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Abstract

Does knowing certain words help children learn other words?
We hypothesized that knowledge of more general (more su-
perordinate) words at time1 would lead to faster vocabulary
growth as measured through vocabulary checklists adminis-
tered at later timepoints. We find that this is indeed the case.
Children who have similar vocabularies at time1, but differ in
their productive knowledge of more general words such as “an-
imal,” “picture,” and “get” go on to have different rates of word
learning. Knowledge of more general words is associated with
faster vocabulary growth, particularly of words semantically
related to the superordinate terms they are reported to produce.
This positive relationship between knowledge of more general
words and word learning remains even when controlling for
measures of verbal and nonverbal intelligence.

Keywords: word learning; vocabulary; semantics; generality;
hypernymy

Introduction
Learning a language requires learning its core vocabulary.
During the first few years of life, children transition from
a world of largely meaningless word forms to a world of
meaningful, richly structured language. One way to under-
stand how words transition from meaningless to meaningful
is studying the relationship between word-forms and a child’s
external environment (e.g., Markman, 1990). For example, a
child may observe the word “cup” being used in the presence
of certain objects, and thereby narrow her hypothesis-space
to the objects that are cups (Smith & Yu, 2008). Researchers
have also studied social factors such as where a caretaker
is looking during naming (e.g., Baldwin, 1993). These two
strands of research have in common a focus on relationships
between the words and the world. Another, less prominent
strand of research has focused on language-internal factors
such as the linguistic context in which a word appears (e.g.,
syntactic bootstrapping; Gleitman, 1990), and the relation-
ship between the word being learned and a child’s exist-
ing vocabulary (Beckage, Mozer, & Colunga, 2019; Beck-
age, Smith, & Hills, 2011; Hills, Maouene, Maouene, Sheya,
& Smith, 2009b, 2009a). For example, Hills, Maouene,
Maouene, Sheya, & Smith (2009b) showed that a good pre-
dictor of what nouns a child is likely to learn next are the
semantic and phonological connections between the to-be-
learned nouns, rather than connections to words the child al-
ready knows. Here, we take a novel approach to the study
of language-internal factors by examining whether earlier

knowledge of certain “seed” words at time1 predicts a larger
vocabulary at time2.

Imagine two children with productive vocabularies of the
same size; one child knows the more general (more superor-
dinate) words “color,” “animal,” and “move” while the other
knows words like “yellow,” “fox,” and “run.” What might we
predict about these children’s subsequent vocabulary devel-
opment knowing only this fact? We hypothesized that know-
ing the more general words would facilitate faster vocabulary
growth as measured by the increase in productive vocabu-
lary from time1 to time2. We test this hypothesis by quan-
tifying the generality of children’s productive vocabulary (as
assessed through word checklist) and using it to predict how
many (and which) words they go on to produce in the coming
months.

Why would knowing more general words be expected to
lead to faster development? One possibility is that learning
such general words motivates children to seek out (or more
effectively learn) their subordinates. Knowing that colors
are something people talk about may motivate a toddler to
learn more of the basic color terms. Another possibility is
that knowing these words provides children with more pow-
erful inductive biases (Gelman & Davidson, 2013). Learn-
ing that ants, pigeons, and dogs despite their many perceptual
differences can be encompassed by a single general term—
“animal”— may help in forming a more robust general se-
mantic category that can be recruited in making inferences
about new objects (it is an animal, therefore it ), as well as
learning the names of those more specific categories. Yet an-
other possibility is that knowing the category label may make
it easier for children to ask adults what something is called:
“What color is this?”; “What animal is this?” (a source of
word knowledge that is not very well studied or understood).

