this assumption for our new method. In addition, our

method requires the source signal to have continuous distributions with continuous first

order derivative due to the definition of DIM. Therefore, it is also interesting to extend our

method to discrete distributions or continuous distribution that may not have continuous

first order derivative.

The high dimensional dataset becomes more common nowadays. Extending the

ICA method into the high dimensional setting is also very challenging due to the estimation
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of DIM and covariance. In this situation, some sparsity assumption about DIM and the

covariance matrix might be imposed to facilitate the estimation.
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Gössl, Christoff, & Küchenhoff, Helmut. 2001a. Bayesian analysis of logistic regression
with an unknown change point and covariate measurement error. Statistics in medicine,
20(20), 3109–3121.
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Appendix A

Robust Mixed-effects Segmented

Regression Model

A.1 MLE Algorithm

l i b r a r y (mvtnorm)

l i b r a r y ( lme4 )

l i b r a r y ( segmented )

l i b r a r y ( matr ixca l c )

mixed .MLE <− f unc t i on ( input . data ,

i n i t i a l , alpha , to l , max . i t e r ){

## I n s i d e func t i on

ran . e f f <− f unc t i on (b . vector , input . data ){
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rep .num <− as . matrix ( t a b l e ( input . data$Subject ) )

S . matrix <− cbind ( rep (1 ,

nrow ( input . data ) ) , input . data$S )

random <− matrix (NA, nrow ( input . data ) , 1 )

sum <− 0

f o r ( i in 1 : nrow ( rep .num)){

random [ ( sum + 1 ) : ( sum+rep .num[ i ] ) , ] <−

S . matrix [ ( sum + 1 ) : ( sum+rep .num[ i ] ) , ]

%∗%(b . vec to r [ i , ] )

sum <− sum + rep .num[ i ]

}

re turn ( random )

}

break . i n i t i a l 1 <− pmax( input . data$Z−

q u a n t i l e ( input . data$Z , i n i t i a l [ 1 ] ) , 0)

break . i n i t i a l 2 <− pmax( input . data$Z−

q u a n t i l e ( input . data$Z , i n i t i a l [ 2 ] ) , 0)

input . data <− data . frame ( input . data ,

Z . change1 = break . i n i t i a l 1 ,

Z . change2 = break . i n i t i a l 2 ,

Subject = Subject )

mixed . output .REML <− lmer (Y ˜ X + Z +
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Z . change1 + Z . change2 + (1 + S | Subject ) ,

input . data , REML = FALSE)

ps i 1 <− i n i t i a l [ 1 ] ∗max( input . data$Z )

ps i 2 <− i n i t i a l [ 2 ] ∗max( input . data$Z )

convergence1 <− 10 ## converge o f break−po int

convergence2 <− 10

convergence3 <− 10 ## converge o f random−e f f e c t

convergence4 <− 10

track <− 0

r e s u l t <− l i s t ( )

seg <− l i s t ( )

index <− sample ( seq (1 , nrow ( input . data ) , 1 ) ,

nrow ( input . data )∗ alpha , r e p l a c e = FALSE)

whi l e (max( convergence1 ,

convergence2 , convergence4 ) >

t o l && track < max . i t e r ){

std . co r r <− as . data . frame (

VarCorr ( mixed . output .REML) ) $sdcor

std . co r r [ i s . nan ( std . co r r ) ] = 0 .5

sigma . matrix <− matrix ( c ( std . co r r [ 1 ] ˆ 2 ,

std . co r r [ 1 ] ∗ std . co r r [ 2 ] ∗ std . co r r [ 3 ] ,

s td . co r r [ 1 ] ∗ std . co r r [ 2 ] ∗
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std . co r r [ 3 ] , s td . co r r [ 2 ] ˆ 2 ) , 2 , 2)

b . vec to r <− as . matrix (

rane f ( mixed . output .REML) $Subject )

random . e f f e c t <− ran . e f f (b . vector , input . data )

## Create a new column to s t o r e the random e f f e c t

input . data1 <− data . frame

( input . data , random . e f f e c t ) [ index , ]

