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is calculated from Equation (22) using the doubly-thresholded
clumping factor CttHII defined in Figure 3.13. . . . . . . . . . . 88

xi



Figure 3.13: Thresholded clumping factors used in Fig. 3.12. CtHII , Ctb, Ctdm
are calculated using thresholded H II, baryon, and dark matter
density fields, respectively, where only cells satisfying ∆b < 100
contribute. CttHII is calculated from the H II density where
only cells satisfying ∆b < 100 and fi > 0.1 contribute. . . . . . 89

Figure 3.14: Ionized volume fraction as a function of the number of ionizing
photons emitted per H atom averaged over the entire simulation
volume (excluding gas inside halos) for three different ionization
levels: fi ≥ 0.1 (blue line); fi ≥ 0.999 (green line); fi ≥ 0.99999
(red line). Compare with Fig. 3.10 which includes gas inside
halos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 3.15: Ionizing photon injection rate density in the IGM from the simu-
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used in ṘH II curve in Figure 3.8, CtH II is used in ṘtH II curve in
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plot the contributions of the first and second terms in Eq. (3.30),
while the curve labeled f̄esc plots their sum. . . . . . . . . . . . 103

Figure 3.22: Ratio of the volume integrated photoionization rate in the IGM
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We examine the epoch of hydrogen reionization using a new numerical

method that allows us to self-consistently couple all the relevant physical pro-

cesses (gas dynamics, dark matter dynamics, self-gravity, star formation/feedback,

radiative transfer, ionization, recombination, heating and cooling) and evolve the

system of coupled equations on the same high resolution mesh. We refer to this

approach as direct numerical simulation, in contrast to existing approaches which

decouple and coarse-grain the radiative transfer and ionization balance calcula-

tions relative to the underlying dynamical calculation. Our method is scalable

with respect to the number of radiation sources, size of the mesh, and the number

of computer processors employed, and is described in Chapter 2 of this thesis. This

scalability permits us to simulate cosmological reionization in large cosmological
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volumes (∼ 100 Mpc) while directly modeling the sources and sinks of ionizing ra-

diation, including radiative feedback effects such as photoevaporation of gas from

halos, Jeans smoothing of the IGM, and enhanced recombination due to small scale

clumping.

With our fiducial simulation, we find that roughly 2 ionizing photons per

baryon is needed to highly ionize the intergalactic medium. The complicated events

during reionization that lead to this number can be generally described as inside-

out, but in reality the narrative depends on the level of ionization of the gas one

defines as ionized. We have updated the formula observers often use for estimating

the ionized volume filling fraction formula with a δb and trec,eff to get from O(10%)

to O(1%) consistency with our simulation results. This improvement comes from

not using the traditional clumping factor, but instead, considering the history and

local effects which were neglected in formulating the original expression. And

finally, we have a new upper limit for the escape fraction of ∼ 0.6 from our simula-

tion, which takes into account the photons in the energy density field and photons

used to ionize H I.
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Chapter 1

Introduction

1.1 What is Cosmological Reionization?

Immediately after the Big Bang, the universe was filled with a mix of sub-

atomic particles, and as the universe expanded and cooled, the particles including

electrons eventually formed larger particles such as protons and neutrons. As the

universe cooled further, the protons, neutrons and electrons combined to form neu-

tral hydrogen (H I) and some small fraction of them formed neutral helium (He

I). Due to the presence of electrons in these neutral atoms, the universe remained

opaque to radiation. When the first generation of stars population three (Pop

III) formed, radiation emitted by them was absorbed by the surrounding neutral

atoms, bumping the atoms’ electrons to a higher energy level. When the energy of

a given photon was sufficient, it even ionized the atom it encountered by knocking

the electron free from the nucleus altogether. With some of the electrons freed

from the nucleus of atoms that formed the intergalactic medium (IGM), which

was mostly hydrogen, radiation could then penetrate deeper into the IGM. Having

ionized more of the IGM, the radiation from stars caused bigger and bigger bubbles

of ionized atoms to form. Finally, these bubbles which were virtually transparent

to radiation grew over time, until they overlapped and engulfed the entire universe.

With the universe mostly transparent, radiation emanating from different sources

can then reach us, enabling us to see distant galaxies, quasars, along with other

celestial objects in the sky. Since this was the second time in the history of the

1
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Figure 1.1: History of the universe slide from Carilli (2004). We are focusing

on EoR which occured after the “Dark Ages” and before the universe becomes

transparent due to radiation from star forming galaxies.

universe where the electrons and protons were separated as ions, we call the process

of reaching this second ionized phase of the universe the “Epoch of Reionization”

(EoR).

In Figure 1.1, a brief history of the universe is shown (Carilli, 2004). Before

any stars formed during EoR, there were no sources of light in the universe, so

astronomers termed it the “Dark Ages”. Eventually, the universe was able to form

more stars that then cluster into galaxies. These galaxies increased in number and

emitted enough energetic photons ionize their surroundings, and eventually ionized

the universe, so that present day astronomers can look far into the distant past.
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1.2 Observational Constraints on Cosmological

Reionization

Observers have long sought to understand the evolutionary history of the

universe with deep observations of objects far away. However, photons able to reach

instruments have to penetrate through the intervening IGM between the sources of

the radiation and telescopes. Generally speaking there are two types of indicators

that the observers look for when determining the time scale for EoR. First, the

more often studied one, is Lyman alpha absorption. These are photons that came

from quasar emission and passed through some neutral hydrogen on their way to

our telescopes. The high energy photons of the right wavelength and frequency,

∼ 1216Å in the UV portion of the spectrum or 2.47×1015Hz, when passing through

neutral hydrogen can excite the atom from the quantum ground (n=1) state to

the first excited (n=2) state. This excitation will be seen as an absorption line dip

in the spectrum formed by the photons. Summing over all the absorption lines,

which are each redshifted according to their distance, over a redshift interval ∆z

gives a mean amount of absorption per unit redshift. Transmission is defined as 1

minus the mean absorption. Figure 1.2 is a graph showing the transmission from

quasars at varying redshifts z.

The transmission decreases as z increases. The transmission drops by small

amounts between 2 < z < 5, and dips sharply at z ∼ 6. The sudden dip in

transmission is interpreted as an increase of neutral hydrogen in the IGM at z & 6.

Since only a small ( 10−4 to 10−3) fraction of neutral hydrogen is enough to cause

a transmission gap at the rest frame of Lyman α, these photons are not able to

show us information when the universe is significantly neutral during EoR, only

the z of when EoR approximately ended.

Another observation indicator that constrains the EoR is the Thomson op-

tical depth (τT) from scattering of cosmic microwave background (CMB) photons

off of free electrons. The free electrons came from the EoR when hydrogen was

ionized by UV radiation. This scatting will reduce the anisotropy of the CMB

signal on all scales, and create a polarization signal on large angular scales. The
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Figure 1.2: Plot of normalized quasar lyman alpha transmission, adapted from

Songaila (2004); Fan et al. (2006). Blue: Broad absorption line spectrum, Red:

Normalized by the peak transmission
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latest estimation of the optical depth is τT = 0.088 ± 0.015 from WMAP7 (Ko-

matsu et al., 2011). For an instantaneous reionization model, where the universe

transforms from completely neutral to completely ionized at an instant in time,

this model predicts a zreion = 10.6±1.2. However, since we believe from theory and

simulations that reionization from sources happens with a patchy history, starting

from isolated patches instead of uniformly all at once, this may be seen as the

beginning of EoR, when the universe became significantly ionized.

Besides the transmission of the quasars as a whole, observers also look at the

individual spectrum. Given enough absorption along the line of sight at different z,

this can cause the quasar spectrum to have a transmission gap. Since the photon

wavelength will be redshifted, the latest absorption will be at 1216Å, while the

absorption features that happened before will now be redshifted to slightly longer

than 1216. When many of these dips overlap, they form the transmission gap called

the Gunn-Peterson trough (Gunn & Peterson, 1965). Looking at when the trough

indicates complete absorption also tells us when the neutral hydrogen increases in

density.

The UV luminosity function of high redshift galaxies is another way to put

limits on what the likely conditions were during EoR (Fan et al., 2006; Bolton

& Haehnelt, 2007; Bouwens et al., 2007, 2012; Robertson et al., 2013). They use

the Madau et al. (1999) prescription to predict how many photons are needed to

keep the universe ionized. This lower limit on the number of photons translates

to an estimate of what the UV luminosity function has to be. We use this as a

calibration guide for how representative our simulations are compared to the real

world universe. Considering all the observational evidence, they suggest the EoR

began before z ∼ 11 and completed by z ∼ 6.

1.3 Models of Cosmological Reionization

The basic series of events during EoR is that galaxies form in the peaks of

the dark matter density field and drive expanding ionized hydrogen (H II ) regions

into their surroundings by virtue of the UV radiation emitted from young, massive
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stars. These H II regions are initially isolated, but begin to merge into larger, Mpc-

scale H II regions due to the clustering of the galaxy distribution (expansion phase).

Driven by a steadily increasing global star formation rate and recombination time

(due to cosmic expansion) this process goes on until H II regions completely engulf

the universe (overlap phase). In this picture, rare peaks in the density field ionize

first while regions of lower density ionize later from local sources that themselves

formed later. In this picture, referred to as “inside-out reionization”, void regions

are the last to ionize because they have few local sources of ionization and remain

neutral until an I-front from a denser region has swept over them.

The theoretical and simulation communities have tried hard to develop

models and theories to describe the reionization process while satisfying the obser-

vational constraints. Due to the high computation cost of doing fully self-consistent

3D simulation of the multi-physics phenomena, there have been many efforts to

approximate and simplify the complicated equations involved in describing the

multi-physics phenomenon that is EoR. To date numerical simulations of reion-

ization have fallen into two basic classes (Trac & Gnedin, 2011): smallscale sim-

ulations that resolve the sources and sinks of ionizing radiation; and large-scale

simulations that account for the diversity and clustering of sources. While ideally

one would like to do both in a single simulation, this has not been feasible until

now owing to numerical limitations. Historically, small-scale simulations came first.

These simulations self-consistently modeled galaxy formation, radiative transfer,

and photoionization/recombination within a hydrodynamic cosmological code. Co-

moving volumes were typically (10Mpc)3 with spatial resolution of a few comoving

kpc sufficient to resolve high redshift dwarf galaxies and the baryonic cosmic web

(Gnedin, 2000a; Razoumov et al., 2002; Ricotti et al., 2002; Petkova & Springel,

2011b; Finlator et al., 2012). Large-scale simulations followed, however these were

not self-consistent radiation hydrodynamic cosmological simulations. Rather, den-

sity fields were simulated with a cosmological N-body or hydrodynamics code, and

then ionization was computed in a post-processing step using a standalone radia-

tive transfer code, typically a Monte Carlo or ray-tracing code (Ciardi et al., 2001;

Sokasian et al., 2003; Iliev et al., 2006; Zahn et al., 2007a; Trac & Cen, 2007; Trac
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et al., 2008; Shin et al., 2008; Finlator et al., 2009b). Additionally, a trend towards

more realistic and self consistent treatment of dark matter and baryonic matter

along with radiation transport emerged (Zahn et al., 2007a; Petkova & Springel,

2011a).

1.4 Open Questions

Despite the progress that has been made on understanding the process of

cosmic reionization, there remains a considerable number of open ended questions

that require further observation and theory/simulation results to confirm and an-

swer. Some such questions are, how did the energetic photons ionize the IGM?

What is the role of radiative feedback on suppressing star formation in low mass

galaxies, and on EoR? How reliable are current analytical models that describe

features during EoR? What is the detailed topology of the ionization front during

EoR? What is the escape fraction of ionizing photons coming from inside source

galaxies? What are the mass functions of these galaxies? What are the effects of

X-ray pre-heating and how do different types of stars, and other radiation sources

affect EoR? What is the optical depth of the universe during EoR? There are many

other mysteries about EoR that we do not yet understand, the ones listed here are

just some of the more hotly researched topics. We will not attempt to answer all

the questions at once, and will be focusing on a few specific aspects of EoR here.

1.5 This Thesis

This thesis will address the first few of the open-ended question listed be-

fore: How do the energetic UV photons ionize the neutral intergalactic medium?

What is the role of radiation feedback on suppressing star formation in low mass

galaxies, on EoR? And how reliable are current analytical models that describe

the EoR? We propose to use a similar implementation as (Petkova & Springel,

2011a), by adopting Flux Limited Diffusion (FLD) scheme to approximate radia-

tion transport, with Enzo as the code base (The Enzo Collaboration et al., 2013).
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Instead of assuming that baryons follow dark matter like previous researchers,

we now calculate the radiation hydrodynamics with the FLD module, coupling

the the two forms of matter together. In this way, the interaction between dark

matter, baryons and the presence of radiation are all coupled together during the

calculation consistently, instead of being separate effects. With the FLD approxi-

mation, we do not have to solve the exact expensive radiation transport equation

which is still computationally infeasible. Compared with traditional large box sim-

ulations where radiation transport is post-processed, the FLD approximation will

give us a better handle of absorption due to small scale inhomogeneities and photo-

evaporation dynamics will be calculated self consistently. Also, we are not limited

by the amount of radiating sources that can exist in the simulation, a limitation

for simulations utilizing the ray-tracing method.

With the tools mentioned above, we first describe the numerical methods

and various verification and validation tests in §2. We find that the method gen-

erally yields useful results in a reasonable time. We then delve into the details

involving the results from our fiducial simulation in §3. Here we discuss our jour-

ney and progress in trying to answer how do the UV photons ionize the IGM with

the simulated data. We find that a modified version of Madau et al. (1999) model,

the one often used by observers, is able to match our simulation to the order of

1%, and along the way we realize that an instantaneous treatment of EoR is not

valid because history effects cannot be ignored. In order to arrive at this level

of accuracy the integrated history must be taken into account. In §4, we discuss

the effects of radiation feedback. This is central in quantifying the differences in

having added the radiation transport compared to a hydrodynamics and N-body

simulation. We find that having radiation feedback suppresses the trend of star

formation for halos with dark matter mass below ∼109M�. The thesis ends with

discussion and future work in §5.



Chapter 2

Numerical Methods and Tests

2.1 Introduction

The epoch of reionization (EoR) is a current frontier of cosmological re-

search both observationally and theoretically. Observations constrain the tran-

sition from a largely neutral intergalactic medium (IGM) of primordial gas to a

largely ionized one (singly ionized H and He) to the redshift interval z ∼ 11 − 6,

which is a span of roughly 500 Myr. The completion of H reionization by z ≈ 6

is firmly established through quasar absorption line studies of luminous, high red-

shift quasars which exhibit Ly α Gunn-Peterson absorption troughs (Fan et al.,

2006). The precise onset of H reionization (presumably tied to the formation of

the first luminous ionizing sources) is presently unknown observationally, however

CMB measurements of the Thomson optical depth to the surface of last scatter-

ing by the WMAP and Planck satellites indicates that the IGM was substantially

ionized by z ∼ 11 (Trac & Gnedin 2011; Komatsu et al. 2011; Planck Collabora-

tion 2013) Since the optical depth measurement is redshift integrated and averaged

over the sky, the CMB observations provide no information about how reionization

proceeded or the nature of the radiation sources that caused it.

It is generally believed that reionization begins with the formation of Pop-

ulation III stars at z ∼ 20− 30 (Abel et al., 2002; Yoshida et al., 2003; Bromm &

Larson, 2004; Sokasian et al., 2004), but that soon the ionizing photon budget be-

comes dominated by young, star forming galaxies (see e.g., Wise et al. (2012); Xu

9
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et al. (2013)), and to a lesser extent by the first quasars (Trac & Gnedin, 2011).

Observations of galaxies in the redshift interval 6 ≤ z ≤ 10 using the Hubble

Space Telecope support the galaxy reionizer hypothesis, with the caveat that the

faint end of the luminosity function which contributes substantially to the number

of ionizing photons has not yet been measured (Robertson et al., 2010; Bouwens

et al., 2012).

Given the paucity of observational information about the process of cosmic

reionization, researchers have resorted to theory and numerical simulation to fill in

the blanks. As reviewed by Trac & Gnedin (2011), progress in this area has been

dramatic, driven by a synergistic interplay between semi-analytic approaches and

numerical simulations. The combination of these two approaches have converged

on a qualitative picture of how H reionization proceeds assuming the primary

ionizing sources are young, star-forming galaxies. The physics of the reionization

process is determined by the physics of the source and sinks of ionizing radiation

in an expanding universe. Adopting the ΛCDM model of structure formation,

galaxies form hierarchically through the merger of dark matter halos. The structure

and evolution of the dark matter density field is now well understood through

ultra-high resolution numerical N-body simulations (Springel et al., 2005; Klypin

et al., 2011) and through analytic models based on these simulations (Cooray &

Sheth, 2002). By making certain assumptions about how ionizing light traces mass

and the dynamics of HII regions, a basic picture of the reionization process has

emerged (Furlanetto et al., 2004b, 2006; Iliev et al., 2006; Zahn et al., 2007a) that

is confirmed by detailed numerical simulations; e.g., (Zahn et al., 2011).

The basic picture is that galaxies form in the peaks of the dark matter

density field and drive expanding HII regions into their surroundings by virtue of

the UV radiation emitted from young, massive stars. These HII regions are initially

isolated, but begin to merge into larger, Mpc-scale HII regions due to the clustering

of the galaxy distribution (expansion phase). Driven by a steadily increasing global

star formation rate and recombination time (due to cosmic expansion) this process

goes on until HII regions completely fill the volume (overlap phase). In this picture,

rare peaks in the density field ionize first while regions of lower density ionize later
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from local sources that themselves formed later. In this picture, referred to as

“inside-out reionization", void regions are the last to ionize because they have few

local sources of ionization and remain neutral until an I-front from a denser region

has swept over it.

