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Summary

Panel count data arise in many applications when the event history of a recurrent event process is 

only examined at a sequence of discrete time points. In spite of the recent methodological 

developments, the availability of their software implementations has been rather limited. Focusing 

on a practical setting where the effects of some time-independent covariates on the recurrent 

events are of primary interest, we review semiparametric regression modelling approaches for 

panel count data that have been implemented in R package spef. The methods are grouped into 

two categories depending on whether the examination times are associated with the recurrent event 

process after conditioning on covariates. The reviewed methods are illustrated with a subset of the 

data from a skin cancer clinical trial.
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1 Introduction

Panel count data are a special kind of event history data where the occurrence of recurrent 

events is observed only at a sequence of discrete time points, as opposed to being observed 

continuously in time. In contrast to conventional recurrent event data, where the exact 

occurrence times of the events are known, panel count data only have the count of events in 

each ‘panel’ between successive examination times points (Kalbfleisch & Lawless, 1985). 

Panel count data frequently arise in many fields such as clinical trials, epidemiological 

studies and engineering, when continuous follow-up to obtain exact event times of each 

subject is infeasible or too costly. The term ‘panel count’ in econometrics refers to 

longitudinal or clustered count data (e.g. Riphahn et al., 2003;Croissant et al., 2008;Hsiao, 

2014); although some-what related, it is to be distinguished from the context of event history 

data as we focus on here.
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The goal of this article is to review regression analysis for panel count data with a focus on 

methods that are available in the R environment (R Core Team, 2017). Many statistical 

methods have been developed to analyse panel count data, but quality controlled software 

implementation remains rather limited. In their recently published book on panel count data 

analysis, Sun & Zhao (2013) noted the absence of actively maintained software packages at 

the time of writing their book (Sun & Zhao, 2013, p.222). Two R packages for panel count 

data are publicly available at this time. Package spef (Chiou et al., 2017) provides multiple 

methods in a unified interface, with an earlier version presented in Wang & Yan (2011). 

Package PCDSpline (Yao & Wang, 2014) is an implementation of the gamma frailty model 

of (Yao et al., 2016). Instead of providing a comprehensive review of all existing methods, 

we focus on semiparametric regression models with time-independent covariates as 

implemented in the spef package; methods and software for handling time-varying 

covariates have been much less developed (Huang et al., 2010). Covariate effects on the 

recurrent events are of primary interest. Nonparametric estimation is possible with spef 

package by specifying an intercept-only model. We give more details on methods that are 

available in spef package and that were not treated in detail in Sun & Zhao (2013). The 

illustration code will help readers who need to analyse a panel count dataset to obtain some 

quick insights easily.

One challenge in practical panel count data analysis is that the examination process or the 

follow-up time may be informative about the recurrent event process even after conditioning 

on available covariates. For example, patients with higher tumour recurrence rates may have 

more frequent clinical examinations as they may require more medical attention (Li et al., 
2011; Sun & Zhao, 2013). Another example is in labour progression of women giving 

childbirth, if each 1cm increment of cervical dilation is treated as a recurrent event, then 

women with faster cervix dilation may have more frequent vaginal examinations (Ma & 

Sundaram, 2018). Informative examination times are often encountered in panel count data, 

and falsely treating informative examination times as noninformative could result in biased 

regression coefficient estimation and misleading conclusions. Similar situations may arise 

where the follow-up time is informative. Therefore, we grouped the methods into two 

categories depending on whether or not informative examinations or follow-up times can be 

accommodated.

This article is organised as follows. A subset of the data from a skin tumour clinical trial is 

introduced in Section 2 to demonstrate the structure and graphical features of panel count 

data. Notations of observed data and some of the most popular semiparametric models are 

presented in Section 3. Methods under the assumption of noninformative and informative 

examination/censoring times are reviewed in Sections 4 and 5, respectively, illustrated with 

the skin tumour data. The performances of the implemented methods under different settings 

in a simulation study are reported in Section 6. A discussion concludes in Section 7.

2 Skin Cancer Chemoprevention Trail

We illustrate the usage of the spef package with a skin cancer prevention study (Bailey et al., 
2010). The whole dataset is available in Sun & Zhao (2013, Table A.3.) and is included in 

the spef package under the name skinTumour. The study was a randomised, double-blind, 
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placebo-controlled phase-3 clinical trial conducted at the University of Wisconsin 

Comprehensive Cancer Center. The primary objective was to determine whether the 

application of difluoromethylornithine (DFMO) as a chemoprevention agent would lead to a 

significant reduction in the occurrence of new skin tumours. The study consisted of 290 

patients with a history of skin tumour. These patients were randomly assigned into two 

groups: a treatment group with oral DFMO at a daily dose of 0.5 gram/m2 and a placebo 

group with matching dosage. At each examination time during the follow-up, the number of 

newly developed skin tumours were counted, measured and removed. Comprehensive 

analysis of the whole data can be found in recent publications (e.g. Li et al., 2011;Sun & 

Zhao, 2013;Chiou et al., 2017).