## Use new b . vec to r to obta in new break . po in t s

seg . r e g r e s s i o n <− segmented ( lm

( (Y−random . e f f e c t ) ˜

X + Z , data = input . data1 ) ,

seg . Z=˜Z , p s i=c ( ps i1 , p s i 2 ) ,

c o n t r o l=seg . c o n t r o l ( d i s p l ay=FALSE) )

convergence1 <− abs (

seg . r e g r e s s i o n $ p s i [ 1 , 2 ] − ps i 1 )

convergence2 <− abs (

seg . r e g r e s s i o n $ p s i [ 2 , 2 ] − ps i 2 )

## Use new p s i to r e p l a c e the o ld p s i

p s i 1 <− seg . r e g r e s s i o n $ p s i [ 1 , 2 ]

p s i 2 <− seg . r e g r e s s i o n $ p s i [ 2 , 2 ]

input . data$Z . change1 <− pmax( input . data$Z−psi1 , 0)

input . data$Z . change2 <− pmax( input . data$Z−psi2 , 0)
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input . data1 <− input . data [ index , ]

## Calcu la te the random e f f e c t again : b . vec to r

mixed . output .REML <− lmer (Y ˜ X + Z +

Z . change1 + Z . change2 +

(1 + S | Subject ) , input . data1 , REML = FALSE)

std . co r r <− as . data . frame (

VarCorr ( mixed . output .REML) ) $sdcor

convergence3 <− max( abs ( matrix

( c ( std . co r r [ 1 ] ˆ 2 , std . co r r [ 1 ] ∗ std . co r r [ 2 ] ∗ std . co r r [ 3 ] ,

s td . co r r [ 1 ] ∗ std . co r r [ 2 ] ∗ std . co r r [ 3 ] ,

s td . co r r [ 2 ] ˆ 2 ) , 2 , 2)

%∗%s o l v e ( sigma . matrix ) − diag ( 2 ) ) )

r e s i d <− cbind ( s o r t

( ( p r e d i c t ( mixed . output .REML,

input . data)− input . data$Y )ˆ2 ,

dec r ea s ing = FALSE, index . re turn = TRUE) $x ,

s o r t ( ( p r e d i c t ( mixed . output .REML,

input . data)− input . data$Y )ˆ2 ,

dec r ea s ing = FALSE, index . re turn = TRUE) $ ix )

convergence4 <− 1 − l ength ( i n t e r s e c t

( r e s i d [ 1 : ( nrow ( input . data )∗ alpha ) , 2 ] , index ) )

/( nrow ( input . data )∗ alpha )
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index <− r e s i d [ 1 : ( nrow ( input . data )∗ alpha ) , 2 ]

## Keep track

t rack <− t rack + 1

seg [ [ t rack ] ] <− seg . r e g r e s s i o n

r e s u l t [ [ t rack ] ] <− mixed . output .REML

}

re turn ( l i s t ( seg [ [ t rack ] ] , r e s u l t [ [ t rack ] ] ) )

}

A.2 TLE Algorithm

l i b r a r y (mvtnorm)

l i b r a r y ( lme4 )

l i b r a r y ( segmented )

l i b r a r y ( matr ixca l c )

mixed .MLE <− f unc t i on ( input . data ,

i n i t i a l , alpha , to l , max . i t e r ){

## I n s i d e func t i on

ran . e f f <− f unc t i on (b . vector , input . data ){

rep .num <− as . matrix ( t a b l e ( input . data$Subject ) )

S . matrix <− cbind ( rep (1 ,

nrow ( input . data ) ) , input . data$S )
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random <− matrix (NA, nrow ( input . data ) , 1 )

sum <− 0

f o r ( i in 1 : nrow ( rep .num)){

random [ ( sum + 1 ) : ( sum+rep .num[ i ] ) , ] <−

S . matrix [ ( sum + 1 ) : ( sum+rep .num[ i ] ) , ]

%∗%(b . vec to r [ i , ] )

sum <− sum + rep .num[ i ]

}

re turn ( random )

