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 9 

Key points 10 

 The CLM parameters, estimated separately for four PFTs, correlated with initial 11 

carbon-nitrogen pools. 12 

 Estimated parameters improved the model performance for an independent evaluation 13 

period and at independent sites. 14 

 Parameters estimated on seasonal basis outperformed parameters estimated based on a 15 

one year NEE time series.  16 
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Abstract 17 

The Community Land Model (CLM) contains many parameters whose values are uncertain 18 

and require careful estimation for new application sites. We used the Markov Chain Monte 19 

Carlo (MCMC) algorithm DREAM(zs) to estimate eight CLM v.4.5 ecosystem parameters 20 

using one-year time series of half-hourly net ecosystem exchange (NEE) observations. This 21 

was done for four central European sites with different plant functional types (PTFs). 22 

Parameter estimates were evaluated for each site for an independent evaluation period, and for 23 

other independent FLUXNET sites situated ~600 km away. In some cases, initial model states 24 

were estimated jointly with the parameters. Model simulations with estimated parameters 25 

outperformed the reference run with default parameters in terms of reproducing measured 26 

NEE data, especially if parameters were estimated on a seasonal basis. In the latter case, the 27 

annual NEE sum deviated 32% less from the observed one (average over all sites), compared 28 

to the reference run. The characterization of the mean diurnal NEE cycle was improved by a 29 

factor of 1.6. Evaluation results were better for the forest sites compared to C3-grass and C3-30 

crop. Joint initial state and parameter estimation revealed a strong dependency of the 31 

estimated parameters on the initial conditions. The main conclusion is that although estimated 32 

parameters improved the characterization of NEE for evaluation sites and evaluation periods, 33 

the posterior parameter values compensated for model structural errors, given the found 34 

fluctuations of estimated parameters as function of estimation period (single seasons vs 35 

complete year), and depending on the inclusion of initial states in the estimation.  36 

1. Introduction 37 

Land surface models (LSMs) such as the Community Land Model (CLM) [Oleson et al., 38 

2013] simulate key processes and interactions of the biogeochemical, the hydrological and the 39 

energy cycle at the land surface. LSMs play a major role in predicting and understanding 40 

environmental change impacts on terrestrial ecosystems and the feedback of those changes 41 

(e.g., changes in carbon fluxes or albedo) on the atmosphere and the climate. In this context a 42 

major question to be answered is how the land carbon sink – including vegetation dynamics 43 

and soil carbon stocks –  changes with climate and land use change [Arora et al., 2013; 44 

Brovkin et al., 2013; Quéré et al., 2012; Todd-Brown et al., 2014]. The 5th Climate Model 45 

Intercomparison Project CMIP5 indicated that there are considerable uncertainties and model 46 

discrepancies related to carbon stock predictions [Piao et al., 2013]. These discrepancies can 47 
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be explained by different error sources including (1) model structural deficits, i.e due to 48 

inadequate/imperfect process description, (2) model parameters, (3) uncertainty and biases in 49 

the initial model states, and (4) uncertainty in the meteorological and land surface input data 50 

[Piao et al., 2013; Todd-Brown et al., 2013]. 51 

Todd-Brown et al. [2013] found that parameterization was a major source of diverging soil 52 

carbon predictions by different CMIP5 models. A parameter is usually defined to be constant 53 

and accordingly is desired to be a “universal number”. However, various studies [Richardson 54 

et al., 2007; Mo et al., 2008; Williams et al., 2009; Kuppel et al., 2014] show that certain 55 

parameters used in land surface models vary in space and time and are dependent on 56 

environmental conditions. One example is the temperature sensitivity coefficient Q10 57 

(expressing the change in respiration rate for 10°C increase in temperature), which was found 58 

to be one of the most sensitive parameters for the simulation of carbon dynamics in various 59 

land surface models including CLM [Hararuk et al., 2014; Post et al., 2008]. The latter 60 

studies found that Q10 highly determines the uncertainty in predicted soil organic carbon 61 

(SOC). Contradicting the assumption of one universal Q10 value in LSMs, various empirical 62 

and model based studies have found that Q10 is spatially and temporally variable, depending 63 

on the specific site conditions such as soil moisture content [Flanagan and Johnson, 2005; 64 

Kätterer et al., 1998; Reichstein et al., 2005] and mean annual temperature [Kirschbaum, 65 

2010, 1995]. However, due to the limited number of studies and different results arising from 66 

different methods and study set-ups, the question of the spatial and temporal variability of Q10 67 

as a function of environmental conditions remains unresolved [Foereid et al., 2014; Post et 68 

al., 2008]. Another key parameter for carbon flux predictions in various LSMs including 69 

CLM is the maximum rate of carboxylation at 25 °C Vcmax25 [Göhler et al., 2013; Bonan et al., 70 

2011; Wang et al., 2007]. As discussed in Bonan et al. [2011], the parameter Vcmax25  in CLM 71 

is highly uncertain and attempts to estimate its value from data introduces compensatory 72 

interaction with model structural errors, which “may explain the lack of consensus in values 73 

for Vcmax25 used in terrestrial biosphere models”. Mo et al. [2008] found via data assimilation 74 

with the Ensemble Kalman Filter (EnKF) significant seasonal and inter-annual variations of 75 

Vcmax25 as well as the (Ball-Barry) slope of the stomatal conductance-photosynthesis 76 

relationship in an ecosystem model. As a consequence, these authors have criticized 77 

parameter estimation approaches that do not consider temporal variations of parameters and 78 

their dependency on model states.  79 

The spatial scale and location the model is applied to plays a central role in the debate of 80 

parameter uncertainty. CLM for example was tuned for global scale applications using 81 
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particular model forcings and tested with eddy covariance data from selected FLUXNET sites. 82 

Model default parameters are not necessarily valid for specific sites, environmental conditions 83 

and scales, but rather try to represent typical “global” values. One example is the concept of 84 

plant functional types (PFTs) in CLM and other LSMs that does not attempt to capture 85 

properties of all different species of grasses, crops and trees, but just general classes of 86 

vegetation. Therefore, observed plant phenology at particular sites does not necessarily agree 87 

with the global process representation and parameterization in the model.  88 

Traditionally, parameter estimation problems were restricted to model parameters as target 89 

variables, while the emphasis of data assimilation was on sequentially updating and 90 

estimating the state variables, e.g. using EnKF methods [Raupach et al., 2005]. However, due 91 

to spatial-temporal variability of certain parameters and the close link between model states 92 

and parameters, the conceptual distinction of model states and parameters is increasingly 93 

being considered arbitrary and with it methods to estimate models and/or states. Accordingly, 94 

sequential data assimilation methods such as the Ensemble Kalman Filter are increasingly 95 

being used as a tool to estimate ecosystem parameters for carbon flux predictions [Hill et al., 96 

2012; Kuppel et al., 2012] and traditional Bayesian parameter estimation methods can serve 97 

for model state and parameter estimation [Kuppel et al., 2012; Verbeeck et al., 2011; Braswell 98 

et al., 2005; Hill et al., 2012]. Different model-data fusion studies from point to global scale 99 

found that modeled land surface fluxes can be well constrained with eddy covariance data 100 

[Kuppel et al., 2012; Verbeeck et al., 2011; Mo et al., 2008; Knorr and Kattge, 2005; Braswell 101 

et al., 2005; Hill et al., 2012; Xu et al., 2006]. However, studies highlight that only a few 102 

sensitive parameters (and states) can be well constrained to substantially improve NEE 103 

predictions [Santaren et al., 2007; Verbeeck et al., 2011; Wang et al., 2001] or soil organic 104 

carbon estimates [Hararuk et al., 2014]. Besides constraining LSM parameters, assimilation 105 

of NEE data can increase the understanding of processes and drivers that determine rates and 106 

patterns of carbon fluxes [Verbeeck et al., 2011]. Most model-data fusion studies for carbon 107 

flux estimation focus on single forest ecosystems [Braswell et al., 2005; Williams et al., 2005; 108 

Santaren et al., 2007; Keenan et al., 2012; Mo et al., 2008; Verbeeck et al., 2011; Kato et al., 109 

2012; Kuppel et al., 2012, 2013; Rosolem et al., 2013; Santaren et al., 2013]. Only a few 110 

studies estimated ecosystem parameters separately for different PFTs [Kuppel et al., 2014; 111 

Xiao et al., 2014]. Besides, many studies applied (simple) ecosystem models instead of 112 

complex land surface models to simulate NEE. Exceptions are studies based on the CSIRO 113 

Biosphere Model (CBM) [Wang et al., 2001, 2007] or the ORCHIDEE model [Kuppel et al., 114 

2014, 2012; Santaren et al., 2013, 2007; Verbeeck et al., 2011]. However, those studies used 115 
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gradient based algorithms for parameter estimation. These algorithms are not best suited to 116 

constrain highly dimensional, nonlinear LSMs, because they are prone to become stuck in a 117 

local minimum during the optimization process rather than finding the global minima 118 

[Williams et al., 2009]. This is related to the fact that equifinality, i.e. multiple optimal 119 

parameter sets that generate equally good model outputs, was identified as a major source of 120 

errors in simulated land surface fluxes including NEE [Schulz et al., 2001; Williams et al., 121 

2009; Luo et al., 2009; Todd-Brown et al., 2013]. The large number of unknown model 122 

parameters results in many possible combinations of parameter values which reproduce 123 

measurement data [Beven and Freer, 2001; Laloy and Vrugt, 2012; Mitchell et al., 2009]. 124 

Accordingly, Bayesian methods like Markov Chain Monte Carlo (MCMC) are considered 125 

more suited to estimate LSM parameters. Santaren et al. [2013] compared a gradient-based 126 

algorithm and a generic stochastic search algorithm and showed that the generic Monte Carlo-127 

based method provided better results for single site model-data fusion. A main reason why 128 

MCMC approaches have not been applied yet to estimate LSM parameters is that 129 

computational demand is higher compared to the gradient based approach. For CLM, no 130 

studies have been published yet that estimate ecosystem parameters in order to improve 131 

modeled carbon fluxes. Although parameter estimation has been successfully used to reduce 132 

the misfit between modeled and measured land surface fluxes, it is important to consider that 133 

model structural deficits affect parameter estimation, as wrong process representation in the 134 

model can often be compensated by adapting parameter values [Williams et al., 2009]. Todd-135 

Brown et al. [2013] state that CMIP5 models exhibit serious model structural shortcomings, 136 

particularly in terms of representing plant phenology (timing of plant onset, length in growing 137 

season). They also point out that due to missing key biotic and abiotic processes governing 138 

organic matter decomposition, simulated carbon stocks in the models are too strongly 139 

determined by net primary production (NPP) and temperature. With significant model 140 

structural deficits parameter estimation becomes very challenging. As pointed out by Braswell 141 

et al. [2005], parameter optimization can only decrease parameter errors but not model 142 

structure errors.  143 

The main objective of this study was to improve, for central and western European sites, the 144 

consistency of NEE modeled with CLM4.5 and NEE determined with the EC method. 145 