The present studies were designed to look for an overall
relationship between knowledge of more general words and
vocabulary growth, but not to distinguish between the reasons
for why this relationship would exist. Any correlational study
like this one has to contend with the possibility that children
who know more general words are, for one reason or another,
simply better word learners more generally, and it is a differ-
ence in this more general ability that is responsible for faster
word learning. We address this point in more detail below.
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Study 1: Measuring word generality via
hypernymy and hyponymy

Method
We quantified word generality using hypernymy and hy-
ponymy of words in the MacArthur-Bates Communicative
Development Inventory: Words and Sentences (MCDI; N =
680; Fenson et al., 1994) using WordNet (Miller, 1998), a
structured database of English concepts organized by their
semantic relations. Hypernymy was defined as the number
of superordinate links above a given word (i.e., the word’s
‘parents’). Having few links indicates the word is close to
the top of its semantic hierarchy. For example, “animal”
has lower hypernymy score (6) than “dog” (14). Hyponymy
was defined as the number of links below the word (i.e., the
word’s ‘children’). High hyponymy scores are a sign that the
word is part of a dense semantic neighborhood. For exam-
ple, although “game” (noun) and “drink (noun, beverage)”
and “game” are both listed as having 6 hypernyms; “game”
has 193 hyponyms while “drink” has 23. Because the hy-
ponymy distribution is highly skewed (some words have 100s
of hyponyms), we log-transform it in all the analyses below.
We carefully matched WordNet senses to those tested by the
MCDI and sought to make reasonable inferences as to the
likely sense parents are likely to be reporting on. Hypernymy
scores could be calculated for 449 MCDI entries; hyponymy
scores for 472 entries. We omit adjectives from this analysis
because they are not represented in a hierarchical structure in
WordNet.1

We validated the hyponymy and hypernymy measures by
asking 71 adults (English speakers recruited on Amazon Me-
chanical Turk) to rate the 680 MCDI words on a 1-5 “general-
ity” scale from “very specific” to “very general.” Each word
was rated by 9-11 participants. Each participant rated approx-
imately 100 words. To make ratings more comparable across
participants, we normalized each participant’s response dis-
tribution to have a mean of zero and standard deviation of
one.

Results
Table 1 shows examples of nouns and verbs rated as low and
high in generality. Hyponymy (M = 2; SD = 1.6) and hyper-
nymy scores (M = 7.3; SD = 3.4) calculated from WordNet
were not correlated with each other (r(447) = -0.07, p = 0.16).
This is somewhat surprising given that a word higher up in a
semantic hierarchy (having a low hypernymy score) ought to
have more words below it (and thereby a higher hyponymy
score). In theory, this is true. In practice, however, words
from different categories have very varied semantic neigh-
borhoods (corresponding to very different hyponymy scores)
and these differences swamp the theoretical tradeoff between

1Our measures of hypernymy and generality closely map onto
the distinction between subordinate, basic, and superordinate words.
However, while the latter distinction is discrete, our measures are
continuous, which we believe better reflects the psychological real-
ity of the semantic hierarchy.

Table 1: Five nouns (left) and verbs (right) rated as lowest
and highest in generality in Study 1.

noun verb

low high low high

rocking chair animal stop think
rooster people tickle get
tissue/kleenex toy (object) meow have
carrots picture lick show
toothbrush friend hug do

Table 2: Pairwise correlations (Pearson’s r) between mea-
sures of word generality and other related word measures.
Correlations are for words with complete data for both mea-
sures. Hyper./Hypo. = WordNet hypernymy and hyponymy
values; Gen. = average human generality rating; Conc. =
concreteness; Freq. = log word frequency; AoA = Age of
acquisition estimated from a MCDI database; * = p < .01.

Hyper. Hypo. Gen. Conc. Freq.

Hypo. -0.07
Gen. -0.5* 0.43*
Conc. 0.61* -0.08 -0.49*
Freq. -0.42* 0.43* 0.56* -0.52*
AoA -0.15* -0.15* 0.18* -0.21* -0.1

hypernymy and hyponymy. Interestingly, human judgments
of word generality (unscaled: M = 3; SD = 1; scaled: M =
0; SD = 1) were moderately correlated with both hyponymy
(r(470) = 0.43, p < .0001) and hypernymy scores (r(447) =
-0.503, p < .0001), i.e., words judged by human participants
as more general tended to have more subordinate relations
and fewer superordinate relations (Fig. 1). In an additive lin-
ear model predicting human generality judgments, both word
hyponymy (β = 0.32, SE = 0.03, Z = 10.09, p < .0001) and
hypernymy (β = -0.4, SE = 0.03, Z = -12.93, p < .0001) pre-
dicted independent variance in judgments (R2 = 0.39).

