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Improved data reduction for the deep-hole method of
residual stress measurement

A T DeWald and M R Hill*

Mechanical and Aeronautical Engineering Department, University of California, Davis, California, USA

Abstract: This paper describes an improved data reduction scheme for the deep-hole method of
residual stress measurement. The deep-hole method uses the changes in diameter of a reference hole,
drilled through the thickness of a component, to determine residual stress. The diameter changes
result from the removal of a cylindrical core from the component, where the core is larger than and
concentric with the reference hole. The new data reduction seeks to determine the unknown
eigenstrain distribution that gives rise to the residual stress state and to the reference hole
deformations; once the eigenstrain distribution is found, it is input to an elastic ®nite element analysis
to provide the residual stress distribution in the original component. The new data reduction relies on
expressing the unknown eigenstrain ®eld in a polynomial basis, and ®nding the unknown basis
function amplitudes from the measured reference hole diameter changes. The new data reduction is
compared with the current technique, and it is shown that the proposed scheme offers several
advantages to the current method of data reduction.

Keywords: residual stress measurement, deep-hole method, eigenstrain, experimental mechanics

NOTATION

fAg vector of coef®cients of the eigenstrain
polynomial series

A…z†, B…z† functions that account for the variations
in reference hole strain with respect to z

Axx
k , Ayy

k , Axy
k coef®cients of the Legendre polynomial

series for the eigenstrain components
‰CŠ compliance matrix relating reference

hole strains to eigenstrain components
d…y, z† measured reference hole diameter before

core removal
d 0…y, z† measured reference hole diameter after

core removal
do nominal reference hole diameter
D nominal outer diameter of the removed

(trepanned) core
D isotropic elastic constitutive tensor
E elastic modulus of the component

material
f …y, z†, g…y, z†, h…y, z†

functions used in the approximate data
reduction scheme

‰M…zi†Š matrix relating hole strains to residual
stress components

Pk…z† Legendre polynomial of order k
r, y polar coordinates in the plane normal to

the axis of the reference hole
ro half the nominal reference hole

diameter ˆ do/2
t thickness of the residual stress-bearing

component
x, y coordinates in the plane normal to the

axis of the reference hole
z coordinate along the axis of the

reference hole, through the depth of the
component

zi depths where reference hole strains are
measured

Dd…y, z† change in reference hole diameter ˆ
d 0(y, z) ¡ d(y, z)

f~eeg vector of reference hole strains
~ee…y, z† reference hole strain ˆ Dd(y, z)/do

f~ee…zi†g vector of reference hole strains at depth zi

e*xx, e*yy, e*xy eigenstrain components in the xy plane
~ees approximate reference hole strain

total strain tensor
* eigenstrain tensor

z normalized through-thickness
component ˆ 2z/t ¡ 1
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ym angles where reference hole strains are
measured

v Poisson’s ratio of the component
material

fs…zi†g vector of residual stress components at
depth zi

sxx, syy, sxy residual stress components in the plane
normal to the axis of the reference hole
stress tensor

1 INTRODUCTION

Residual stress can have a signi®cant impact on material
failure processes, and the ability to estimate residual
stress is an important engineering tool. For thick steel
components (e.g. thickness t550 mm), the deep-hole
(DH) method is one of the few applicable methods for
through-thickness residual stress measurement [1].
Because the method relies on the removal of only a
small core of material, less than 20±50 mm in diameter,
the measurement location can conceivably be weld
repaired following residual stress measurement. A
further advantage of DH is that the method can
potentially be applied in the ®eld; therefore structures
need be removed from service only long enough to make
the measurement and subsequent repair. Since the
method has these positive attributes, further develop-
ment of the DH method is desirable.

This paper introduces an improved data reduction
scheme for determining residual stress from deformation
measured in the DH experiment. As explained more
fully below, current data reduction schemes rely on
numerous assumptions [2, 3] that may not be satis®ed
for a given application [4]. The reduction scheme
presented here relies only on the assumptions of elastic
stress release and stress state uniformity in the dimen-
sions normal to the thickness, explicitly accounting for
some of the factors that require additional assumptions
in current schemes. The advantages of the new data
reduction scheme are illustrated by comparing it with a
current scheme, over a range of geometries and residual
stress distributions.

1.1 Deep-hole method

The DH method estimates the through-thickness resi-
dual stress distribution in a component by measuring
the change in diameter of a reference hole that occurs
when a core of material is removed from the component
by trepanning. The earliest references to the DH method
appeared in 1978 [5, 6], and the method has been used to
determine residual stress in components up to 100 mm
thick [7]. A schematic illustration of the DH method is

shown in Fig. 1, and the steps in the DH method are as
follows [3]:

1. A reference hole is gun drilled through the compo-
nent (Fig. 1). The reference hole is polished to remove
any abrupt changes in diameter.

2. Accurate measurements of the initial reference hole
diameter are taken at a number of angles around the
reference hole axis y and at several increments of
depth z (Fig. 1b), giving d…y, z†.

3. A core of material containing the reference hole is
trepanned free of the rest of the component using a
plunge electric discharge machine (Fig. 1c).

4. After core removal, the reference hole diameter is
measured in the same manner as before (Fig. 1c,
inset), giving d 0…y, z†.