Therefore, we estimated eight key CLM4.5 parameters that regulate carbon flux predictions at 146 

sites in Germany and France involving different plant functional types (C3-grass, C3-crop, 147 

evergreen coniferous forest, broadleaf deciduous forest). The parameters were selected on the 148 

basis of a simple, local sensitivity analysis and the selected parameters are in correspondence 149 
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with previous studies [Göhler et al., 2013]. Parameter estimation was done using the multi 150 

chain MCMC method DREAM(zs) [Ter Braak and Vrugt, 2008; Laloy and Vrugt, 2012; Vrugt, 151 

2015]. An advantage of the DREAM (DiffeRential Evolution Adaptive Metropolis) algorithm 152 

compared to other parameter estimation approaches is that (i) MCMC is not limited to 153 

Gaussianity, (ii) the full posterior pdf  can be determined and (iii) the complete time series is 154 

considered at once in the parameter estimation (in contrast to e.g. sequential data assimilation 155 

methods). In order to analyze if parameters provided better NEE estimates if they were 156 

allowed to vary in time, parameters were estimated with one complete year of NEE data, and 157 

also separately for four single seasons. To further evaluate the stability of estimated 158 

parameters and detect possible compensatory effects between parameter errors and model 159 

structure errors, experiments were conducted where multiplication factors for certain initial 160 

states (carbon and nitrogen pools) were estimated jointly with the parameters. Parameter 161 

estimates with and without initial state estimation are compared in this paper. 162 

To evaluate transferability of parameter estimates to other sites, parameter estimates were 163 

validated based on four FLUXNET sites situated ~ 600 km away from the parameter 164 

estimation sites. In addition, at the sites where parameters were estimated, parameter estimates 165 

were evaluated in time by running simulations for a evaluation year. In contrast to most of the 166 

previous studies on parameter estimation with land surface models, we considered different 167 

evaluation criteria such as (i) the mean diurnal NEE cycles for four different seasons, (ii) the 168 

mean annual NEE cycle, (iii) the annual NEE sum and (iv) the RMSE of individual NEE-169 

measurements over the evaluation time period. 170 

2. Methods and Materials 171 

2.1. Carbon-nitrogen flux representation in CLM  172 

In this study the Community Land Model version 4.5 (CLM4.5) was used in the dynamic 173 

carbon-nitrogen mode (BGC). The acronym “CLM” refers in this paper to CLM4.5BGC. 174 

CLM4.5BGC comprises a biogeochemical model that is based on the terrestrial 175 

biogeochemistry model Biome-BGC [Thornton et al., 2002; Thornton and Rosenbloom, 2005; 176 

Thornton et al., 2009] and is characterized by a fully prognostic carbon and nitrogen dynamic 177 

[Oleson et al., 2013].  178 

The net exchange of CO2 between the land surface and the atmosphere (NEE) is driven by 179 

two main processes: (1) the photosynthesis of plants, which determines the gross primary 180 

production (GPP) and carbon uptake, and (2) the respiration (R) through which carbon is 181 
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released from ecosystems into the atmosphere. In CLM, photosynthesis is calculated at leaf 182 

scale separately for sunlit and shaded canopy fractions [Dai et al., 2004; Thornton and 183 

Zimmermann, 2007] and is upscaled via the leaf area index. The stomatal resistance is 184 

calculated based on the Ball-Berry conductance model [Ball and Berry, 1982; Collatz et al., 185 

1991]. Net photosynthesis is determined based on the maximum rate of carboxylation at 25 186 

°C, Vcmax25 [μmol m-2 s-1], a key parameter for the canopy scaling in CLM [Oleson et al., 187 

2013]: 188 

 189 = fl FCN sla  (Eq. 1) 

 190 

where fl = fraction of leaf N in Rubisco enzyme [g N Rubisco g-1 N], F = mass ratio of 191 

total Rubisco molecular mass to nitrogen in Rubisco [g Rubisco g-1 N in Rubisco],  = 192 

specific activity of Rubisco [μmol CO2 g-1 Rubisco s-1], CNL = leaf carbon-to-nitrogen ratio 193 

[gC g-1N] and sla =specific leaf area at the canopy top [m2 g-1 C]) 194 

The total ecosystem respiration (ER) in CLM includes both heterotrophic respiration (HR) 195 

and autotrophic root respiration, the sum of maintenance respiration (MR) and growth 196 

respiration (GR) [Oleson et al., 2013]. CLM distinguishes between living vegetation pools 197 

(roots, stem, and leaves) and dead carbon- nitrogen- (CN) pools [Oleson et al., 2013]. 198 

For the simulation of HR, the carbon and nitrogen transfer between the dead CN pools and the 199 

CO2 release during the decomposition process are calculated based on the effective 200 

decomposition rates of each CN pool, altered by the momentary environmental conditions 201 

(temperature, soil moisture, available N). The temperature scalar is calculated based on the 202 

temperature coefficient Q10 for each soil layer. CLM4.5 contains both the old CLM4 203 

decomposition structure based on CLM-CN [Thornton et al., 2002; Thornton and 204 

Rosenbloom, 2005] and the BGC structure which is based on the CENTURY model [Parton 205 

et al., 1988, 1993] and contains a different pool structure and slower decomposition rates. In a 206 

10 year multi-site field experiment executed for 27 sites across North  and Central America 207 

[Bonan et al., 2013], the parameterization of the litter and soil organic matter pools in CLM-208 

CN, originally based on laboratory incubation experiments [Thornton and Rosenbloom, 209 

2005], was found to differ strongly from real conditions. In particular the litter decomposition 210 

was found to be too high in CLM-CN, which caused a too rapid CN cycle and an 211 

underestimation of the remaining carbon mass. Thus, the BGC decomposition module is now 212 

standard in CLM4.5 and was also used in this study. CLM4.5 also includes a new vertically 213 
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resolved soil biogeochemistry scheme and decomposition structure [Koven et al., 2013], 214 

which was applied here.  In this scheme, decomposition is depth-dependent [Jenkinson and 215 

Coleman, 2008] and decreases exponentially with soil depth. In addition, an oxygen scalar is 216 

applied, which limits decomposition if the oxygen supply is insufficient. 217 

The maintenance respiration (ME) is the sum of MR separately calculated for leaves (MRleaf), 218 

fine roots (MRfroot), live stem (MRlivestem) and live coarse roots (MRlivecroot). The individual 219 

MR contribution for leaves is calculated as follows:   220 MR = br ( )/  (Eq. 2) 

where NSleaf [gN m-2] is leaf nitrogen content, br [gC gN-1 s-1] is the base rate of maintenance 221 

respiration per unit nitrogen content, Q10 is the temperature sensitivity for maintenance 222 

respiration and  [°C] is the air temperature at 2m height. 223 

The contributions MRlivestem and MRlivecroot are accordingly calculated (with NSlivestem and 224 

NSlivecroot instead of NSleaf). MRfroot is the sum of MRfroot separately calculated for different soil 225 

layers j using the soil temperature at level j instead of   and including the fraction of fine 226 

roots present at soil level j. Growth respiration is calculated individually for each allocation 227 

pathway based on the growth respiration factor grperc which is multiplied with the carbon 228 

allocated to each individual living vegetation pool at a given time step [Oleson et al., 2013].  229 

2.2. Eddy covariance sites and evaluation data 230 

The half-hourly NEE data measured at four eddy covariance (EC) sites with different land 231 

cover types were used for CLM parameter estimation. The extensively used C3-grassland site 232 

Rollesbroich (“RO”) [50.6219142°N; 6.3041256°E] is located in the Eifel region of western 233 

Germany at 514.7 MASL. The winter wheat site Merzenhausen (“ME”) [50.92978°N / 234 

6.2969924°E] is located 34 km northeast of RO in an agricultural lowland region. For further 235 

details see Post et al. [2015]. The EC raw data for both sites were processed with the TK3.1 236 

software [Mauder and Foken, 2011], which includes a standardized quality assessment system 237 

and uncertainty estimation scheme as presented in Mauder et al. [2013]. For RO, the 238 

statistically derived uncertainty estimates [Mauder et al., 2013] were verified with uncertainty 239 

estimates based on an extended two-tower approach [Post et al., 2015]. The coniferous forest 240 

site Wüstebach (“WUE”) [50.5049024°N; 6.33138251°E] is located in the Eifel national park 241 

at 606.9 MASL and is covered by spruces. EC data for WUE was processed with the software 242 

ECpack [Dijk et al., 2004] and with an additional pre/post-processing suggested by Mauder et 243 

al. [2013] [Graf et al., 2014]. EC footprint analysis was performed for the EC towers in 244 

Rollesbroich [Post et al., 2015] and Wüstebach [Graf et al., 2014], showing that >90 percent 245 
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of the average footprint area was covered by the dominant plant functional type. Footprint 246 

analysis (not published) and remotely sensed images suggest that also the footprint area in 247 

Merzenhausen is mainly covered by agriculturally used areas (C3-crops), with a dominant 248 

contribution from the winter wheat field where the EC tower is located but depending on 249 

atmospheric stability, wind direction and speed also with a potential flux input from 250 

surrounding fields. NEE time series were available from June 2010 to May 2013 (WUE) and 251 

from May 2011 to Dec. 2013 (RO, ME). Only non-gap-filled, half-hourly data with quality 252 

flag 0 (high quality data) and 1 (moderate quality data) based on the quality assessment 253 

described in Mauder et al. [2013] were used in this study. 254 

For RO and ME also approximate dates of harvesting and fertilization, ground based LAI 255 

measurements and regular camera shots were available. The average LAI measured for the 256 

RO site on 19 days between the 30th of April and the 30th of September 2013 and at 21 257 

different plots was ~2.4. The mean LAI measured at the ME site on 9 days and nine plots 258 

between the 11th of April and the 26th of July 2012 was 4.3.  259 

In addition to RO, ME and WUE, we used FLUXNET data provided for the Fontainebleau 260 

deciduous forest site in France (FR-Fon) [48.4763 N, 2.7801 E] (from year 2005-2008) for 261 

parameter estimation. For this site no additional information such as site management was 262 

available. 263 

Four additional FLUXNET sites served as evaluation sites: the grassland site Grillenburg 264 

(DE-Gri [50.9495°N, 13.5125°E]), the coniferous forest site Tharandt (DE-Tha [50.9636°N, 265 