We next asked whether the relationship between human
judgments and hypernymy/hyponymy scores differed by part
of speech. There was a reliable relationship between human
judgments and WordNet hyponymy scores for both nouns
(r(364) = 0.46, p < .0001) and verbs (r(104) = 0.39, p
< .0001). The relationship between human judgments and
WordNet hypernymy scores was stronger for nouns (r(362) =
-0.41, p < .0001) than for verbs (r(83) = -0.2, p = 0.07).

Table 2 shows the pairwise correlation between human
generality ratings, hypernyms, hyponyms and three lexical
norms: Concreteness (Brysbaert, Warriner, & Kuperman,
2014), word frequency (Brysbaert & New, 2009), and age
of acquisition (AoA; Frank, Braginsky, Yurovsky, & March-
man, 2017). These first-order correlations confirm some pre-
viously made claims about superordinate words (those that
correspond to lower hypernymy values have later AoAs), as
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Figure 1: Normalized human generality ratings versus (a) WordNet hyponymy scores and (b) hypernymy scores. Each point
corresponds to a word. Point color indicates part of speech. Lines show linear fit, with black showing the model fit across both
parts of speech. Error bands indicate standard error.

well as more novel findings that greater hyponymy is associ-
ated with lower AoAs, perhaps because words in denser se-
mantic neighborhoods are encountered in more informative
learning contexts (Rosch, Mervis, Gray, Johnson, & Boyes-
Braem, 1976).

Taken together, our analyses suggest that word generality is
a psychologically relevant property and that lexical database
measures provide reasonably good estimates. This is espe-
cially noteworthy considering that WordNet contains many
words and senses that our participants are unlikely to know.

Study 2: Word generality predicts vocabulary
growth

In Study 2, we examined whether knowing more gen-
eral words earlier on predicts faster subsequent vocabulary
growth, as measured through repeated administrations of the
MCDI.

Method
The MCDI was administered to a sample of 201 children (N
females = 102) longitudinally as part of a larger study. All
children were monolingual and not reported to have hearing
difficulties. On average, each child completed the MCDI at
7.6 different timepoints (min = 2; max = 13). The first and
last sessions occurred around 19 (M = 18.9; SD = 2) and 26
months of age (M = 26.4; SD = 3.3), respectively. Each time-
point was on average 1.3 months apart (SD = 0.5). A subset
of the children (N = 18) completed several subtests of the
Leiter-R IQ intelligence test during the last administration of
the MCDI. We report children’s performance on the fluid rea-
soning subtests with the caveat that although the Leiter-R has
been claimed to measure children’s general intelligence (Bay,

1996), there is good reason to doubt measurements of general
intelligence in toddlers.

Results
Children on average learned 314.6 (SD = 201.9) words be-
tween the first and last administration of the MCDI (Fig. 2;
42.5 words per month; SD = 20.7; 54.1 words between ad-
ministrations; SD = 37).

We fit additive mixed effect models predicting the number
of words a child learned since the last administration of the
MCDI as a function of a child’s degree of word generality at
the previous timepoint. Word generality was estimated as the
mean hypernymy score of all words in the child’s vocabulary.
We controlled for change in age since the previous timepoint
(in months), the vocabulary size at the previous timepoint,
and the mean word frequency at the previous timepoint. Word
frequency was estimated as the log frequency of words in
adult speech in the English CHILDES corpus (North Amer-
ican and UK; MacWhinney, 2000). Session number was in-
cluded as random slopes and child as a random intercepts.

Word hypernymy was a strong predictor of vocabulary
growth: Children who knew less specific (more general)
words at the previous timepoint tended to learn more words
by the next timepoint (β = -0.18, SE = 0.04, Z = -5.05), con-
trolling for the number and frequency of words they produced
at the previous timepoint (as indicated on the MCDI) and the
time elapsed since previous timepoint (Table 3). The same
effect was observed in a model estimating vocabulary gener-
ality from the human ratings collected in Study 1, rather than
WordNet hypernymy scores (β = 0.23, SE = 0.04, Z = 5.95).
In contrast, hyponymy scores were not predictive of vocabu-
lary growth (β = 0.01, SE = 0.03, Z = 0.4).