5. The changes in diameter of the reference hole are
used to calculate the through-thickness distribution
of residual stress in the component.

Further experimental details for the DH method were
described by Leggatt et al. [7].

In presenting the methods for computing residual
stress from the measured reference hole diameter, the
notation in Fig. 2 is adopted, which de®nes the
coordinate directions (x, y, z) and (r, y, z), the core
diameter D, the nominal reference hole diameter do and
the component thickness t.

2 DATA REDUCTION TECHNIQUES

This paper describes a new method for ®nding residual
stress from measured diameter changes. This new data
reduction scheme takes as input the diameter changes, as
a function of both angular orientation around the hole
and depth from the surface, and provides the three
residual stress components in the plane normal to the
reference hole axis as a function of depth from the
surface. The focus is on the in-plane residual stress
components for simplicity; the distribution of the out-
of-plane residual stress component could be added as an
extension of the method. In order to highlight the
differences between the new approach and other
methods, one current calculation scheme for the DH
method is presented ®rst.

2.1 Approximate solution

The current method for determining the through-
thickness residual stress distribution from DH experi-
ments was presented by Leggatt et al. [7] and was further
discussed by Smith et al. [3]. Although the original work
includes the measurement of the through-thickness
residual stress component, at present it is assumed that
this stress component is negligibly small. This data
reduction method takes the experimentally measured
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changes in reference hole diameter and converts them to
strains by normalizing with the original reference hole
diameter do. The change in the reference hole diameter,

Dd…y, z†, is calculated according to

Dd…y, z† ˆ d 0…y, z† ¡ d…y, z† …1†

where d and d 0 are the reference hole diameters before
and after trepanning respectively, which are each
functions of the angular orientation around the hole,
y, and depth through the core thickness, z. The changes
in reference hole diameter are then converted to strain
using

~ee…y, z† ˆ Dd…y, z†
do

…2†

where do is the nominal reference hole diameter (and is
independent of z).

The reference hole strains ~ee…y, z† are related to the
residual stress components in the plane normal to the
reference hole axis, sxx…z†, syy…z† and sxy…z†, through a
simple elastic analysis. The analysis is based on
deformations occurring at a hole in a ®nite-thickness
planar-in®nite plate subjected to remote planar stress
components. In the analysis, the remote stresses are
constant through the plate thickness but, because there
are different conditions of thickness-direction constraint
at different locations through the thickness, the near-
hole deformation is dependent on z [2]. For a given
applied remote stress constant with depth, the reference
hole strain that would occur is given by

~ee…y, z† ˆ f …y, z†sxx ‡ g…y, z†syy ‡ h…y, z†sxy

E
…3†

where the functions f, g and h were given by Garcia
Granada et al. [2] as

f …y, z† ˆ A…z†‰1 ‡ B…z† 2 cos…2y†Š …4†

g…y, z† ˆ A…z†‰1 ¡ B…z† 2 cos…2y†Š …5†

h…y, z† ˆ 4A…z†B…z† sin…2y† …6†

The functions A…z† and B…z† account for the variation in
reference hole strain with z. Garcia Granada et al. [2]
used ®nite element analysis to ®nd A…z† and B…z† for a
reference hole of 3.175mm diameter in plates 20, 50 and
100 mm thick. A…z† was found to be approximately 1
and independent of z, while B…z† varied from about 0.85
near the plate mid-thickness to 0.98 near the surface
(Fig. 3). To ®nd residual stresses that vary with depth, it
is assumed that the trepanned core is composed of a
stack of annular slices, which act independently of one

Fig. 1 Schematic illustration of the DH method

Fig. 2 Three geometries in the DH method: (a) trepanned
core, (b) component with reference hole and (c) solid
component
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another and behave in a manner predicted by the
constant remote stress analysis.

A through-thickness residual stress distribution is
calculated from measured reference hole strains ~ee…y, z†
through the use of a compliance matrix. Since the
trepanned core is assumed to be composed of a stack of
independent annular slices, stresses at a given depth are
found independently from those at other depths.
Reference hole strain is measured at a set of n depths
z ˆ fz1, z2, z3, . . . , zng and a set of m angles
y ˆ fy1, y2, y3, . . . , ymg, where m53. At each depth zi,
the measured strains are assembled into a vector of m
components

f~ee…zi†g ˆ ‰~ee…y1, zi†,~ee…y2, zi†, . . . ,~ee…ym, zi†ŠT …7†

The strain vector is then related to a vector of unknown
stress components

fs…zi†g ˆ ‰sxx…zi†, syy…zi†, sxy…zi†ŠT …8†

through

f~ee…zi†g ˆ ¡‰M…zi†Šfs…zi†g …9†

where the elements of the matrix ‰M…zi†Š are derived
from equations (3) to (6) and are given by

‰M…zi†Š ˆ 1

E

f …y1, zi† g…y1, zi† h…y1, zi†
f …y2, zi† g…y2, zi† h…y2, zi†

..

. ..
. ..

.

f …ym, zi† g…ym, zi† h…ym, zi†

2

6664

3

7775 …10†

Finally, the unknown stress components fs…zi†g are
calculated from the measured reference hole strains

using least squares:

fs…zi†g ˆ ¡f‰M…zi†ŠT‰M…zi†Šg¡1‰M…zi†ŠTf~ee…zi†g …11†

The analysis is repeated for all depths zi, where the
results at one depth are independent of those at the
other depths.