For illustration propose, we only use a subset of skinTumour containing 73 patients who 

enrolled in the study after the age of 70 years because some methods with bootstrapping are 

computationally demanding for large samples. Of the 73 patients, 40 were male and 41 were 

in the treatment group. The average number of examination times was 8.9 in this subset of 

patients, with three quartiles being 7, 9 and 10. The average number of skin tumours 

developed for each patient in this subset throughout the study was 2.9 (median=3). We 

named this subset skiTum and used this name in the sequel. To view the structure of panel 

count data, we show the data for one patient (with id 10):

The patient with ID 10 was followed for 1024 days from the enrollment, examined seven 

times on days after enrollment as shown in variable time, with the corresponding number of 

tumours in variable count. This patient was assigned to the placebo group (dfmo = 0) and 

had 16 skin tumours prior to enrollment. Treatment indicator (dfmo) and prior tumour 

counts (priorTumour) will be used as covariates in the regression model for the tumour 

occurrences in this study. Following Wang & Yan (2011), we display the data in a tile plot 

that shows not only the panel count but also the examination times of each subject using 

package ggplot2 (Wickham, 2009):

Figure 1 presents the resulting tile plot. It appears that patients in the treatment group have 

slightly more examinations than those in the placebo group, which might indicate 

informative examination times.
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All the models in the sequel have the same model formula specified via PanelSurv, which is 

similar to the Surv function in the survival package (Therneau, 2015). We consider models 

with two covariates: dfmo and priorTumour. For better interpretation of the baseline 

function, we center priorTumour by its median 3:

The major function to fit regression models for panel count data in the spef package is 

panelReg, which takes the model formula as an input and returns an object of class 

panelReg.

3 Notation and Regression Models

For subject i, i = 1, … , n, let Ni.(t) be counting process of recurrent events of interest. 

Suppose that the event counts are only observable at Ki discrete random time points, 

0 = ti0 < ti1 < ti2 < … < tiKi ≤ τ, where tij is the jth examination time, Ki is a positive integer-

valued random variable and τ is the longest follow-up time in the data. Let G be the time 

grid formed by all distinctive examination times: 0 < s1 < … < sg = τ, where g is the number 

of distinctive examination times. A subject-specific, time-independent covariate vector Xi is 

observed and its effect on the occurrence of the events is or primary interest. The observed 

data are independent and identically distributed copies of {tij, Ki, Ni(tij), Xi; j = 1, … , Ki}, i 
= 1, … , n. Let nij = Ni(tij) − Ni(tij – 1) be the number of events in the time interval [tij – 1, tij] 
and mi = Ni(Yi) be the total number of events during the follow-up, where Y i = tiKi is the last 

examination time. Additionally, there could be a censoring or follow up time Ci, which may 

or may not equal to the last observation time Yi. As in recurrent event settings, the censoring 

time Ci’s are always observed unlike in the case of standard right-censored survival data. 

Both the examination times and the follow-up time can potentially be informative about the 

event process after conditioning on the covariates.

Earlier models for recurrent event processes characterise the intensity function (Gail et al., 
1980; Prentice et al., 1981; Andersen & Gill, 1982). To introduce the common models, we 

drop the index i for ease of notation. Let dN(t) = N{(t + dt)−} – N(t−). The intensity function 

is defined as the event occurrence rate conditional on the whole event history

λ(t) = lim
Δ 0 +

1
ΔPr dN(t) = 1 ∣ ℋ t− ,

where ℋ t− = N(u) : 0 ≤ u < t  is the event history up to t. The Cox-type intensity model 

incorporates covariate X in the intensity function (Andersen & Gill, 1982)

λ(t; X) = λ0(t)exp X⊤β , (1)

where λ0(t) is nonnegative baseline intensity function, and β is a vector of regression 

coefficients for covariate vector X.
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In practice, the Cox-type intensity model in Model (1) might be inadequate and difficult to 

verify (Lin et al., 2000). In contrast to Model (1), recent approaches characterise the rate 

function r(t) of N(t) defined by E{dN(t)} = r(t)dt and the mean function μ(t) = ∫0
tr(s)ds

(Nelson, 1988; Pepe & Cai, 1993; Lawless & Nadeau, 1995; Lin et al., 2000). Unlike the 

intensity function, the rate or mean function does not completely specify the stochastic 

nature of N.t/; they are, respectively, sometimes referred to as the marginal intensity and 

cumulative intensity function. Covariates can be incorporated in the form of proportional 

rates model

r(t; X) = r0(t)exp X⊤β , (2)

for some nonnegative baseline rate function r0(t), or proportional means model

μ(t; X) = μ0(t)exp X⊤β , (3)

for some nondecreasing baseline mean function μ0(t). Since we consider time-independent 

covariate so far, Models (2) and (3) are equivalents.

A commonly used modification to Models (1) and (3) is to introduce a positive frailty 

variable or random effect. Specifically, conditional on a frailty Z and covariate vector X, the 

proportional intensity model becomes

λ(t; X, Z) = Zλ0(t) exp X⊤β ,

and the proportional means model becomes

μ(t; X, Z) = Zμ0(t)exp X⊤β . (4)

For identification purpose, it is often assumed that E(Z|X) = 1. The frailty is useful in 

allowing over-dispersion in the count (e.g. Hua et al., 2014) or dependence between N(·) and 

the examination or censoring times (e.g. Huang et al., 2006;He et al., 2009).

The baseline intensity function λ0(t) and the baseline mean function μ0(t) are often left 

completely unspecified and estimated nonparametrically. Since μ0(t) and the cumulative 

baseline intensity Λ0(t) = ∫0
tλ0(s)ds are nondecreasing functions, they can be specified by 

monotone splines (Ramsay, 1988). The motonone spline specification offers a good 

compromise between flexibility and computational advantage, so it has been adopted by 

many authors in various settings (Lu et al., 2009; Hua & Zhang, 2012; Deng et al., 2015; 

Hua et al., 2014; Yao et al., 2016). An implementation of monotone splines is available in R 

package splines2 for this purpose.