}

break . i n i t i a l 1 <− pmax( input . data$Z−

q u a n t i l e ( input . data$Z , i n i t i a l [ 1 ] ) , 0)

break . i n i t i a l 2 <− pmax( input . data$Z−

q u a n t i l e ( input . data$Z , i n i t i a l [ 2 ] ) , 0)

input . data <− data . frame ( input . data ,

Z . change1 = break . i n i t i a l 1 ,

Z . change2 = break . i n i t i a l 2 ,

Subject = Subject )

mixed . output .REML <− lmer (Y ˜ X + Z +

Z . change1 + Z . change2 + (1 + S | Subject ) ,

input . data , REML = FALSE)

ps i 1 <− i n i t i a l [ 1 ] ∗max( input . data$Z )
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ps i 2 <− i n i t i a l [ 2 ] ∗max( input . data$Z )

convergence1 <− 10 ## converge o f break−po int

convergence2 <− 10

convergence3 <− 10 ## converge o f random−e f f e c t

convergence4 <− 10

track <− 0

r e s u l t <− l i s t ( )

seg <− l i s t ( )

index <− sample ( seq (1 , nrow ( input . data ) , 1 ) ,

nrow ( input . data )∗ alpha , r e p l a c e = FALSE)

whi l e (max( convergence1 ,

convergence2 , convergence4 ) >

t o l && track < max . i t e r ){

std . co r r <− as . data . frame (

VarCorr ( mixed . output .REML) ) $sdcor

std . co r r [ i s . nan ( std . co r r ) ] = 0 .5

sigma . matrix <− matrix ( c ( std . co r r [ 1 ] ˆ 2 ,

std . co r r [ 1 ] ∗ std . co r r [ 2 ] ∗ std . co r r [ 3 ] ,

s td . co r r [ 1 ] ∗ std . co r r [ 2 ] ∗

std . co r r [ 3 ] , s td . co r r [ 2 ] ˆ 2 ) , 2 , 2)

b . vec to r <− as . matrix (

rane f ( mixed . output .REML) $Subject )
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random . e f f e c t <− ran . e f f (b . vector , input . data )

## Create a new column to s t o r e the random e f f e c t

input . data1 <− data . frame

( input . data , random . e f f e c t ) [ index , ]

## Use new b . vec to r to obta in new break . po in t s

seg . r e g r e s s i o n <− segmented ( lm

( (Y−random . e f f e c t ) ˜

X + Z , data = input . data1 ) ,

seg . Z=˜Z , p s i=c ( ps i1 , p s i 2 ) ,

c o n t r o l=seg . c o n t r o l ( d i s p l ay=FALSE) )

convergence1 <− abs (

seg . r e g r e s s i o n $ p s i [ 1 , 2 ] − ps i 1 )

convergence2 <− abs (

seg . r e g r e s s i o n $ p s i [ 2 , 2 ] − ps i 2 )

## Use new p s i to r e p l a c e the o ld p s i

p s i 1 <− seg . r e g r e s s i o n $ p s i [ 1 , 2 ]

p s i 2 <− seg . r e g r e s s i o n $ p s i [ 2 , 2 ]

input . data$Z . change1 <− pmax( input . data$Z−psi1 , 0)

input . data$Z . change2 <− pmax( input . data$Z−psi2 , 0)

input . data1 <− input . data [ index , ]

## Calcu la te the random e f f e c t again : b . vec to r

mixed . output .REML <− lmer (Y ˜ X + Z +
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Z . change1 + Z . change2 +

(1 + S | Subject ) , input . data1 , REML = FALSE)

std . co r r <− as . data . frame (

VarCorr ( mixed . output .REML) ) $sdcor

convergence3 <− max( abs ( matrix

( c ( std . co r r [ 1 ] ˆ 2 , std . co r r [ 1 ] ∗ std . co r r [ 2 ] ∗ std . co r r [ 3 ] ,

s td . co r r [ 1 ] ∗ std . co r r [ 2 ] ∗ std . co r r [ 3 ] ,

s td . co r r [ 2 ] ˆ 2 ) , 2 , 2)

%∗%s o l v e ( sigma . matrix ) − diag ( 2 ) ) )

r e s i d <− cbind ( s o r t

( ( p r e d i c t ( mixed . output .REML,

input . data)− input . data$Y )ˆ2 ,

dec r ea s ing = FALSE, index . re turn = TRUE) $x ,

s o r t ( ( p r e d i c t ( mixed . output .REML,

input . data)− input . data$Y )ˆ2 ,

dec r ea s ing = FALSE, index . re turn = TRUE) $ ix )

convergence4 <− 1 − l ength ( i n t e r s e c t

( r e s i d [ 1 : ( nrow ( input . data )∗ alpha ) , 2 ] , index ) )