A number of assumptions are made in this analysis,
and these will have various impacts on the accuracy of
the computed stresses. Firstly, the reference hole is
assumed to have no impact on the stress released during
trepanning. Secondly, the trepanned core is assumed to
be free from stress. Thirdly, the trepanned core is
assumed to be a stack of independently acting annular
slices. Fourthly, the stress ®eld is assumed to be
independent of position normal to the reference hole
axis. Fifthly, the deformation due to trepanning is
assumed to be elastic. Each of these assumptions may
have an impact on the accuracy of the stress computa-
tion scheme.

The reference hole diameter do and trepanned core
diameter D can be selected to approximate certain
assumptions of the data reduction scheme better. A
small core diameter will minimize the amount of spatial
averaging that occurs when the residual stress state
varies with position normal to the reference hole axis.
After trepanning, a core with a small diameter will also
retain less residual stress than a core with a large
diameter, the amount of retained stress depending on
the curvature of the residual stress distribution with z
[8]. For these two reasons, a small core diameter is
desirable. If the reference hole diameter and the
trepanned core diameter are of comparable size,
however, the stress released during trepanning will be
affected by the presence of the reference hole, therefore

Fig. 3 B…z† for a do ˆ 3:175 mm reference hole in t ˆ 20 and 50 mm plates [2]
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invalidating an assumption of data reduction. This
points to the need for a small reference hole diameter
and a large core diameter. Further, a large core diameter
is preferable to limit the effects of plasticity due to
trepanning on the measured diameter changes. During
trepanning, plasticity may arise due to the action of the
cutting tool, due to the concentration of residual stress
as the trepan is extended or due to a combination of
these two effects. Attempts to select geometry to meet
the assumptions of the data reduction scheme therefore
lead to a trade-off between a small core diameter (which
will minimize spatial averaging and will retain little
residual stress) and a large core diameter (which will
minimize the effects of the reference hole and of
plasticity).

2.2 Eigenstrain series solution

2.2.1 General approach

An alternative formulation of the data reduction will
now be described, which enables the experimenter to
account for both residual stress released when the
reference hole is drilled and for residual stress remaining
in the trepanned core. The problem of ®nding residual
stress in the region of the trepanned core is formulated
by using an eigenstrain series solution. It is assumed that
the residual stress does not vary with position normal to
the reference hole axis, and that the deformations
occurring during drilling of the reference hole and
during trepanning are elastic. The solution scheme
employs linear elastic ®nite element modelling, where
the models include the actual geometries of the reference
hole and trepanned core. The effects of the reference
hole on stress released during trepanning and effects of
stress retained in the trepanned core are properly
accounted for.

The eigenstrain * is a spatially varying inelastic
tensor stain ®eld that produces residual stress [9]. It
enters an elastic stress analysis through the constitutive
relation

ˆ D… ¡ *† …12†

where is the stress tensor, is the total strain tensor
and D is the usual isotropic elastic constitutive tensor.
The term in parentheses in equation (12) is the elastic
strain. The usefulness of an eigenstrain formulation lies
in the fact that, while trepanning alters the residual
stress, it does not change the eigenstrain distribution
provided that only elastic straining occurs; i.e., the same
eigenstrain distribution causes different stress and
deformation states in the geometries of interest. For
the DH method, these geometries are as follows: Fig. 2a,
trepanned core; Fig. 2b, in®nite plate with the reference
hole; Fig. 2c, original ®nite-thickness in®nite plate. The
differences between the stress states of these three

geometries arise because of new traction-free surfaces
created by cutting, thereby changing the equilibrium
equations of elasticity. The measured reference hole
strains are suf®cient to determine the distribution with z
of the eigenstrain components in the plane normal to the
reference hole [i.e. e*xx…z†, e*yy…z† and e*xy…z†]. With the
eigenstrain components known, the residual stress in the
plate, prior to drilling the reference hole, is then found
by an elastic ®nite element analysis.

2.2.2 Determination of eigenstrain

It is assumed that each unknown component of
eigenstrain is given by a Legendre polynomial series.
For example, e*xx…z† is given by a Legendre polynomial
of degree l:

e*xx…z† ˆ
Xl

kˆ0

Axx
k Pk…z† …13†

where z is a normalized depth coordinate that runs from
¡1 to 1 as z runs from 0 to t, so that

z ˆ 2z

t
¡ 1 …14†

and the l ‡ 1 coef®cients Axx
k of the polynomial series

are to be determined. The same basis functions are used
to express e*yy…z† and e*xy…z†, but with additional
corresponding coef®cients Ayy

k and Axy
k respectively.

The Legendre polynomial of order k ‡ 1 can be found
from the recurrence relation [10]

Pk‡1…z† ˆ …2k ‡ 1†zPk…z† ¡ kPk¡1…z†
k ‡ 1

…15†

where P0…z† and P1…z† are given by

P0…z† ˆ 1 …16†

P1…z† ˆ z …17†

With the series representation of the unknown eigen-
strain, the problem of determining the unknown
eigenstrain distribution is reduced to ®nding the
3…l ‡ 1† coef®cients Axx

k , Ayy
k and Axy

k of the three
polynomial series for the eigenstrain components.