To date numerical simulations of reionization have fallen into two basic

classes (Trac & Gnedin, 2011): small-scale simulations that resolve the sources

and sinks of ionizing radiation; and large-scale simulations that account for the

diversity and clustering of sources. While ideally one would like to do both

in a single simulation, this has not been feasible until now owing to numerical

limitations. Historically, small-scale simulations came first. These simulations

self-consistently modeled galaxy formation, radiative transfer, and photoioniza-

tion/recombination within a hydrodynamic cosmological code. Comoving volumes

were typically ≤ (10Mpc)3 with spatial resolution of a few comoving kpc–sufficient

to resolve high redshift dwarf galaxies and the baryonic cosmic web (Gnedin, 2000a;

Razoumov et al., 2002; Ricotti et al., 2002; Finlator et al., 2012). Large-scale sim-

ulations followed, however these were not self-consistent radiation hydrodynamic

cosmological simulations. Rather, density fields were simulated with a cosmo-

logical N-body or hydrodynamics code, and then ionization was computed in a

post-processing step using a standalone radiative transfer code, typically a Monte

Carlo or ray-tracing code (Ciardi et al., 2001; Sokasian et al., 2001, 2003; Iliev

et al., 2006; Zahn et al., 2007a; Trac & Cen, 2007; Trac et al., 2008; Shin et al.,

2008; Finlator et al., 2009a).

The need to simulate large cosmological volumes coupled with the cost or

limited scalability of available radiative transport methods led to a trend which

continues to this day of using different numerical resolutions to model the N-body

dynamics and the radiative transfer/ionization calculations. For example Iliev et

al. (2006a) simulate N-body dynamics in a volume 100 Mpc/h on a side with a

force resolution of 31 kpc/h, while performing the RT calculation on grids with

comoving resolutions of 246 and 492 kpc/h. Similarly Trac & Cen (2007,2008)

and Shin, Trac & Cen (2008) achieved a force resolution of 8.7 kpc/h in N-body

simulations in 50 and 100 Mpc/h boxes, but performed the RT calculation with
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a mesh resolution of 278 kpc/h. When the RT is coarse-grained in this way,

hydrodynamic effects are lost, and some corrections to the recombination rate due

to small scale clumping must be made. This usually takes the form of a clumping

factor correction evaluated either locally or globally using the higher resolution

N-body data.

An interesting variant of the post-processing approach is the work of Trac,

Cen & Loeb (2008) who carried out a hydrodynamic cosmological simulation of

reionization in a 100 Mpc/h box with 15363 grid cells and particles, taking the

emitting source population and subgrid clumping from a much higher resolution

(11, 5603!) N-body simulation. This is an advance over previous work in that large

scale baryonic flows are included self-consistently. However small scale radiation

hydrodynamic effects, such as the retardation of I-fronts by minihalos (Shapiro

et al., 2004) or the photoevaporation of gas from halos are not modeled.

In this paper we present a numerical method for simulating cosmological

reionization in large cosmological volumes in which all relevant processes (dark

matter dynamics, hydrodynamics, chemical ionization and recombination, radia-

tion transport, local star formation and feedback) are computed self-consistently on

the same high resolution computational grid. We refer to this as direct numerical

simulation, in analogy with turbulence simulations which solve the Navier-Stokes

equations directly. We admit the analogy is not perfect, because not all physi-

cal scales are numerically resolved and we must employ a subgrid model for star

formation. Nonetheless we use the term to connote that we solve the full set of dy-

namical and transport equations on a common discrete basis set (cells, particles).

Another descriptor for our approach is resolution matched, to distinguish our sim-

ulations from the fine/coarse dual resolution scheme used in previous large-scale

simulations.

The key numerical requirement for performing simulations that both resolve

the sources and sinks of ionizing radiation and correctly model the abundance and

clustering of sources is algorithmic scalability. Parallel scalability is also important,

but of secondary importance to algorithmic scalability. Algorithmic scalability

refers to how the time to solution scales with the number of unknowns N . Direct
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force evalulation gravitational N-body problems scale as N2. While this is the

most accurate approach, it is impractical for N ∼ 1010 which characterizes modern

cosmological N-body simulations. Reionization simulations pose a similar scaling

problem. If N is the number of fluid elements (particles, cells) and S is the number

of ionizing sources, then the work scales as N × S. At fixed resolution S scales

as N , since both are proportional to the volume simulated. If ray tracing is the

method used for radiative transfer, and R is the number of rays propagated per

source, then the work scales as N2R. The factor R is typically of order 100, but

may be compensated for by the fact that S/N � 1. Therefore work scales as N2

with the commonly used ray tracing approach, and this approach is not tenable

for very large N . This is the underlying reason why previous large box simulations

perform the radiative transfer calculation on a coarser grid than the dark matter

calculation. For example, in the work of Trac & Cen (2007), the disparity in scales

is 32.

What is desired is an algorithm that is ideally O(N), but lacking that,

no worse that O(N logN). Ray merging is one way to achieve this scaling with

ray-based codes (e.g., Wise & Abel 2011). We have achieved O(N logN) scaling

by numerically representing the radiation field as a grid field, and employing opti-

mally scalable geometric multigrid methods for the solution of the radiation field

equation. In this work the radiation field is treated in the flux-limited diffusion

(FLD) approximation, and discretized on the same grid as used for the dark matter

and hydrodynamics. The method we describe below is currently implemented on

uniform Cartesian grids within version 2 of the community code Enzo (Enz, 2010);

an adaptive mesh version of this is under development and will be reported on in

a forthcoming paper (Reynolds et al., in prep).

In Sec. 2 we describe the mathematical formulation of the problem. In Sec.

3 we present the numerical method of solution, focusing on the solution of the

coupled radiation diffusion, chemical ionization, and gas energy equations within

the Enzo code framework. As Enzo has been described elsewhere, only a brief

summary of its methods are included. Section 4 contains results from verification

tests (Sec. 4.1), validation tests (Sec. 4.2), parallel scaling tests (Sec. 4.3), and



14

execution speed tests (Sec. 4.4). We then illustrate the applicability of our method

to cosmic reionization in Sec. 5, confining ourselves to a qualitative description of

the results; a quantitative analysis of the results will be presented in a forthcoming

paper (So et al., in prep). We present a summary and conclusions in Sec. 6.

2.2 Mathematical Formulation

We solve the coupled equations of multispecies gas dynamics, dark matter

dynamics, self-gravity, primordial gas chemistry, radiative transfer, and gas cool-

ing/heating in a comoving volume of the expanding universe. In this paper we

assume the governing equations are discretized on a cubic uniform Cartesian mesh

in comoving coordinates assuming periodic boundary conditions. In Reynolds et

al. (in prep.) we generalize our method to adaptive meshes. The background

spacetime is assumed to be a FRW model with ΛCDM cosmological parameters

(Komatsu et al., 2011). In this work we consider only the 5 ionic states of H

and He and e−; i.e., the commonly used “6-species" model of primordial gas (Abel

et al., 1997; Anninos et al., 1997). Molecular hydrogen chemistry is ignored as

we are primarily concerned with the later stages of H reionization driven by star

formation in atomic line cooling galaxies. Star formation is modeled phenomeno-

logically through a subgrid model described in the next section. Newly formed

stars are sources of UV radiation, and the radiation is transported in the grey flux-

limited diffusion approximation. Star formation in spatially distributed galaxies

thus sources an inhomogeneous and evolving ionizing radiation field, which is used

to calculate the local ionization and thermal state of the gas. This in turn controls

the local cooling rate of the gas, and by virtue of the subgrid star formation model,

the local star formation rate. We thus have a closed system of equations that we

can evolve forward in time subject to the choice of initial conditions. In all but

the verification test problems, cosmological initial conditions are generated using

standard methods.

The choice of flux-limited diffusion (FLD) is motivated by its simplicity

and its ability to smoothly transition between optically thin and thick regimes.



15

Its properties as well as its limitations are well understood, and efficient numer-

ical methods exist for parallel computation (e.g., Hayes et al. 2006). A second

motivation is that we are interested in modeling reionization in large cosmological

volumes and field-based solvers scale independently of the number of sources, un-

like ray tracing methods. In the early stages of reionization, when HII regions are

largely isolated, FLD provides accurate I-front speeds, as shown by our verification

tests in Sec. 4.1. At late times, during and after overlap, the gas is bathed in a

diffuse radiation field arising from numerous point sources for which the angular

structure of the radiation field is unimportant. It is during the early percolation

phase when several HII regions merge that FLD is inaccurate with regard to the

angular distribution of the radiation field. This leads to some inaccuracies of the

shapes of the I-fronts compared to a solution obtained using ray tracing (see Sec.

4.3). However we consider these shape differences of secondary importance since

we are interested in globally averaged ionization properties. A well known limi-

tation of FLD is that opaque blobs do not cast shadows if they are illuminated

from one side (e.g., Hayes & Norman 2003). Instead, the radiation flows around

the backside of the irradiated blob. By contrast, a ray tracing method will cast a

sharp shadow (Iliev et al. 2009, Wise & Abel 2011). What matters for global reion-

ization simulations however is how long the opaque blobs remain self-shielded; i.e.,

their photoevaporation times. We have compared the photoevaporation times for

identically resolved blobs using FLD and the ray tracing method of Wise & Abel

(2011), and find them comparable despite the inability of FLD to cast a shadow

(sec Sec. 2.4.2).

We consider the coupled system of partial differential equations (Reynolds
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et al., 2009),

∇2φ =
4πg

a
(ρb + ρdm − 〈ρ〉), (2.1)

∂tρb +
1

a
vb · ∇ρb = −1

a
ρb∇ · vb − ρ̇SF , (2.2)

∂tvb +
1

a
(vb · ∇)vb = − ȧ

a
vb −

1

aρb
∇p− 1

a
∇φ, (2.3)

∂te+
1

a
vb · ∇e = −2ȧ

a
e− 1

aρb
∇ · (pvb)−

1

a
vb · ∇φ+G− Λ + ėSF (2.4)

∂tni +
1

a
∇ · (nivb) = αi,jnenj − niΓ

ph
i , i = 1, . . . , Ns (2.5)

∂tE +
1

a
∇ · (Evb) = ∇ · (D∇E)− ȧ

a
E − cκE + η. (2.6)

The comoving form of Poisson’s equation (2.1) is used to determine the modified

gravitational potential, φ, where g is the gravitational constant, ρb is the comoving

baryonic density, ρdm is the dark matter density, and 〈ρ〉 is the cosmic mean den-

sity. The collisionless dark matter density ρdm is evolved using the Particle-Mesh

method, as described in Hockney & Eastwood (1988); Norman & Bryan (1999);

O’Shea et al. (2004). The conservation equations (2.2)-(2.4) correspond to the

compressible Euler equations in a comoving coordinate system Bryan et al. (1995).

These relate the density to the proper peculiar baryonic velocity vb ≡ a(t)ẋ, the

proper pressure p, and the total gas energy per unit mass e. The equations (2.5)

model ionizaton processes between the chemical species HI, HII, HeI, HeII, HeIII

and the electron density. Here, ni denotes the ith comoving elemental species num-

ber density, ne is the electron number density, nj corresponds to ions that react

with the species i, and αi,j are the reaction rate coefficients defining these inter-

actions (Abel et al., 1997; Hui & Gnedin, 1997). The equation (2.6) describes the

flux-limited diffusion (FLD) approximation of radiation transport in a cosmolog-

ical medium (Hayes & Norman, 2003; Paschos, 2005), where E is the comoving

grey radiation energy density. Within this equation, the function D is the flux

limiter that depends on face-centered values of E, ∇E and the opacity κ (Morel,

2000),

D = min
{
c
(
9κ2 +R2

)−1/2
, Dmax

}
, and R = max

{
|∂xE|
E

,Rmin

}
. (2.7)
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Here the spatial derivative within R is computed using non-dimensional units

at the computational face adjoining two neighboring finite-volume cells, Dmax =

0.006 c Lunit and Rmin = 10−20/Lunit with Lunit the length non-dimensionalization

factor for the simulation, and the face-centered radiation energy density and opac-

ity are computed using the arithmetic and harmonic means, respectively,

E =
E1 + E2

2
, κ =

2κ1κ2

κ1 + κ2

.

Among the many available limiter formulations we have tested ((Hayes & Norman,

2003; Morel, 2000; Reynolds et al., 2009)), this version performs best at producing

causal radiation propagation speeds in the low-opacity limit typical of the late

stages of reionization simulations.

Cosmic expansion for a smooth homogeneous background is modeled by

the function a(t) ≡ (1 + z)−1 , where the redshift z is a function of time. a(t) is

obtained from a solution of the Friedmann equation for the adopted cosmological

parameters. All comoving densities ρi relate to the proper densities through ρi ≡
ρi,propera(t)3. All spatial derivatives are taken with respect to the comoving position

x ≡ r/a(t). We use a standard ideal gas equation of state to close the system,

e =
p

2ρb/3
+

1

2
|vb|2. (2.8)

2.2.1 Model Coupling

The equations (2.1)-(2.6) are coupled through a variety of physical pro-

cesses. In defining our grey radiation energy density E, we allow specification of an

assumed spectral energy distribution (SED), χE(ν). Here, we write the frequency-

dependent radiation density using the decomposition Eν(x, t, ν) = Ẽ(x, t)χE(ν).

This relates to the grey radiation energy density E through the equation

E(x, t) =

∫ ∞
ν1

Eν(x, t, ν) dν = Ẽ(x, t)

∫ ∞
ν1

χE(ν) dν, (2.9)

where Ẽ is an intermediate quantity that is never computed. We note that this

relationship is valid only if the indefinite integral of χE(ν) exists, as is the case

for quasar and stellar type spectra. Implemented in Enzo are a variety of user-

selectable SEDs including black body, monochromatic, and powerlaw (some of
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these are used for the verification tests; see Sec. 4.2). In our application to cosmic

reionization, we utilize the SED for low metallicity Pop II stars from Ricotti et al.

(2002).

With this in place, we define the radiation-dependent photoheating and

photoionization rates (Osterbrock, 1989),

G =
cE

ρb

Ns∑
i

ni

[∫ ∞
νi

σi(ν)χE(ν)
(

1− νi
ν

)
dν

]/[∫ ∞
ν1

χE(ν) dν

]
, (2.10)

Γphi =
cE

h

[∫ ∞
νi

σi(ν)χE(ν)

ν
dν

]/[∫ ∞
ν1

χE(ν) dν

]
. (2.11)

Here, σi(ν) is the ionization cross section for the species ni, h is Planck’s constant,

and νi is the frequency ionization threshold for species ni (hνHI = 13.6 eV, hνHeI
= 24.6 eV, hνHeII = 54.4 eV).

In addition, gas cooling due to chemical processes occurs through the rate Λ

that depends on both the chemical number densities and current gas temperature

(Abel et al., 1997; Anninos et al., 1997),

T =
2 p µmp

3 ρb kb
, (2.12)

wheremp corresponds to the mass of a proton, µ corresponds to the local molecular

weight, and kb is Boltzmann’s constant. In addition, the reaction rates αi,j are

highly temperature dependent (Abel et al., 1997; Hui & Gnedin, 1997). The opacity

κ depends on the local ionization states ni and the assumed SED χE,

κ =
Ns∑
i=1

ni

[∫ ∞
νi

σi(ν)χE(ν) dν

]/[∫ ∞
νi

χE(ν) dν

]
. (2.13)

The emissivity η is based on a star-formation “recipe” described below.

2.3 Numerical Method

2.3.1 The Enzo Code

Our radiation hydrodynamical cosmology is built on top of the publicly

available hydrodynamic cosmology code Enzo (Enz, 2010), whose numerical meth-

ods have been documented elsewhere (O’Shea et al., 2004; Norman et al., 2007).
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Here we provide a brief summary. The basic Enzo code couples an N-body particle-

mesh (PM) solver, which is used to follow the evolution of collisionless dark matter,

with an Eulerian adaptive mesh refinement (AMR) method for ideal gas dynamics.

Dark matter is assumed to behave as a collisionless phase fluid, obeying the Vlasov-

Poisson equation. We use the second order-accurate Cloud-In-Cell (CIC) formu-

lation, together with leapfrog time integration, which is formally second order-

accurate in time. Enzo hydrodynamics utilizes the piecewise parabolic method

(PPM) (Colella & Woodward, 1984) to evolve the mass density field for each

chemical species of interest assuming a common velocity field (i.e., multispecies

hydrodynamics.) PPM is formally second order-accurate in space and time. The

gravitational potential is computed by solving the Poisson equation on the uniform

Cartesian grid using 3D FFTs. When AMR is employed (which is not the case in

this work), the subgrid gravitational potential is computed using a local multigrid

solve of the Poisson equation with boundary conditions supplied from the parent

grid.

The non-equilibrium chemical and cooling properties of primordial (metal-

free) gas are determined using optional 6–, 9–, and 12–species models; in this

work we restrict ourselves to the 6-species model involving H, H+, He, He+,

He++, and e−. This reaction network results in a stiff set of rate equations which

are solved with the first-order semi-implicit method described in Anninos et al.

(1997), or a new second-order semi-analytic method described below. Enzo also

calculates radiative heating and cooling following atomic line excitation, recom-

bination, collisional excitation, free-free transitions, molecular line cooling, and

Compton scattering of the cosmic microwave background as well as different mod-

els for a metagalactic ultraviolet background that heats the gas via photoionization

and/or photodissociation.

To this we add our flux-limited diffusion radiation transport solver, which

is solved using an optimally scalable geometric multigrid algorithm detailed here.