13.5669°E]), the agricultural site Klingenberg (DE-Kli, [50.8929°N, 13.5225°E]) and the 266 

deciduous forest site Hainich (DE-Hai, [51.0793°N, 10.4520°E]). Gap-filled Level4 data for 267 

those FLUXNET sites were available for the years 2009-2012 (DE-Gri, DE-Tha, DE-Kli) and 268 

for the years 2005-2008 (DE-Hai). Again, only NEE data with quality 0 (original), 1 (most 269 

reliable) and 2 (medium reliable) were included in the analysis, while data with flag 3 (least 270 

reliable data) were not included. As uncertainty of FLUXNET NEE eddy covariance data is 271 

not provided, we estimated the NEE measurement uncertainty for the FLUXNET sites based 272 

on the linear regression functions obtained from the extended two-tower approach presented 273 

in Post et al. [2015], Fig.6b.  274 

2.3. The DREAM(zs) algorithm: Theory and implementation 275 

The Community land model has many different parameters whose values cannot be measured 276 

directly in the field at the application scale of interest, and thus have to be determined by 277 
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calibration instead using observations of the system output. If we adopt a Bayesian formalism 278 

then we can infer the statistical distribution of the model parameters using 279 

( | ) = ( ) ( | )( )  (Eq. 3) 

where x are the model parameters to be estimated,  = { , … , } is a n-vector of measured 280 

data, ( | ) signifies the posterior probability density function (pdf),  ( | ) ≡  is the 281 

likelihood function, ( ) the prior distribution and  the normalizing constant. In practice, 282 

 needs not be computed, and all statistical inferences about ( | ) can be made from its 283 

unnormalized density, ( | ) ∝ ( ) ( | ).  284 

We assume herein that the prior distribution is uniform (non-informative) and use the ranges 285 

of the parameters listed in Tab. 1. This leaves us with the formulation of the likelihood 286 

function. This function quantifies in probabilistic terms the level of agreement between the 287 

simulated n-vector, ( ) and the corresponding observed data, . Under the assumption of 288 

uncorrelated and normally distributed error residuals, ( ) = − ( ) = e ( ), … e ( ) , 289 

the likelihood function can be written as follows: 290 

, = 12 exp − 12 ( )
    (Eq. 4) 

where σ = {σ1,…,σn} is a n-vector with standard deviations of the measurement error of the 291 

observations. If homoscedasticity of the measurement errors is anticipated, then the likelihood 292 

function of (Eq. 4) can be simplified to 293 

∝ | ( )|    (Eq. 5) 

using 294 

= 1− 1 ( ( ))     (Eq. 6) 

as sufficient statistic of the measurement error variance . This sum of squared error type 295 

likelihood function is used herein for posterior inference. For reasons of numerical stability, 296 

we use the log-formulation, ℒ  of Eq. 5:  297 

ℒ = − 12 log ( ) .    (Eq. 7) 
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Now the prior distribution and likelihood function have been defined, what is left is to 298 

summarize the posterior distribution, ( | ) of the model parameters. For CLM, this posterior 299 

distribution cannot be obtained by analytical means nor by analytical approximation. We 300 

therefore resort to iterative methods and approximate the posterior pdf using Markov chain 301 

Monte Carlo (MCMC) simulation [Metropolis et al., 1953]. The basis of MCMC simulation is 302 

a Markov chain that generates a random walk through the search space and successively visits 303 

solutions with stable frequencies stemming from a stationary distribution. 304 

In this paper, MCMC simulation is performed using the DREAM algorithm [Vrugt et al., 305 

2008, 2009; Vrugt, 2015]. This multi-chain MCMC simulation algorithm automatically tunes 306 

the scale and orientation of the proposal distribution in route to the target distribution, and 307 

exhibits excellent sampling efficiencies on complex, high-dimensional, and multi-modal 308 

target distributions. The use of multiple chains offers a robust protection against premature 309 

convergence, and opens up the use of a wide arsenal of statistical measures to test whether 310 

convergence to a limiting distribution has been achieved. 311 

In short, in DREAM N different Markov chains are run simultaneously in parallel. If the state 312 

of a single chain is given by the d-vector x, then at each generation t - 1 the N chains define a 313 

population,  = , … ,  which corresponds to a N × d matrix, with each chain as 314 

row. If A is a subset of d*-dimensions of the original parameter space, ℝ ∗ ⊆   ℝ  then a jump 315 

(d ) in the ith chain, = 1, … ,  at iteration = 2, … ,  is calculated from  using  316 

d = ∗ + (1 ∗ + ∗) ( , ∗) ( − ) 
 

(Eq. 8) 

 d = 0, 

where = 2.38/√2 ∗ denotes the jump rate, δ is the number of chain pairs used to generate 317 

the jump, and a and b are vectors consisting of δ integers drawn without replacement from 318 1, … , − 1, + 1, … , . The values of   and  are sampled independently from a 319 

multivariate uniform distribution ∗(− , ) and normal distribution ∗(0, ∗), respectively, 320 

and, with typically c = 0.1 and ∗ small compared to the width of the target distribution (e.g. 321 ∗=10-6). To enable direct jumps between disconnected posterior nodes, the value of  is set to 322 

unity with a 20% probability, otherwise the default value of  is used. The d*-members of the 323 

subset A are sampled from the entries 1, … ,  (without replacement) and define the 324 

dimensions of the parameter space to be sampled by the proposal.  325 

The proposal point of chain i at iteration t then becomes: 326 
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= + d  (Eq. 9) 

and the Metropolis acceptance ratio  is used to determine whether to accept this proposal or 327 

not:  328 

→ = min 1, ( )( )  (Eq. 10) 

If the candidate point is accepted, then the ith chain moves to the new position, that is =329 

, otherwise  =  [Vrugt, 2015]. Thus, each of the N chains generates a random walk 330 

through the d-dimensional parameter space. After a burn-in period, the Markov chains have 331 

become independent of their initial value and convergence is defined and monitored with the 332 

univariate -convergence diagnostic of  Gelman and Rubin [1992].   333 

We use herein a simple adaptation of DREAM, called the DREAM(zs) algorithm which creates 334 

the jumps in Equation 8 from an “archive” of past states of the joint chains rather than their  335 

current states only [Vrugt, 2015]. This reduces the required number of Markov chains to just a 336 

few. Moreover, DREAM(zs) uses a “snooker update” as well [Ter Braak and Vrugt, 2008] to 337 

increase diversity of the sampled proposals. We assume that convergence of the DREAM(zs) 338 

algorithm to a limiting distribution has been achieved if the −statistic is smaller than the 339 

threshold value of 1.2 for all d model parameters. The least-squares parameter values (also 340 

referred to as maximum a posteriori [MAP] solution) are found by locating the sample of the 341 

posterior distribution with highest posterior density  342 MAP = ∈ ℝ  (Eq. 11) 

A full description of the DREAM and DREAM(zs) algorithms can be found in Ter Braak and 343 

Vrugt [2008], Vrugt et al., [2008, 2009] and [Vrugt, 2015] and interested readers are referred 344 

to these publications for additional details. 345 

3. Set-up of simulation experiments 346 

3.1. CLM4.5 setup and input data 347 

For each site, CLM4.5BGC was setup using basic site specific input data. For each soil layer, 348 

the soil texture (percentage clay and sand) was defined. For the sites RO, WUE and ME the 349 

German soil map (BK50) served as basis. For the FLUXNET sites no information on soil 350 

texture was available. Therefore, the soil texture for the forest sites was defined as for WUE, 351 

and the soil texture for DE-Kli and DE-Gri like ME and RO. The percentage PFT coverage 352 
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was set to 100% C3-grass for RO and DE-Gri, 100% C3-crop for ME and DE-Kli, 100% 353 

evergreen coniferous forest for WUE and DE-Tha, and 100% broadleaf deciduous forest for 354 

FR-Fon and DE-Hai. 355 

CLM was driven by the COSMO_DE reanalysis [Baldauf et al., 2009] provided by the 356 

German Weather Service (DWD) for the sites RO, WUE and ME. The COSMO_DE data 357 

includes hourly time series of air temperature, incoming short wave radiation, incoming long 358 

wave radiation, precipitation, atmospheric pressure, specific humidity and wind speed. The 359 

meteorological input data (2008-2013) was provided in 2.8 km2 resolution and downscaled to 360 

1 km2 grid resolution using nearest neighbor interpolation based on Delaunay triangulation. 361 

For the RO site gap-filled atmospheric input data measured at the EC tower were available. 362 

Half-hourly NEE was calculated for 2012 using either local site data or COSMO_DE 363 

reanalysis data as input. The differences between the simulations were very minor.  364 

Each of the CLM4.5 single point cases was spun-up for 1200 years in “spin-up mode” using 365 

atmospheric input of at least three years (2008-2010 in case of RO, WUE and ME). The 366 

respective restart files with initial states were then used for a final 3 years exit-spin-up in 367 

normal mode. We also tested longer exit-spin-up periods up to 100 years but found that results 368 

(both carbon pools and fluxes) were nearly identical after a 3-years and a 100-years exit-spin-369 

up period.   370 

The CLM setup and procedure of the evaluation runs at the FLUXNET-sites was nearly 371 

identical to the parameter estimation runs. However, local meteorological data measured at 372 

the FLUXNET-sites were used for the CLM spin-up and forward runs. 373 

3.2. Selection of parameters estimated with DREAM(zs) 374 

In this study, eight parameters were estimated with DREAM(zs). The selection of these eight 375 

key parameters (Tab. 1) was based on a simple, local sensitivity study. In total 32 parameters 376 

were analyzed in the sensitivity study. The selection of those 32 parameters was based on a 377 

previous parameter sensitivity study with CLM3.5 [Göhler et al., 2013] as well as analyses of 378 

the carbon flux representation in the CLM source code (such as the plant phenology and 379 

respiration modules) and the technical description of CLM 4.5 [Oleson et al., 2013]. Carbon 380 

flux relevant CLM parameters are either defined for each plant functional type (PFT) 381 

specifically, or are PFT-independent and hard coded in the CLM source code. Both PFT-382 

specific and hard coded parameters were included in the sensitivity study. 383 

Sensitivity analysis was carried out for the sites RO, ME and WUE covering three different 384 

PFTs (C3-grass, C3-crop, coniferous forest). Sensitivity was tested for the year 2012 and for 385 
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five individual months in 2012 (Mar., May, Jul., Sept., Dec.). For each site, each parameter 386 

and each time period 100 different parameter values were sampled by Latin hypercube 387 

sampling (LHS). The sensitivity was tested by analyzing the average monthly or annual NEE 388 

as function of variation in the input parameter values. A strong sensitivity of NEE to 389 

variations in eight parameters was detected, while no or limited sensitivity was observed for 390 

the other parameters.  391 

Most of the eight sensitive parameters such as Q10, mb, flNR and slatop were found to be critical 392 

key parameters in previous studies with CLM [Foereid et al., 2014; Göhler et al., 2013] or 393 

similar models [Hararuk et al., 2014; Post et al., 2008]. The importance of rootb is also 394 

consistent with previous studies in the Amazonas region [Baker et al., 2008; Verbeeck et al., 395 