/( nrow ( input . data )∗ alpha )

index <− r e s i d [ 1 : ( nrow ( input . data )∗ alpha ) , 2 ]

## Keep track

t rack <− t rack + 1
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seg [ [ t rack ] ] <− seg . r e g r e s s i o n

r e s u l t [ [ t rack ] ] <− mixed . output .REML

}

re turn ( l i s t ( seg [ [ t rack ] ] , r e s u l t [ [ t rack ] ] ) )

}
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Appendix B

Density Information Matrix with

ICA Application

B.1 DIM-KDE

##Construct the empty l i s t and A matrix##

l i b r a r y ( fastICA )

l i b r a r y (ProDenICA)

l i b r a r y (MASS)

l i b r a r y (mvtnorm)

l i b r a r y (expm)

ppreduceyao<−f unc t i on (X, nrow , nco l ) #j f 2 code

{

nrow=dim(X) [ 1 ] ; nco l=dim (X) [ 2 ]
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cov<−cov (X) #Calcu la te sample covar iance#

SqrtSigma<−e igen ( cov ) $vec to r s %∗%

diag ( s q r t ( e i gen ( cov ) $va lues ) ) %∗% t ( e igen ( cov ) $vec to r s )

Hopt<−((4/( nco l +2))ˆ(1/( nco l +4)))∗

SqrtSigma ∗( nrowˆ(−1/( nco l +4)))

###Search the c i r c l e around the area o f Hopt##

Hopt . power.2<−Hopt%∗%Hopt

Hopt . power . neg2<−s o l v e ( Hopt . power . 2 )

non . diag . one<−0 # s e t i n i t i a l va lue o f non−d iagona l e lements#

non . diag . two<−0

non . diag . three<−0

non . diag . four<−0

# Calcu la te the summation o f non−d iagona l part#

f o r ( i in 1 : ( nrow−2)) {

temp=dmvnorm(X[ ( i +1):nrow , ] ,X[ i , ] , 2 ∗Hopt . power . 2 )

temp1=sum( temp )

non . diag . one=non . diag . one+temp1

non . diag . two=non . diag . two+(1/2)∗

Hopt . power . neg2∗temp1−(1/4)∗Hopt . power . neg2%∗%

( (X[ i , ]− t (X[ ( i +1):nrow ,]))%∗%

( temp∗ t (X[ i , ]− t (X[ ( i +1):nrow , ] ) ) ) )

%∗%Hopt . power . neg2
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non . diag . three=non . diag . three +(1/2)

∗Hopt . power . 2∗ temp1 +(1/4)∗(X[ i , ]+ t (X[ ( i +1):nrow , ] ) )

%∗%(temp∗ t (X[ i , ]+ t (X[ ( i +1):nrow , ] ) ) )

non . diag . f our=non . diag . f our +(1/2)∗temp%∗%

t (X[ i , ]+ t (X[ ( i +1):nrow , ] ) )

}

i=nrow−1

temp=dmvnorm(X[ ( i +1):nrow , ] ,X[ i , ] , 2 ∗Hopt . power . 2 )

non . diag . one=non . diag . one+temp

non . diag . two=non . diag . two+(1/2)∗

Hopt . power . neg2∗temp−(1/4)∗temp∗

Hopt . power . neg2%∗%

( (X[ i , ]−X[ ( i +1):nrow ,])%∗%

t (X[ i , ]−X[ ( i +1):nrow ,]))%∗%Hopt . power . neg2

non . diag . three=non . diag . three +(1/2)∗Hopt . power . 2∗

temp+(1/4)∗temp∗(X[ i , ]+X[ ( i +1):nrow ,])%∗%

t (X[ i , ]+X[ ( i +1):nrow , ] )

non . diag . f our=non . diag . f our +(1/2)∗

temp∗(X[ i , ]+X[ ( i +1):nrow , ] )

# Ca lcu la te the summation o f d iagona l part

ke rne l . part<−dmvnorm( rep (0 , nco l ) , rep (0 , nco l ) ,2∗Hopt . power . 2 )

diag . one<−nrow∗ ke rne l . part
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de r i v . part<−ke rne l . part ∗ ( (1/2)∗