When simulating inhomogeneous reionization, the metagalactic UV radiation field

is solved for directly as a function of position and time, rather than input to the

code as an externally-evaluated homogeneous background (e.g., Haardt & Madau
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(2012)).

2.3.2 Star Formation and Feedback

Because star formation occurs on scales not resolved by our uniform mesh

simulation, we rely on a subgrid model which we calibrate to observations of star

formation in high redshift galaxies. The subgrid model is a variant of the Cen

& Ostriker (1992) prescription with two important modifications as described in

Smith et al. (2011). In the original Cen & Ostriker recipe, a computational cell

forms a collisionless “star particle" if a number of criteria are met: the baryon

density exceeds a certain numerical threshold; the gas velocity divergence is neg-

ative, indicating collapse; the local cooling time is less than the dynamical time;

and the cell mass exceeds the Jeans mass. In our implementation, the last crite-

rion is removed because it is always met in large scale, fixed-grid simulations, and

the overdensity threshold is taken to be ρb/(ρc,0(1 + z)3) > 100, where ρc,0 is the

critical density at z=0. If the three remaining criteria are met, then a star particle

representing a large collection of stars is formed in that timestep and grid cell with

a total mass

m∗ = f∗mcell
∆t

tdyn
, (2.14)

where f∗ is an efficiency parameter we adjust to match observations of the cosmic

star formation rate density (SFRD) (Bouwens et al., 2011a), mcell is the cell baryon

mass, tdyn is the dynamical time of the combined baryon and dark matter fluid,

and ∆t is the hydrodynamical timestep. An equivalent amount of mass is removed

from the grid cell to maintain mass conservation.

Although the star particle is formed instantaneously (i.e., within a single

timestep), the conversion of removed gas into stars is assumed to proceed over a

longer timescale, namely tdyn, which more accurately reflects the gradual process

of star formation. In time ∆t, the amount of mass from a star particle converted

into newly formed stars is given by
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∆mSF = m∗
∆t

tdyn

t− t∗
tdyn

e−(t−t∗)/tdyn , (2.15)

where t is the current time and t∗ is the formation time of the star particle. To

make the connection with Eq. (2.4), we have ρ̇SF = ∆mSF/(Vcell∆t), where Vcell
is the volume of the grid cell.

Stellar feedback consists of the injection of thermal energy, gas, metals, and

radiation to the grid, all in proportion to ∆mSF . The thermal energy ∆eSF , gas

mass ∆mg, and metals ∆mZ returned to the grid are given by

∆eSF = ∆mSF c
2εSN , ∆mg = ∆mSFfm∗, ∆mZ = ∆mSFfZ∗, (2.16)

where c is the speed of light, εSN is the supernova energy efficiency param-

eter, and fm∗ = 0.25, fZ∗ = 0.02 is the fraction of the stellar mass returned to

the grid as gas and metals, respectively. Rather than add the energy, gas, and

metals to the cell containing the star particle, as was done in the original Cen &

Ostriker (1992) paper, we distribute it evenly among the cell and its 26 nearest

neighbors to prevent overcooling. As shown by Smith et al. (2011), this results

in a star formation recipe which can be tuned to reproduce the observed SFRD.

This is critical for us, as we use the observed high redshift SFRD to calibrate our

reionization simulations.

To calculate the radiation feedback, we define an emissivity field η(x) on the

grid which accumulates the instantaneous emissivities ηi(t) of all the star particles

within each cell. To calculate the contribution of each star particle i at time t we

assume an equation of the same form for supernova energy feedback, but with a

different energy conversion efficiency factor εUV . Therefore

η =
∑

i

εuv
∆mSF,ic

2

Vcell∆t
(2.17)

Emissivity η is in units of erg/s/cm3. The UV efficiency factor εuv is taken

from Ricotti et al. (2002) as 4π × 1.1× 10−5, where the factor 4π comes from the

conversion from mean intensity to radiation energy density.
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2.3.3 Operator Split Solution Procedure

We implement the model (3.2)-(3.7) in the open-source community cosmol-

ogy code, Enzo (Enz, 2010). This simulation framework utilizes a method-of-lines

approach, in which space and time are discretized separately. To this end, we use

a finite-volume spatial discretization of the modeling equations. For this study,

all of our simulations were run in unigrid mode, so that the cosmological volume

is discretized using a regular grid. Although Enzo was built to enable block-

structured adaptive mesh refinement (AMR) using a standard Berger-Colella for-

malism (Berger & Colella, 1989), that mode does not currently allow as extreme

parallel scalability as the unigrid version. Due to our desire to simulate very large

cosmological volumes for understanding reionization processes, this scalability was

paramount.

We discretize in time using an operator split time-stepping approach, wherein

separate components are treated with solvers that have been tuned for their specific

physics. To this end, we break apart the equations into four distinct components.

The first component corresponds to the self-gravity equation (3.2),

∇2φ =
4πg

a
(ρb + ρdm − 〈ρ〉), (2.18)

that solves for the instantaneous gravitational potential φ, which contributes to

sources in the momentum and energy conservation equations. We perform this

solve using our own 3D Fast Fourier Transform solver built on the publicly available

FFTE library. These solves take as sources the gridded baryon density and dark

matter density fields ρb and ρdm. The former is defined as a grid based Eulerian

field. The latter is computed from the dark matter particle positions xni using the

CIC mass assignment algorithm (Hockney & Eastwood, 1988).

The second component in our splitting approach corresponds to the cos-

mological Euler equations, along with passive advection of other comoving density
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fields,

∂tρb +
1

a
vb · ∇ρb = −1

a
ρb∇ · vb,

∂tvb +
1

a
(vb · ∇)vb = − ȧ

a
vb −

1

aρb
∇p− 1

a
∇φ,

∂te+
1

a
vb · ∇e = −2ȧ

a
e− 1

aρb
∇ · (pvb)−

1

a
vb · ∇φ, (2.19)

∂tE +
1

a
∇ · (Evb) = 0,

∂tni +
1

a
∇ · (nivb) = 0, i = 1, . . . , Ns.

We point out that the above energy equation does not include photo-heating,

chemical cooling, or supernova feedback processes, which are included in sub-

sequent components. These equations are solved explicitly using the Piecewise

Parabolic Method (Colella & Woodward, 1984), to properly track hydrodynamic

shocks, while obtaining second-order accuracy away from shock discontinuities.

The third solver component corresponds to the grey radiation energy equa-

tion (3.7),

∂tE = ∇ · (D∇E)− ȧ

a
E − cκE + η. (2.20)

Our solver for this component is based on the algorithm described in Reynolds et al.

(2009); Reynolds (2010). Specifically, since the time scale for radiation transport is

much faster than for hydrodynamic motion, we use an implicit θ-method for time

discretization, allowing both backwards Euler and trapezoidal implicit quadrature

formulas. Moreover, we evaluate the limiter D using the previous-time solution,

En when calculating the time-evolved solution, En+1. Under these approximations,

our implicit FLD approximation for the radiative transport results in a linear sys-

tem of equations over the computational domain, as opposed to a nonlinear system

of equations, as used in our previous work (Norman et al., 2007; Reynolds et al.,

2009; Norman et al., 2009). This linear system is posed in residual-correction

form, in which we solve for the change in the radiation field, δE = En+1 − En,

over the course of a time step. To solve this linear system, we employ a multigrid-

preconditioned conjugate gradient solver from the hypre library (hyp, 2011), that

allows optimal O(n log n) parallel scalability to the extents of modern supercom-
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Table 2.1: Parameters used in the hypre linear solver

Parameter Value
Outer Solver PCG
CG iterations 50
CG tolerance 10−8

Inner Preconditioner PFMG
MG iterations 12
MG relaxation type nonsymmetric Red/Black Gauss-

Seidel
MG pre-relaxation sweeps 1
MG post-relaxation sweeps 1

puter architectures. Specific parameters used in this solve are found in Table 2.1.

The fourth physical component within our operator-split formulation cor-

responds to photoionization, photoheating, chemical ionization and gas cooling

processes,

∂te = G− Λ, (2.21)

∂tni = αi,jnenj − niΓ
ph
i , i = 1, . . . , Ns.

Since these processes occur on time scales commensurate with the radiation trans-

port, and much faster than hydrodynamic motion, they are also solved implicitly

in time, using adaptive-step, time-subcycled solves of these spatially-local pro-

cesses. We have two different algorithms for solving these equations. The first,

more loosely coupled, solver uses a single Jacobi iteration of a linearly-implicit

backwards Euler discretization for each species in each cell. Although this solver

does not attempt to accurately resolve the nonlinearity in these equations, nor does

it iterate between the different species in each cell to achieve a fully self-consistent

solution, its adaptive time stepping strategy enables this single iteration to achieve

results that are typically accurate to within 10% relative error, and results in highly

efficient calculations.

Our second solver for the system (2.21) approximates the equations using

an implicit quasi-steady-state formulation, in which the source terms for the energy

equation assume a fixed ionization state (nn−1
i +nni )/2, and the chemistry equations
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assume a fixed energy (en−1 +en)/2 when evolving the time step tn−1 → tn. Under

this quasi-steady-state approximation, we solve the resulting set of differential

equations analytically, to obtain the new values en and nni . However, since these

updated solutions implicitly contribute to the source terms for one another, we

wrap these analytical solvers within a nonlinear Gauss-Seidel iteration to achieve

full nonlinear convergence. As a result of this much tighter coupling between the

gas energy and chemical ionization, this solver is more expensive per time step,

but may result in a more accurate and stable solution than the more loosely-split

algorithm.

The fifth solver component computes star formation and feedback processes,

and evaluates the emissivity field for use in the next step. It corresponds to inte-

grating the equations

∂tρb = −ρ̇SF , (2.22)

∂te = ėSF (2.23)

and evaluating Eq. (2.4) using the procedures described in Sec. 2.3.2.

These distinct components are coupled together through the potential φ

(gravity → hydrodynamics+DM dynamics), opacity κ (chemistry → radiation),

emissivity η (star formation → radiation), photoheating G (radiation → energy),

cooling Λ (chemistry → energy), temperature T (energy → chemistry), and pho-

toionization Γphi (radiation→ chemistry). Each of these couplings is handled using

one of two mechanisms, direct manipulation of the solution components (Λ, κ, T ),

or filling new fields over the domain containing each term that are passed between

modules (∇φ, η,G,Γphi ).

2.3.4 Radiation Subcycling

Since both the radiation (2.20) and chemistry/energy (2.21) subsystems

evolve at similar time scales that are typically much faster than the hydrodynamic

time scale, consistency between these processes is maintained through an adaptive

time-stepping strategy, wherein the radiation system limits the overall time step

selection strategy, using a conservative time step to ensure consistency between the
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physical processes. This additionally ensures that each radiation solve only requires

relatively minor corrections as time evolves, resulting in a highly efficient CG/MG

iteration. The time step estimation algorithm is the same as in Reynolds et al.

(2009), but in the current work we use the time step tolerance τtol = 10−4, which

ensures a relative change-per-step in the radiation field of 0.01%, when measured

in a vector RMS norm.

For increased robustness, we have enabled subcycling within the radiation

solver. While this technically allows the radiation solver to subcycle faster than

the coupled processes, we only employ this functionality in time steps where the

CG/MG solver fails. This situation typically only occurs in the initial step after

the first stars are created. Prior to star formation the dynamical time scale due

to hydrodynamics and gravity is much longer than the time scales of radiation

transport and chemical ionization after star formation. Since we adapt our time

step estimates using the behavior in previous steps, our estimation strategy does

not predict the abrupt change in physics when the first stars are created, so the

step size estimate from the previous step is too large, causing the CG/MG solver

to diverge. Once this occurs, the radiation subsystem solver decreases its time step

size and then subcycles to catch up with the overall time step of the remaining

physics.

When using the loosely-coupled ionization/heating solver, the sequence of

these processes within a time step tn−1 → tn are as follows:

Set thydro = tchem = trad = tdm = tn−1.
Set ∆t = min{∆thydro,∆texpansion,∆trad}, and tn = tn−1 + ∆t.
While (trad < tn)

Try to evolve the E(t) according to (2.20).
If failure, set ∆trad = 0.1∆trad.
Else set trad = trad + ∆trad and update ∆trad based on
accuracy estimates.

Post-process E(tn) to compute G and Γphi .
Compute φ using (2.18), and post-process to generate ∇φ.
Evolve the hydrodynamics sub-system (2.19), thydro → thydro+∆t.
While (tchem < tn)
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Set ∆tchem based on accuracy estimates.
Evolve the chemical and gas energy subsystem (2.21),
tchem → tchem + ∆tchem.

Evolve the dark matter particles, tdm → tdm + ∆t.
Compute η using equation (3.15).

When using the tightly-coupled ionization/heating solver, this sequence of

processes differs slightly:

Set thydro = tchem = trad = tdm = tn−1.
Set ∆t = min{∆thydro,∆texpansion,∆trad}.
While (trad < tn)

Try to evolve the radiation field according to (2.20).
If failure, set ∆trad = 0.1 ∗∆trad.
Else

Set trad = trad + ∆trad and update ∆trad based
on accuracy estimates.
Post-process E(trad) to compute G and Γphi .
While (tchem < trad)

Set ∆tchem based on accuracy estimates.
Evolve the chemical/energy subsystem (2.21),
tchem → tchem + ∆tchem.

Compute φ using (2.18), and post-process to generate ∇φ.
Evolve the hydrodynamics sub-system (2.19), thydro → thydro+∆t.
Evolve the dark matter particles, tdm → tdm + ∆t.
Compute η using equation (3.15).

2.4 Tests

2.4.1 Verification Tests

The radiation, hydrodynamics and chemistry solvers in Enzo have been

verified in previous work (Reynolds et al., 2009), so we will not focus on the

performance of each individual solver here. However, what is new in this work is

our updated coupling strategy between the radiation transport and chemistry, that

unlike the fully coupled implicit solver in Norman et al. (2007); Reynolds et al.
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(2009); Norman et al. (2009), now splits these solvers apart, with coupling instead

based on our adaptive time-stepping strategy.

To this end, we focus our verification tests in this paper on two tests with

analytical solutions that exercise only the radiation transport and chemical ioniza-

tion/recombination components of Enzo. These tests were previously described in

Reynolds et al. (2009) (sections 4.5 and 4.6); we summarize them again here.

Isothermal ionization of a static neutral hydrogen region

This verification test problem, matching test 1 in Iliev et al. (2006), focuses

on the expansion of an ionized hydrogen (HII) region in a uniform gas surrounding a

radiation source. The problem is simplified through assumption of a static gas field,

and a fixed temperature. Under these assumptions, the emitted radiation should

rapidly ionize the nearby hydrogen, and then this ionized region should propagate

spherically outward until it reaches a terminal radius at which ionizations balance

with recombinations, called the Strömgren radius. The radius of this ionization

front, r(t), may be analytically computed as

r(t) = rs
(
1− e−t/trec

)1/3
, where rs =

(
3 Ṅγ

4π αB n2
H

)1/3

. (2.24)

Here, rs is the Strömgren radius, trec = (αB nH)−1 is the recombination time, Ṅγ

is the photon emission rate, nH is the hydrogen number density of the gas, and αB
is the case B hydrogen recombination rate.

In our tests, we use parameters Ṅγ = 5×1048 photons s−1, nH = 10−3 cm−3,

αB = 2.59× 10−12 cm2s−1, domain [0, 6.6 kpc]3, temperature T = 104 K, and time

interval [0, 5Myr]. The ionization source is assumed to be monochromatic, at the

HI ionization frequency hν = 13.6 eV, and is located at the location (0, 0, 0). For

initial conditions, we use E = 10−45 erg cm−3 and ionization fraction HII/H =

0.0012. We employ reflecting boundary conditions for the radiation field at the

x = 0, y = 0, and z = 0 faces, and outflow boundary conditions at the other three

faces.

We plot spherically-averaged radial profiles of the radiation energy density

and the ionization fractions at 10 Myr, 100 Myr and 500 Myr from a simulation
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Figure 2.1: Spherically-averaged radial profiles of radiation energy density and

ionization fractions for the isothermal ionization test in section 2.4.1 using a 1283

mesh and time step tolerance τtol = 10−4. Plots are shown at 10, 100 and 500 Myr

(left to right), with the radiation energy density on the top row and ionization

fractions on the bottom row.

using a 1283 spatial grid and time step tolerance τtol = 10−4 in Figure 2.1, showing

the expected propagation of the radiation front and resulting I-front in time. Plots

of the computed and analytical I front position and resulting error for this run are

provided in Figure 2.2. To further investigate the accuracy of our new splitting

approach between the radiation and chemistry solvers, we then performed these

same tests at a variety of mesh sizes and time step tolerances τtol. For mesh sizes

of 163, 323 and 643, and for tolerances 10−2, 10−3, 10−4 and 10−5, we compute the

error in the I front position as

error =

∥∥∥∥rcomputed − rtruers

∥∥∥∥
RMS

=

(
1

Nt

Nt∑
i=1

(
rcomputed,i − rtrue,i

rs

)2
)1/2

. (2.25)

In Figure 2.3, we plot the solution error as a function of the average time step size,

as well as the total runtime as a function of the average time step size. As can

be seen in these plots, as the tolerance decreases, the temporal solution accuracy

increases linearly until we reach a maximum accuracy (minimum error) that results
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Figure 2.2: Comparison between computed and analytical I front position for

the isothermal ionization test in section 2.4.1 using a 1283 mesh and time step

tolerance τtol = 10−4. Solution on left, error on right.

from other components in Enzo (spatial discretization accuracy, accuracy within

Enzo’s chemistry solver, etc.). Moreover, it is evident that as we decrease the

time step tolerances, the required runtime increases linearly. These results imply

that there is a “sweet spot” in our approach, wherein a tolerance of τtol = 10−4

achieves the solution with optimal accuracy before we begin to waste additional

effort without achieving accuracy improvements. While this specific value is likely

problem-dependent, we use it as a starting point in subsequent simulations.