The coef®cients of the three polynomial series are
found from the reference hole strain measurements by
solving an elastic inverse problem. To simplify the
presentation, it is assumed for the moment that the
unknown eigenstrain ®eld consists only of e*xx…z†. The
extension to the more general case where all three planar
eigenstrain components are non-zero is made later.
When only e*xx…z† is non-zero, reference hole strains
measured along a single orientation (e.g. y ˆ 0) are
suf®cient to determine the coef®cients Axx

k . Assuming
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elastic behaviour, the principle of superposition allows
the expression of the reference hole strain as a linear
combination of the unknown polynomial coef®cients:

~ee…y ˆ 0, zj† ˆ
Xl

k ˆ 0

Axx
k Cjk …18†

where Cjk is the reference hole strain that would occur at
depth zj and y ˆ 0 if the eigenstrain distribution were
given exactly by e*xx…z† ˆ Pk…z†.

Because Cjk is the strain that occurs due to the known
eigenstrain distribution e*xx…z† ˆ Pk…z†, it can be found
by elastic analysis. Two elastic models are used to ®nd
Cjk, one of the in®nite plate with reference hole (Fig. 2b)
and one of the trepanned core (Fig. 2a). For each
polynomial basis function, it is necessary to apply a
corresponding eigenstrain distribution to each model, to
solve for equilibrium and to record the deformed shape
of the reference hole at y ˆ 0 and at depths correspond-
ing to those used in the physical measurements
z ˆ fz1, z2, z3, . . . , zng. Reference hole strains are then
computed from these deformations using equations (1)
and (2), with d…y ˆ 0, zj† found from displacements on
the model of the in®nite plate with reference hole and
d 0…y ˆ 0, zj† found from displacements on the model of
the trepanned core. Repeating the analysis for all basis
functions provides the elements of the matrix Cjk which
has n rows (the number of depths) and l ‡ 1 columns
(the number of basis functions).

Provided that the number of depths, n, exceeds the
number of assumed polynomial terms, l ‡ 1, equation
(18) can be solved in a least-squares sense for the
unknown coef®cients Axx

k using an equation analogous
to equation (11) (and given explicitly below).

For the case of three non-zero eigenstrain compo-
nents, the analysis just described is extended to include
additional unknown polynomial coef®cients and addi-
tional angles of reference hole strain measurement. The
extension from the case of a single eigenstrain compo-
nent requires the careful organization of the reference
hole strains and the polynomial coef®cients. A vector
representation for the reference hole strain is adopted:

f~eeg ˆ ‰~ee…y1, z1†,~ee…y1, z2†, . . . ,~ee…y1, zn†,
~ee …y2, z1†,~ee…y2, z2†, . . . ,~ee…y3, zn†ŠT

…19†

where y1 ˆ 0, y2 ˆ p=4 and y3 ˆ p=2 (although a differ-
ent set of angles might be chosen such as 0, p=3 and 2p=3).
A vector representation for the unknown coef®cients of
the eigenstrain polynomials is also adopted:

fAg ˆ ‰Axx
0 , Axx

1 , Axx
2 , . . . , Axx

l , Ayy
0 , Ayy

1 ,

Ayy
2 , . . . , Ayy

l , Axy
0 , Axy

1 , Axy
2 , . . . , Axy

l ŠT

…20†

A linear system then relates the reference hole strain
vector f~eeg to the polynomial coef®cient vector fAg:

f~eeg ˆ ‰CŠfAg …21†

The matrix [C] has 3n rows and 3…l ‡ 1† columns, and the
elements in the ®rst n rows and l ‡ 1 columns are the
elements Cjk of equation (18) [i.e. they are the reference
hole strains that occur at y ˆ 0 at depth zj when
e*xx…z† ˆ Pk…z†]. The remaining 2n rows of the ®rst l ‡ 1
columns are ®lled with reference hole strains found from
the elastic model on the angles y2 and y3. The remaining
2…l ‡ 1† columns are ®lled by reference hole strains
occurring when the polynomial basis functions of the
eigenstrain components e*yy…z† and e*xy…z† are imposed in
the elastic models. Given a vector of measured reference
hole strain, f~eeg, the unknown vector of basis function
amplitudes fAg is found using least squares from

fAg ˆ …‰CŠT‰CŠ†¡1‰CŠTf~eeg …22†

With the vector of basis function amplitudes determined
from the measured reference hole strains, the distribution
of each of the three planar eigenstrain components is
given by a known polynomial series, such as that for e*xx…z†
in equation (13).

2.2.3 Determination of residual stress

Residual stress is computed from the known distribu-
tions of the planar eigenstrain components by an elastic
®nite element analysis. The geometry for the analysis is
that of the component without the reference hole, herein
assumed to be an in®nite plate (Fig. 1c). The three
known eigenstrain component distributions are imposed
simultaneously in an elastic model of this geometry.
Solving for equilibrium in the presence of the eigenstrain
components provides the desired residual stress state.