As evident in Figure 1, nouns on average have much lower
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Figure 2: Longitidunal vocabulary growth. The x-axis indi-
cates age in months and the y-axis indicates production vo-
cabulary size as measured by the MCDI. The grey lines cor-
respond to individual children. The blue line indicates the
best fit line (LOESS fit) across children. Error bands show
standard error. For visibility, the x-range is restricted to show
ages older than 16 months.

hypernymy scores than verbs. This is largely a consequence
of how WordNet is organized: nouns have much deeper hier-
archies than verbs. To check whether the hypernymy effect
we are seeing is driven largely by differences in children’s
vocabularies by lexical class, we scaled hypernymy by part
of speech such that 0 indicates that word has average hy-
pernymy for its lexical class. Word hypernymy remained a
strong predictor of vocabulary growth (β = -0.12, SE = 0.03,
Z = -4.31). Word hypernymy was also a strong predictor of
vocabulary growth when hypernymy was scaled by semantic
category (e.g., animals; β = -0.19, SE = 0.03, Z = -6.54).

An alternative explanation for the relationship between
prior vocabulary generality and vocabulary growth is that
both variables are influenced by a third variable. One plau-

Table 3: Parameters of mixed model predicting vocabu-
lary change as a function of mean vocabulary hypernymy at
previous timepoint, mean vocabulary size at previous time-
point, mean vocabulary frequency at previous timepoint, and
change in age from previous to current timepoint.

term Beta SE t-value

(Intercept) -0.01 0.02 -0.49
Vocabulary hypernymy at t-1 -0.18 0.04 -5.05
Vocabulary size at t-1 -0.40 0.04 -9.01
Vocabulary frequency at t-1 -0.29 0.03 -9.50
Change in age 0.42 0.02 16.92

sible candidate is intelligence. It may be that children with
higher general intelligence tend to both know more general
words and be better/faster word learners. A strong test of
this possibility would require a word training study. Here,
we attempted to examine this possibility statistically by con-
trolling for children’s IQ within the sample of children for
whom this measure was available. We fit a mixed effect lin-
ear model predicting number of words a child learned since
the last administration of the MCDI as a function of a child’s
vocabulary hypernymy at the previous timepoint, change in
age since the previous timepoint (in months), the vocabulary
size at the previous timepoint, the mean word frequency at
the previous timepoint and child’s IQ score. Controlling for
the fluid reasoning subtests of the Leiter-R, vocabulary hyper-
nymy remained a reliable predictor vocabulary growth (β =
-0.51, SE = 0.12, Z = -4.21). Fluid reasoning did not strongly
predict word growth (β = 0.16, SE = 0.11, Z = 1.41).

Study 3: Knowing more general words predicts
learning which words?

In Study 3, we ask whether the particular words that children
know at a prior timepoint predict the particular words they
learn at the subsequent timepoint. Specifically, we test the
hypothesis that children who know a particular more super-
ordinate word at a prior timepoint (e.g., “animal”) will learn
a more specific, semantically-related word at a subsequent
timepoint (e.g., “cat”). To test this hypothesis, we leverage
word embedding models trained on a large corpus of English
text. These word embedding models allow us to quantify
the semantic distance between prior known words and newly
learned words.

Method
We identified the semantic coordinates of each of the words
on the MCDI for which we had hypernymy scores (N = 449)
in a word embedding model trained on English Wikipedia
(Fig. 3a; Bojanowski, Grave, Joulin, & Mikolov, 2017). We
then used these coordinates to analyze the vocabularies for
the sample of longitudinal MCDIs collected in Study 2.