2011] showing that the root profile parameter (describing the exponential root profile) is a 396 

particularly important parameter for improving NEE and LE simulated with LSMs. 397 

Because not all carbon flux relevant CLM parameters were included in this sensitivity study 398 

and because sensitivity was tested only qualitatively with a local method that does not 399 

consider correlation among parameters (and states), it cannot be excluded that other critical 400 

CLM parameters exist and are not incorporated in this study. However, the intention of this 401 

study was not to perform an elaborated global parameter sensitivity study but to select only a 402 

small number of highly sensitive CLM parameters. Parameters showing sensitivity only at 403 

some sites and some months like the soil water potential at full stomatal closure (smpsc) were 404 

also included.  405 

3.3. Parameter (and initial state) estimation with DREAM(zs) –CLM  406 

Parameter estimation experiments were conducted separately for four sites of different plant 407 

functional types (PFTs): RO (C3-grass), ME (C3-crop), WUE (evergreen coniferous forest) 408 

and FR-Fon (broadleaf deciduous forest). 409 

In order to test whether parameter estimates vary seasonally, DREAM(zs)-CLM parameter 410 

estimation was carried out for four individual seasons as well as for the complete time series 411 

of one year which covered the four single seasons. Five of the eight CLM parameters are PFT-412 

specific (Tab. 1). However, previous studies suggested that the parameters Q10, br, and mb 413 

also could vary depending on the PFT (and season) [Foereid et al., 2014; Mo et al., 2008; 414 

Post et al., 2008]. Therefore, the eight CLM parameters were estimated jointly for each site 415 

and time period.  416 

Additional experiments were conducted where multiplication factors for initial CLM states 417 

(Tab. 2) were estimated together with the eight CLM key parameters. Joint parameter and 418 
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initial state estimation was carried out to determine the dependence of the eight parameters on 419 

the initial model states. Four multiplication factors were estimated for the following groups of 420 

initial CLM states: 421 

1. flC: living carbon pools (leafc, leafcstorage, frootc, frootcstorage, livecrootc, livestemc, 422 

livestemcstorage) and total leaf area index (LAI) 423 

2. flN: living nitrogen pools (leafn, leafnstorage, frootn, frootnstorage, livecrootn, livestemn, 424 

livestemnstorage) 425 

3. fdC: dead carbon pools (litr1c, litr2c, litr3c, soil1c, soil2c, soil3c) 426 

4. fdN: dead nitrogen pools (litr1n, litr2n, litr3n, soil1n, soil2n, soil3n) 427 
 428 
The factor flC for the living carbon pools was applied also to leaf area index because the 429 

prognostic LAI in CLM is directly related to leaf carbon (leafc). The factors fdC and fdN were 430 

applied to dead carbon-nitrogen (C/N) pools for each of the 15 CLM soil layers. The 431 

minimum and maximum bounds for LHS were set equal to 0.25 and 3.0 respectively for all 432 

four state multiplication factors. Joint parameter and initial state estimation was only 433 

conducted for the model runs that considered the complete year. The four initial state factors 434 

were estimated for the beginning of the parameter estimation period. 435 

Parameters were estimated with DREAM(zs) using half-hourly NEE time series [gC m-2 s-1] 436 

excluding data with quality flags “low” (least reliable data). Prior parameter values were 437 

sampled by LHS using predefined upper and lower parameter bounds as constraints (Tab. 438 

1Tab. 1). We used three chains (default) for parameter estimation only and four chains for the 439 

joint parameter and initial state estimation.  440 

Due to the high computational cost of the DREAM(zs)-CLM runs, the maximum number of 441 

model evaluations was set to 20,000. For the parameters which did not fully converge after 442 

20,000 iterations, the obtained posterior distributions are therefore just an approximation. 443 

3.4. Evaluation of the DREAM(zs) derived MAP estimates 444 

DREAM(zs) estimates for the eight CLM4.5 parameters were evaluated both in time and in 445 

space. Evaluation in time refers to CLM-simulation runs, using estimated parameters as input, 446 

for an evaluation year that followed the parameter estimation year (Tab. 3). These evaluation 447 

runs were done for the same sites where parameters were estimated. The evaluation year 448 

started right after the end of the parameter estimation period (1 Dec. 2012 for RO and ME, 1 449 

Jun. 2013 for WUE, 1 Dec. 2006 for FR-Fon). Evaluation in space refers to using parameter 450 

estimates obtained for RO, ME, WUE and FR-Fon for model simulations at the FLUXNET 451 
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sites DE-Gri, DE-Kli, DE-Tha, and DE-Hai, so that the evaluation sites have the same PFTs 452 

as the estimation sites. For evaluation in space, the evaluation period agreed with the 453 

parameter estimation period. 454 

The evaluation was made for the one year (1y) and seasonal (s) based parameter estimates. 455 

The 1y parameter estimates were applied to the whole evaluation run. The seasonal 456 

parameters were applied during the corresponding season (Tab. 3) over the course of the year-457 

long evaluation run. The evaluation runs with 1y and seasonal parameter estimates were 458 

compared with the outcome of one additional reference run with CLM default parameters, 459 

which served as a reference. 460 

To evaluate the performance of the parameters estimated with DREAM(zs)-CLM, measured 461 

NEE time series (y) were compared to the modeled NEE time series (m). This was done by 462 

calculating the following evaluation indices:  463 

(i) the relative difference of the simulated and measured NEE sum [%]: 464 

 465 

RD = ∑ ( ) − ∑ ( )∑ ( ) × 100 
(Eq. 12) 

 

with  = measured half hourly NEE for a given year,  = modeled equivalent [μmol m-2 s-1] 466 

and n = sum of all time steps where EC data were available during the evaluation year 467 

(ii) the root mean square error (RMSEm) of half hourly NEE (same time series as for 468 

RDsum): 469 

RMSE = 1 ( − )  (Eq. 13) 

 470 

(iii) The mean absolute difference of the mean diurnal NEE cycle: 471 

MAD _ = 148 | − | (Eq. 14) 

with   = average modeled NEE at a fixed time during the day and  = measured equivalent 472 

[μmol m-2 s-1]. Compared are values at a 30 minutes interval for the daily cycle, giving 48 473 

values per day. First four MADdir_1s indices (one for each season) were calculated and then 474 

averaged to obtain one evaluation index MADdir for the complete evaluation year. 475 
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(iv) the RMSE of the mean annual NEE cycle: 476 

MAD = 112 | − |              (Eq. 15) 

 

with   = average measured NEE for a given month and  = modeled equivalent [μmol m-2 s-477 
1]. 478 

The relative improvement ∆ [%] of simulations with estimated parameters compared to 479 

simulations with default parameters was evaluated as follows:  480 

∆ = 100 − × 100  (Eq. 16) 

With IMAPs = evaluation index for NEE modeled with MAPs and Idefault =evaluation index for 481 

NEE modeled with CLM4.5 default parameters.  482 

The 95% confidence intervals of the parameters were estimated from the posterior 483 

distribution.  484 

In order to analyze the impact of the additional initial state estimation, MAP estimates were 485 

compared for the simulations where only parameters were estimated and simulations where 486 

both parameters and initial states were estimated. We did not analyze how NEE estimates are 487 

affected by additional initial state estimation because the obtained C/N ratios were not 488 

realistic for all C/N-pools and because CN-balance errors caused model aborts.  489 

4. Results  490 

4.1. Evaluation of CLM forward runs with default parameters  491 

Here the performance of the CLM4.5BGC reference run with global default parameters for 492 

the four parameter estimation sites is briefly summarized. Simulated NEE for the coniferous 493 

forest site WUE and the deciduous forest site FR-Fon corresponded better with measured 494 

values than for the other sites. Nevertheless, during the period of higher plant activity (early 495 

spring to late autumn) daytime NEE (GPP) was slightly underestimated. Leaf onset and offset 496 

at the site FR-Fon was adequately represented in the years 2006-2008 with a delay of about 497 

one week for both onset and offset. Simulated NEE was slightly positive throughout winter. 498 

FLUXNET data for FR-Fon indicated slightly higher nighttime respiration magnitudes and 499 

also included days with net carbon uptake. Probably the EC footprint at this site is not covered 500 
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100% by broadleaf deciduous trees but also other vegetation, including the undergrowth, 501 

contributed to the measured NEE signal. 502 

Systematic discrepancies between modeled and measured NEE at the grassland site RO were 503 

observed for the years 2011-2013, with a slight underestimation of summer daytime NEE 504 

(GPP) and a larger underestimation of daytime NEE in early spring (~March 2012) and late 505 

autumn (~November 2012). For ME, model-data discrepancies were more severe. NEE was 506 

underestimated during daytime and until mid-July. However, in mid-July measured NEE 507 

abruptly decreased due to the senescence of the winter wheat, which was indicated by the 508 

camera images that were regularly recorded at the site. As the PFT C3-crop in CLM does not 509 

include the senescence of winter wheat, simulated NEE did not represent the sudden decrease 510 

in GPP and accordingly daytime NEE was highly overestimated from mid-July to mid-511 

September. The model-data discrepancy caused by the senescence of winter wheat was 512 

considerably higher than e.g. the model-data discrepancy caused by the harvest in August. As 513 

the ME site was managed the same way in the years 2011 to 2013, the abrupt shift from 514 

underestimation to overestimation of NEE in mid-July was present in each of the three years. 515 

A comparison of measured and modeled NEE at the RO and the ME site indicated that 516 

phenology was not represented correctly by CLM for these PFTs. In the parameter estimation 517 

year 2012, onset was delayed about 2 weeks (observed: beginning of March; modeled: mid-518 

March) at both sites. In the evaluation year 2013, onset was delayed about one month at the 519 

RO site (observed: beginning of April; modeled: beginning of May) and about 2 weeks early 520 

at the ME site (observed: ~10th of April, modeled: ~25th of March).  521 

4.2. DREAM(zs) parameter (and initial state) estimation 522 

The number of iterations (ndraw) required for a complete convergence of all parameters with 523 

DREAM(zs)-CLM was 5000-8000 for seasonal parameter estimation (except ME_sp and FR-524 

Fon_su where >10000 iterations were required). When parameters were estimated with NEE 525 

time series for a complete year, parameters generally converged after > 12,000, except WUE 526 