2.2.4 Finite element implementation

The elastic models required to form the matrix [C] are
formulated using the ®nite element method and analyses
are performed using a commercial code [11]. The
material model is linear elastic with anisotropic thermal
expansion. Thermal expansion is used to introduce the
eigenstrain ®elds [12, 13], and the expansion components
are given spatial distributions with z as required to
impose the polynomial basis functions for each eigen-
strain component. The stress and deformation states in a
given geometry are found by imposing a unit tempera-
ture change and solving for equilibrium. Finite element
meshes were designed to represent the three geometries
of interest (Figs 4a to c). The meshes are three
dimensional with 100 layers of elements along z, such
that elements at the surfaces are ®ve times smaller than
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those at the mid-depth of the model. Each mesh
employed quarter-symmetry in the plane of the plate.
The outside radius of the models of the in®nite plate
with and without the reference hole was approximately
30 times the reference hole radius, which was large
enough to approximate an in®nite geometry. These three
®nite element models are suf®cient to simulate com-
pletely the DH measurement.

A tensor rotation was used to reduce the number of
®nite element simulations required to determine the
elements of [C]. For a given geometry, reference hole
deformations were determined for the basis functions of
the xx component of eigenstrain using the quarter-
symmetric ®nite element models. The deformations that
would occur for the same basis functions but for the yy
component of eigenstrain were then obtained from a
coordinate rotation of the eigenstrain tensor by p=2
about the z axis, which results in

~ee y ‡ p
2

, z
± ²­­­­

e¤
yy

ˆ ~ee…y, z†je¤
xx

…23†

where the subscript on the trailing vertical bar re¯ects
the eigenstrain component imposed when the reference
hole strain occurs. Similarly, a coordinate rotation of
the eigenstrain tensor about the z axis by p=4 provides
deformations that would occur for the xy component of
eigenstrain, so that

~ee y ‡ p
4

, z
± ²­­­­

e¤
xy

ˆ 0:5‰~ee…y, z†je¤
xx

¡ ~ee…y, z†je¤
yy

Š …24†

The validity of these two equations was veri®ed by
performing developmental ®nite element simulations
using fully cylindrical meshes, with no imposed sym-
metry conditions, and comparing the reference hole
strains on y ˆ p=4 and p=2 to strains computed using

equations (23) and (24). This comparison showed
agreement to four signi®cant digits, as would be
expected given the admissibility of the tensor rotation
used to develop the above equations.

Equations (23) and (24) allow a signi®cant reduction
in effort when computing the elements of [C]. Firstly,
they allow the use of a quarter-symmetric model in the
plane normal to the reference hole. Since the deforma-
tion occurring when the xy eigenstrain ®elds are
imposed is antisymmetric in the x and y directions, a
fully symmetric model would be needed if the reference
hole strains were not determined using equation (24).
Secondly, the use of equations (23) and (24) allows a
direct factor of three reduction in the number of cases
analysed. Together, equations (23) and (24) provide a
factor of 12 reduction in computational effort to
determine the elements of [C].

Finite element models were made for each of the three
DH geometries. Quarter-symmetry of the models was
enforced by restraining nodes in the xz and yz planes to
remain within their respective initial planes. The mesh
for the in®nite plate with reference hole is shown in
Fig. 4b. Nodes on the outer radius of this model were
restrained from moving in the x and y directions in
order to model the in-plane restraint imposed by the
planar-in®nite geometry. The outer radius of the mesh is
approximately 30ro where ro is the radius of the
reference hole. The outer radius of the model was
found from convergence of the reference hole deforma-
tions with increasing outer radius, identi®ed by con-
structing preliminary meshes with outer radii of
approximately 10ro, 20ro and 30ro. The mesh used for
the trepanned core is shown in Fig. 4a. No restraints
were placed on the nodes on the outer radius of the
model, so that a traction-free surface would result. The
mesh for the planar-in®nite plate is shown in Fig. 4c.
The outer radius of the model is the same as that used

Fig. 4 Three quarter-symmetric models used in the eigenstrain analysis: (a) trepanned core, (b) component
with reference hole and (c) solid component
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for the plate with reference hole model (Fig. 4b), and
nodes on the outer radius of the model are restrained in
x and y to model the restraint of the planar-in®nite
plate. These models are employed to determine the
elements of the matrix [C] of equation (21) and to ®nd
residual stress once the eigenstrain amplitudes have
been determined.

2.3 Comparison of methods

The two DH data reduction schemes are compared in
two ways. In all analyses, the elastic material properties
are taken to be E ˆ 207GPa and v ˆ 0:29. For a given
set of assumed DH geometry (i.e. do, D and t) and a
given eigenstrain basis function, the ®nite element
modelling provides a rigorous estimate of the reference
hole strain due to trepanning, ~ee…y, z†, and this estimate is
used as the foundation of the eigenstrain series solution.
For comparison, a reference hole strain consistent with
the assumptions of the approximate data reduction
scheme is computed. This approximate reference hole
strain is found from residual stress in the in®nite plate
caused by a given eigenstrain basis function and found
from the ®nite element modelling. Substituting the
components of residual stress at a particular depth
into equation (9) provides an estimate of the reference
hole strain consistent with the assumptions of the
approximate data reduction scheme. This approximate
reference hole strain will be referred to as ~ees…y, z†, where
the subscript s signi®es that the strain is computed from
residual stress, using equation (9).