A recent accelerated mean model (Xu et al., 2017; Chiou et al., 2017) has rate function

r(t; X, Z) = Zr0 texp X⊤β exp X⊤β , (5)
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where the distribution of frailty Z is unspecified beyond E(Z|X) = 1. This model formulation 

is different from the Cox-type specifications, and it connects to the accelerated failure time 

models in that, unconditional on Z, μ(t; X) = E{N(t)|X} = μ0{t exp(X⊤ β)} The covariate 

effects modify the time scale of the cumulative mean function and have a direct marginal 

interpretation. For example, if X is a treatment indicator, then the expected number of events 

by time t among the treated subjects (X = 1) equals the expected number of events by time 

teβ in the control group (X = 0).

4 Noninformative Examination/Censoring Times

We, first, consider the situation where the examination times and the censoring time are 

noninformative for the event process. That is, conditional on the covariates, the examination/

censoring times and the event process are independent. The conditional independence 

assumption allows one to treat the examination/censoring times as if they were fixed instead 

of random.

4.1 Likelihood-Based Approaches

The non-homogeneous Poisson process has been studied first, in which case the Cox-type 

intensity Model (1) and the proportional means Model (3) coincide. So we consider Model 

(3) only. From the independent increments of Poisson processes, the log likelihood function 

is

L β, μ0 = ∑
i = 1

n
∑

j = 1

Ki
nij logμ0 tij + nijXi⊤β − μ0 tij exp Xi⊤β .

Parameter estimation of β depends on the specification of μ0(t). If μ0(t) is unspecified, the 

nonparametric maximum likelihood estimator (MLE) of μ0(t) is the non-decreasing step 

function that jumps only at the times of the grid G of distinct examination times (Wellner & 

Zhang, 2000). The MLE of {β, μ0(t)}, denoted by {βn, μn(t)}, can be obtained from a 

computationally intensive iterative procedure (Wellner & Zhang, 2007).

To reduce the computation complexity in obtaining MLE, Lu et al. (2009) specified log μ0(t) 

by monotone B-splines logμ0(t) = ∑i = 1
κ αiBi(t), where Bi(t), i = 1, … , κ are the B-spline 

basis functions with κ degrees of freedom. The degrees of freedom, κ, is typically chosen to 

be ⌈g1/3⌉ = 1 where ⌈·⌉ is the ceiling function and g is the number of distinctive examination 

times as defined in Section 3. The MLE of (β, α), denoted by (βn, αn), can then be found 

from a constrained optimisation for any given K. Lu et al. (2009) show that under certain 

regularity conditions βn is consistent, asymptotically normal, and asymptotically as efficient 

as that obtained when μ0(t) is unspecified. For the skin tumour example, this method is 

called by setting method = “MLs” in the panelReg function from spef package:
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The standard errors of the regression coefficient estimates were obtained from bootstrap 

with 50 replicates by setting se = “Bootstrap” and, in control, “R = 50”. The implementation 

of monotone splines in the spef package was based on the methods proposed in Ramsay 

(1988). The same model can also be fit with PCDReg.nf function from the PCDSpline 

package (Yao & Wang, 2014). The PCDSpline package further allows a gamma frailty to 

account for within-subject dependence (Yao et al., 2016).

A less efficient but simpler approach to obtain the regression coefficient estimate is to 

maximise the following pseudo-likelihood based on the Poisson distribution of each N(tij) 
ignoring within-subject dependence

Lp β, μ0 = ∑
i = 1

n
∑

j = 1

Ki
N tij logμ0 tij + N tij Xi⊤β − μ0 tij exp Xi⊤β .

The estimator of β with an unspecified μ0(t) (Zhang, 2002) can be obtained by setting 

method = “MPL”:

The estimator of β when μ0(t) is specified by monotone B-splines (Lu et al., 2009) can be 

obtained by setting method = “MPLs”:

Hua et al. (2014) considered Model (4) with Z assumed to be a gamma variable with mean 1 

and variance σ2. Under the working assumption that N(·) is a non-homogeneous Poisson 

process, the full likelihood after integrating Z out has a closed-form in terms of β and μ0. By 
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approximating μ0(t) with monotone splines with parameter vector α, they estimate α and β 
after fixing σ2 at a method of moment estimate based on pseudolikelihood estimator from 

Zhang (2002) and Wellner & Zhang (2007).

The estimated baseline mean function for the aforementioned methods can be accessed from 

the baseline component in the object returned from the panelReg call. The spef package 

provides a utility function for its graphcial presentation through the generic function plot. 

For example, the estimated baseline mean function from method = “MPL” and method = 

“MPLs” can be plotted as follows:

Figure 2 shows the overlaid estimated curves from the two methods. They are interpreted as 

the mean function for patients in the placebo group with three prior tumours. Baseline 

function estimates from other methods in the sequel, if available, can be a accessed similarly.

4.2 Estimating Equation Approaches

Sun & Wei (2000) allow dependence among the event process, examination time process 

and the censoring time through covariates if the latter two follow a proportinal means model 

and a proportional hazards model, respectively. Define the examination time process 

Hi(t) = Hi min t, Ci = ∑j = 1
Ki I tij ≤ t . Assume that the mean function of Hi(t) has the form

μiH(t) = μ0
H(t)exp Xi

⊤γ , (6)

where μ0
H(t) is a completely unspecified function and γ is a regression coefficient vector. 

Further assume that covariate effects on the censoring time can be specified by a Cox 

proportional hazards model for Ci,

λi
C t ∣ Xi = λ0

C(t)exp Xi
⊤η , (7)

where λ0
C(t) is a completely unspecified baseline hazard function and η is a regression 

coefficient vector. The covariates are assumed to have been centred by their means in the 

derivation of the method.