Finally, in Figure 2.4 we plot a slice of the computed HII region through

the center of the domain, perpendicular to the z-direction (other directions are

equivalent), to show the convergence of the ionized region to a sphere at varying

spatial resolutions.

Cosmological radiative ionization

This verification test is a slight variation of the previous problem, adding

only the additional complication of a cosmologically expanding universe. Due

to the cosmological expansion, the Strömgren radius itself increases due to the

expansion of space, that reduces the hydrogen number density nH as time proceeds,

rs(t) =

(
3 Ṅγ

4π αB nH(t)2

)1/3

. (2.26)
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Figure 2.3: We ran tests using mesh sizes of 163, 323 and 644, and time step

tolerances of 10−2, 10−3, 10−4 and 10−5, and plot the I front position error (2.25)

as a function of the average time step size. As expected, the runtime scales linearly

with the inverse ∆tavg, and the error scales linearly with ∆tavg, at least until other

sources of error dominate the calculation.

This causes the I front to initially approach rs, but eventually fall behind as the

expansion drives rs outward. The analytical solution to this problem is given by

Shapiro & Giroux (1987),

r(t) = rs,0

(
λe−τ(a(t))

∫ a(t)

1

eτ(ã)

(
1− 2q0 +

2q0

ã
(1− z0)

)−1/2

dã

)1/3

,

(2.27)

where

τ(a) = λ (F (a)− F (1))
(
6q2

0(1 + z0)2
)−1

, (2.28)

F (a) =

(
2− 4q0 −

2q0

a
(1 + z0)

)(
1− 2q0 +

2q0

a
(1 + z0)

)1/2

. (2.29)

Here, the parameter λ = αBnH,0/H0/(1 + z0), with rs,0, z0 and nH,0 as the Ström-

gren radius, redshift and hydrogen number density at the beginning of the simula-

tion. Additionally, q0 is the cosmological deceleration parameter, H0 is the Hubble

constant, and a(t) = (1 + z(t))−1 is the cosmological expansion parameter.

We run this problem using the parameters q0 = 0.5, domain [0, 80 kpc]3 (co-

moving), time/redshift domain z = [4, 0], H0 = 0.5, energy density contributions

Ωm = 1, ΩA = 0 and Ωb = 0.2. Our initial conditions are ρ = 1.175 × 10−28 g
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cm−3, T = 104 K and E = 10−45 erg cm−3.

We again plot spherically-averaged radial profiles of the radiation energy

density and the ionization fractions at redshifts 3.547, 2.423 and 1.692 from a sim-

ulation using a 1283 spatial grid and time step tolerance τtol = 10−4 in Figure 2.5,

showing the expected propagation and eventual stalling of the radiation front and

resulting I-front in time. As with the previous test, we investigated the accuracy of

our new splitting approach between the radiation and chemistry solvers using the

same set of mesh sizes and time step tolerances as the test earlier in this section

(2.4.1). Figure 2.6 contains the corresponding plots of the solution error and total

runtime as a function of the average time step size. Our results are similar to those

from the previous test, indicating that the modified time evolution approach em-

ployed in this work successfully achieves accurate solutions of our coupled radiation

and ionization system.

2.4.2 Validation Tests

Validation tests are tests without analytic solutions that nonetheless serve

as a useful point of comparison between codes implementing different physical

models and numerical methods. In this section we test our algorithm against three

validation tests that are most relevant to the problem of cosmological reionization.

To our knowledge these are the first FLD results published to date, since the

other codes running these problems have focused on ray-tracing, Monte Carlo, and

variable tensor Eddington approximations of the radiative transfer equations.

Test 4 – Multiple sources in a cosmological density field

As our first validation test we run Test 4 introduced by Iliev et al. (2006)

(hereafter RT06) and performed by Wise & Abel (2011) (hereafter WA11) using

Enzo’s ray tracing radiative transfer algorithm Moray. This is a static density field

hydrogen ionization test where the cosmological density field is taken from a z = 9

snapshot from a simulation defined in a comoving box of size 0.5 h−1 Mpc on a

mesh of 1283 cells. There are 16 point sources centered in the 16 most massive

halos whose locations and masses are provided as a part of the test. The sources
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are assumed to turn on simultaneously at z = 9 and radiate for ts = 3 Myr with

an SED of a T = 105 K blackbody. The ionizing photon production rate of each

source is taken to be

Ṅγ = fγ
MΩb

ΩmmHts
, (2.30)

where fγ = 250, M is the halo mass, Ωm = 0.27 and Ωb = 0.043. The simulation

is evolved for 0.4 Myr, using a time step tolerance of τtol = 10−5.

In Fig. 2.7 we display slices of hydrogen neutral fraction and temperature

through the center of the cube at two times: t=50 and 200 kyr. Comparing the

images of neutral fraction with those of WA11, we see the I-fronts are smoother

and rounder than what is obtained with ray tracing, but of comparable size and

location. The notches in the I-front surface corresponding to the location of denser

gas in filaments are visible but they are less sharply defined compared to the Moray

results. Larger differences can be seen in the temperature slice, but these are

attributable to the difference in spectral models used in the two methods. Our

grey FLD model does not account for the penetration of more energetic photons

ahead of the I-front as does the 4 frequency group model of WA11, and several of

the codes in RT06. As discussed in RT06 and WA11, and documented in Test 5 of

Iliev et al. (2009) (hereafter RT09) the high effective temperature of the radiating

sources broadens the I-front in the multifrequency treatment, and preheats the

gas ahead of the I-front, giving the appearance of a larger ionized region in the

temperature slice. By contrast, methods with a simplified spectral model (grey or

monochromatic) produce steep I-fronts with no preheating (see e.g., the results of

the FTTE code in RT06, or the results of Test 5 in RT09).

In the left half of Fig. 2.8 we show pdf’s of the neutral fraction and gas

temperature at the two times corresponding to the slice images. The neutral

fraction pdfs are in good agreement with results presented in RT06 and WA11.

The temperature pdfs are qualitatively different from the results of multifrequency

calculations for the reasons discussed above. Our pdfs show a bimodal temperature

distribution, which correspond to the hot gas in the interior of the ionized region,

and the cold neutral gas. The two peaks in the pdfs are filled in by a small amount

of intermediate temperature gas in the I-front transition zone. Preheating of the
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cold gas in a multifrequency treatment removes the low temperature spike, and

adds more gas to the intermediate temperatures, producing a shoulder distribution

function below 104 K.

In the right half of Fig. 2.8 we show the evolution of the volume- and

mass-weighted ionized fraction in the volume. The volume-weighted fraction curve

is in good agreement with the ray tracing results in WA11, with xv ≈ 0.65 at

t = 400 kyr. The mass-weighted curve is at all times somewhat higher than the

volume-weighted curve, in agreement with the results presented in RT06. WA11

observe a cross-over of the xv and xm curves, something we do not find. This

discrepancy may be the result of the different spectral models, or the detailed

I-front shapes. Another possibility is that some gas remains self-shielded in the

interior of the ionized region at later times in the ray tracing calculation, which is

engulfed and ionized in the FLD calculation. This bears further study, preferably

with the effects of difference in spectral models removed.

Test 7 – Photoevaporation of a dense clump

As our second validation test we run Test 7 of RT09, also studied by WA11

using Enzo+Moray. This is a radiation hydrodynamic test involving ionizing radi-

ation impinging on a dense, opaque spherical cloud which is subsequently photo-

evaporated. RT09 set this up as a plane wave of ionizing radiation sweeping over

the cloud. To facilitate comparison with the WA11 results, we set it up as a spher-

ical wave of ionizing radiation from a point source sweeping over the cloud. If run

without hydrodynamics, the I-front is trapped in the dense cloud, and the cloud

casts a sharp shadow (ignoring recombination radiation which would partially fill

in the shadow zone.) With hydrodynamics engaged, the side of the cloud facing

the source photoheats and expands, permitting a deeper penetration of radiation

into the cloud. Eventually, the entire cloud is photoevaporated. It is important

to check what FLD will do in this circumstance, in particular whether the lack of

a shadow has much effect on the photoevaporation time for the cloud. As we will

now show, the effect is weak, validating our use of FLD for large scale reionization

problems.



35

The setup is as follows. A cubic domain 6.6 kpc on a side is employed, filled

with an ambient medium of nH = 2× 10−4 cm−3 and T=8000 K. The cloud is in

pressure equilibrium with the intercloud medium with density nH = 0.04 cm−3 and

T=40 K. The cloud is a top-hat sphere with radius rc = 0.8 kpc, and is centered

at (x,y,z) = (5, 3.3, 3.3) kpc. The ionized fraction is initially zero everywhere.

A single radiation source is located in the center of the x = 0 boundary. It has

a luminosity of Ṅγ = 3 × 1051 photon/s. WA11 use the same four energy group

spectral model to represent a 105 K blackbody as in Test 4 above. We use our grey

FLD approximation which does not model spectral hardening, as discussed above.

We thus do not expect our results to be identical with WA11.

Fig. 2.9 shows slices through the cloud midplane of neutral fraction, pres-

sure, temperature, and density at time t = 10 Myr. At this time the I-front has

propagated roughly 80% through the cloud on the axis, compared to about 50% in

WA11. Because in the FLD approximation radiation propagates in the direction of

the radiation energy density gradient, it has filled in the “nightside" of the cloud,

ionizing the cloud from all sides. By 10 Myr only a small neutral patch remains.

Comparing with Fig. 27 of WA11, we find similar structures on the “dayside" of

the cloud, but the complete absense of a neutral shadow on the nightside.

Fig. 2.10 shows the same information for the cloud at t = 50 Myr. By

this time the cloud has expanded considerably and become completely ionized,

exhibiting a roughly spherical shape. The results of WA11 are similar, except

for a small wedge-shaped neutral patch on the back of the cloud, which casts a

small shadow into the diffuse intercloud medium. In reality, ionizing recombination

radiation from the denser cloud gas would fill in this shadow and ionize the diffuse

gas there, making it more like the FLD solution.

To enable a more quantitative comparison with WA11, we plot in Fig. 2.11

line cuts from the point source through the center of the cloud at t = 1, 10, 50

Myr. Because the FLD method ionizes the cloud from all sides with only a small

delay between dayside and nightside irradiation, we see a less pronounced dayside-

nightside asymmetry in the density and neutral fraction profiles compared with

WA11 at 10 and 50 Myr. Both methods show good agreement on the position
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and structure of the dense shell swept up by the expanding cloud at 50 Myr at

x/Lbox ∼ 0.4. Significant differences are seen at 50 Myr for x/Lbox > 0.75 (the

cloud’s center) due to shadowing effects in the Moray result which is absent in the

FLD result.

Overall, the FLD calculation ionizes the cloud somewhat faster than pre-

dicted by WA11. However by 50 Myr both calculations produce a cloud which is

either fully ionized or nearly so, and there is good agreement on the size of the

cloud. The most significant difference is that the ray-tracing calculation predicts

a small, neutral wedge-shaped patch on the nightside of the cloud which is absent

in the FLD calculation. It is unlikely that this difference will be important in

large scale reionzation simulations since clouds will be irradiated from multiple

directions during the overlap phase.

Consolidated HII region with two sources

As our last validation test we demonstrate the performance of our FLD

radiative transfer method on a consolidated HII region with two nearby point

sources of equal luminosity. This problem was introduced by Petkova & Springel

(2009) (hereafter PS09) and included in the extensive suite of tests carried out by

WA11. This is a validation problem because it has no analytic solution (that we

know of.) PS09 studied it because their method uses the variable tensor Eddington

factor moment method (Stone et al., 1992; Norman et al., 1998; Hayes & Norman,

2003) where the Eddington tensor is computed assuming the medium is optically

thin everywhere (Gnedin & Abel, 2001). As discussed in Gnedin & Abel (2001) it

is known that the shapes of consolidated HII regions are slightly inaccurate due to

the optically thin assumption, in the sense that the HII region is more elongated

in the axial direction, and less expanded in the transverse direction than in reality.

The solution presented by PS09 shows this elongation. The solution presented in

WA11, which shows rounder but still slightly elongated I-fronts, should be a closer

approximation to truth since it is calculated using adaptive ray tracing which

in principle gets the geometric effects correct. However the omission of diffuse

ionizing recombination radiation which becomes dominant near a stalled I-front
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means that even the WA11 solution is an approximation to the true shape. It is

thus interesting to see what FLD produces for this problem.

The setup is as follows. Two sources with luminosities of 5×1048 photons/s

are separated by 8 kpc. The ambient medium is static with uniform density 10−3

cm−3 and T = 104 K. The computational domain is 20 kpc in width and 10 kpc

in height and depth, and resolved with mesh of 128× 64× 64 cells. The problem

is evolved for 500 Myr, which is long enough for the consolidated HII region to

evolve to a steady state.

Fig. 2.12 shows slices of neutral fraction on x− y and x− z planes through

the axis connecting the sources. The consolidated HII region is similar in size to

the solution presented by WA11, but noticeably rounder near its extremities. We

do not include diffuse ionizing recombination radiation in our formalism, and thus

this must be a consequence of FLD. Since we are solving the same problem, we

expect the WA11 solution is closer to the truth, but note that the FLD solution is

an acceptable approximation to truth given our intended application to large scale

reionization.

2.4.3 Parallel Scalability

Excellent scalability of our radiation diffusion solver is fundamentally im-

portant to being able to simulate reionization in large cosmological volumes. Once

the mass and spatial resolution requirements are established to adequately model

the smallest galaxies in the source population, the problem becomes one of “weak

scaling"; i.e., increasing the simulated volume at fixed resolution, rather than in-

creasing the resolution in a fixed volume. To test the scaling of our solver, we

create a 3D cubic array of isothermal Strömgren sphere test problems as described

in Sec. 2.4.1, each resolved by a 643 cell subvolume of the global mesh. A point

source is placed in the center of each subvolume. Each subvolume is assigned to

an MPI task which is in turn executed on one core of the Cray XT5 machine

“Kraken" operated by the National Institute for Computational Science (NICS) at

ORNL. Thus a simulation with P 3 point sources is simulated with a global mesh

of dimension (64P )3 cells, and executes on P 3 cores.
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Fig. 2.13 shows the weak scaling result for P=2, 4, 8, 16, 32, corresponding

to meshes of size 1283, 2563, 5123, 10243, and 20483 cells. We see that logarithmic

scaling is achieved to at least 32,768 MPI tasks (and point sources) on a 20483 test

problem with 643 tiles. This is the expected optimal scaling results, which reflects

the scalability of the hypre geometric multigrid routines used to solve the linear

system of equations resulting from the discretization and linearization of the FLD

equation (see Sec. 2.3).

2.4.4 Execution Speed Tests

Here we examine the relative execution speed between a pair of Enzo cosmo-

logical simulations with and without FLD radiative transfer engaged, henceforth

referred to as RHD and HD models, respectively. The RHD model is a simula-

tion of inhomogeneous cosmic reionization in a 80 Mpc comoving volume resolved

by a uniform mesh of 32003 cells and the same number of dark matter particles.

The problem is partitioned into 253 = 15, 625 MPI tasks, each of which evolves

a 1283 tile of the global mesh and is assigned to a different processor core. The

physics model is as described in Sec. 2.2. The RHD model includes star formation

and feedback (radiative, thermal, and chemical) as described in Sec. 2.3.2, FLD

radiative transfer, and 6-species primordial gas chemistry and ionization. The

simulation was carried out on the Cray XT5 supercomputer architecture ORNL

Jaguar. The HD model is identical in all respects to the RHD model except that

the FLD solver is not called each timestep. The HD simulation corresponds to a

primordial 6-species hydro-cosmological simulation with star formation and super-

nova feedback which is similar in all respects to a standard Lyman alpha forest

simulation in which the IGM is ionized by a homogeneous UV background, treated

in the optically thin limit (e.g., Jena et al. (2005)).

Fig. 2.14 shows the cumulative wall time per core for the HD and RHD

models plotted as a function of 1/z. The inflection in the curves at 1/z ≈ 0.07

corresponds with the onset of star formation at z=14. Subsequently hot 106− 107

K gas is produced by supernova feedback in growing amounts which Courant limits

the timestep (see Fig. 2.14) and increases the cost of the HD simulation per unit
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time. The RHD model is more costly than the HD model by a factor which grows

from ∼ 2× at early times to ∼ 8× at late times. The reason for this is discussed

next.

In Fig. 2.15 we plot the timestep size versus 1/z for the two models. Focus-

ing on the curve labeled HD, we see that the timestep drops suddenly by roughly

an order of magnitude at z ≈ 0.07, which marks the onset of star formation.

This is due to a more stringent Courant limit on the timestep arising from shock-

heated gas surrounding star forming halos. The sharp downward spikes in the

timestep curve are short duration transients associated with restarting the calcu-

lation. Upon restart, the timestep is set to a low value, and then allowed to float

upward at a certain geometric rate per timestep until it again becomes globally

Courant-limited. Focussing on the curve labeled RHD, we see that it tracks the

HD timestep curve until 1/z ≈ 0.1, and thereafter slowly decreases until 1/z ≈ 0.13

where it is about 1/8 the size of the HD timestep. This means that at this time,

the RHD simulation is taking 8× as long as the HD simulation to evolve forward

in time. The smaller timestep is a consequence of the radiation subcycling algo-

rithm described in Sec. 2.3.4, which takes as input the relative change tolerance

parameter τtol, taken to be 0.01. The steady decrease in the timestep is understood

to be the consequence of the growth in the number of grid points in the I-front

transition region, which is proportional to the total area of the I-fronts times some

skin depth of the transition region.