The ®rst comparison of the two DH data reduction
schemes is made by comparing ~ees…y, z† with ~ee…y, z†. If the

diameter of the trepanned core is large compared with
the diameter of the reference hole and the stress
distribution is smooth, the two reference hole strains
are expected to agree. To illustrate that the core size will
cause differences between the approximate and eigen-
strain approaches, a comparison is made between
~ees…y, z† and ~ee…y, z† for a range of core sizes. To illustrate
that the smoothness of the stress distribution also causes
differences to arise, a comparison is made between
~ees…y, z† and ~ee…y, z† over a range of polynomial basis
functions, where higher-order basis functions vary more
sharply than lower-order basis functions. In all calcula-
tions the reference hole diameter is do ˆ 6 mm, which
has been previously used in DH experiments [7]. Results
are presented at y ˆ 0 for the xx component of
eigenstrain and for the thickness as t ˆ 50 and 100mm
and core diameter D ˆ 10 and 20 mm.

The second comparison of the two DH data reduction
schemes illustrates the engineering signi®cance of the
difference between the two methods by simulating the
application of DH to a plastically bent beam. In
verifying their earlier data reduction scheme, Leggatt
et al. [7] applied DH to a plastically bent beam 100 mm
thick, 52 mm wide and 875 mm long. They used a 6 mm
reference hole diameter and a 22 mm core diameter. To
validate the DH measurement, Leggatt et al. estimated
the expected through-thickness residual stress distribu-
tion in the beam by measuring strain at various points
across the beam thickness during elastic±plastic beam
bending. The strain data were then combined with a
stress±strain curve and, assuming elastic unloading, the
expected residual stress was computed. A close approx-
imation to the expected axial residual stress is given by
the trilinear distribution shown in Fig. 5.

Fig. 5 Idealized residual stress in the plastically bent beam investigated by Leggatt et al. [7]
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To simulate this DH application approximately, it is
assumed that the initial geometry is an in®nite plate (i.e.
the ®nite beam width is not modelled), and the DH
geometry has t ˆ 100 mm and D ˆ 20 mm. Reference
hole strains that would occur in the presence of this
stress ®eld are found from ®nite element analysis by
imposing the trilinear residual stress (Fig. 5) in the ®nite
element models of the in®nite plate with a reference hole
(Fig. 4b) and the trepanned core (Fig. 4a) and solving
for equilibrium. This stress state is introduced into the
®nite element modelling by assuming that it is uniaxial
and by using the residual stress capability of the
commercial code employed [11]. The deformations
occurring in the two models are used with equation (2)
to compute reference hole strains. These reference hole
strains, occurring due to the input residual stress state,
are then used as input to the data reduction schemes. A
seventh-order polynomial series (i.e. l ˆ 7) is used to
represent the unknown eigenstrain components. The
residual stress distributions determined by the approx-
imate and eigenstrain data reduction schemes are then
compared with the known residual stress state. To
illustrate the degree to which the core diameter and plate
thickness in¯uence the stress determination, the simula-
tion is repeated for D ˆ 20 mm and l ˆ 50 mm, for
D ˆ 10 mm, and t ˆ 50 mm, and for D ˆ 30 mm and
t ˆ 100 mm. The resulting errors in residual stress are
plotted for each geometry and data reduction scheme,
where the errors are the point wise differences between
the input stress of Fig. 5 and the stress output by the

data reduction schemes and where the errors are
normalized by the peak input stress (187 MPa).

The approximate data reduction and the computation
of approximate reference hole strains require values for
B…z† and these are taken from the values reported in
reference [2] and plotted in Fig. 3. Since B…z† is derived
for a planar in®nite geometry with thickness t and
reference hole diameter do, the solution is characterized
by the single non-dimensional parameter t=do with
spatial distribution depending on relative depth z=t.
The results in Fig. 3 are for do ˆ 3:175 mm and t=do ˆ
6:3 and 15.7. Over this fairly wide range of t=do the
values of B…z† vary by less than 3 per cent at any given
value of z/t. For the present work, do ˆ 6 mm with t ˆ
50 and 100 mm …t=do ˆ 8:3 and 16.7). Since B…z† is
insensitive to even sizeable variations in t=do, the t=do ˆ
6:3 curve of Fig. 3 was used to provide B…z† for the
t ˆ 50 mm case …t=do ˆ 8:3† and the t=do ˆ 15:7 curve
was used for the t ˆ 100 mm case …t=do ˆ 16:7†.

3 RESULTS

The reference hole strains ~ee…y, z† and the approximate
reference hole strains ~ees…y, z† are compared at y ˆ 0 in
Fig. 6 for three different eigenstrain basis functions
e*xx…z† ˆ 0:001Pk…z† with k ˆ 1, 5 and 9. The factor of
0.001 scaling the polynomials ensures reasonable levels
of deformation in the analysis because residual stresses

Fig. 6 Reference hole strains at y ˆ 0 for e*xx…z† ˆ 0:001Pk…z† with k ˆ 1, 5 and 9 and core dimensions
t ˆ 100 mm and D ˆ 20 mm
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in engineering metals are of the order of 0.001 times the
elastic modulus. The DH geometry modelled for the
results in Fig. 6 is t ˆ 100 mm and D ˆ 20 mm. The
reference hole strains ~ee…y, z† are denoted `actual’ in the
plot legend to re¯ect that they are a rigorous ®nite
element estimate of deformations which would occur for
the given eigenstrain distribution. The difference
between the actual and approximate reference hole
strains is small for low-order eigenstrain ®elds and
becomes larger with increasing order. The difference in
strain is probably due to residual stress remaining in the
trepanned core, which is assumed to be zero in the
approximate data reduction scheme.