(~3000 iterations). For the ME site, three of the eight parameters (grperc, Q10, br) did not 527 

converge after ndraw=20,000 for the complete year. For those parameters the posterior 528 

distributions are a more crude approximation affected by the available computational 529 

resources. In various test cases (not shown here) MAPs before and after a complete parameter 530 

convergence were compared and only differed marginally. Therefore, it is assumed that also 531 

in those cases where not all parameters converged completely, the determined MAPs give a 532 
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good approximation. For illustration, the course of the convergence diagnostic Rstat for one 533 

year simulations of WUE and for FR-Fon are shown in Fig. 1. 534 

Tab. 4 summarizes the MAP estimates of the eight CLM parameters determined for the four 535 

different sites or plant functional types and the two different time periods: the whole year (1y-536 

MAPs) and the single seasons (s-MAPs).  537 

Overall estimated CLM parameters vary notably among the different seasons and the different 538 

sites. Some of the parameters that showed distinct seasonal differences such as rootb, mb and 539 

Q10 tended to be estimated towards the upper or lower boundary. The tendency of lower 540 

seasonal parameter variations at the WUE site compared to the other sites could be related to 541 

the fact that coniferous forest present at this site is expected to be less strongly determined by 542 

seasonality compared to the other plant functional types. The other parameters (flNR, slatop, 543 

grperc, smpsc and br) also varied substantially for the different seasons without clear pattern.  544 

Not only the PFT-specific parameters, but also the non PFT-specific parameters br, mb and 545 

Q10 varied for the different sites or PFTs (Tab. 4). 1y-MAPs for Q10 for example indicated 546 

strong inter-site variations, ranging from 1.14 (RO) to 2.96 (WUE). In case of br, inter-site 547 

variations of the 1y-MAPs were considerably lower than the seasonal variations of the 548 

respective parameter at a given site.  549 

Regarding the parameter smpsc, DREAM(zs) results agree with the findings of the sensitivity 550 

analysis that this parameter is only particularly sensitive at the ME site in late summer / 551 

autumn 2012, which may be related to a low soil water content during this time period. For 552 

the other sites and months, the marginal posterior distribution of smpsc was rather wide, which 553 

suggests a lower sensitivity and a high parameter uncertainty (Fig. 2). 554 

4.3. Evaluation of the parameter estimates in terms of model performance 555 

The mean diurnal NEE cycles for the four seasons in the evaluation year are shown for the 556 

parameter estimation sites RO (Fig. 4), WUE (Fig. 5), ME (Fig. 6) and FR-Fon (Fig. 7). 557 

Seasonally determined MAP parameter sets substantially improved the representation of the 558 

mean diurnal NEE course compared to the CLM default parameter setup for the sites RO, 559 

WUE, and FR-Fon. Tab. 5 summarizes the performance measures for the mean diurnal NEE 560 

cycle. The mean NEE differences MADdiur [μmol m-2 s-1] decreased by 27% (Fr-Fon) to 55% 561 

(RO) for s-MAPs. For the site ME the improvement was less pronounced but MADdiur still 562 

decreased 19% with s-MAPs. For three of the four sites (RO, WUE, ME) s-MAPs improved 563 

the representation of daily NEE course more than the 1y-MAPs, particularly in winter and 564 

autumn. For 1y-MAPs MADdiur was 6% (ME), 23% (WUE) and 34% (FR-Fon) lower than for 565 
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the default CLM-parameters, but higher in case of RO (15%). As indicated by the 95% 566 

confidence intervals, the NEE uncertainty arising from the estimated parameters was highest 567 

with s-MAPs for the WUE site in winter and spring and with 1y-MAPs for the ME site. 568 

The improved representation of NEE at the ME site during the evaluation period with 1y-569 

MAPs was accompanied by a better agreement of simulated LAI with in-situ measured LAI. 570 

The simulated LAI for the ME site after onset was ~ 3.2 with 1y-MAPs and ~7.2 with default 571 

parameters. Given that the winter wheat site ME was managed in the same way 2013 as in 572 

2012, the mean LAI of 4.3 measured between April and July 2012 is assumed representative 573 

for the year 2013 as well. Accordingly, in case of the ME site simulated LAI with 1y-MAPs 574 

was closer to the in-situ measurements than for the CLM default parameter setup.  575 

To evaluate the robustness of the parameter estimates in space, the parameters estimated for 576 

the sites RO, WUE, ME and FR-Fon were used in evaluation runs for the FLUXNET sites 577 

DE-Gri, DE-Tha, DE-Kli and DE-Hai with corresponding PFTs, as detailed before. The mean 578 

diurnal NEE cycles for the four seasons are shown in  579 

Fig. 8 (DE-Gri), Fig. 9 (DE-Tha), Fig. 10 (DE-Kli) and Fig. 11 (DE-Hai). Tab. 5 summarizes 580 

the respective MADdiur indices. Both 1y- and s-MAPs estimates improved the representation 581 

of the diurnal NEE cycles for all evaluation sites except DE-Gri, where an improvement was 582 

only obtained with the s-MAPs. For the sites DE-Tha, DE-Kli and DE-Hai, MADdiur was 583 

reduced between 11% (DE-Kli) and 37% (DE-Hai) for 1y-MAPs and between 9% (DE-Gri) 584 

and 59% (DE-Kli) for s-MAPs. The mean daytime NEE for DE-Gri was closer to the 585 

observations in winter and summer with s-MAPs, but was overestimated in autumn. In 586 

correspondence to the parameter estimation sites, the diurnal NEE cycle of the FLUXNET 587 

sites DE-Tha, DE-Kli and DE-Hai improved most for the winter and autumn season. In 588 

correspondence to WUE, the uncertainty of the mean diurnal NEE cycle in winter and spring 589 

with s-MAPs was high for DE-Tha. DE-Kli showed a very similar pattern of the diurnal NEE 590 

course as ME except for spring. In spring, s-MAPs considerably improved the diurnal NEE 591 

cycle for DE-Kli, which was not the case for ME. Accordingly, the higher reduction of 592 

MADdiur for DE-Kli can mainly be ascribed to an improved consistence of modeled and 593 

measured NEE in spring. Also for DE-Hai the representation of the diurnal NEE cycle 594 

improved more than for the parameter estimation site FR-Fon itself. In contrast to the 595 

evaluation sites, the diurnal NEE cycle for FR-Fon was better represented by 1y-MAPs than 596 

s-MAPs. For the other broadleaf deciduous forest site DE-Hai, MADdiur values were nearly 597 

identical for the 1y- and s-MAPs.  598 
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Tab. 6 summarizes the evaluation indices MADann for the mean annual NEE cycle. The 599 

improvement in the representation of the annual NEE cycle with updated parameters was also 600 

substantial, but slightly smaller than the improvement of the mean diurnal NEE cycle. For all 601 

sites except DE-Gri, the representation of the annual NEE course (MADann) improved by 9% 602 

(DE-Kli) to 40% (WUE) using s-MAPs. With 1y-MAPs MADann was 4% (DE-Kli) to 37% 603 

(WUE) lower compared to the reference run with default parameters, except for RO and DE-604 

Gri. As shown in Tab. 6, the improvement in the representation of the annual NEE cycle with 605 

updated parameters (both 1y- and s-MAPs) was highest for the forest sites (WUE, DE-Tha, 606 

FR-Fon and DE-Hai). For those sites, parameter estimates reduced MADann by a factor 1.2 – 607 

1.7 compared to the reference run. The better reproduction of the annual NEE cycle for the 608 

forest sites compared to the C3-grass and C3-crop sites is also elucidated in Fig. 12(a-d) 609 

showing that particularly in late spring and early summer monthly mean NEE simulated by 610 

CLM4.5 differs considerably from the observed data for the C3-grass and C3-crop sites.  611 

In addition to the diurnal and the annual NEE cycle, parameter estimates were evaluated by 612 

the RMSEm [μmol m-2 s-1] of all half-hourly NEE data in the evaluation year (Tab. 7). For all 613 

sites except ME, RO and DE-Gri, both 1y-MAPs and s-MAPs improved RMSEm compared to 614 

the reference run, while for ME, RO and DE-Gri only s-MAPs improved RMSEm. RMSEm 615 

was reduced most (by a factor of ~1.2) for the sites RO, DE-Hai and DE-Kli with s-MAPs. A 616 

further comparison measure was the mean relative difference RDsum [%] of the annual NEE 617 

sum (observed versus modeled). As shown in Tab. 7, RDsum for the reference runs with 618 

default parameters was generally very high (66.2% – 242%).  The representation of the annual 619 

NEE sum improved considerably with the updated parameters as indicated by a reduction of 620 

RDsum by ~30-80% for all forest sites with MAPs. For all forest sites, as well as for RO and 621 

DE-Kli the reduction of RDsum was higher with s-MAPs than with 1y-MAPs.  622 

4.4. Joint parameter and initial state estimation 623 

Tab. 4 shows the MAP estimates for the joint parameter and initial state estimation, including 624 

the four initial state multiplication factors. Overall, the MAP values changed notably for the 625 

majority of the estimated CLM parameters if initial states were estimated in addition to the 626 

parameters. We compare now the MAP values with the default parameter values and focus on 627 

the sign of the change (i.e., increase or decrease), and analyze this for the case with parameter 628 

estimation alone, and for the case with joint parameter and initial state estimation. Ideally, 629 

parameters estimated for the scenario of parameter estimation alone and parameters estimated 630 

for the scenario of joint parameter-initial state estimation show a change in the same direction 631 
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(i.e., both increase or both decrease). However, for ME only two out of eight parameters have 632 

the same sign of change, and also for FR-Fon it is only for five out of eight parameters. This 633 

highlights that parameter estimation is strongly affected by the initial states and points to the 634 

strong interdependencies between parameters and initial states. Only for WUE the 1y-MAPs 635 

are less affected by the inclusion of initial state estimation and in seven out of eight cases 636 

parameter change is in the same direction. Some parameters seem to be more stable and 637 

change for most sites or even all four sites (mb) in the same direction for the estimation with 638 

and without initial states.   639 

The absolute MAP values for the four initial state factors also differed depending on the site 640 

and the parameter estimation period. This hampers the formulation of clear statements 641 

regarding those estimates. A main noticeable result in terms of the initial state estimates (Tab. 642 

4) is that for all sites (except WUE) the 1y multiplication factor fdN (N content in the dead 643 