In order to speed up the simulation, we increased the accuracy parameter τtol
to 0.02 at 1/z ≈ 0.1. This resulted in an approximately 3× increase in the timestep,

as can be seen in Fig. 2.15. Through separate tests on a smaller (1/64) volume

test at the same resolution (i.e., an 8003 simulation), we determined that this

change had a < 5% change on the redshift of overlap, which in the full simulation

is zreion ≈ 5.8. After overlap, we increased the accuracy parameter to τtol to 0.03,

resulting in a RHD timestep which is smaller than the HD timestep by a factor

of about 2.5. Using the small box tests, we have determined that if we raise the

radiation solve accuracy parameter to τtol to 0.05, the timestep becomes equal to

the Courant-limited HD timestep.
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2.5 Example Simulation: Cosmic Reionization by

Stellar Sources

To illustrate the application of our radiation hydrodynamic cosmological

code we simulate hydrogen reionization due to stellar sources in a comoving volume

of (20 Mpc)3 with a grid resolution of 8003 and the same number of dark matter

particles. This yields a comoving spatial resolution of 25 kpc and dark matter

particle mass of 4.8 × 105M�. This resolution yields a dark matter halo mass

function that is complete down to Mh = 108M�, which is by design, since this

is the mass scale below which gas cooling becomes inefficient around the redshift

range of reionization. However, due to our limited boxsize, our halo mass function

is incomplete above Mh ≈ 1011M�.

We simulate a ΛCDM cosmological model with the following parameters:

ΩΛ = 0.73, Ωm = 0.27, Ωb = 0.047, h = 0.7, σ8 = 0.82, ns = 0.95, where

these are, respectively, the fraction of the closure density at the present epoch in

vacuum energy, matter, baryons; the Hubble contant in units of 100 km/s/Mpc;

the power spectrum normalization; and the slope of the scalar fluctuations of

the primordial power spectrum. These are consistent with the 7-year WMAP

measurements (Komatsu et al., 2011). A Gaussian random field is initialized at

z=99 using the Enzo initial conditions generator init using the Eisenstein & Hu

(1999) fits to the transfer functions. The star formation efficiency parameter f∗ is

adjusted to match the observed star formation rate density in the interval 6 ≤ z ≤
10 from Bouwens et al. (2011). Further details of the simulation input parameters

and assumptions are described in Chapter 3. The simulation consumed 255,000

core-hrs running on 512 cores of the Cray XT5 system Kraken operated by the

National Institute for Computational Science at ORNL.

Fig. 2.16 shows projections of density, radiation energy density, and tem-

perature at z=9.18, 8, 7, and 5.99 through the simulation volume. Reionization

begins at z ≈ 10 with the first luminous sources inflating isolated HII regions, and

completes at z ≈ 6 after the HII regions merge and overlap. The HII regions are

roughly spherical until they begin to merge, which is indicative of the photon bud-
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get for reionization being dominated by fewer, more luminous sources, as opposed

to numerous low luminosity sources Zahn et al. (2007b). In general appearance

they are not dissimilar to the post-processing results of Iliev et al. (2006); Trac &

Cen (2007). An inspection of the temperature projections shows photoionized gas

in yellow, with smaller pockets of shock heated gas near the centers of HII regions,

resulting from thermal feedback from supernovae. This simulation is discussed in

detail in two forthcoming papers (So et al. 2013a,b).

2.6 Summary and Conclusions

We have described an extension of the Enzo code to enable the direct nu-

merical simulation of inhomogeneous cosmological ionization in large cosmological

volumes. By direct we mean all dynamical, radiative, and chemical properties

are solved self-consistently on the same mesh, as opposed to a postprocessing ap-

proach which coarse-grains the radiative transfer, as is done in other works (Iliev

et al., 2006; Zahn et al., 2007a; Trac & Cen, 2007; Trac et al., 2008; Shin et al.,

2008; Finlator et al., 2009b). Star formation and feedback are treated through a

parameterized phenomenological model, which is calibrated to observations. The

goal of this work is to achieve a higher level of self-consistency in modeling pro-

cesses occuring outside the virial radii of luminous sources to better understand

how recombinations in the clumpy intergalactic medium retard reionization and

how radiative feedback affects star formation in low mass galaxies.

In its current incarnation, the model has three principal limitations. First,

it is formulated on a fixed Eulerian grid, which limits the spatial resolution that

can be achieved. With a judicious choice of grid sizes and resolutions, one can sam-

ple the dark matter halo mass function over a significant range of scales, thereby

including important sources and sinks of ionizing radiation. One can do a good

job resolving the Jeans length in the diffuse IGM, which is important for “Jeans

smoothing" (Gnedin, 2000b). However one cannot resolve the internal structure

of halos, which is important for calculating star formation rates and ionizing es-

cape fractions. In this work we do not claim to be modeling these aspects self-
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consistently, but rather calibrate these unknown parameters to observations. In

Reynolds et al. (2013) we present the extention of our method to adaptive mesh

refinement (AMR), which directly addresses the numerical resolution limitation.

The second model limitation is the use of FLD to model the transport of

radiation, as opposed to a higher order moment method such as OTVET (Gnedin

& Abel, 2001; Petkova & Springel, 2009). FLD has the well known deficiency

of not casting shadows behind opaque objects. However, as we have shown in

Sec. 2.4, casting shadows is not required to predict the evolution of the ionized

volume fraction in a cosmological reionization simulation, or to compute the pho-

toevaporation time for an opaque cloud. Our a priori assumption that small scale

features like shadows will have little effect on large scale reionization processses are

borne out by these validation test. For simulating smaller scale processes where

shadows may be important, such as the effect of halo substructure on the escape

fraction of ionizing radiation, we note that our implicit solution methodology is

easily extended to higher-order moment methods (Hayes & Norman, 2003; Petkova

& Springel, 2009).

The third model limitation is our simplified model for the radiation spec-

trum, which at the moment consists of monochromatic and grey with an assumed

fixed SED. For simulating hydrogen reionization by soft UV radiation from stellar

sources this spectral model is quite adequate compared to a multifrequency model

(see RT09, Sec. 4.1). However for harder radiation sources, such as Pop III stars

and AGN, our model makes I-fronts that are too sharp, and does not produce the

preheating of gas ahead of the I-front by more penetrating, higher energy photons

(“spectral hardening"). The principal difference between our model and a multifre-

quency/multigroup model is in the temperature distribution of the gas. Our model

will slightly overpredict the temperature inside an HII region, and underpredict

the temperature outside of it, because all of the radiation energy is absorbed inside

the I-front. Another way to think about this is that in the multifrequency model

in which the highest energy photons leak out of the HII region, the characteristic

temperature of the radiation field inside the HII region is lower than outside of

it. The standard approach for dealing with the limitations of our spectral model
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is to move to a multifrequency or multigroup discretization of the radiation field

(Mirocha et al., 2012). This is straightforward in practice, however the compu-

tational cost increases linearly with the number of frequencies/groups. With the

speed and memory of modern supercomputers is this not a severe limitation, ex-

cept for the very largest grids. Indeed we have implemented a multigroup FLD

version of our method which is undergoing testing at the present time.

Despite these limitations, the method is robust and acceptably fast. On

verification tests for which analytic solutions are known, we have shown the method

to be capable of high accuracy; the accuracy being governed by grid resolution and

the error tolerance parameter in the radiation diffusion calculation. In validation

tests, for which no analytic solution exists, we have shown that our method gives

results which are qualitatively and quantitatively similar with those obtained with

ray tracing and Monte Carlo methods (Iliev et al., 2006, 2009; Petkova & Springel,

2009; Wise & Abel, 2011), with what differences exist understood to be the result

of the geometric simplification of the radiation field inherent in FLD, and the

difference in radiation spectrum modeling.

Regarding the speed of our method, we have shown by direct comparison

that a radiation hydrodynamic simulation of cosmological reionization costs about

8× that of a corresponding pure hydrodynamic model in which the IGM is ionized

by a uniform UV background. We have not compared it to a postprocessing

radiative transfer code using ray tracing, although this would be a useful thing to

do. Our method, which exhibits O(N logN) scaling, should be competitive with,

and possibly even beat ray tracing methods for very large numbers of sources.

Our method is highly scalable, as demonstrated in Sec. 4.3. This is due

to two factors: (1) modeling radiation as a field instead of a collection of rays,

which has no explicit dependence on the number of point sources; and (2) the

implementation of our radiation solver using optimally scalable parallel multigrid

algorithms. The application of our method to cosmological reionization by stellar

sources is briefly discussed in Sec. 5 and graphically illustrated in Fig. 16. The

largest simulation we have completed to date with our method is identical to design,

physics, and numerical resolution as that in Fig. 16, but in a volume 64 times as
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large (80 Mpc vs. 20 Mpc). It was carried out on a mesh of size 32003 using 46,875

compute cores on the Cray XT5 architecture Jaguar. Although the simulation

cost many millions of core-hrs to compute, it is the first simulation to cover the

full range of halo masses thought to contribute to reionization and at the same

time modeling the gravitational, baryonic and radiative feedback processes self-

consistently resolving the Jeans smoothing scale in the ionized IGM. The results

of this simulation will be presented in forthcoming papers (So et al. 2013a,b).

This research was partially supported by National Science Foundation grants

AST-0808184 and AST-1109243 and Department of Energy INCITE award AST025
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Robert Harkness who passed away shortly before this manuscript was completed.
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“Direct Numerical Simulation of Reionization I: Numerical Methods and Tests",

(submitted ApJ), (2013).
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Figure 2.4: HII slices perpendicular to the z axis (log10 scale). We plot the

evolution of the ionized region at times of 10, 100 and 500 Myr (columns), and using

spatial meshes of 163, 323, 643 and 1283 (rows), to demonstrate the convergence to

a spherical bubble.



46

0.0 0.2 0.4 0.6 0.8 1.0
r/Lbox

45

40

35

30

25

20

15

10

lo
g(

E)

Radiation energy density Profiles, z = 3.547

0.0 0.2 0.4 0.6 0.8 1.0
r/Lbox

45

40

35

30

25

20

15

10

lo
g(

E)

Radiation energy density Profiles, z = 2.423

0.0 0.2 0.4 0.6 0.8 1.0
r/Lbox

45

40

35

30

25

20

15

10

lo
g(

E)

Radiation energy density Profiles, z = 1.692

0.0 0.2 0.4 0.6 0.8 1.0
r/Lbox

7

6

5

4

3

2

1

0

1

lo
g(

xH
I),

 lo
g(

xH
II)

HI, HII Profiles, z = 3.547
xHI
xHII

0.0 0.2 0.4 0.6 0.8 1.0
r/Lbox

7

6

5

4

3

2

1

0

1

lo
g(

xH
I),

 lo
g(

xH
II)

HI, HII Profiles, z = 2.423
xHI
xHII

0.0 0.2 0.4 0.6 0.8 1.0
r/Lbox

7

6

5

4

3

2

1

0

1

lo
g(

xH
I),

 lo
g(

xH
II)

HI, HII Profiles, z = 1.692
xHI
xHII

Figure 2.5: Spherically-averaged radial profiles of radiation energy density and

ionization fractions for the cosmological ionization test in section 2.4.1 using a

1283 mesh and time step tolerance τtol = 10−4. Plots are shown at z=3.547, 2.423

and 1.692 (left to right), with the radiation energy density on the top row and

ionization fractions on the bottom row.
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function of the average time step size. As with Figure 2.3, the runtime scales
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until other sources of error dominate the calculation.
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Figure 2.7: Test 4 (reionization of a cosmological density field). Slices of neutral

fraction (top) and temperature (bottom) at t = 50 kyr (left) and t = 200 kyr

(right).
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Figure 2.9: Test 7. Photo-evaporation of a dense clump. Clockwise from upper

left: Slices through the clump midplane of neutral fraction, pressure, temperature,

and density at time t = 10 Myr.
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Figure 2.10: Test 7. Photo-evaporation of a dense clump. Same as Fig. 2.9 at

time t = 50 Myr.
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Figure 2.11: Test 7. Photo-evaporation of a dense clump. Line cuts from the

point source through the center of the cloud at t = 1, 10, 50 Myr for (clockwise

from upper left) density, temperature, pressure, and neutral fraction.
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t = 500 Myr in the consolidated HII region test.
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behavior is essentially logN, which is characteristic of geometric multigrid.
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corresponds to the onset of Pop II star formation in dwarf galaxies.
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simulations with (RHD) and without (HD) radiative transfer. The simulations use

identical cosmological initial conditions within a 80 Mpc periodic box resolved with

32003 cells and dark matter particles. The decrease in the RHD timestep at 1/z ≈
0.1 corresponds to the expansion of the first isolated HII regions. Downward spikes

in the curves are transient artifacts resulting from restarting the calculation.
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Figure 2.16: Application of the numerical methods described in this paper to

cosmological hydrogen reionization. Shown are projections of density, radiation

energy density, and temperature at z=9.18, 8, 7, and 5.99 through a (20 Mpc)3

simulation volume resolved with mesh of 8003 Eulerian cells and 8003 dark matter

particles.



Chapter 3

Recombinations, Clumping Factors,

and the Photon Budget

3.1 Introduction

The Epoch of Reionization (EoR) is an active area of research observation-

ally, theoretically, and computationally. Observations constrain the tail end of hy-

drogen reionization to the redshift range z = 6− 8 (Robertson et al., 2010). These

observations include the presence of Gunn-Peterson troughs in the Ly α absorption

spectra of high redshift quasars (Fan et al., 2006), and the strong evolution of Ly-

man α emitter luminosity function (Robertson et al. 2010 and references therein.)

Observations from the WMAP and Planck satellites tell us that the universe was

substantially ionized by z ≈ 10 but can say little about the reionization history

or topology (Jarosik et al., 2011; Planck Collaboration et al., 2013). High redshift

21cm observations hold forth great promise of elucidating the details of this tran-

sition (Barkana & Loeb, 2007; Pritchard & Loeb, 2012), but these results are still

in the future.

It is believed that early star forming galaxies provided the bulk of the UV

photons responsible for reionization (Robertson et al., 2010, 2013), but early QSOs

may have also contributed (Madau et al., 1999; Bolton & Haehnelt, 2007; Haardt

& Madau, 2012). The “galaxy reionizer" hypothesis has been greatly strengthened

54
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by the recent advances in the study of high redshift galaxies afforded by the IR-

sensitive Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (e.g.

Robertson et al., 2010, 2013; Bouwens et al., 2011a,b; Oesch et al., 2013). Within

uncertainties, the luminosity function of z = 6 Lyman break galaxies (LBGs)

appears to be sufficient to account for reionization at that redshift from a photon

counting argument (Bolton & Haehnelt, 2007; Robertson et al., 2010; Bouwens

et al., 2012). Among the observational uncertainties are the faint-end slope of the

galaxy luminosity function (Wise & Cen, 2009; Labbé et al., 2010; Bouwens et al.,

2012), the spectral energy distribution of the stellar population (Cowie et al., 2009;

Willott et al., 2010; Haardt & Madau, 2012), and the escape fraction of ionizing

photons (Wyithe et al., 2010; Yajima et al., 2011; Mitra et al., 2013). Among the

theoretical uncertainties are the number of ionizing photons per H atom required

to bring the neutral IGM to its highly ionized state by z = 6, the clumping factor

correction to the mean IGM recombination time (Pawlik et al., 2009; Raicevic &

Theuns, 2011; Finlator et al., 2012; Shull et al., 2012; Robertson et al., 2013), and

the contribution of Pop III stars and accreting black holes to the early and late

stages of reionization (Bolton & Haehnelt, 2007; Trac & Gnedin, 2011; Ahn et al.,

2012).

When assessing whether an observed population of high-z galaxies is capable

of reionizing the universe (e.g., Bolton & Haehnelt (2007); Robertson et al. (2010)),

observers often use the criterion derived by Madau et al. (1999) for the ionizing

photon volume density Ṅion necessary to maintain the clumpy IGM in an ionized

state:

Ṅion(z) =
n̄H(0)

t̄rec(z)
= (1051.2s−1Mpc−3)

(
C

30

)
×
(

1 + z

6

)3(
Ωbh

2
50

0.08

)2

, (3.1)

where n̄H(0) is the mean comoving number density of H atoms, C ≡
〈n2

H II〉/〈nH II〉2 is the H II clumping factor (angle brackets denote volume aver-

age over a suitably large volume that the average is globally meaningful), and the

rest of the symbols have their usual meaning. The origin of this formula is a sim-
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ple photon counting argument, which says that in order to maintain ionization at

a given redshift z, the number of ionizing photons emitted in a large volume of

the universe multiplied by a characteristic recombination time, denoted t̄rec, must

equal the number of hydrogen atoms: Ṅion × t̄rec = n̄H(0). The clumping factor

enters as a correction factor to account for the density inhomogeneities in the IGM

induced by structure formation. We note that t̄rec is not the volume average of

the local recombination time of the ionized plasma, as this would heavily weight

regions with the longest recombination times; i.e. voids. A proper derivation of

Equation (3.1) shows that t̄rec ∝ 〈t−1
rec〉−1, which weights regions with the shortest

recombination times; i.e. regions at the mean density and above.

Equation (3.1) is based on a number of simplifying assumptions discussed by

Madau et al. (1999), including the assumption t̄rec � t. It is this assumption that

allows history-dependent effects to be ignored, and a quasi-instantaneous analysis

of the photon budget for reionization to be done. The validity of this assumption is

naturally redshift dependent, but it is also dependent upon the adopted definition

of t̄rec. A second comment about Equation (3.1) is that it does not ask how many

ionizing photons per H atom are required to convert a neutral IGM to a fully

ionized one, only how many are required to maintain the IGM in an ionized state.