Sun & Wei (2000) proposed estimating equations by considering ∫ Ni(t)dHi(t). Under the 

model specifications for μiH(t) and λi
C(t),

E ∫ Ni(t)dHi(t) = exp Xi⊤(β + γ) ∫ μ0(t)Si(t)dμ0
H(t),

where Si(t) = exp −∫0
tλ0

C(s)ds + Xi
⊤η . Therefore, if γ and η are known, β can be estimated 

from the following estimating equation
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∑
i = 1

n
Xiexp −Xi

⊤(β + γ) ∫ Ni(t)
Si(t)

dHi(t) = 0. (8)

The unknown quantities in the equation can be replaced with their estimates: γ can be 

estimated from estimating equations for proportional rates models (Lawless & Nadeau, 

1995); η can be estimated from partial score equations (Kalbfleisch & Prentice, 2011); and 

the baseline hazard λ0
C(t) can be estimated as in a standard survival analysis. Sun & Wei 

(2000) established the consistency and asymptotic normality of the resulting estimator 

requiring the correct specification of the models for the examination times and the censoring 

time. The estimator of β can be obtained by setting method = “EE.SWc”:

When η = 0, in which case the censoring time does not depend on covariates, the estimator 

can be obtained by setting method = “EE.SWb”:

An even simpler version of Sun & Wei (2000) assuming independent examination and 

censoring by setting γ = η = 0 can be obtained by setting method = “EE.SWa”.

Hu et al. (2003) proposed a more efficient estimating equation that extends the method of 

Lawless & Nadeau (1995) for recurrent event analysis. Define hi(t) = Hi(t) − Hi(t−) for each i 
so that hi(t) = 1 if t is an examination time of subject i and hi(t) = 0 otherwise. Assume that 

E{hi(t)} > 0 for each t ∈ T where T ⊂ (0, τ] is the collection of all observed examination 

times on a grid. Conditioning on the examination times, Hu et al. (2003) proposed a natural 

estimating equation for β

∑
i = 1

n
∑
j = 1

Ki
w tij Xi −

∑k = 1
n I Ck ≥ tij Xkexp Xk

⊤β ok tij
∑k = 1

n I Ck ≥ tij exp Xk
⊤β ok tij

nij = 0, (9)

where w(·) is a known, possibly data dependent weight function and ok(t) indicates whether 

subject k has an observation at time t. The estimating equation (9) was constructed under the 
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assumption that there is more than one subject with the same examination time. Thus, this 

method cannot be applied to scenarios where all examination times are distinct, which 

implies ok(ti, j) = 1 when k = i and 0 otherwise. Solution to the conditional estimating 

equations (9) with w(t) = 1 can be obtained by setting method = “EE.HSWc”:

To allow covariate effects on the examination times in a proportional means Model (6), Hu 

et al. (2003) proposed an estimating equation unconditional on the examination times

∑
i = 1

n
∑
j = 1

Ki
w tij Xi −

∑k = 1
n I Ck ≥ tij Xiexp Xk

⊤(β + γ)
∑k = 1

n I Ck ≥ tij exp Xk
⊤(β + γ)

nij = 0, (10)

where γ needs to be replaced with an estimate as in solving (8). In contrast to (8), this 

equation does not require model specification of the censoring time. See Section 5.4.3 of 

Sun & Zhao (2013) for more discussion on comparison of the estimating equation 

approaches. Solution to the marginal estimating equations (10) can be obtained by setting 

method = “EE.HSWm”:

Because panel counts are similar to longitudinal data, Hua & Zhang (2012) applied 

generalised estimating equations (Liang & Zeger, 1986) to marginal Model (3) with log. λ(t) 
approximated by monotone splines with parameters α as in Lu et al. (2009). The panel 

counts from subject i form a vector Ni = Ni ti1 , …, Ni ti, Ki
⊤, with mean vector 

μi = μ ti1; Xi , …, μ tiKi; Xi
⊤. The generalised estimating equation has the form

∑
i = 1

n ∂μi⊤

∂θ V i
−1 Ni − μi = 0. (11)
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where θ⊤ = (β⊤, α⊤), and Vi is a Ki × Ki working covariance matrix of Ni. Hua & Zhang 

(2012) used a two-iterative algorithm to solve for θ. First, a Newton–Raphson update is 

applied to solve (11); second, the estimate of α is projected to a legitimate space via 

quadratic programming such that the resulting splines is monotone nondecreasing. Flexible 

choices of the working covariance matrix Vi’s can lead to higher efficiency in estimation and 

robustness to overdispersion.

5 Informative Examination/Censoring Times

5.1 Frailty Methods

One way to allow informative examination times after conditioning on covariates is to 

introduce a frailty, or random effect that is shared by both the recurrent event process and the 

examination time process. Huang et al. (2006) considered Model (4), which allows the 

examination times to be associated with the event process through the frailty after 

conditioning on the covariates. The approach of Huang et al. (2006) is especially appealing 

in that there is no need to specify the distribution of the frailty, or models for the 

examination process and the censoring time. The estimation procedure takes advantage of 

the fact that, conditional on {Zi, Xi, Ki, Yi}, the unobserved Ki examination times are order 

statistics of independent and identically distributed random variables with distribution 

function

Fi(t) =
μ t; Xi, Zi

μ Yi; Xi, Zi
=

μ0(t)
μ0 Yi

.