The reference hole strain occurring at y ˆ 0 for
e*xx…z† ˆ 0:001P5…z† is shown in Fig. 7 for a range of
core diameters D and component thicknesses t. Also
shown in the ®gure is the approximate reference hole
strain computed from residual stress. Results are
presented in Fig. 7 for three different geometries: t ˆ
100 mm and D ˆ 20 mm; t ˆ 50 mm and D ˆ 20 mm;
t ˆ 50 mm and D ˆ 10 mm. The approximate refer-
ence hole strain is only plotted for t ˆ 100 mm and
D ˆ 20 mm because it is independent of the core
diameter and because the curve for t ˆ 50 mm is
indistinguishable from that for t ˆ 100 mm [due to the
similarity in B…z† for these two thicknesses]. The
actual reference hole strain depends signi®cantly on
both plate thickness and core diameter. The largest
reference hole strain occurs for t ˆ 100 mm and
D ˆ 20 mm, which has both the largest thickness
and the smallest core diameter±thickness ratio
D=t ˆ 0:2. The smallest reference hole strain occurs

for t ˆ 50 mm and D ˆ 20 mm, which has the smallest
thickness and the largest core diameter±thickness ratio
D=t ˆ 0:4. The t ˆ 50 mm, D ˆ 10 mm, geometry
shows that the reference hole strain depends on both
the thickness t and on the core diameter±thickness
ratio D/t, since the reference hole strain differs from
the t ˆ 100 mm, D ˆ 20 mm, case but has the same
D/t. Figure 7 also shows that the approximate method
over-predicts deformation for all geometries consid-
ered, which probably occurs because the ®nite size
core always retains some level of residual stress,
thereby violating an assumption of the approximate
reduction scheme. The fact that the approximate strain
is an overestimate of deformation means that the
approximate data reduction scheme will underestimate
residual stress.

Simulation of the DH method for the case of the
plastically bent beam shows that the accuracy of the
approximate data reduction scheme depends on the core
diameter and thickness employed. For a large thickness
and small core diameter …t ˆ 100 mm and D ˆ 20 mm),
the approximate and eigenstrain data reduction schemes
produce comparable results (Fig. 8), with a small error
in stress except near the peaks of the stress distribution
(i.e. near z=t ˆ 0:33 and 0.66). The error for the
approximate data reduction scheme depends on the
DH geometry (Fig. 9) while the error for the eigenstrain
data reduction scheme does not (Fig. 10). The maximum
error for the eigenstrain reduction scheme is 15 per cent
of the peak stress for all geometries. The maximum error
for the approximate reduction scheme ranges from 14 to
35 per cent of the peak stress, depending on D and t.

Fig. 7 Reference hole strains at y ˆ 0 for various DH geometries with e*xx…z† ˆ 0:001P5…z†
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Error for the approximate data reduction scheme
increases with D for constant t, and error decreases
with t for constant D/t.

Even though the two reduction schemes produce
stress errors for the bent beam that may be comparable
(Fig. 8), the errors arise for different reasons. The error
for the eigenstrain data reduction scheme arises due to
the inability of the smooth polynomial basis functions to
®t the sharply peaked residual stress distribution, an

effect independent of the DH geometry (Fig. 10). The
error in the approximate data reduction scheme is due to
the differences between the actual reference hole strain
and approximate reference hole strain. The increase in
stress error with D=t at constant t and the decrease in
error with t at constant D/t (Fig. 9) should be expected
because the same trends are apparent in the difference
between the actual and approximate reference hole
strains (Fig. 7).

Fig. 9 Normalized error in residual stress in various DH geometries for approximate data reduction

Fig. 8 Input and computed residual stresses for the plastically bent beam and core dimensions t ˆ 100 mm
and D ˆ 20 mm
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4 DISCUSSION

The mechanical performance of certain components can
depend signi®cantly on the residual stress present and,
for such components, residual stress measurement is
therefore required to assess structural integrity. Since
the DH technique is one of the few methods capable of
measuring residual stress deep within thick components,
it is a valuable tool. To improve data reduction for the
DH technique, this paper had two main objectives. The
®rst of these was to develop a new method for
computing residual stress from experimentally measured
reference hole strains. The second objective was to
compare the new method with previous data reduction
schemes. Because the new method for stress computa-
tion relied on ®nite element modelling of the DH
geometry, it accounted for the in¯uences of component
thickness and trepanned core diameter. Reference hole
strains determined from ®nite element modelling were
compared with those expected on the assumptions of a
previous data reduction scheme and the comparison
showed that the previous reduction scheme is prone to
error for large core diameter or sharply varying
eigenstrain ®elds. Application of the previous and
eigenstrain data reduction schemes to the case of a
plastically bent beam showed that both were capable of
similar accuracy. However, while results from the
eigenstrain data reduction were independent of the
DH geometry, results from the previous scheme depend
on geometry, potentially leading to large errors in
residual stress.