C/N pools [gN m-2]) was considerably higher than the factor fdC [gC m-2]. The increase of the 644 

factor fdN relative to fdC indicates that the C/N ratio for dead plant material decreased for all 645 

sites. The decrease of the C/N ratio was highest for the C3-crop site ME and lowest for the 646 

coniferous forest site WUE. Generally plant material with lower C/N ratios is easier 647 

decomposable. Therefore, decomposition rates would increase and the C/N cycling would be 648 

accelerated. However, as parameters including Q10, which determines the decomposition rates, 649 

also changed along with the initial state factors, this effect could be compensated by the 650 

change of the estimated parameters. 651 

As shown in Fig. 3 by the two-dimensional correlation plots of the 1y posterior samples 652 

determined for the RO site, most of the eight CLM4.5 parameters correlate with at least one of 653 

the initial state factors. This was also true for the other sites and time periods (not shown 654 

here). As expected, the four groups of initial states (living carbon pools, living nitrogen pools, 655 

dead carbon pools, dead nitrogen pools) also correlate with each other. A comparison of the 656 

correlation plots in Fig. 3 with the respective correlation plots for other sites and time periods 657 

(not shown here) revealed that correlations patterns varied between the sites and parameter 658 

estimation periods. For instance, flNR and slatop showed a strong linear correlation for RO, but 659 

a weaker correlation for the forest sites. The correlation of flNR and slatop was also weaker if 660 

only parameters (without initial states) were estimated for RO. Another example is the 661 

correlation between mb and flNR, which was weaker when initial state estimation was 662 

included, compared to the case without initial state estimation.  663 
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5. Discussion 664 

5.1. Seasonal and site-specific variations of parameter estimates  665 

As shown in Tab. 4, for all sites MAP estimates of the eight CLM4.5 parameters varied 666 

strongly among the four different seasons. These results potentially support the findings of 667 

previous studies showing that some ecological key parameters such as Vcmax25, br and Q10 vary 668 

in time [Flanagan and Johnson, 2005; Kätterer et al., 1998; Mo et al., 2008; Reichstein et al., 669 

2005]. In most of those studies the temporal variations of parameters are related to different 670 

environmental conditions such as mean annual temperature or soil moisture at the sites. Our 671 

results support those findings suggesting that taking into account seasonal variations of the 672 

estimated ecological model parameters can improve the representation of simulated NEE in 673 

CLM. We consider spatial-temporal variations of those model parameters plausible, since 674 

parameters such as Q10 and mb are not purely physical. Instead, they were developed based on 675 

empirical data obtained under specific conditions, like a temperature range of 20°C to 35°C in 676 

case of mb [Ball et al., 1987], using e.g. (multi)linear regression analysis. Therefore, they 677 

underlay simplified concepts to represent plant physiology. 678 

We found that in case of CLM4.5BGC, the seasonal variations of the estimated parameters are 679 

strongly related to a dependency of those parameters on the initial carbon and nitrogen pools, 680 

which are generated during the model spin-up, as well as LAI. As shown in Tab. 4, parameter 681 

estimates were very different depending on whether or not they were estimated jointly with 682 

the four initial state multiplication factors that were applied to the CLM carbon-nitrogen 683 

pools. The DREAM(zs) two-dimensional correlation plots (Fig. 3) indicated that some of the 684 

estimated CLM parameters are correlated to the initial state factors. This suggests that most of 685 

the eight estimated parameters are dependent on the amount of initial carbon and nitrogen [gC 686 

m-2, gN m-2] in the different living and dead plant material. For example, Q10, flNR and slatop 687 

were shown to correlate strongly with the flC factor for the living carbon pools (and LAI). 688 

The parameters flNR and slatop determine Vcmax25 (Eq. 1). In CLM Vcmax25 is directly related to 689 

the LAI based scaling of GPP (upscaling from leaf to PFT or grid cell), which explains the 690 

correlation of flNR, slatop and flC. A close link of LAI and Vcmax25 was also shown by Keenan 691 

et al. [2012], using the model “FöBAAR” in an ANN based model-data fusion approach.  692 

The strong dependency of the estimated parameters on the initial carbon- and nitrogen pools 693 

highlights the importance of parameter estimation if CLM is applied to another site or region 694 

than it was calibrated for. It also highlights how critical the model spin-up is for the prediction 695 

of carbon fluxes. This is linked to the results by Carvalhais et al. [2008] showing that CASA 696 
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model parameters such as radiation-use efficiency are strongly affected by model initial states 697 

and that relaxing the carbon cycle steady state assumption can improve parameter inversion 698 

and model performance. In general, the steady state assumption is very critical, particularly 699 

for grassland or crop sites such as RO and ME that have been managed extensively for many 700 

centuries. The C/N ratio in case of the RO and ME site strongly decreased compared to the 701 

original initial states. This may be related to the fact that fertilizers are applied at the sites. As 702 

fertilization is not explicitly considered in CLM4.5 for those PFTs, estimated initial states 703 

(and parameters) may compensate this effect. The strong dependency of the estimated 704 

CLM4.5 parameters on the initial carbon-nitrogen pools elucidates the difficulty to define 705 

parameters that are robust in time and in space. In case of the coniferous forest site WUE, the 706 

difference of parameters with and without initial state estimation was considerably lower 707 

compared to the other sites (Tab. 4). Moreover, the estimated initial states showed smaller 708 

changes, and the change of the C/N ratio in the dead vegetation pools (compared to the default 709 

setup) was considerably lower for this site compared to the other sites. This suggests that 1y 710 

parameter estimates are most stable for WUE and that also the spun up initial model states are 711 

more reliable than for other sites. This may be related to the fact that the spruces at the WUE 712 

site were planted in the 1940s and since then the site, which is now part of Eifel National 713 

Park, has not been managed such that the steady state assumption may be closer to the true 714 

conditions than for the other sites. The differences among the estimated seasonal parameters 715 

are lower for WUE than for other sites, which is plausible as spruces are evergreen needleleaf 716 

trees and are less affected by seasonality.  717 

Overall our results indicated that for all sites except WUE the parameter variations (1y-718 

MAPs) were greater from season to season than between the different sites. MAP estimates 719 

for all parameters were also shown to vary strongly between the different sites or plant 720 

functional types. This can be expected for the PFT-specific parameters. However, this finding 721 

is unfavorable in case of the three parameters br, Q10 and mb, which are hard-coded in 722 

CLM4.5 and by default non-PFT-specific.  723 

The finding that MAP estimates were often very close to the predefined minimum or 724 

maximum bounds of the parameter values (“edge-hitting parameters”) is in correspondence 725 

with results by Braswell et al. [2005] who estimated SIPNET parameters with a MCMC 726 

method based on NEE data of the Harvard forest site. Santaren et al. [2007] found that only a 727 

few ORCHIDEE-parameters for a pine forest site could be robustly inferred from the EC flux 728 

data with a gradient based model-data fusion approach. They state that other, “edge-hitting” 729 

parameters are useful to highlight model structural deficits. They also show that parameters 730 
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that control photosynthesis and the surface energy budget can be better constrained with EC 731 

data than parameters like Q10 that primarily control the respiration component of NEE. Our 732 

results are in correspondence with those findings. It was shown that, for most sites (except 733 

WUE) Q10 had the tendency to be estimated towards the lower boundary (1.1) in summer or 734 

spring and towards the upper boundary (3.0) in winter. Therefore, most probably estimated 735 

parameter values do not mimic “real” parameters, but compensate model structural deficits 736 

and/or errors in the representation of the initial states. Nevertheless, as indicated before, it can 737 

be realistic that PFT parameters vary in space and time as function of different environmental 738 

conditions. Accordingly, it seems plausible that seasonal differences of the MAP estimates 739 

were lowest for WUE, the evergreen coniferous forest site, where seasonal differences of 740 

plant properties are expected to be lower compared to the other PFTs studied here.  741 

5.2. CLM performance with estimated parameters 742 

The errors in the model representation of the C3-crop and C3-grass phenology, which were 743 

indicated by the reference runs (Sect. 4.1) and which were not solved by parameter estimation 744 

(Sect. 4.3), can be explained by missing key processes in the CLM stress deciduous 745 

phenology scheme [Dahlin et al., 2015]. This scheme is based on various arbitrary thresholds 746 

such as the “water stress days for offset trigger” or the “critical number of freezing degree 747 

days to trigger onset”. As indicated in the introduction, the deficit of various LSMs in 748 

representing plant phenology and inter-annual variations in carbon cycling is well known 749 

[Braswell et al., 2005; Keenan et al., 2012; Richardson et al., 2012; Melaas et al., 2013] and 750 

can significantly alter the simulated annual net productivity [Hollinger et al., 2004; 751 

Richardson et al., 2010, 2009]. However, most of those studies refer to deciduous forest sites. 752 

Our results indicate that errors in the representation of the plant phenology in CLM4.5 were 753 

more severe for C3-grasses and C3-crops than for the forest-PFTs. This is related to the 754 

finding that by tendency parameter estimation was more successful for the forest sites 755 

compared to C3-crop and C3-grass, which corresponds with findings by Kuppel et al. [2014] 756 

who applied ORCHIDEE and a gradient based data assimilation approach. On the other hand, 757 

the grassland and winter wheat sites RO and ME are subject to management (fertilization, 758 

harvest, etc.). Crop management has already been implemented in CLM4.5 (in this case the 759 

crop module substitutes the stress deciduous phenology scheme), but not for the PFT “winter 760 

temperate cereal”. This is a main reason why in this study the generic C3-crop type was 761 

defined (which does not consider management). Another reason was that if the crop module 762 

had been applied, a new sensitivity study would have been required and most probably a 763 
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different set of key parameters would have to be estimated, such that parameter estimates 764 

would not have been comparable to the other PFTs.  765 

Overall, the evaluation results indicated that the MAP estimates determined for the four 766 

different PFTs strongly improved CLM4.5 NEE predictions when applied to another year 767 

(evaluation in time) or other sites (evaluation in space).  Seasonal MAP estimates provided 768 

NEE outputs in best correspondence with the measured data. This finding agrees with results 769 

from previous studies (e.g. Mo et al., 2008). They showed that considering seasonal variations 770 

of parameters such as mb and Vcmax25 during model-data fusion and modeling instead of 771 

assuming static parameters can enhance the final results. 772 

The different evaluation indices did not always agree, which elucidates the importance of 773 

using multiple performance indices to evaluate simulation results. In particular, the commonly 774 

used RMSE (here RMSEm) does not contain enough information on the reproduction of the 775 

timing and the magnitude of the diurnal and annual NEE cycles in the model. Therefore, we 776 

consider indices such as MADdiur or MADann as more meaningful criteria in terms of 777 

evaluation of simulated NEE. In case of the RO site for example, MADdiur, MADann and 778 

RDsum were lower with s-MAPs than with 1y-MAPs. In contrast, the mean RMSEm was 779 

slightly lower with 1y-MAPs compared to the s-MAPs. Similarly, for WUE most evaluation 780 

indices were clearly lower with s-MAPs than with 1y-MAPs (MADdiur, MADann, and RDsum) 781 

while RMSEm was slightly lower with 1y-MAPs. For the ME site, RMSEm was lower with s-782 