For each child at each timepoint, we identified the se-
mantic coordinates of the known words at a target level of
hypernymy (see Fig. 3b analysis schema). We then iden-
tified the newly learned words at the subsequent timepoint
that were more specific that the target level of hypernymy.
To quantify the semantic distance between the newly learned
words and the prior-known, more-general words, we calcu-
lated the pairwise cosine distance between each prior-known
word and each newly-learned word, and averaged across
pairs. This quantity (“Target Comparison”) summarizes the
semantic similarity of newly-learned, specific words to prior-
known, general words.

We compared this quantity to a control quantity estimated
by randomly sampling words known by the child at the prior
timepoint from all levels of hypernymy (“Control Compari-
son”). We selected the same number of random words as the

324



talk

people

can

time

see

school

work game

house

day

party

country

church

think

home

book

park

man

cup

water

water

find

play

radio

street

help

head

story

tv

rock

present

run

say

person

star

light

put

police

night

coverread

car

outside

brother

hand

block

child

movie

ice

food

money

hit

call

box

room

stone

key

plant

picture

dancefall

sister

table

friend

face

girl

paper

cut

jean

beach

write

drive

boy

tree

lady

ball

fish

fish

doctor

stand

horse

bus

break

break

bring

medicine

garden

turkey morning

flag

farm

build

store

teacher

share

yard

bowl

animal

stay

eye

draw

wind

boat

dog

glass

foot

orange

finish

babybird

cat

wishwatch

door

carry

sky

walker

arm

bear

chair

pick

salt

camera

walk

snow

clean

drop

fit

pool

window

leg

dry

roof

uncle

rain

bat

mouth

fix

buy

cook
apple

shopping

plate

ride

feed

kick

jump

hear

wolf

sock

belt

clock

penpen

woods

bed

tiger

sing

truck

push

lion

chase

flower

meat

telephone

catch

cloud

eat

coffee

milk

sleep

soap

throw

bath

grass

stick

stick

button

drink

drink

mouse

tape

kiss

paint

hate

helicopter

fork
hammer

taste

swing

swing

kitchen

duck

zoo

listen

egg

sheep

butterfly

pull

dinner

tissue

hurt

nose

deer

chicken

chicken toy

bicycle

nurse

bench
shoulder

circus

knee

blow

climb

breadfrog

bee

tongue

cheese

cry

finger

garage

monkey

elephant

corn

aunt

chocolate

ear

penny

bug

dish

basement

knife

breakfast

bottle

slide

slide

penguin
boot

vacuum

lunch
pig

candy

pour

cow

sandbox

puzzle

swim

owl

knock

lamb

turtle

cake

balloon

shoe

basket tooth

ant

doll

sink

smile

chin

bean

soup

cowboy

bedroom

grape
juice

pizza

bite

porch

lamp

camping

brush

potato

bubble

sauce

ladder

sandwich

wash

shake

goose

garbage

tear

banana

daddy

tractor

butter

pony

sweep

stairs

picnic

kitty

glasses

vitamin

playground

lip

clown

snowman

dump

bunny

moose

trash

spill

blanket

toe

skate

ankle

nail

squirrel

coke

chalk

rip nut

mop

gum

bathroom

pretend

cheek

bucket

soda
strawberry

penis

donkey

shower

cookie

pencil

purse

glove

jar

hamburger

splash

hen closet

oven

spoon

snack

couch

bump

jelly

beads

tuna

necklace

vanilla

puppy

cereal

moo

zebra

hurry

backyard

hose

pea

glue

wipe

melon

combbroom

toast

rooster

alligator

pillow

stove

lick

pumpkin

spaghetti

sidewalk

pudding

grandma

scissors

vagina

fireman

tray

carrot

grandpa

hug

sled

refrigerator

popcorn
cracker

tricycle

noodle

yogurt

giraffe

shovel

towel
drawer

sofa

pancake

nap

pickle

clap

bathtub

slipper

muffin

buttocks

lollipop
dryer

crayon

crib

mommy
donut

zipper

raisin

meow

tickle

babysitter

diaper

sprinkler

tights

mailman

pajama

underpants

jello

toothbrush

pretzel

napkin

sneaker

potty

vroom

mitten

tummy

popsicle

stroller

applesauce

peekaboo

bellybutton

snowsuit

highchair

4

8

12

16

Hypernymy
Score

random

random

duck

cat

nurse

random

random

person

duck

cat
animal

nurse
person

animal

Vocabulary Time 1 Vocabulary Time 2

Ta
rg

et
C

om
pa

ris
on

C
on

tro
l

C
om

pa
ris

on

Known word at t1 with 
low hypernymy

Known word at t1 with 
high hypernymy

Randomly sampled 
known word at t1

Cosine distance

a b

Figure 3: (a) Semantic coordinates of words on the MCDI words and sentences form, derived from a word embedding model