Because the recombination time is short at high redshifts, it is expected that this

number is greater than one.

In this paper we examine these and related topics within the context of

a direct numerical simulation of cosmic reionization based on a new flux-limited

diffusion radiation transport solver installed in the Enzo code (Norman et al.,

2013) (hereafter Paper I). Our approach self-consistently couples all the relevant

physical processes (gas dynamics, dark matter dynamics, self-gravity, star forma-

tion/feedback, radiative transfer, nonequilibrium ionization/recombination, heat-

ing and cooling) and evolves the system of coupled equations on the same high

resolution mesh. We refer to this approach as direct numerical simulation or reso-

lution matched, in contrast to previous approaches which decouple and coarse-grain

the radiative transfer and ionization balance calculations relative to the underlying

dynamical calculation. Our method is scalable with respect to the number of radi-
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ation sources, size of the mesh, and the number of computer processors employed.

This scalability permits us to simulate cosmological reionization in large cosmo-

logical volumes (L ∼ 100 Mpc) while directly modeling the sources and sinks of

ionizing radiation, including radiative feedback effects such as photoevaporation of

gas from halos, Jeans smoothing of the IGM, and enhanced recombination due to

small scale clumping. In this the first of several application papers, we investigate

in a volume of modest size (L=20 Mpc) the mechanics of reionization from stellar

sources forming in high-z galaxies, the role of gas clumping, recombinations, and

the photon budget required to complete reionization.

By analyzing this simulation we are able to critically examine the validity

of Equation (3.1) as a predictor of when the end of EoR will occur, and we can

calculate the integrated number of ionizing photons per H atom needed to ionize

the simulated volume γion/H =
∫
dtṄion/n̄H(0). Ignoring recombinations within

the virial radii of collapsed halos, we find γion/H ≈ 2. This result supports the

“photon starved” reionization scenario discussed by Bolton & Haehnelt (2007).

We also examine whether modern revisions to Equation (3.1) using alternatively

defined clumping factors (Pawlik et al., 2009; Raicevic & Theuns, 2011; Finlator

et al., 2012; Shull et al., 2012) are improvements over the original. We find they

systematically overestimate the redshift of reionization completion zreion because

the condition t̄rec/t � 1 is never obeyed. We study the accuracy and validity of

the time-dependent analytic model of Madau et al. (1999), and find that while it

is in better agreement with the simulation, it also overestimates zreion because it

ignores important corrections to the ionization term at early and late times.

This paper is organized as follows: in §3.2 we discuss the design criteria for

the simulation and briefly outline the basic equations and implementation of the

FLD radiation transport model, referring the reader to Paper I for a more complete

description of the numerical algorithms and tests. In §3.3, we present some general

features of the simulation and demonstrate its broad consistency with the observed

star formation rate density and high redshift galaxy luminosity function. In §3.4

we examine the accuracy of different clumping factor approaches to estimating

the redshift of complete reionization. In §3.5 we derive a global estimate for the
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circumgalactic absorption of ionizing radiation from our simulation. In §3.6 we test

a simple analytic model for the evolution of the ionized volume fraction QH II and

present an improvement to the model which better agrees with our simulation.

In §3.7 we discuss implications of our results on the current understanding of

reionization. And finally, in §3.8 we end with a summary of our main results and

conclusions.

3.2 Method

3.2.1 Simulation Goals and Parameters

We use the Enzo code (The Enzo Collaboration et al., 2013), augmented

with a flux-limited diffusion radiative transfer solver and a parameterized model

of star formation and feedback (Norman et al., 2013) to simulate inhomogeneous

hydrogen reionization in a 20 Mpc comoving box in a WMAP7 ΛCDM cosmological

model. Details of the numerical methods and tests are provided in Paper I. Here

we briefly describe the simulation’s scientific goals and design considerations to

put it into perspective with other reionization simulations. For completeness, the

physical equations we solve and the treatment of the ionizing sources and radiation

field are included below.

Our principal goal is to simulate the physical processes occurring in the

IGM outside the virial radii of high redshift galaxies in a representative realization

of inhomogeneous reionization. We wish to simulate the early, intermediate, and

late phases of reionization in a radiation hydrodynamic cosmological framework so

that we may study the nonequilibrium ionization/recombination processes in the

IGM at reasonably high resolution self-consistently coupled to the dynamics. In

this way we can study such effects as optically thick heating behind the I-fronts

(Abel & Haehnelt, 1999), Jeans smoothing (Shapiro et al., 1994; Gnedin, 2000b),

photoevaporation of dense gas in halos (Shapiro et al., 2004), and nonequilibrium

effects in the low density voids. Because we carry out our simulation on a fixed

Eulerian grid, we do not resolve the internal processes of protogalaxies very well.

In this sense, our simulation is not converged on all scales. Nonetheless Equa-
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tions (3.2) to (3.7) are solved everywhere on the mesh self-consistently, including

ionization/recombination and radiative transfer inside protogalaxies. The escape

of ionizing radiation from galaxies to the IGM is thus simulated directly, and not

introduced as a parameter. We use a star formation recipe that can be tuned to

closely reproduce the observed high-z galaxy luminosity function (LF), star for-

mation rate density (SFRD), and redshift of reionization completion. This gives

us confidence that we are simulating IGM processes in a realistic scenario of reion-

ization.

We simulate a WMAP7 (Jarosik et al., 2011) ΛCDM cosmological model

with the following parameters: ΩΛ = 0.73, Ωm = 0.27, Ωb = 0.047, h = 0.7,

σ8 = 0.82, ns = 0.95, where the symbols have their usual meanings. A Gaussian

random field is initialized at z = 99 using the Enzo initial conditions generator inits

using the Eisenstein & Hu (1999) fits to the transfer functions.The simulation is

performed in a comoving volume of (20 Mpc)3 with a grid resolution of 8003 and

the same number of dark matter particles. This yields a comoving spatial resolu-

tion of 25 kpc and dark matter particle mass of 4.8×105M�. This resolution yields

a dark matter halo mass function that is complete down to Mh = 108M�, which is

by design, since this is the mass scale below which gas cooling becomes inefficient.

However, due to our limited boxsize, our halo mass function is incomplete above

Mh ≈ 1011M� (see Figure 3.4). In a forthcoming paper we will report on a simu-

lation of identical design and resolution as this one, but in a volume 64 times as

large, which contains the rarer, more massive halos. With regard to resolving the

diffuse IGM, our 25 kpc resolution equals the value recommended by Bryan et al.

(1999) to converge on the properties of the Ly α forest at lower redshifts, is 3×
better than the optically thin high resolution IGM simulation described in Shull

et al. (2012), and nearly 4× better than the inhomogeneus reionization simulation

described in Trac et al. (2008).

As described below in §3.2.4, we use a parameterized model of star formation

calibrated to observations of high redshift galaxies. The star formation efficiency

parameter f∗ is adjusted to match the observed star formation rate density in

the interval 6 ≤ z ≤ 10 from Bouwens et al. (2011a). The simulation consumed



60

255,000 core-hrs running on 512 cores of the Cray XT5 system Kraken operated

by the National Institute for Computational Science at ORNL.

3.2.2 Governing Equations

The equations of cosmological radiation hydrodynamics implemented in the

Enzo code used for this research are given by the following system of partial dif-

ferential equations (Paper I):

∇2φ =
4πg

a
(ρb + ρdm − 〈ρ〉), (3.2)

∂tρb +
1

a
vb · ∇ρb = −1

a
ρb∇ · vb − ρ̇SF , (3.3)

∂tvb +
1

a
(vb · ∇)vb = − ȧ

a
vb −

1

aρb
∇p− 1

a
∇φ, (3.4)

∂te+
1

a
vb · ∇e = −2ȧ

a
e− 1

aρb
∇ · (pvb)

− 1

a
vb · ∇φ+G− Λ + ėSF (3.5)

∂tni +
1

a
∇ · (nivb) = αi,jnenj − niΓ

ph
i ,

i = 1, . . . , Ns (3.6)

∂tE +
1

a
∇ · (Evb) = ∇ · (D∇E)− ȧ

a
E

− cκE + η (3.7)

Equation (3.2) describes the modified gravitational potential φ due to baryon den-

sity ρb and dark matter density ρdm, with a being the cosmological scale factor,

g being the gravitational constant, and 〈ρ〉 being the cosmic mean density. The

collisionless dark matter density ρdm is evolved using the Particle Mesh method

(equation not shown above), as described in Hockney & Eastwood 1988; The Enzo

Collaboration et al. 2013. Equations (3.3), (3.4) and (3.5) are conservation of mass,

momentum and energy, respectively, in a comoving coordinate system (Bryan et al.,

1995; The Enzo Collaboration et al., 2013). In the above equations, vb ≡ a(t)ẋ is

the proper peculiar baryonic velocity, p is the proper pressure, e is the total energy

per unit mass, and G and Λ are the heating and cooling coefficients. Equation (3.6)
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describes the chemical balance between the different ionization species (in this pa-

per we used H I, H II, He I, He II, He III densities) and electron density. Here,

ni is the comoving number density of the ith chemical species, ne is the electron

number density, nj is the ion that reacts with species i, and αi,j are the reaction

rate coefficient between species i and j (Abel et al., 1997; Hui & Gnedin, 1997),

and finally Γphi is the photoionization rate for species i.

3.2.3 Radiation Transport

Equation (3.7) describes radiation transport in the Flux Limited Diffusion

(FLD) approximation in an expanding cosmological volume (Reynolds et al., 2009;

Norman et al., 2013). E is the comoving grey radiation energy density. The flux

limiter D is a function of E, ∇E, and the opacity κ (Morel, 2000), and has the

form:

D = diag (D1, D2, D3) , where (3.8)

Di = c
(
9κ2 +R2

i

)−1/2
, and (3.9)

Ri = max

{
|∂xi

E|
E

, 10−20

}
(3.10)

In the calculation of the grey radiation energy density E, we assume Eν(x, t, ν) =

Ẽ(x, t)χE(ν), therefore:

E(x, t) =

∫ ∞
ν1

Eν(x, t, ν) dν

= Ẽ(x, t)

∫ ∞
ν1

χE(ν) dν, (3.11)

which separates the dependence of E on coordinate x and time t from frequency

ν. Here χE is the spectral energy distribution (SED) taken to be that of a Pop II

stellar population similiar to one from (Ricotti et al., 2002).

3.2.4 Star Formation and Feedback

Because star formation occurs on scales not resolved by our uniform mesh

simulation, we rely on a subgrid model which we calibrate to observations of star
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formation in high redshift galaxies. The subgrid model is a variant of the Cen

& Ostriker (1992) prescription with two important modifications as described in

Smith et al. (2011). In the original Cen & Ostriker (1992) recipe, a computa-

tional cell forms a collisionless “star particle" if a number of criteria are met: the

baryon density exceeds a certain numerical threshold; the gas velocity divergence

is negative, indicating collapse; the local cooling time is less than the dynamical

time; and the cell mass exceeds the Jeans mass. In our implementation, the last

criterion is removed because it is always met in large scale, fixed-grid simulations,

and the overdensity threshold is taken to be ρb/(ρc,0(1 + z)3) > 100, where ρc,0 is

the critical density at z = 0. If the three remaining criteria are met, then a star

particle representing a large collection of stars is formed in that timestep and grid

cell with a total mass

m∗ = f∗mcell
∆t

tdyn
, (3.12)

where f∗ is an efficiency parameter we adjust to match observations of the cosmic

star formation rate density (SFRD) (Bouwens et al., 2011a), mcell is the cell baryon

mass, tdyn is the dynamical time of the combined baryon and dark matter fluid,

and ∆t is the hydrodynamical timestep. An equivalent amount of mass is removed

from the grid cell to maintain mass conservation.

Although the star particle is formed instantaneously (i.e., within a single

timestep), the conversion of removed gas into stars is assumed to proceed over a

longer timescale, namely tdyn, which more accurately reflects the gradual process

of star formation. In time ∆t, the amount of mass from a star particle converted

into newly formed stars is given by

∆mSF = m∗
∆t

tdyn

t− t∗
tdyn

e−(t−t∗)/tdyn , (3.13)

where t is the current time and t∗ is the formation time of the star particle. To

make the connection with Equation (3.4), we have ρ̇SF = ∆mSF/(Vcell∆t), where

Vcell is the volume of the grid cell.

Stellar feedback consists of the injection of thermal energy, gas, and radi-

ation to the grid, all in proportion to ∆mSF . The thermal energy ∆eSF and gas
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mass ∆mg returned to the grid are given by

∆eSF = ∆mSF c
2εSN , ∆mg = ∆mSFfm∗, (3.14)

where c is the speed of light, εSN is the supernova energy efficiency param-

eter, and fm∗ = 0.25 is the fraction of the stellar mass returned to the grid as

gas. Rather than add the energy and gas to the cell containing the star particle,

as was done in the original Cen & Ostriker (1992) paper, we distribute it evenly

among the cell and its 26 nearest neighbors to prevent overcooling. As shown by

Smith et al. (2011), this results in a star formation recipe which can be tuned to

reproduce the observed SFRD. This is critical for us, as we use the observed high

redshift SFRD to calibrate our reionization simulations.

To calculate the radiation feedback, we define an emissivity field η(x) on

the grid which accumulates the instantaneous emissivities of all the star particles

within each cell. To calculate the contribution of each star particle i at time t we

assume an equation of the same form for supernova energy feedback, but with a

different energy conversion efficiency factor εUV . Therefore

η =
∑

i

εuv
∆mSF,ic

2

Vcell∆t
(3.15)

Emissivity η is in units of erg s−1cm−3. The UV efficiency factor εuv is taken

from Ricotti et al. (2002) as 4π × 1.1× 10−5, where the factor 4π comes from the

conversion from mean intensity to radiation energy density.

3.2.5 Data Analysis

Due to the enormous amount of data produced by the simulation (one

output file is about 100 GB), we needed a scalable tool suited to the task of

organizing and manipulating the data into human readable form. We use the

analysis software tool yt (Turk et al., 2011) specifically created for doing this type

of vital task. It is a python based software tool that does “Detailed data analysis

and visualizations, written by working astrophysicists and designed for pragmatic

analysis needs." yt is open source and publicly available at http://yt-project.org.
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Figure 3.1: H I density on slices through the 20 Mpc volume showing the growth,

percolation, and final overlap of H II regions. Panels show z = 9.18, 8.0, 7.0, 6.1.

The box becomes fully ionized at z = 5.8 as the last neutral islands are overrun by

the I-fronts. Regions of extremely low H I density are shock-heated bubbles due

to supernova feedback.

3.3 General Results

Here we first present the basic properties of the simulation before delving

into specific topics in subsequent sections. The star formation and feedback param-

eters for this simulation are f∗ = 0.1, fm∗ = 0.25, εSN = 10−5, εUV = 1.38 × 10−4.

Figure 3.1 shows the reionization process as it proceeds through growth, perco-

lation, and final overlap of ionized hydrogen (H II) regions driven by ionizing

radiation from star forming galaxies. We plot the neutral hydrogen (H I) density

on a slice through the densest cell in the volume at redshifts z = 9.18, 8.0, 7.0, 6.1.

At z = 9.18 several isolated quasi-spherical I-fronts are intersected by the slice
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Figure 3.2: Evolution of the ionized volume fraction versus redshift for hydrogen

ionized to less than 1 neutral in 103 atoms. As redshift decreases, the volume

filling fraction grows rapidly until around redshift of 6, at which time the rate of

growth slows significantly as the last neutral island is ionized . The sensitivity of

this curve to ionization level is discussed in §3.3.1.

plane. These grow and have begun to merge by z = 8.0. By z = 7.0 the topology

is beginning to invert, in that there are now isolated peninsulas of H I gas em-

bedded in an otherwise ionized IGM. By z = 6.1 the remaining neutral island has

almost disappeared as it is being irradiated from all sides. We can also see in the

figure small patches of extremely low H I density; these correspond to bubbles of

shock heated gas near galaxies heated to above 106K in temperature by supernova

feedback.

Figure 3.2 plots the evolution of the ionized volume fraction QH II versus

redshift. Here a cell is called ionized if ρH II/ρH ≥ 0.999 (In §3.3.1 we discuss the
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sensitivity of this curve to level of ionization.) The first ionizing sources turn on

at z ∼ 10 in this simulation. The ionized volume fraction rises rapidly, reaching

0.5 at z ≈ 6.8, 0.95 at z ≈ 6.0, and near unity at z ≈ 5.8. We compare this

evolution with the predictions of the simple analytic model introduced by Madau

et al. (1999) in §3.6. For now we only draw attention to the flattening of the

curve in the redshift interval 5.8 ≤ z ≤ 6. This is the signature of neutral islands

being ionized by I-fronts converging in 3D, as opposed to being ionized by internal

sources.

Our simulation was not designed to complete reionization by a certain fidu-

cial redshift. Rather we adjusted our star formation efficiency parameter f∗ so that

we can approximately match the star formation rate density (SFRD) in (Bouwens

et al., 2011a). Our SFRD is shown in Figure 3.3, along with the Bouwens data,

plotted without error bars. For reference we also include the fitting function de-

scribed in (Haardt & Madau, 2012). This shows that our simulated universe is

one that produces approximately the same amount of stars in a given comoving

volume, albeit a bit low relative to the data. We also note that the SFRD begins

to flatten out at z ≈ 6.5, and even turns over after overlap at z ≈ 5.8, rather

than continuing to rise as indicated by the data points. This is an artifact of the

small box size as a simulation completed in a 80 Mpc comoving on a side box

with identical physics, mass, and spatial resolution and star formation/feedback

parameters does not show this slowing down of the SFRD. This will be reported

on in a future paper.