MAPs than with 1y-MAPs, but RDsum was higher. RDsum indicates how reliable CLM 783 

estimates of the annual NEE sums with parameter estimates were compared to the CLM 784 

default setup. The reduction of RDsum suggested that especially s-MAPs increased the 785 

reliability of the simulated NEE sums. With respect to the temporal evaluation at the sites RO, 786 

WUE and FR-Fon, all evaluation indices indicated a strong improvement of simulated NEE 787 

with updated parameters (s-MAPs). In contrast, the improvement was very minor for the ME 788 

site. Likely, this is related to the missing key process of senescence in July, which is related to 789 

an abrupt shift from NEE underestimation to NEE overestimation. Accordingly the estimated 790 

parameters, in particular in case of the parameter estimation for the yearly period, are forced 791 

in different directions.  792 

The evaluation of MAP estimates in space confirmed that the estimated PFT-specific 793 

parameters also improved the simulation of NEE at FLUXNET sites located about 600 km 794 

away from the parameter estimation sites. For DE-Kli and DE-Hai NEE improved even more 795 

than for the parameter estimation sites (ME, FR-Fon) themselves. Results for DE-Gri were 796 

less favorable and some of the evaluation criteria like RDsum indicated that the parameters 797 
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estimated for the RO site did not result in an improved performance for DE-Gri. This result 798 

might be related to the site-specific conditions at the RO site. The extensive grassland 799 

management including grass cutting and organic fertilization may not be representative for 800 

DE-Gri. A closer analysis of observed NEE time series for DE-Gri (not shown here) also 801 

revealed abrupt changes of the NEE course similar to ME in mid-July, which was related to 802 

the senescence of the winter wheat. These patterns were not observed at the RO site. 803 

Accordingly, it is assumed that the DE-Gri site is managed differently compared to RO and/or 804 

different grass species are grown there. It confirms results from previous studies that 805 

parameters estimated for a single EC site cannot generally be transferred to other sites of the 806 

same group of PFTs, as the estimated parameters are sometimes overly tuned to site-specific 807 

conditions [Kuppel et al., 2012]. Different studies already outlined an intra-PFT variability of 808 

parameters, which can hinder parameter transferability to other sites [Groenendijk et al., 2011; 809 

Kuppel et al., 2012; Xiao et al., 2011]. Flanagan and Johnson [2005] showed that Q10 takes 810 

values of ~2 ± 0.8 for northern temperate grassland sites, which is mainly related to different 811 

site conditions like soil moisture content. Kätterer et al. [1998] summarized in a review Q10 812 

values of ~2 ± 0.5 for different agricultural sites. Kuppel et al. [2012] found in their data 813 

assimilation study with ORCHIDEE that results of a multi-site optimization were often 814 

comparable to results of a single site optimization. Our results showed that except for C3-815 

grass MAPs estimated for the different PFTs considerably improved the NEE estimates for 816 

the other locations. This does not imply that MAP estimates are valid for all sites with the 817 

same PFT, but indicates that some degree of transferability is given despite different 818 

environmental conditions and presumably also different PFT-characteristics at those sites. 819 

Accordingly we assume that the transferability of LSM parameters strongly depends on the 820 

representativeness of one particular site, e.g. in terms of site management or plant species. 821 

Generalized statements in this respect are difficult.  822 

6. Conclusions 823 

Eight carbon-flux relevant parameters of the Community Land Model (CLM) version 4.5 824 

were estimated with the Markov Chain Monte Carlo method DREAM(zs) (DiffeRential 825 

Evolution Adaptive Metropolis) for four European eddy covariance sites with different plant 826 

functional types (PFTs): C3-grass, C3-crop, evergreen coniferous forest and broadleaf 827 

deciduous forest. Maximum a posteriori (MAP) parameter sets were estimated from observed 828 

time series of half-hourly Net Ecosystem Exchange (NEE). Parameters were determined 829 

separately for a whole year (1y) period and for the single seasons (s) of that year. In addition, 830 
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joint parameter and initial state estimation was carried out for the whole year period with four 831 

initial state multiplication factors estimated jointly with the eight parameters. These factors 832 

were applied to four groups of initial CLM carbon-nitrogen pools.  833 

Joint parameter and initial state estimation revealed a close link of the eight parameters and 834 

the initial carbon-nitrogen pools. The correlations between parameters and initial states varied 835 

between the different sites and the different time periods. This elucidates a high level of 836 

model complexity and the challenge to define CLM parameters that are valid for different sets 837 

of initial model states. The dependency of parameter estimates on the carbon-nitrogen pools 838 

was lower for the forest sites compared to C3-grass and C3-crop.  839 

Accordingly, model evaluation indicated that parameters estimated for the forest sites were 840 

more robust in time and in space compared to the C3-grass and the C3-crop sites. Overall, 841 

consistency of modeled and measured NEE was poorer for the C3-grass and C3-crop sites 842 

than for the forest sites. We assume that missing key processes and a too simple stress-843 

deciduous phenology scheme of CLM4.5BGC are the main reasons why parameter estimation 844 

was less successful for the C3-crop and C3-grass sites compared to the forest sites. Moreover, 845 

different C3-species, as well as different site management (e.g., harvesting, fertilization), can 846 

result in considerable differences in observed NEE within one group of those PFTs. For 847 

example, the senescence of winter wheat, which was observed at the Merzenhausen (ME) site 848 

in mid-July, is not included for C3-crops in CLM. It also indicates that results of model-data 849 

fusion studies with land surface models should be critically analyzed if model performance for 850 

default parameters is too defective.  851 

The evaluation in space suggested that the CLM parameter estimates for all sites were directly 852 

transferable to other sites, with the exception of Rollesbroich (RO: C3-grass). However, as the 853 

evaluation in space was conducted based on one evaluation site for each PFT only, more 854 

experiments would be necessary to verify this result. Overall, results showed that the 855 

representation of the mean diurnal NEE cycle was considerably improved both with 1y- and 856 

with seasonal parameter estimates, compared to the reference run with default parameters. 857 

However, the different evaluation indices were not consistent for all sites. Particularly the 858 

RMSE for the one-year time series of half-hourly NEE data (RMSEm) as well as the relative 859 

difference of the annual NEE sum (RDsum) often disagreed with each other. We consider that 860 

goodness-of-fit indices such as the RMSE by itself are not sufficient to evaluate the 861 

representation of modeled NEE. The model reproduction of the diurnal and annual NEE 862 

cycles deserves a critical evaluation as well. The latter is particularly crucial because the 863 

deficiency of land surface models in terms of an adequate representation of plant phenology is 864 
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well known [Braswell et al., 2005; Keenan et al., 2012; Richardson et al., 2012; Melaas et al., 865 

2013] and needs to be improved in the future to allow for better NEE predictions and 866 

successful parameter estimation. 867 

Results also showed that seasonal parameter estimates outperformed the ones estimated for 868 

the whole year period. This suggests that considering temporal variability of parameters in 869 

CLM can improve the representation of the carbon cycle in CLM. This result is related to the 870 

link between CLM parameters and states, particularly for short-lived crops and grasses. 871 

Despite this strong dependency of the estimated parameters on model states, the simulated 872 

NEE for C3-grass and C3-crop was considerably improved with estimated parameters as 873 

indicated by the evaluation in time (C3-grass) and in space (C3-crops). Although this might 874 

indicate a true improvement, it might also point to the fact that model structural errors have a 875 

persistent influence over time and that the other European sites are affected by similar errors 876 

in model structure and initial conditions as the parameter estimation sites. Although different 877 

weather input data were used during the spin-up of the model for the different sites, initial 878 

states were similar for the parameter estimation and the evaluation sites, as CLM was spun up 879 

in exactly the same way. Given the close link of the estimated parameters and the initial 880 

states, the consideration of the uncertainty of initial states is an important prerequisite for a 881 

successful transfer of CLM4.5 parameter estimates.  882 
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Tables 1185 

Tab. 1: Parameters estimated with DREAM(zs) including lower bounds (Min) and upper bounds (Max) 1186 
defined for the DREAM prior estimate and used as input to Latin Hypercube Sampling (LHS). 1187 
Short 
name  Long name [unit] CLM 4.5 default values (Min/Max)    

PFT-parameters C3-grass C3-crop Coniferous forest Deciduous forest 

flNR  
Fraction of leaf N 
in Rubisco enzyme   0.1365 (0.05/0.25) 0.1758 (0.05/0.25) 0.0509 (0.02/0.15) 0.1007 (0.05/0.25) 

Grperc Growth respiration 
factor 0.3 (0.1/0.4) 0.3 (0.1/0.4) 0.3 (0.1/0.4) 0.3 (0.1/0.4) 

rootb  
CLM rooting 
distribution 
parameter  [1/m] 

2.0 (0.5/4.0) 3.0 (0.5/4.0) 2.0 (0.5/4.0) 2.0 (0.5/4.0) 

slatop 
Specific Leaf Area 
(SLA) at top of 
canopy [m2/gC] 

0.03 (0.01/0.08) 0.03 (0.01/0.08) 0.01 (0.005/0.08) 0.03 (0.01/0.08) 

smpsc 
Soil water potential 
at full stomatal 
closure [mm] 

-2.75*105 
(-4.5*105/-1.5*105) 

-2.75*105 
(-4.5*105/-1.5*105) 

-2.55*105 
(-4.0*105/-1.5*105) 

-2.55*105 
(-4.0*105/-1.5*105) 

hard-wired parameters (not PFT-specific) 

Q10 
temperature 
coefficient  1.5 (1.1/3.0)    

Br 
base rate for 
maintenance 
respiration  

2.53*10-6 (1.5*10-6/4.5*10-6)   

mb 

Ball-Berry slope of 
conductance-
photosynthesis 
relationship 

9 (5.0/12.0)    
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Tab. 2: CLM4.5 initial states estimated with DREAM(zs). 1188 
Living C/N Pools and LAI   

LAI one-sided leaf area index m2 leaf area / m2 

leafc /  leafn leaf carbon / nitrogen content  [gC m-2] / [gN m-2] 

leafcstorage / leafnstorage leaf carbon / nitrogen storage  [gC m-2] / [gN m-2] 

frootc / frootn fine root carbon / nitrogen content  [gC m-2] / [gN m-2] 

frootcstorage/ frootnstorage fine root carbon / nitrogen storage  [gC m-2] / [gN m-2] 

livecrootc /  livecrootn living coarse root carbon / nitrogen content   [gC m-2] / [gN m-2] 

livecrootcstorage/ livenrootcstorage living coarse root carbon / nitrogen storage  [gC m-2] / [gN m-2] 

livesteamc  / livesteamn live stem carbon / nitrogen content    [gC m-2] / [gN m-2] 

livesteamcstorage/ livesteamnstorage live stem carbon / nitrogen storage  [gC m-2] / [gN m-2] 