This formulation suggests that the estimation of F(t) does not involve Xi and Zi. Let Φ(t) = 

μ0(t)/μ0(τ), where is still the longest follow-up time. A nonparametric estimator of F.(t) is 

obtained by maximising

∏
i = 1

n
∏

j = 1

Ki Φ Ti, j − Φ Ti, j − 1
Φ Yi

nij
,

which is mathematically equivalent to the likelihood constructed from a set of independently 

interval-censored and right-truncated data. Therefore, the maximisation of the likelihood can 

be implemented by the Turnbull’s self-consistency algorithm (Turnbull, 1976). When 

computational performance is of concern, the squared extrapolation method of Varadhan & 

Roland (2008) can be adopted to accelerate the maximisation. Then, Λ(τ) and β are obtained 

from solving

n−1 ∑
i = 1

n
wi

1
Xi

miΦ Yi
−1 − μ0(τ)exp Xi⊤β = 0,

where wi is a weight function and Φ(·) is replaced with its estimate. This approach with wi = 

1 is requested by setting method = “HWZ”:
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A warning message indicates that not all of the 50 bootstrap converged. The reported 

bootstrap standard errors are based on those that converged.

Alternative approaches specify models for the examination times and the censoring time. 

Extending the estimation strategies of Sun & Wei (2000), Sun et al. (2007) investigated a 

similar semiparametric model with Zi
α in place of Zi in Model (4), where Zi is an 

unobserved multiplicative frailty introduced into Model (6) for the examination times. He et 
al. (2009) used two frailties to introduce dependence among the three Models (3), (6) and (7) 

beyond covariate effects. Specifically, one frailty enters all three models while the other 

enters Models (3) and (7). Model parameters are estimated through a three-step estimation 

procedure. This method imposes a distributional assumption on the underlying random 

effect and requires the examination process to be a nonhomogeneous Poisson process, which 

is needed in an EM algorithm in handling the parameters and frailties in the model for the 

examination process. Zhao et al. (2013) proposed a more general model which replaces Z in 

Model (4) with f(Z), where Z is a multiplicative frailty introduced into Model (6) as in Sun 

et al. (2007), and f is a positive, completely unspecified link function. They relaxed the 

Poisson assumption for the examination process. The methods of He et al. (2009) and Zhao 

et al. (2013) are presented in detail in Sun and Zhao (2013, Sections 6.2–6.3).

5.2 Augmented Estimating Equations

Wang et al. (2013) approached the problem by treating the unobserved event times as 

missing data. Consider the time grid G in Section 3, let ℕij = Ni sj − Ni sj − 1  be the 

number of events occurred in (sj−1, sj] Only summations of ℕij′s over those subintervals 

whose union coincides with an observation window are observed. Regardless of the 

examination times, if ℕij′s were observed, under conditional independent censoring, Model 

(3) suggests a set of complete-data estimating equations:

∑
i = 1

n
ℕij − λj exp Xi⊤β rij = 0, j = 1, …, G,

∑
i = 1

n
∑

j = 1

G
ℕij − λj exp Xi⊤β Xirij = 0,

where λj = Λ(sj) – Λ(sj −1) is the baseline mean number of events occurring in interval (sj−1, 

sj] and rij = I(sj ≤ Ci) is the at-risk indicator. The model parameters are estimated by an 
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Expectation-Solving algorithm (Elashoff & Ryan, 2004), an analog of the EM algorithm for 

estimating equations without specifying the full likelihood. The algorithm iterates between 

imputing the values of ℕij′s and solving the conditional expected version of the complete-

data estimating equations given the observed data. This method is called by setting method = 

“AEE”:

In the case of informative censoring, the number of events between the last examination time 

Yi and τ is also treated as missing and imputed using a working model; see (Wang et al., 
2013) for more details. This method is requested by setting method = “AEEX”:

5.3 Accelerated Mean Model

Chiou et al. (2017) estimated the parameters of the accelerated mean model (5) by a profile 

estimating equation approach. Specifically, consider the transformed times 

tij*(β) = tijexp Xi
⊤β  and censoring time Y i*(β) = Y iexp Xi

⊤β , i = 1, … , n. Conditional on {Zi, 

Xi, Ki, Yi}, the unobserved Ki examination times on the transformed scale tij*(β) are order 

statistics of independent and identically distributed random variables with distribution 

function μ0(t)/μ0 Y i*(β) . Let Φ(t) = μ0(t)/μ0(τβ), where τβ = τ supiexp Xi
⊤β . For given β, Φ 

can be estimated with the same method of Huang et al. (2006) except that the estimate 

depends on β. Define Φn(t; β) as the resulting estimator. Then, β is estimated by solving the 

estimating equation

∑
i = 1

n
Xi miΦn

−1 Y j*(β); β − 1
n ∑

j = 1

n
mjΦn

−1 Y j*(β); β = 0.

In our implementation, this equation is solved with a gradient-free spectral method (Barzilai 

& Borwein; 1988;La Cruz et al.; 2006). The accelerated mean model is called by setting 

method = “AMM”. Because fitting this model is much more computing intensive than other 

methods, we timed this call:
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The standard errors was obtained from a smoothed bootstrap procedure proposed in Chiou et 
al. (2017) by setting se = “smBootstrap”. The standard bootstrap procedure to obtain the 

standard errors is still available by setting se = “Bootstrap”.