To check and make sure that our simulation is giving us a fair representation

of the universe, we plot several more quantities and look for any anomalies. In

Figure 3.4, we see that our halo mass function at redshift of z ∼ 6 matches well

with the Warren fit implemented in yt (Warren et al., 2006; Turk et al., 2011). The

mass function captures haloes down to ∼108M�, which as previously stated was a

simulation design criterion. The haloes are found by first running the parallelHOP

halo finder installed in yt (Skory et al., 2010), then taking the linked list of dark

matter particles for each halo and wrapping the region around them in an ellipsoidal

3D container introduced in yt 2.4. The 3D container enables the query of the fluid
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Figure 3.3: A comparison of simulated and observed star formation rate densities

(SFRD) in units of M�yr−1Mpc−3 comoving. Blue curve labeled “This Work” is

from our 20 Mpc / 8003 simulation, and “Bouwens et al 2011” are observationally

derived data points from Bouwens et al. (2011b) plotted without error bars. The

leveling off of the simulated SFRD is an artifact of the small volume as a simulation

carried out with identical physics, mass, and spatial resolution but in 64 times the

volume does not show this effect.
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Figure 3.4: The dark matter halo mass function from our simulation (blue line).

Green line is the fit from (Warren et al., 2006). Our low-mass HMF is reasonably

complete down to Mhalo ≈ 108M�; i.e. halos believed to form stars efficiently due

to atomic line cooling. Incompleteness at the high mass end is due to the limited

volume sampled.

quantities of the haloes, such as baryonic, emissivity, radiation contents in addition

to the particle information. Since the dark matter particles used are ∼ 5× 105M�,

the 108M� dark matter haloes are considered to be resolved (Trenti et al., 2010).

As a final check that our ionizing source population is not wildly unrepre-

sentative of the observed universe, in Figure 3.5 we plot the luminosity function

of our simulated galaxies at z = 6.1 alongside the observational data points from

Table 5 of (Bouwens et al., 2007). The points in red are the bolometric luminosi-

ties for our galaxy population calculated directly from the z = 6.1 halo catalogue.

To calculate the luminosity of a given halo we sum the emissivity field within the
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Figure 3.5: Bolometric luminosity function derived from our simulation data

(red), compared with observational data points (blue) from (Bouwens et al., 2007).

3D ellipsoidal containers defined by the halos’ dark matter particles. Our error

bars are taken using one standard deviation of luminosity in the mass bins. Al-

though this is not proof that our simulation is matching observations exactly, it

does lend support that our realization of reionization is being driven by sources

not too dissimilar to those observed and is sufficient for the purposes of this study.

3.3.1 Quantitative Language

Earlier works on reionization such as Valageas & Silk (1999); Gnedin (2000a);

Miralda-Escudé et al. (2000); Iliev et al. (2006) speak of a two phase medium

composed of completely neutral and completely ionized hydrogen gas, while more

recent works (Ciardi et al., 2003; Zahn et al., 2007a; Shin et al., 2008; Petkova &

Springel, 2011b; Finlator et al., 2012) begin to consider the degree of ionization
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within ionized gas. The simplification of considering a two phase medium helps

reduce the simulation complexity and the language needed to describe the results.

However, as simulations become more sophisticated, the two phase paradigm be-

comes ill-suited to convey the wealth of information contained in the larger and

more detailed simulations. As people begin to describe the new simulations, the

old paradigm lingers and causes ambiguities. As a case in point, consider the ion-

ized volume filling fraction versus redshift, one of the simplest quantitative metrics

of any reionization simulation. Within the framework of a two-phase medium, this

is uniquely defined at any redshift. For a simulation such as ours which tracks the

ionization state in every cell, the volume filling fraction depends on the degree of

ionization, as illustrated in Figure 3.6.

This figure shows the evolution of the volume filling fraction of ionized gas

which exceeds a minimum local ionization fraction fi ≡ ρH II/ρH. The three thresh-

olds are fi = 0.1, 0.999, and 0.99999 and are labelled 10%, 1E3, 1E5, respectively

in Figure 3.6. We choose three specific levels not because we think they are more

important than others, but because it suits our later narrative and gives a range of

values. With the ionization state tracked by the simulation, we see that it is now

ambiguous to ask at what redshift 50% of the volume is ionized. In our simulation

this occurs at z ≈ 7, 6.8 and 6.5 for fi=0.1, 0.999, and 0.99999, respectively.

In the rest of this paper we will often report results as a function of these

three ionization fraction thresholds. To make the text easier to read we will use

the terms “Ionized” to designate fi=0.1, “Well Ionized” to designate fi=0.999, and

“Fully Ionized” to designate fi=0.99999 ionization levels.

3.3.2 Inside-out or Outside-in

Besides specifying the amount of ionized volume and levels of ionization,

another area where quantitative language is useful is in the description of the

reionization history. Since the Outside-in model was proposed by Miralda-Escudé

et al. (2000), there is gathering support for the opposing view of the Inside-out

model by Sokasian et al. (2003); Furlanetto et al. (2004a); Iliev et al. (2006) to

name a few. In Finlator et al. (2009b), the authors go even further and add to the
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Figure 3.6: Volume filling fraction of ionized gas versus redshift for three ionized

fraction thresholds. Top linscale; Bottom logscale. The three ionization levels are

“10%” in blue: fractional volume that have more than 1 ionized hydrogen atom

per 10 hydrogen atoms. “1E3” in green: fractional volume that have less than 1

neutral hydrogen atom per 103 hydrogen atoms. “1E5” in red: fractional volume

that have less than 1 neutral hydrogen atom per 105 hydrogen atoms.
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lexicon “Inside-outside-middle”, trying to describe the rich detail in a reionization

scenario. The basic Inside-out picture is that galaxies form in the peaks of the

dark matter density field and drive expanding H II regions into their surroundings

(expansion phase). These H II regions are initially isolated, but begin to merge

into larger, Mpc-scale H II regions due to the clustering of the galaxy distribution

(percolation phase). Driven by a steadily increasing global star formation rate

and recombination time (due to cosmic expansion) this process goes on until H II

regions completely fill the volume (overlap phase). In this picture, rare peaks in

the density field ionize first while regions that of lower density ionize later from

local sources that themselves formed later.

To investigate how reionization progresses in regions of different density,

we plot in Figure 3.7 the hydrogen neutral fraction (ρH I/ρH) versus overdensity

∆b ≡ ρb/〈ρb〉 in the left column, and in the right column a slice of the gas tempera-

ture, with redshift decreasing from top to bottom. One would expect if inside-out

ionization is the case, that the neutral fraction of higher density regions should

drop down more quickly than lower density regions. Below, we will describe each

row of the figure in more detail.

Looking at the redshift z = 10 row, we see in the gas temperature slice

that two isolated regions of ionization appear due to UV feedback from new stars,

indicated by the ∼104K gas . These regions correspond to places on the neutral

fraction vs. overdensity phase plot where a small amount of volume emerges around

∆b of 10−1−101, reaching Well Ionized to Fully Ionized levels. The T ∼107K region

corresponds to the extended tail of very low neutral fraction gas in the left column,

and indicates gas shock heated by supernova feedback. Although the cell count of

shock heated gas will grow, it remains orders of magnitude smaller compared to

the photoionized regions that we will emphasize. Even at this early stage, there

are high density regions above ∆b of 102-103 that are Well Ionized; this is due to

their close proximity to the ionizing sources, supporting the Inside-out paradigm.

Looking at the next row of figures at a redshift of z = 7, we see that the

volume of Well Ionized regions has increased greatly, and so has the shock heated

region in the phase plot. We also see that most, but not all the ∆b > 102 cells
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have reached the Well Ionized level. Although a large portion of the volume is

in the Well Ionized regime, the majority of the volume (the red pixels) is still

neutral, as we can see in the corresponding temperature slice plot. Most of the

volume is still well under 104K, where we expect the temperature to hover once

the ionization front has passed through the region and the gas has had time to

come into photoionization thermal equilibrium.

By a redshift of z = 6.1, we see from the left column that the region

that is ionized beyond the Fully Ionized level (an irony in terms, which means

there is definitely room for improvement in the naming convention), dominates

the simulation volume. There are still some regions not yet consumed by the

ionization front, as is seen on the top of the neutral fraction plot and on the right

according to the temperature slice.

The next row at redshift of z = 5.5 is after the entire volume has been

swept over by ionization fronts. Most of the volume is beyond the Well Ionized

level, except for a few cells around ∆b ∼ 102. There are also some cells that are still

neutral around ∆b ∼ 104. They remain neutral because their densities are so high,

leading to high recombination rates. Over time these cells will shift up and down

the neutral fraction plot with waves of star formation and supernova explosions

since they are likely close to the source of the radiation and kinetic energy.

The last row of Figure 3.7 is at redshift z ∼ 5, where we can see that the

previous few cells that have yet to reach Well Ionized levels around ∆b ∼ 102−103

have now disappeared. The cells that have not reached Well Ionized level before

are cells where either the radiation is not strong enough due to shielding effects or

the density is so high the gas recombines quickly even after being ionized. After

the ionization front has passed though and highly ionized the IGM, there is little

material left to shield against the radiation background and we see all but the

densest few cells become Well Ionized. The high density region reaching the same

ionization level after the under dense void, would fit well with the description

for the Outside-in model. Note that the remaining cells that finally reached Well

Ionized levels are orders of magnitude smaller in total volume compared to the rest

of the cells at the same density. So if we call cells of ∆b ∼ 102 filaments, not all
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dense filaments get Well Ionized until late in the EoR. Before the volume is filled

with radiation, these dense filaments are able to remain relatively neutral.

Unfortunately, the evolution of these redshift panels is not enough to cap-

ture the propagation of radiation fronts from the initial sources, but they do convey

the overall ionization history of the universe. The panels suggest that the regions

surrounding the ionization sources, whether they are dense cores, filaments, or

voids, are all affected by the radiation on roughly the same time scale. However,

the degree to which they are ionized is different. It is this difference, that is the

key to answering the original question, whether the universe ionizes inside-out or

outside-in.

When focusing on the ionization of the IGM, we temporarily neglect the

∆b ∼ 104 cells that shift ionization level with waves of star formation which com-

prise a tiny fraction of the volume. If we use the “Ionized” level to characterize

something as completely ionized and draw the line for neutral fraction at 10%,

then the universe reaches end of EoR before z ∼ 5.5. Since radiation propagates

from sources outward, that would correspond to the Inside-out picture. If we were

to instead draw the completely ionized line at “Well Ionized” level, then we can

see that even at z ∼ 5.5, there is a small peak in the dense region of the phase

diagram (∆b ∼ 2.4 × 102) that has yet to reach below the line to be considered

completely ionized. This would correspond to the Outside-in picture which reaches

end of EoR sometime before z ∼ 5 (or Inside-outside-middle if one uses the Finla-

tor et al. (2009b) terminology and considers the neutral peak to be a part of the

filaments). And finally, if we were to draw the line at the “Fully Ionized” level,

the universe has yet to ionize even for regions that are only 10× over dense. Thus

the ionization history is a story with many perspectives, and it really depends

on how the story teller draws the line as to whether Inside-out, Outside-in, or

Inside-outside-middle is a better qualitative description.
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Figure 3.7: Left: Phase diagram of neutral hydrogen fraction versus baryon over-

density with decreasing redshift from top to bottom. Middle: Slices of Log Temper-

ature [K] through a region that remained mostly neutral until just before overlap

at redshift of ∼5.8. Right: Slices of neutral hydrogen fraction through the same

region as before. Please refer to §3.3.2 for detailed description.
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3.4 Clumping Factors and the Photon Budget for

Reionization

3.4.1 Clumping Factor Analysis of Madau

In this section we begin our examination of Equation (3.1) fromMadau et al.

(1999) as an accurate predictor of when reionization completes, focusing on the

clumping factor. While it is true that the Madau-type analysis was not designed

to predict the precise redshift for reionization completion, only the ionization rate

density needed to maintain the IGM in an ionized state after reionization has

completed, it is effectively being used in this way when it is applied to galaxy pop-

ulations at increasingly higher redshifts z = 6−7 (cf. Fan et al. (2006); Robertson

et al. (2013)). Our methodology is the following. The simulation supplies Ṅsim(z)

ionizing photons, which increases with decreasing redshift because the SFRD in-

creases with decreasing redshift. Equation (3.1) poses a minimum requirement on

the ionizing emissivity to maintain the IGM in an ionized state at given redshift

z. This requirement decreases with decreasing redshift due to the strong z de-

pendence. We look to see if the box becomes fully ionized when these two curves

cross; i.e., when Ṅsim ≥ Ṅion. In subsequent sections we do this for more recent

definitions of the clumping factor that have been introduced by various authors,

in roughly chronological order.

The way the clumping factor is introduced and used, is to estimate the

amount of recombination that radiation has to overcome, in order to keep the

universe ionized (Gnedin & Ostriker, 1997; Valageas & Silk, 1999; Madau et al.,

1999; Fan et al., 2006). In a homogeneous universe, the hydrogen recombination

rate is also homogeneous, and is a simple function of the mean density, ionization

fraction, and temperature. The clumping factor is a correction factor to account

for density inhomogeneities induced by structure formation, although in principle

inhomogeneities in ionization fraction and temperature are also important. The

most common definition for the clumping factor is:

C =
〈n2

H II〉
〈nH II〉2

(3.16)
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where the 〈〉 brackets denote an average over the simulation volume. To see where

this comes from we can look at the change of nH II with respect to time due to

recombinations:

∂nH II

∂t
= −nenH IIαB(T )

∂nH II

nH II

= −∂tneαB(T )∫ nf

ni

∂nH II

nH II

= −
∫ tf

ti

∂tneαB(T )

ln

(
nf
ni

)
= −(tf − ti)neαB(T ),

nf
ni

= exp(−trecneαB). (3.17)

In the last step, we have set (tf − ti) to be trec. This leads to

trec = [neαB(T )]−1 (3.18)

being the characteristic time when the fraction nf/ni = 1/e. Using this expression

for the recombination time, one can rewrite the right hand side of the equation as

∂nH II

∂t
= −nH IIneαB(T ) = −nH II/trec

= −nH II(1 + 2χ)nH IIαB(T )

= −n2
H II(1 + 2χ)αB(T )

(3.19)

where in the last two steps, following Madau et al. (1999), we replace ne with

(1 + 2χ)nH II assuming helium is fully ionized. Here χ is the cosmic fraction of

helium. Taking the volume average we have:

〈∂nH II

∂t
〉 = −〈n2

H II(1 + 2χ)αB(T )〉

= −〈n2
H II〉(1 + 2χ)αB

= −〈nH II〉2(1 + 2χ)αBC

= −〈nH II〉/t̄rec. (3.20)

In the above we have made the oft-used assumption of a uniform IGM tempera-

ture of 104K, making the Case B recombination coefficient αB a constant. Note
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this is not physically justified, but since the temperature of the IGM is not well

determined observationally, it is a useful approximation, and one that is embed-

ded in Equation (3.1). With this simplifying assumption, when taking the volume

average on both sides of Equation (3.19), we may rewrite the result in the same

form as the end of the first line in Equation (3.19), with a density term dividing

by a time term. Therefore, the effective recombination time can be written as

t̄rec = tMadau ≡ [(1 + 2χ)〈nH II〉αBC]−1. (3.21)

This expression is the same as Equation (20) of Madau et al. (1999) if we substitute

〈nH II〉 for n̄H. In the case of a fully ionized universe these two quantities are equiva-

lent. We note that tMadau is not at all the volume average of trec but is 〈t−1
rec〉−1C−1,

which weights regions with the shortest recombination times; i.e. regions at the

mean density and above. If we now make the ansatz Ṅion × t̄rec = n̄H(0), we may

derive Equation (26) in Madau et al. (1999), updated by Fan et al. (2006), repeated

here for convenience:

Ṅ (z) = 1051.2s−1Mpc−3

(
C

30

)(
Ωbh

2

0.02

)2(
1 + z

6

)3

. (3.22)

This equation gives an estimate of the ionizing photon production rate den-

sity (in units of s−1Mpc−3comoving) that is needed to balance the recombination

rate density (the right-hand-side of Equation (3.22)) in a completely ionized uni-

verse. Values for C ranging ∼10-30 are often quoted from earlier hydrodynamical

simulations such as Gnedin & Ostriker (1997), and ∼ 3 for more recent work fol-

lowing Pawlik et al. (2009); Raicevic & Theuns (2011); Shull et al. (2012); Finlator

et al. (2012) and the methods there.

We follow these earlier studies using our own simulation data. In Figure

3.8 we plot the ionizing photon production rate density and recombination rate

density from our fiducial simulation. The curve in blue labeled Ṅsim is the photon

production rate density from the simulation, calculated using a time average of the

volume integrated ionizing emissivity η (Equation (3.15)) divided by the average

energy per photon which we obtain directly from the SED. The other three curves

plot Equation (3.22) for three methods for calculating C: green uses the H II

density directly (Equation (3.16)); red uses the baryon density C = 〈ρ2
b〉/〈ρb〉2; and
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Figure 3.8: Ionizing photon production rate density and various estimates of

the recombination rate density versus redshift. The blue curve labeled “Ṅsim” is

the measured photon production rate density averaged over the entire simulation

volume. The green curve labeled “ṘH II” is the recombination rate density estimate

from using the clumping factor calculated with Equation (3.16) substituted in

Equation (3.22). The red curve labeled “Ṙb” is Equation (3.22) evaluated using

a clumping factor calculated from the baryon density. The black curve labeled

“Ṙdm” is using a clumping factor calculated with dark matter density.
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Figure 3.9: Unthresholded clumping factors used in Fig. 3.8. CHII , Cb, Cdm

are calculated from the unthresholded H II, baryon, and dark matter densities,

respectively.
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black uses the dark matter density C = 〈ρ2
dm〉/〈ρdm〉2. In all cases no thresholding

is being applied (the effect of thresholding is examined in the next section); the

averages are done over every cell in the simulation including those inside the virial

radii of galaxies. The H II curve drops sharply with decreasing redshift because C

is large when the H II distribution is patchy. The baryon and dark matter curves

track one another for z > 6 because the clumping factors are nearly the same, but

begin to separate after overlap as the baryon clumping factor drops due to Jeans

smoothing.