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yellow, to more superordinate (general) in blue. Distance between points corresponds to semantic similarity. (b) Schema of
Study 3 analysis.

number of known words at the target level of hypernymy. We
then used these randomly selected words to calculate pairwise
cosine distances in the same way as described above.

For each child, we averaged across timepoints and hyper-
nymy levels to estimate an average cosine distance for the
target and control comparisons. If newly-learned words are
semantically close to prior-known, more-general words, we
should expect the cosine distance in the Target Comparison
to be smaller relative to the cosine distance in the Control
Comparison.

Results
Relative to the control comparison (M = 0.783 [0.782,
0.784]), children tended to learn specific words that were se-
mantically closer to the more general words they were in-
dicated to know at the prior timepoint (M = 0.773 [0.771,
0.775]); paired t = -13.41; p < .0001; Fig. 4).

General Discussion
We show that which words a child knows predicts the rate at
which they go on to learn new words. Specifically, knowing
more general nouns and verbs–those that are higher up in a se-
mantic hierarchy–predicts faster rate of word learning. This
relationship holds when we control for size of the child’s vo-
cabulary at the previous timepoint and the mean frequency of
the words they know. In Experiment 3, we show that these
more general/more superordinate words are not associated

with learning just any words, but specifically words related
to the superordinate words the child knows at the previous
timepoint.

Does knowing more general words help children learn
words? That is, is the relationship between hypernymy and
subsequent word learning a causal one? We sought to rule
out the possibility that the relationship between hypernymy
in early vocabulary and speed of word learning is due to a
common cause such as general intelligence. The relation-
ship between hypernymy and rate of word learning remains
when controlling for fluid reasoning scores, and it is worth
emphasizing that in all analyses we already control for chil-
dren’s initial vocabulary size which would control out the hy-
pernymy effect if it were just that some children are better
word learners in general. What our analysis cannot rule out
is that children who know more general words at an early age
may be in a more language-rich environment and it is this
language-richness (however defined) that is responsible for
their knowing these words and for their learning words at a
faster rate. For example, it may be that some parents present
their children with language such as “This is a chicken, it is
a kind of bird. What other animals do you see?” which may
lead both to greater knowledge of superordinates and faster
vocabulary growth without the superordinates being the spe-
cific cause. It is also possible that differences in knowledge
of more superordinate words reflects children’s idiosyncratic
interests. A child who learns “color” or “bird” earlier on may
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just be more interested in learning about colors or birds and it
is this interest that is responsible for driving subsequent word
growth in these semantic regions. Showing a true causal re-
lationship between hypernymy and word growth requires a
training study which we are in the process of conducting.

Our study has several limitations worth noting. Our mea-
sures of word knowledge are based on checklists completed
by the child’s parents or caretakers. These checklists have
good validity and correlate with how well children do on
more objective assessments such as Picture-Vocabulary tests.
Still, these checklists are indirect measures of children’s lan-
guage. The use of checklists, however validated, also pro-
vides a very coarse estimate of a child’s word knowledge. For
example, checking off the verb “love” could mean the child
uses it in a very narrow context, such as saying “I love you”
or that they use it in a more adult way: to describe people,
animals, objects, and actions. That we find effects of hyper-
nymy even using such an indirect and coarse measure as a
word checklist suggests that more precise language measures
that, for example, incorporate word senses and contextual in-
formation, may reveal much richer connections between the
words a child knows and the words they are likely and un-
likely to learn next.
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