6 Simulation

We extended the simulation studies in Huang et al. (2006) and Wang et al. (2013) to provide 

a thorough comparison among the estimators discussed in this paper. Because the regression 

coefficient in the accelerated mean model is interpreted differently than those in the 

proportional means model, we focus here on the comparison of the regression coefficient 

estimates in the proportional means model. We generated recurrent events from a Poisson 

process with mean model specified in Model (4) for t ∈ [0, τ] with τ = 10. The baseline 

mean function was set to be μ0(t) = 2t. Two mutually independent covariates, Xi1 and Xi2, 

were generated from the Bernoulli distribution with rate 0.5 and the standard normal 

distribution, respectively. The regression coefficients were set to be β = (β1, β2)⊤ = (0.5, 

1)⊤. The subject-specific frailty Zi had three configurations: (a) fixed at constant 1; (b) 

generated from a gamma distribution with mean 1 and variance 0.5; or (c) generated from a 

uniform distribution over [0, 2]. The sample size n had two levels, 100 and 200.

We considered three scenarios depending on how examination times associate with recurrent 

events:

• Scenario 1: Examination times and recurrent events are independent. The number 

of examinations, Ki, was generated from a district uniform distribution on {1, 

… , 6}; and the distinct examination times, ti1, …, tiKi, were the order statistics of 

Ki independent and identically distributed uniform distribution over [0, 10].

• Scenario 2: Examination times and recurrent events are independent conditioning 

on the covariates. If Xi1Xi2 > 0, then the number of examinations, Ki, was 

generated from a district uniform distribution on {1, … , 8} and the distinct 

examination times were the order statistics of Ki independent and identically 

distributed exponential distribution with mean 2; otherwise, Ki and ti1, …, tiKi
were generated in the same fashion as in Scenario 1.

• Scenario 3: Examination times are informative about the recurrent events after 

conditioning on the covariates. If Xi1Xi2 > 0 and Zi > 1, then Ki and ti1, …, tiKi
were generated as in the case of Xi1Xi2 > 0 in Scenario 2; otherwise, they were 

generated in the same fashion as in Scenario 1.
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Under the study designs, Scenario 3 reduces to Scenario 1 when Zi was fixed at 1, but the 

two scenarios are different otherwise. In Scenario 2 when the examination times and 

recurrent events are independent conditioning on covariate, subjects with Xi1 = 1 and Xi2 > 0 

are more likely to be examined more frequently. In Scenario 3 when the examination times 

are informative about the recurrent events, the design implies a positive association between 

the underlying recurrent event process and the examination time process; subjects with Xi1 = 

1, Xi2 > 0 and Zi > 1 have a higher event rate and tend to be examined more frequently. 

Since examination times were generated from continuous probability distributions for all 

three scenarios, EE.HSWc estimator was excluded from the study as the EE.HSWc 

estimator is not applicable to scenarios when there are no ties in examination times. The 

standard errors were estimated using the standard bootstrap procedure by setting se = 

“Bootstrap” with R = 200 bootstrap samples. For each configuration, 1000 datasets were 

generated and analysed. The timing results were obtained on a Linux machine with 2 GHz 

CPU.

Table 1 presents the results under Scenario 1. All estimators are virtually unbiased. The 

empirical standard errors and the estimated standard errors from the standard bootstrap 

procedure agree closely for all estimators, suggesting that the bootstrap procedure provides 

valid inference. The estimating-equation-based estimators were fastest to compute, but they 

appear to have higher standard errors than other estimators. All estimators had higher 

standard errors in the case of gamma frailty, which has high variance than the case of 

uniform frailty. The empirical coverage percentages are mostly reasonably close to the 

nominal level of 95%, with a closer agreement with larger sample size (results for n = 200 

not shown).

Table 2 summarises the results under Scenario 2. No estimator except those based on 

estimating equations show noticeable bias. The substantial bias and, consequently, the low 

coverage rate of the confidence intervals from the estimating equation approaches are due to 

their misspecification of the examination time process. The other estimators do not require 

specification of the examination time process, which might not be of primary interest. They 

appear to have similar results regarding bias and standard errors. Among them, the AEE 

estimator is the fastest and has the smallest standard errors, albeit the advantage in standard 

error is small.

Table 3 summarises the results under Scenario 3. Under this setting of informative 

examination times, the only unbiased estimators appear to be the HWZ estimator and the 

AEEX estimator, with comparable standard errors. This is explained by the rationals on 

which they are derived. Their coverage rates of the confidence intervals were a bit lower 

than the nominal rate for the continuous regression coefficient, and the agreement improves 

as the sample size becomes n = 200 (results not shown). The AEEX estimator is twice as fast 

as the HWZ estimator.

7 Discussion

Nonparametric estimation of the mean cumulative function or mean rate function (e.g. Sun 

& Zhao, 2013, Chapters 3 and 4) plays an important role in many methods for 
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semiparametric regression models. Estimation of semiparametric approaches often involves 

an alternate iteration between updating the estimate of β and updating the estimate of μ0(t), 
the latter of which is often based on nonparametric estimation given β. For example, the 

MLE and MPLE of Wellner & Zhang (2007) are based on the one-sample nonparametric 

MLE and MPLE of Wellner & Zhang (2000). The method of Huang et al. (2006) does not 

require alternate iteration in estimating the parameters of Model (4) because of the special 

structure of this model. When the idea is adapted to the accelerated mean Model (5) of 

Chiou et al. (2017), nonparametric estimation given the parametric part becomes necessary 

in an alternate iteration procedure. Some nonparametric estimation methods with self-

consistent algorithm (Hu et al., 2009a, 2009b) have not been but could be combined with a 

parametric estimation procedure to form a semiparametric approach. For methods 

implemented in the spef package, nonparametric estimation can be requested by setting right 

hand of the model formula to be intercept only; for example, PanelSurv(id, time, count) ~ 1. 

In addition, the baseline function estimates can be plotted with the generic plot function as 

illustrated in Sections 4 and 5.

The scope of this review is limited to available implementations of semiparametric 

regression models with time-independent covariates. A wide range of topics on panel count 

data have been studied, many of which have been reviewed by Sun & Zhao (2013). 