Hopt . power . neg2−(1/4)∗Hopt . power . neg2%∗%

( rep (0 , nco l ))%∗%t ( rep (0 , nco l ))%∗%Hopt . power . neg2 )

diag . two<−nrow∗ de r i v . part

# s e t i n i t i a l va lue o f d iagon la e lements#

diag . three<−0

diag . four<−0

diag . three=ke rne l . part ∗ ( (1/2)∗ nrow∗Hopt . power .2+ t (X)%∗%X)

diag . f our=ke rne l . part ∗colSums (X)

part1<−(2∗non . diag . one+diag . one )/ ( nrow ˆ2)

part2<−(2∗non . diag . two+diag . two )/( nrow ˆ2)

part3<−(2∗non . diag . three+diag . three )/ ( nrow ˆ2)

part4<−(2∗non . diag . f our+diag . f our )/ ( nrow ˆ2)

Vf2<−part3 / part1−t ( part4 / part1)%∗%(part4 / part1 )

SqrtVf2<−e igen ( Vf2 ) $vec to r s %∗% diag ( s q r t ( e i gen ( Vf2 ) $va lues ) )

%∗% t ( e igen ( Vf2 ) $vec to r s )

Jf2<−(SqrtVf2%∗%part2%∗%SqrtVf2 )/ part1

W <− s o l v e ( SqrtSigma)%∗%eigen ( J f2 ) $vec to r s

output<− l i s t ( J f2=Jf2 ,

SqrtSigma = SqrtSigma ,

W = W, Vf2 = Vf2 , Int = ( part2 / part1 ) )

re turn ( output )
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}

B.2 DIM-GMM

DIMGMM <− f unc t i on (X, nrow , nco l ){

cov<−cov (X) #Calcu la te sample covar iance#

SqrtSigma<−e igen ( cov ) $vec to r s %∗%

diag ( s q r t ( e i gen ( cov ) $va lues ) ) %∗%

t ( e igen ( cov ) $vec to r s )

Comp <− t a i l (

mclustBootstrapLRT (X, model = ”EEI”)$G, n = 1)

dens <− dens i tyMclust

(X, G = Comp, modelNames = ”EEI”)

Lambda <− dens$parameters$pro

Mu <− dens$parameters$mean

Sigma <− dens$parameters$var iance$Sigma

######### Use f2 t rans fo rmat ion method ##########

equat ion1 <− 0

equat ion2 <− 0

equat ion3 <− 0

equat ion4 <− 0

Sigma . c <− Sigma/2

f o r ( i in 1 :Comp) {
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f o r ( j in 1 :Comp){

mu. c <− (Mu[ , i ] + Mu[ , j ] )

fx . square <− Lambda [ i ]∗Lambda [ j ]∗

dmvnorm(Mu[ , i ] , Mu[ , j ] , 2∗Sigma )

equat ion1 <− equat ion1 + fx . square

fx . der <− fx . square ∗(

s o l v e ( Sigma )/2 + (1/4)∗ s o l v e ( Sigma )

%∗%(Mu[ , i ] − Mu[ , j ] )

%∗%t (Mu[ , i ] − Mu[ , j ] )

%∗%s o l v e ( Sigma ) )

equat ion2 <− equat ion2 + fx . der

Vf1 <− fx . square ∗( Sigma . c + mu. c%∗%t (mu. c ) )

equat ion3 <− equat ion3 + Vf1

Vf2 <− fx . square ∗(mu. c )

equat ion4 <− equat ion4 + Vf2

}

}

Vf . f 2 <− equat ion3 / equat ion1 −

( equat ion4 / equat ion1)%∗%t ( equat ion4 / equat ion1 )

sqrtVf . f 2 <− e igen ( Vf . f 2 ) $vec to r s

%∗% diag ( s q r t ( e i gen ( Vf . f 2 ) $va lues ) ) %∗%

t ( e igen ( Vf . f 2 ) $vec to r s )
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############ Output matrix #########

Jf2 <− ( sqrtVf . f 2%∗%equat ion2%∗%sqrtVf . f 2 )/ equat ion1

W. f2 <− s o l v e ( SqrtSigma)%∗%eigen ( J f2 ) $vec to r s

output<− l i s t ( J f2 = Jf2 ,

SqrtSigma = SqrtSigma , W. f2 = W. f2 ,

Vf . f 2 = Vf . f2 , mixest = mixest )

}
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