A number of choices were made in developing the new
data reduction scheme. The most fundamental of these
was to seek the eigenstrain distribution rather than to

seek the residual stress distribution directly. In principle,
a stress-based approach would provide similar results,
but using eigenstrain greatly simpli®ed the analysis.
Deformation due to cutting a residual stress-bearing
body is most commonly modelled by applying tractions
to cut surfaces, where the traction has equal magnitude
and opposite direction to the (residual) stress vector
referenced to the cut-plane normal at a given point.
When the cut is perpendicular to a single normal
residual stress component, as occurs in the slitting
(crack compliance) method [14], applying tractions is
relatively simple because the tractions are normal to the
cut surface. For the trepanned core, however, the
traction components would be oblique to the cut
surface, therefore requiring the simultaneous applica-
tion of normal and shear tractions at a given point on
the surfaces of the trepanned core. Although this
analysis is possible, the capability to apply surface shear
tractions is absent from most commercial ®nite element
codes. In comparison, the eigenstrain method relies on
the anisotropic thermal expansion capability readily
available in several commercial codes and, since the
loading is generated at the integration points of the
elements, the need to apply normal and shear tractions
does not arise in the analysis.

A second choice made was the selection of a seventh-
order Legendre polynomial series to express the spatial
dependence of each of the unknown eigenstrain compo-
nents. Legendre polynomials were selected over other
polynomial series because they form an orthogonal
basis, and because they have previously been used in
other residual stress measurement applications (such as
slitting [14]). Non-polynomial basis functions might
have been selected to express the eigenstrain distribution

Fig. 10 Normalized error in residual stress in various DH geometries for eigenstrain data reduction
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and may have produced better results for the case of the
plastically bent beam. The bent beam stress distribution
is dif®cult to ®t using continuous polynomials because
of the sharp peaks (Fig. 5), and this limits the ability of
the eigenstrain data reduction to obtain better agree-
ment in the near-peak region. Although the ®tting is
carried out for the eigenstrain distribution, the shapes of
the eigenstrain and residual stress ®elds are similar. In
fact, a direct seventh-order polynomial ®t to the bent
beam residual stress provides a stress distribution
essentially equivalent to the result of the eigenstrain
data reduction scheme (Fig. 8). It may be that a basis
constructed from several piecewise linear or piecewise
quadratic shape functions, distributing the eigenstrain
components between several nodal locations, such as
used in a one-dimensional ®nite element application,
would provide improved results for stress in the near-
peak region. Since the choice of basis functions is
somewhat arbitrary, such a modi®cation to the eigen-
strain data reduction scheme is possible. However,
analyses of other relaxation-based residual stress mea-
surement methods indicate there are numerical advan-
tages to using a polynomial basis, rather than piecewise
functions (e.g. an analysis of hole drilling [15]).

The fact that the eigenstrain data reduction offers the
same accuracy for a range of DH geometries is
noteworthy. For the previous data reduction scheme,
good accuracy is possible for some residual stress
distributions provided that the proper geometry is
selected. In the case of a constant or linear through-
thickness stress distribution, the previous data reduction
scheme will produce good results because the core will
be essentially stress free. However, for other stress
distributions, the accuracy will depend on the diameter
of the core and the component thickness because the
reference hole strains differ from those expected (Figs 6
and 7). Since the distribution of residual stress to be
measured is often wholly unknown, the selection of the
proper core diameter a priori is not possible. This
problem is somewhat alleviated by the eigenstrain data
reduction scheme because the relationship between
reference hole strain and core geometry is accounted
for, leading to accuracy that is independent of geometry
(Fig. 10).

In comparing the two data reduction schemes a range
of DH geometries that is representative of results in the
literature was used, but recent work has focused on
reducing the sizes of the reference hole and core. Recent
work has used a DH geometry signi®cantly smaller than
that analysed here (e.g. do ˆ 3:175 mm and D ˆ
10:0 mm [4] and do ˆ 1:5 mm and D ˆ 5:0 mm [16]).
For an arbitrary thickness, such smaller core diameters
should improve the accuracy of the approximate data
reduction scheme (Fig. 9).

The geometric independence of the eigenstrain data
reduction scheme allows additional freedom in design of
the DH experiment. As discussed previously, there are a

number of considerations when selecting the diameters
of the core and of the reference hole, and several of these
remain important choices in applying the method.
Because the eigenstrain data reduction offers the same
accuracy for a range of core diameters (Fig. 10) and
because the accuracy does not depend on the shape of
the eigenstrain distribution, as it does for the previous
data reduction scheme (Fig. 6), the choice of core
diameter can be made on the basis of the anticipated
effects of in-plane averaging (small core diameter) and
of plasticity (large core diameter).

One additional advantage of the eigenstrain data
reduction scheme is that it can be applied to a geometry
that is more complicated. Here, the initial geometry was
that of a ¯at plate and the removed core was a circular
cylinder. In practice, measurements are also needed in
parts containing curvature, a simple example being an
initial geometry of a thick-walled tube, and a removed
core taken radially that is cylindrical but has curved top
and bottom surfaces (one being convex and the other
concave). In such cases, the deformations due to core
removal may be in¯uenced by the top and bottom
surface curvatures, with an unknown effect on the
reference hole strains. The approach to data reduction
presented here could be followed for such cases provided
that the ®nite element models analogous to those in
Fig. 4 re¯ect the actual geometries involved.
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