Examples are nonparametric comparison (Zhang, 2006), semiparametric transformation 

models (Li et al., 2010), multivariate panel count data analysis (He et al., 2008; Li et al., 
2011; Zhang et al., 2013; Li et al., 2015), measurement errors (Kim, 2007), mixed recurrent 

event and panel count data analysis (Zhu et al., 2013), varying-coefficient models (He et al., 
2017), incorporation of observation history in regression (Li et al., 2010; Deng et al., 2015) 

and so on. Some topics are worth investigating; for example, adapting the semiparametric 

regression with time-dependent covariates for recurrent event data (Huang et al., 2010) to 

panel count data. The unavailability of cutting-edge methods to practitioners calls for user-

friendly, quality controlled software implementation as reproductive statistical research 

gains sharpened focus.
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Figure 1. 
Tile plot of the skin tumour data. Each tile represents an examination time. Darker grays 

mean larger number of tumour since the last visit.
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Figure 2. 
Estimated baseline mean function from the MPL method and the MPLs method.
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Table 1.

Simulation results for Scenario 1 where the examination times and the recurrent events are independent with n 

= 100. Column bias is the average bias; ESE is the empirical standard error; ASE is the average standard error 

based on the standard bootstrap; CP is the empirical coverage probability (%); time is the average time in 

seconds used in both point estimation and bootstrap variance estimation.

bias ESE ASE CP (%) Time

β 1 β 2 β 1 β 2 β 1 β 2 β 1 β 2

Z = 1

MLs −0.001 0.001 0.037 0.019 0.038 0.021 95.3 96.9 588.7

MPL −0.001 0.002 0.043 0.023 0.043 0.024 94.9 96.5 237.9

MPLs −0.001 0.001 0.042 0.023 0.044 0.023 96.3 96.4 543.9

EE.SWc −0.007 0.005 0.205 0.101 0.202 0.103 96.2 96.6 72.1

EE.SWb 0.005 0.006 0.149 0.087 0.159 0.087 96.1 96.1 47.7

EE.SWa 0.005 0.007 0.129 0.078 0.137 0.076 96.4 95.2 3.4

EE.HSWm −0.005 0.011 0.241 0.135 0.242 0.128 95.2 93.8 65.6

HWZ −0.001 0.001 0.046 0.022 0.046 0.023 94.0 93.8 1227.9

AEE −0.001 0.002 0.037 0.019 0.039 0.021 95.7 96.8 176.3

AEEX −0.002 −0.002 0.044 0.021 0.046 0.024 95.1 95.8 375.4

Z ~ gamma distribution

MLs 0.007 −0.007 0.206 0.126 0.195 0.107 94.7 90.3 676.0

MPL 0.010 −0.007 0.215 0.127 0.198 0.107 93.8 90.4 264.8

MPLs 0.009 −0.007 0.216 0.129 0.202 0.110 93.8 90.3 578.4

EE.SWc −0.002 0.010 0.310 0.148 0.297 0.148 94.0 95.9 66.3

EE.SWb 0.012 0.007 0.216 0.113 0.227 0.121 95.5 96.0 43.7

EE.SWa 0.004 0.007 0.205 0.108 0.210 0.113 94.9 96.4 3.0

EE.HSWm 0.013 −0.010 0.304 0.179 0.310 0.166 95.9 92.8 60.9

HWZ 0.007 −0.007 0.201 0.124 0.190 0.113 93.3 91.3 1053.2

AEE 0.007 −0.007 0.205 0.125 0.194 0.110 94.8 91.2 237.1

AEEX −0.005 −0.011 0.200 0.122 0.192 0.112 94.6 91.5 362.5

Z ~ uniform distribution

MLs −0.008 −0.005 0.177 0.106 0.171 0.096 94.1 90.6 674.3

MPL −0.009 −0.008 0.183 0.110 0.175 0.097 94.4 90.8 266.5

MPLs −0.008 −0.007 0.187 0.118 0.179 0.099 95.2 90.2 581.7

EE.SWc −0.006 0.004 0.305 0.139 0.274 0.139 92.4 95.6 66.8

EE.SWb −0.007 0.001 0.195 0.111 0.210 0.112 96.3 95.1 44.1

EE.SWa −0.014 0.002 0.174 0.105 0.194 0.103 97.0 94.9 3.1

EE.HSWm 0.002 0.001 0.308 0.176 0.297 0.163 94.7 93.4 61.3

HWZ −0.010 −0.005 0.177 0.109 0.164 0.098 92.6 90.1 1070.1

AEE −0.009 −0.005 0.176 0.111 0.169 0.095 93.7 90.4 235.0

AEEX −0.013 −0.009 0.173 0.107 0.168 0.095 94.6 90.1 366.7
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Table 2.