Dead C/N Pools     

lit1C / lit1N litter carbon / nitrogen  - fraction 1  [gC m-2] / [gN m-2] 

lit2C / lit2N litter carbon / nitrogen  - fraction 2  [gC m-2] / [gN m-2] 

lit3C / lit3N litter carbon / nitrogen  - fraction 3  [gC m-2] / [gN m-2] 

soil1C / soil1N soil carbon / nitrogen  - fraction 1  [gC m-2] / [gN m-2] 

soil2C / soil2N soil carbon / nitrogen  - fraction 2  [gC m-2] / [gN m-2] 

soil3C / soil3N soil carbon / nitrogen  - fraction 3  [gC m-2] / [gN m-2] 

  1189 
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 1190 
Tab. 3: DREAM(zs)-CLM parameter estimation periods. 1191 
shortname Season time period Sites 
FR-Fon_w Winter 1 Dec. 2006 – 28 Feb. 2007 FR-Fon 
FR-Fon_sp Spring 1 Mar. 2007 – 31 May 2007 FR-Fon 
FR-Fon_su Summer 1 Jun. 2007 – 31 Aug. 2007 FR-Fon 
FR-Fon_au Autumn 1 Sep. 2007 – 30 Nov. 2007 FR-Fon 
WUE_su Summer 1 Jun. 2011 – 31 Aug .2011  WUE 
WUE_au Autumn 1 Sep. 2011 – 30 Nov. 2011 WUE 
site_w Winter 1 Dec. 2011 – 29 Feb. 2012 WUE,RO,ME 
site_sp Spring 1 Mar. 2012 – 31 May 2012 WUE,RO,ME 
site_su Summer 1 Jun. 2012 – 31 Aug. 2012 RO,ME 
site_au Autumn 1 Sep. 2012 – 30 Nov. 2012 RO,ME 
WUE_1y whole year  1 Jun. 2011 – 31 May 2012 WUE 
site_1y whole year 1 Dec. 2011 – 30 Nov. 2012 RO,ME 
FR-Fon_1y whole year 1 Dec. 2006 – 30 Nov. 2007 FR-Fon 

 1192 
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Tab. 4: MAP estimates for eight CLM parameters and four initial state multiplication factors, determined 1193 
with DREAM(zs) for different time periods and the four sites (ME, RO, WUE, FR-Fon) with different plant 1194 
functional types. 1195 

Case year flNR slatop grperc rootb smpsc Q10 br mb flC flN fdC fdN

c3-crop 0.18 0.030 0.30 3.00 -2.75*105 1.50 2.53*10-6 9.00 
   

ME_w 11/'12 0.12 0.100 0.40 3.70 -4.34*105 3.00 1.50*10-6 5.17 
   

ME_sp 2012 0.08 0.010 0.10 0.52 -2.89*105 1.10 4.48*10-6 9.68 
   

ME_su 2012 0.05 0.010 0.31 0.57 -2.41*105 2.95 4.23*10-6 7.41 
   

ME_au 2012 0.08 0.095 0.10 4.00 -1.51*105 2.98 1.65*10-6 9.24 
   

ME_1y* 11/'12 0.11 0.015 0.11 3.87 -1.53*105 2.00 3.29*10-6 12.00 
   

ME_1y* 11/'12 0.35 0.064 0.39 3.88 -3.89*105 1.10 1.51*10-6 12.00 1.3 2.1 0.3 3.0 

c3-grass 0.14 0.030 0.30 2.00 -2.75*105 1.50 2.53*10-6 9.00 
   

RO_w 11/' 12 0.14 0.010 0.36 3.62 -2.72*105 2.39 4.47*10-6 6.11 
   

RO_sp 2012 0.25 0.041 0.40 1.01 -2.24*105 1.14 4.50*10-6 9.42 
   

RO_su 2012 0.13 0.010 0.39 0.51 -2.35*105 1.10 4.50*10-6 6.07 
   

RO_au 2012 0.16 0.011 0.40 2.01 -2.77*105 1.75 4.47*10-6 5.86 
   

RO_1y 11/'12 0.24 0.052 0.40 1.02 -3.95*105 1.14 4.50*10-6 5.95 
   

RO_1y* 11/'12 0.27 0.052 0.40 3.81 -3.27*105 2.84 4.46*10-6 5.97 1.6 2.9 1.4 3.0 

conifer forest 0.05 0.010 0.30 2.00 -2.55*105 1.50 2.53*10-6 9.00 
   

WUE_w 11/'12 0.14 0.011 0.37 3.79 -3.81*105 2.89 2.00*10-6 10.46 
   

WUE_sp 2012 0.06 0.005 0.39 3.69 -3.51*105 2.99 3.45*10-6 5.02 
   

WUE_su 2012 0.05 0.005 0.39 3.58 -3.05*105 2.68 3.32*10-6 6.58 
   

WUE_au 2012 0.11 0.005 0.40 3.97 -3.09*105 3.00 2.71*10-6 5.30 
   

WUE_1y 11/'12 0.06 0.005 0.40 3.88 -3.91*105 2.96 3.42*10-6 5.19 
   

WUE_1y 11/'12 0.05 0.005 0.40 2.25 -3.72*105 2.95 2.04*10-6 6.05 1.4 1.0 1.0 1.6 

deciduous forest 0.05 0.010 0.30 2.00 -2.55*105 1.50 2.53*10-6 9.00 
   

FR-Fon_w 06/'07 0.09 0.064 0.18 3.00 -2.55*105 2.68 3.34*10-6 10.95 

FR-Fon_sp 2007 0.08 0.010 0.10 3.56 -3.44*105 1.27 3.12*10-6 6.50 
   

FR-Fon_su 2007 0.19 0.020 0.40 1.01 -3.11*105 1.10 3.48*10-6 8.16 
   

FR-Fon_au 2007 0.17 0.021 0.40 1.02 -2.96*105 2.99 1.53*10-6 11.26 
   

FR-Fon_1y 06/'07 0.12 0.010 0.40 1.04 -2.60*105 1.93 3.49*10-6 5.81 
   

FR-Fon_1y* 06/'07 0.25 0.020 0.10 3.83 -3.57*105 2.29 1.93*10-6 6.20 0.4 2.8 0.7 2.2 

w: winter (Dec.-Feb.); sp: spring (Mar.-May); su: summer (Jun.-Aug.); a: autumn (Sep.-Nov.); 1y: one year of half hourly 1196 
NEE time series. *no complete convergence of all pars after 20000 iterations. grey: CLM default parameters 1197 
 1198 
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Tab. 5: Mean absolute difference MADdiur [μmol m-2 s-1] for eight evaluation sites, averaged over all four 1199 
seasons of the evaluation year. 1200 

val. years MADdiur_1y MADdiur_s MADdiur_ref

RO  '12/'13 2.19 0.86 1.91 

WUE 12/'13 1.80 1.71 2.34 

ME 12/'13 2.02 1.74 2.15 

FR-Fon 07/'08 1.53 1.69 2.31 

DE-Gri 11/'12 1.80 1.52 1.67 

DE-Tha 11/'12 1.90 1.86 2.21 

DE-Kli 11/'12 1.87 0.86 2.08 

DE-Hai  '06/'07 1.13 1.13 1.80 

1y: CLM-evaluation runs for annual (1y)-MAPs; s: CLM-evaluation runs with seasonal (s)-MAPs; ref: calculated NEE with 1201 
default parameters (reference)  1202 
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Tab. 6: Mean absolute NEE difference MADann [μmol m-2 s-1] for eight evaluation sites and the evaluation 1203 
year.  1204 

val. years MADann_1y MADann_s MADann_ref

RO  '12/'13 2.19 0.91 1.31 

WUE 12/'13 1.37 1.20 2.34 

ME 12/'13 2.20 1.98 2.36 

FR-Fon 07/'08 1.32 1.19 1.71 

DE-Gri 11/'12 1.54 1.40 1.17 

DE-Tha   11/'12 1.46 1.46 2.05 

DE-Kli 11/'12 1.53 1.44 1.59 

DE-Hai  '06/'07 1.19 1.22 1.64 

1y: CLM-evaluation runs for annual (1y)-MAPs; s: CLM-evaluation runs for seasonal (s)-MAPs; ref: calculated NEE with 1205 
default parameters (reference). 1206 

1207 
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Tab. 7: RMSEm and RDsum [%]for the evaluation year and on the basis of half hourly NEE data. Results 1208 
are given for the evaluation sites RO, WUE, ME and FR-Fon (left), and DE-Gri, DE-Tha, DE-Gri and DE-1209 
Hai (right) 1210 

RMSEm RDsum RDsum low RDsum up RMSEm RDsum RDsum low RDsum up 

RO, DE-Gri 1y-MAPs 5.9 68.1 66.2 70.0 5.0 200.8 195.8 209.1 

s-MAPs 4.7 38.5 26.1 43.2 4.4 135.8 99.5 165.0 

  ref. 5.8 68.3 - - 4.7 104.7 - - 

WUE, DE-Tha 1y-MAPs 6.0 50.6 44.4 58.0 4.7 58.6 46.3 65.5 

s-MAPs 6.1 50.1 40.8 82.1 4.8 50.4 38.8 119.4 

  ref. 6.2 76.5 - - 4.8 89.0 - - 

ME, DE-Kli 1y-MAPs 6.7 62.4 56.3 132.8 4.0 307.5 344.5 136.0 

s-MAPs 5.7 99.8 88.6 104.1 3.7 131.9 8.1 155.1 

  ref. 6.4 66.2 - - 4.2 242.0 - - 

FR-Fon, DE-Hai 1y-MAPs 4.9 65.9 64.2 67.9 3.5 71.1 68.4 74.5 

s-MAPs 5.3 58.4 54.3 62.9 3.5 45.6 38.3 51.8 

ref. 5.4 93.2 - - 4.2 125.3 - - 

 1211 
1y-MAPs, s-MAPs: Maximum a posteriori estimates determined based on the whole year time series (1y) and separately for 1212 
the single seasons (s); ref.: reference run with CLM4.5 default parameters; RDsumlow, RDsumup: upper and lower boundary 1213 
of 95% confidence interval for ∆sum 1214 

  1215 
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Figures 1216 

Fig. 1: Convergence diagnostics (Rstat) of individual parameters estimated with DREAM(zs) for the 1217 
coniferous forest site WUE (left) and the deciduous forest site FR-Fon (right) using half hourly NEE data 1218 
of one year 1219 
  1220 
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