Simulation results for Scenario 2 where the examination times and the recurrent events are conditionally 

independent given covariates with n = 100. Column bias is the average bias; ESE is the empirical standard 

error; ASE is the average standard error based on the standard bootstrap; CP is the empirical coverage 

probability (%); time is the average time in seconds used in both point estimation and bootstrap variance 

estimation.

bias ESE ASE CP (%) Time

β 1 β 2 β 1 β 2 β 1 β 2 β 1 β 2

Z = 1

MLs −0.001 0.001 0.043 0.022 0.045 0.023 96.0 96.4 600.9

MPL −0.002 0.002 0.052 0.026 0.053 0.028 95.1 96.7 243.4

MPLs −0.004 0.001 0.050 0.025 0.052 0.027 95.8 96.5 599.5

EE.SWc −0.229 −0.193 0.372 0.164 0.362 0.158 79.1 68.5 65.8

EE.SWb −0.833 −0.347 0.195 0.097 0.197 0.105 1.7 8.9 43.5

EE.SWa −0.338 −0.139 0.147 0.080 0.149 0.081 39.7 59.6 3.1

EE.HSWm −1.527 −0.399 0.291 0.164 0.292 0.158 0.0 29.8 60.8

HWZ −0.008 0.000 0.060 0.028 0.059 0.029 94.6 95.7 1120.5

AEE −0.001 0.001 0.043 0.022 0.045 0.024 95.2 96.5 236.7

AEEX −0.020 −0.007 0.055 0.027 0.056 0.029 94.3 96.8 474.5

Z ~ gamma distribution

MLs 0.010 −0.007 0.202 0.119 0.192 0.104 94.4 90.9 728.1

MPL 0.025 −0.002 0.200 0.122 0.195 0.105 94.5 90.9 282.0

MPLs 0.004 −0.006 0.203 0.124 0.199 0.108 94.7 90.5 684.1

EE.SWc −0.277 −0.202 0.464 0.207 0.405 0.187 79.3 71.4 66.9

EE.SWb −0.828 −0.346 0.247 0.127 0.256 0.134 10.5 27.1 43.9

EE.SWa −0.333 −0.139 0.216 0.110 0.221 0.115 68.1 77.5 3.1

EE.HSWm −1.500 −0.409 0.349 0.207 0.340 0.198 1.5 40.4 61.4

HWZ 0.010 −0.006 0.212 0.128 0.198 0.115 92.9 91.7 1081.3

AEE 0.014 −0.006 0.199 0.119 0.190 0.103 94.4 90.9 341.3

AEEX −0.007 −0.016 0.203 0.123 0.192 0.108 94.8 90.8 512.6

Z ~ gamma distribution

MLs −0.007 0.001 0.177 0.109 0.168 0.094 94.5 91.1 673.2

MPL 0.014 0.007 0.185 0.110 0.171 0.093 94.8 90.4 264.8

MPLs −0.003 0.004 0.187 0.112 0.176 0.098 94.9 90.7 638.4

EE.SWc −0.272 −0.192 0.442 0.205 0.392 0.188 80.2 75.4 61.7

EE.SWb −0.808 −0.345 0.239 0.128 0.242 0.128 8.8 25.4 40.9

EE.SWa −0.327 −0.138 0.202 0.103 0.204 0.109 64.6 77.1 3.5

EE.HSWm −1.492 −0.400 0.349 0.209 0.332 0.183 0.8 41.2 57.3

HWZ −0.017 0.001 0.179 0.117 0.172 0.094 93.0 89.7 989.9

AEE −0.002 0.002 0.174 0.108 0.166 0.090 94.5 89.5 301.4

AEEX −0.030 −0.009 0.168 0.112 0.169 0.096 95.0 90.2 463.4
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Table 3.

Simulation results for Scenario 3 where the examination times are informative about the recurrent events after 

conditioning on covariates with n = 100. Column bias is the average bias; ESE is the empirical standard error; 

ASE is the average standard error based on the standard bootstrap; CP is the empirical coverage probability 

(%); time is the average time in seconds used in both point estimation and bootstrap variance estimation.

bias ESE ASE CP (%) Time

β 1 β 2 β 1 β 2 β 1 β 2 β 1 β 2

Z ~ gamma distribution

MLs −0.147 −0.038 0.199 0.117 0.188 0.102 86.7 87.7 594.9

MPL −0.164 −0.048 0.210 0.115 0.190 0.101 84.5 87.3 221.6

MPLs −0.172 −0.048 0.208 0.118 0.192 0.103 85.5 86.6 496.9

EE.SWc −0.248 −0.110 0.318 0.153 0.290 0.147 81.6 85.8 64.9

EE.SWb −0.379 −0.155 0.215 0.113 0.225 0.119 59.9 74.7 42.6

EE.SWa −0.206 −0.078 0.192 0.100 0.208 0.109 86.1 88.7 2.9

EE.HSWm −0.723 −0.191 0.314 0.186 0.309 0.166 38.5 70.6 58.8

HWZ −0.003 −0.006 0.212 0.125 0.199 0.112 91.7 91.2 990.9

AEE −0.144 −0.038 0.198 0.116 0.189 0.100 88.8 90.7 225.6

AEEX −0.015 −0.014 0.206 0.122 0.191 0.105 92.6 89.9 419.1

Z ~ uniform distribution

MLs −0.143 −0.032 0.181 0.113 0.173 0.096 86.7 89.7 633.3

MPL −0.169 −0.039 0.186 0.114 0.177 0.097 83.3 88.8 246.3

MPLs −0.175 −0.040 0.189 0.115 0.180 0.099 83.0 89.3 547.7

EE.SWc −0.258 −0.130 0.318 0.150 0.292 0.147 79.1 83.2 64.7

EE.SWb −0.453 −0.183 0.218 0.104 0.216 0.115 45.2 66.5 43.9

EE.SWa −0.221 −0.087 0.185 0.099 0.193 0.103 80.6 87.9 3.1

EE.HSWm −0.861 −0.229 0.323 0.179 0.303 0.165 21.0 65.7 59.8

HWZ −0.008 0.001 0.181 0.123 0.171 0.112 93.4 91.5 1010.1

AEE −0.142 −0.032 0.181 0.112 0.171 0.105 86.6 90.6 241.7

AEEX −0.022 −0.010 0.174 0.116 0.167 0.097 94.6 90.9 434.9
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