Where the ionization and recombination rate density lines cross is roughly

when we expect the universe to become highly ionized. If we define the end of the

EoR as when 99.9% of the volume has reached the Well Ionized level, then our

simulation reaches that point around z ∼ 5.8 according to Figure 3.6. The Ṅsim

curve crosses the ṘH II curve at z ∼ 6.2. This is somewhat reassuring since we are

counting every ionizing photon emitted and every recombination, at lease insofar as

Equation (3.22) provides a good estimate of that. The recombination rate density

curves using clumping factors computed from the baryon and dark matter densities

curves cross the Ṅsim curve at a somewhat higher redshift of z ≈ 6.6. By following

the original methodology of using the clumping factor to estimate recombinations,

we find that the clumping factor calculated with the H II density field to be the

closest predictor for the end of EoR in our simulation.

The photon budget that enabled us to reach different levels of ionization is

plotted in Figure 3.10. Here we plot the evolution of the ionized volume fraction

versus γion/H =
∫
dtṄsim/n̄H(0). So, for the same definition for the end of EoR,

we see that we need ∼4 photons per hydrogen atom to ionize the universe. This

cannot be considered a converged result because this estimate includes the dense

gas inside galaxies, which is not well resolved in our simulation. Even though a

small fraction of the baryons reside inside galaxies, due to the short recombination

time many ionizing photons are required to keep the gas ionized. Since we have

not resolved the internal structure of galaxies, and higher resolution would likely

result in higher density gas, we must consider γion/H = 4 a lower bound. We

eliminate this issue in the next subsection by excluding the dense gas in halos from
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Figure 3.10: Ionized volume fraction as a function of the number of ionizing

photons emitted per H atom averaged over the entire simulation volume (including

inside halos) for three different ionization levels: fi ≥ 0.1 (blue line); fi ≥ 0.999

(green line); fi ≥ 0.99999 (red line). Compare with Fig. 3.14 which excludes gas

inside halos.

the calculation.

3.4.2 Quantitative Analysis of Recombinations

As the clumping factor method grew in popularity, various authors have

applied thresholds of one form or another to improve upon its accuracy in pre-

dicting the recombination rate density needed to maintain an ionized universe.

When thresholds are applied, parts of the volume are excluded from the photon

counting analysis. Pawlik et al. (2009); Raicevic & Theuns (2011) and others,

limit the calculation of the clumping factor to the low density IGM by using ∆b
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thresholds, usually set at 100. They threshold out gas in virialized halos and the

self-shielded collapsed objects, because radiation does not penetrate these objects,

or they recombine too fast, which leaves them neutral and not contributing to

recombinations in the IGM. More recently Shull et al. (2012) has also thresholded

out void regions (∆b < 1), arguing that they do not contribute appreciably to the

total recombinations due to their long recombination times.

To investigate the contribution of gas of different density to the total re-

combination rate density, we plot in Figure 3.11, three quantities dealing with

recombinations in our simulation. In the left column we have a 2D distribution

plot of recombination rate density Ṙ = nH IIneαB(T ) divided by ionization rate

density ΓphH InH I versus baryon overdensity ∆b, where

ΓphH I =
cE

h

[∫ ∞
νH I

σH I(ν)χE(ν)

ν
dν

]/[∫ ∞
νH I

χE(ν) dν

]
. (3.23)

Here, σH I(ν) and νH I are the ionization cross section and ionization threshold for

H I, respectively, and h is Planck’s constant (Paper I). In the middle column we

plot the relative bin contribution to the total recombination rate density versus

∆b. We draw vertical lines at ∆b=1 and 100, and in the legend box calculate the

cumulative contribution to total reionizations to those thresholds. In the right

column, we plot the cell recombination time divided by the Hubble time versus

∆b. All three columns evolve with decreasing redshift from top to bottom.

At z ∼ 9, in the left column of Figure 3.11, we see that even though there

are regions of the volume that are in approximate ionization equilibrium (indicated

by the horizontal distribution near 100), there is a wide distribution of cells far out

of equilibrium, some even off by ∼ 120 orders of magnitude. The middle column

shows that about 37% of all recombinations happen below a ∆b of 100, and about

3.2% happen below ∆b of 1. The phase diagram in the right column shows that

there is a bimodal distribution of cells in terms of their recombination time normal-

ized by Hubble time. The top concentration of cells are more neutral, having long

recombination times, and the lower concentration of cells are photoionized, having

smaller recombination times. The recombination time is lower for the ionized cells

simply because there are more free electrons available to recombine with protons.

The blue cluster of points at low ∆b and high trec/tHubble are the small number of
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Figure 3.11: Quantifying recombination information. Left column is a 2D dis-

tribution of recombination rate density divided by ionization rate density versus

overdensity. Middle column is a plot of the relative bin contribution to the total

recombination rate density versus overdensity bins. The lines show the sum of all

previous bins. Blue line is at ∆b=100, red line is at ∆b=1. Right column is plot

of recombination time divide by Hubble time versus overdensity.
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cells that are shock heated to T >106K by supernova feedback. Due to this high

temperature, even though there are more free electrons their recombination times

remain long.

At z ∼ 7, more of the volume has reached the Well Ionized level, and we see

the size of the out of equilibrium distribution shrink in the left column. Now the

maximum is only ∼ 37 orders of magnitude higher compared to equilibrium. The

middle column shows that about 40% of total recombinations are happening below

∆b of 100, and about 4.2% happens below ∆b of 1. In the right column, we see

roughly equal numbers of cells in the upper (more neutral) distribution as compared

to the lower (more ionized) distribution, whereas the top was much greater in

numbers before. As more cells become ionized to a high degree, their recombination

time will decrease and their cell counts will shift to the lower distribution.

At z ∼ 6, looking at the left column, most of the cells are now in equilibrium.

This is indicated by the peak of the distribution in red, being near zero on the y-

axis. The maximum of the distribution is now less than 19 orders of magnitude

apart from equilibrium. The middle column shows 30% to 3.8% recombinations

below ∆b of 100 and 1, respectively. The right column shows that the majority of

the cells are now in the more ionized distribution and have a low recombination

time. This can be verified by looking at the same redshift in Figure 3.7, where

most of the cells are at the Well Ionized level compared to fewer before.

At z ∼ 5.5, after the entire volume has become Well Ionized, the vertical

spread of the distribution has collapsed to about an order of magnitude away

from equilibrium with the vast majority of the cells in equilibrium. The fraction of

recombinations are 25% and 4% below ∆b of 100 and 1, respectively. Looking at the

recombination time to Hubble time ratio, we no longer see the bimodal distribution

of neutral cells and highly ionized cells, we only see the bottom distribution of

highly ionized cells now. The small distribution of shock heated gas is still present,

but now seems more prominent with the absence of the neutral distribution.

At z ∼ 5, on the left column, the few cells that are in the low density

void which were recombining slower than ionizing are now all near equilibrium.

Cells that are higher in ∆b are more likely to be above equilibrium. In the middle



86

column, we see that the fraction of recombinations are 16% and 2.9% for regions

below ∆b of 100 and 1, respectively. Not much has changed in the recombination

time column except that there are fewer cells above the ∆b of 104, possibly due to

the effect of Jeans smoothing.

We see that there is no real one-to-one correspondence between overdensity

and the quantities we show on the y-axis. That is because in a given panel,

we are only seeing two dimensions of a multidimensional physical process that

depends on proximity to sources of radiation, the behavior of said sources at a

given moment, the local density of neutral and ionized gas, temperature, among

others. It is helpful to speak about the average behavior in any given overdensity

as we have done, but we should always keep in mind that the average may not be

as representative of the wider distribution as we may think.

3.4.3 Investigating Thresholded Clumping Factor Analyses

Excluding Halos

We saw in §3.4.1 that using the unthresholded H II density field to calcu-

late C via Equation (3.16) yields a reasonably good estimate of when reionization

completes (Figure 3.8). This is perhaps not surprising since we count every ioniz-

ing photon emitted and every recombination to the accuracy of Equation (3.22).

Possible sources of disagreement between theory and simulation are: (1) inac-

curacies in estimating the recombination rate density using Equation (3.22); (2)

breakdown of the “instantaneous approximation” used to derive Equation (3.22)

due to history-dependent effects; (3) finite propagation time for I-fronts to cross

voids; and (4) numerical inaccuracies. Regarding possibility (4) we note that our

mathematical formalism is photon conserving, and that our I-front tests in Paper

I show that I-fronts propagate at the correct speed, which is an indication that

numerical photon conservation is good.

To investigate whether improved estimates of the recombination rate density

will improve the agreement, we follow the practice of some recent investigators

(Pawlik et al., 2009; Raicevic & Theuns, 2011) and threshold out dense gas bound

to halos, leaving only the diffuse IGM to consider. The motivation for this is that
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since we are only interested in the photon budget required to maintain the diffuse

IGM in an ionized state, by excluding the complicated astrophysics within halos

we have a simpler problem to model and resolve numerically.

To proceed we must calculate the ionization and recombination rate den-

sities outside of collapsed objects. We estimate the number of ionizing photons

escaping halos by multiplying Ṅsim(z) by a global escape fraction f̄esc(z) derived

in §3.5 and plotted in Figure 3.21:

ṄIGM(z) = f̄esc(z)Ṅsim(z). (3.24)

The recombination rate density outside of halos is calculated using Equation (3.22)

where now the clumping factor is thresholded such that only cells for which ∆b <

100 contribute to the sum. As in Figure 3.8 we plot three curves for the recom-

bination rate density calculated using Equation (3.22) using H II, baryons, and

dark matter density fields. These are plotted in Figure 3.12 as green, red, and

black curves, respectively. We see that the recombination rate density based on

the singly thresholded H II (labeled ṘtH II) and on the thresholded dark matter

(labeled Ṙtdm) curve cross the ionizing emissivity curve labeled “ṄIGM” at z ≈ 6.7

in Figure 3.12, whereas the thresholded baryon density curve (labeled Ṙtb) crosses

“ṄIGM” at z ∼ 7.2. Taking the doubly-thresholded H II curve as the best estimate

for the recombination rate density, we find that restricting the analysis to only

IGM gas yields poorer agreement than the simpler, global model of Madau, which

at first blush is a perplexing result. By thresholding out the gas in galaxies we have

isolated the thing we care about: the ionization balance of the IGM. Why then

should the implied redshift of reionization completion become worse compared to

the analysis in §3.4.1? We defer addressing this question until later sections.

Finally, we ask how many ionizing photons per H atom are required to

convert the neutral gas residing outside halos to a Well Ionized state. We repeat

the analysis of Figure 3.10 and show the result in Figure 3.14. We see that the effect

of counting only escaped photons on the photon budget is significant. Previously,

we summed Ṅsim(z) and divided by the total number of hydrogen atoms in the

simulation volume, and used that as our progress variable. In Figure 3.14 we sum

ṄIGM(z) and divide by the number of hydrogen atoms in the thresholded volume,
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Figure 3.12: Same quantities as Figure 3.8, except now the “ṄIGM” curve is the

number of ionizing photons which escape into the IGM (see §3.5). The recombina-

tion rate densities with a subscript that begins with “t" are calculated as described

in the caption for Figure 3.8, except that the clumping factors are computed ex-

cluding regions satisfying ∆b > 100. The curve labelled ṘttHII is calculated from

Equation (22) using the doubly-thresholded clumping factor CttHII defined in Fig-

ure 3.13.
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are calculated using thresholded H II, baryon, and dark matter density fields,

respectively, where only cells satisfying ∆b < 100 contribute. CttHII is calculated
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Figure 3.14: Ionized volume fraction as a function of the number of ionizing

photons emitted per H atom averaged over the entire simulation volume (excluding

gas inside halos) for three different ionization levels: fi ≥ 0.1 (blue line); fi ≥ 0.999

(green line); fi ≥ 0.99999 (red line). Compare with Fig. 3.10 which includes gas

inside halos.

and use that as our progress variable. Instead of needing ∼4 to ionize the IGM,

now we only need ∼2 photons per hydrogen atom for 99.9% of the universe to

reach Well Ionized level. This result supports the “photon starved” reionization

scenario discussed by Bolton & Haehnelt (2007).

Including Temperature Corrections

During the preparation of this paper, a new way of estimating the recom-

binations in the IGM appeared in the literature. The authors (Shull et al., 2012;

Finlator et al., 2012) reformulated the expression for the clumping factor taking
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the temperature dependence of the recombination rate into account. We briefly in-

vestigate their methods here. In order for the calculation of the clumping factor to

take into account only IGM gas that is ionized but recombining, several additional

thresholds were applied. Equation (15) in Shull et al. (2012) is a new expression

for the clumping factor, similar in form to Gnedin (2000a),

CRR =
〈nenH IIαB(T )〉
〈ne〉〈nH II〉〈αB(T )〉

(3.25)

with the following thresholds applied: 1< ∆b <100, 300K<T< 105K, Z< 10−6Z�,

xe>0.05. Here, Z is metalicity and xe is the ionized fraction. The reason that

a lower limit threshold is applied to the baryon overdensity, the authors argued,

is because very little recombinations happen there, due to the low density. Shull

et al. (2012) also provide a new formulation for ionizing photon rate density that

uses this definition of the clumping factor, in their Equation (10),

dN

dt
= 4.6× 1050s−1Mpc−3

×
(

(1 + z)

8

)3

T−0.845
4

(
C

3

)
. (3.26)

Here, T4 is mean IGM temperature measured in units of 104K.

Equation (3.26) is proposed as an improvement over Equation (3.1). To

see if this is the case we used our data to evaluate the clumping factor CRR and

then used Equation (3.26) to calculate ionizing photon rate density versus redshift

needed to maintain an ionized IGM. The result is shown in Figure 3.15. The curve

labeled ṘRR,T4 in green uses the average temperature, in units of 104K, of the

region that satisfies the CRR thresholds for T4 in Equation (3.26). The curve ṘRR

uses 1 in place of T4 in Equation (3.26), essentially fixing the IGM temperature to

a constant 104K. The green curve is lower than the red curve because the average

temperature in the simulation is higher than 104K. The blue curve labeled ṄIGM

is as defined previously. We see that Equation (3.26) predicts that reionization

completes at significantly higher redshifts than exhibited by the simulation, calling

into question the validity of the analysis.

We find it curious that as the clumping factor analysis is refined through

physically well-motivated modifications, it yields predictions for the redshift of
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reionization completion that become worse and worse, moving to higher redshift

rather than lower redshift. This suggests that there is something fundamentally

wrong with the whole approach, and that the seemingly good agreement found in

§3.4.1 was fortuitous. One worrisome aspect about the utility of Equation (3.26)

is that the fraction of simulation volume included in the CRR thresholds is actually

quite small. This is illustrated in Figure 3.16. The included volume grows from 3%

at z = 9 to only 23% of the simulation volume by overlap. One wonders about the

validity of making global statements about reionization based on such a restricted

sample of the IGM. It is also unclear how we should interpret the redshift at which

lines across in Figure 3.15. Should we interpret it as the redshift below which an

ionization rate given by Equation (3.26) can keep the whole volume ionized, or

only the fraction of the volume satisfying the thresholds? If it is the former, how

do we account for the time it takes for I-fronts to cross neutral voids?

At this point the reader may rightfully claim that the Madau-type analysis

was never meant to predict the precise redshift for reionization completion, only

the ionization rate density needed to maintain the IGM in an ionized state after

reionization has completed. We would agree with that. However it is effectively

being used in this way when it is applied to galaxy populations at increasingly

higher redshifts z = 6 − 7 (cf. Fan et al. (2006); Robertson et al. (2013)). Our

investigations indicate that formulae such as Equation (3.1) and (3.26) are not

reliable estimates of when reionization completes. In §3.7 we examine whether

they can be usefully applied at lower redshifts, as originally intended.

3.4.4 Comparing Clumping Factors

For ease of comparison we collect into one plot all the H II clumping factors

used in the previous sections. The unthresholded H II calculated using Equation

(3.16) is denoted CH II. The singly thresholded clumping factor is denoted CtH II,

in which the threshold ∆b < 100 is being applied. The curve labeled CRR plots the

evolution of Equation (3.25) with the following thresholds: 1< ∆b <100, 300K<T<

105K, xe>0.05. For comparison we also plot a doubly thresholded H II clumping

factor denoted CttH II with thresholds ∆b < 100 and xe > 0.05, which can be
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 Ṅ
,Ṙ
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Figure 3.15: Ionizing photon injection rate density in the IGM from the simula-

tion ṄIGM versus the predictions of Equation (3.26), evaluated with two choices for

the clumping factor which take temperature corrections into account. The curve

labeled “ṘRR,T4” is from Equation (3.26), with T4 being the average temperature in

CRR region in units of 104K. The curve “ṘRR” is calculated the same way as ṘRR,T4

except now T4 is set to 1 in Equation (3.26), for an effective IGM temperature of

104K.
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satisfying the CRR thresholding criteria.
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thought of as the clumping factor inside H II regions excluding the dense gas in

halos.

We see a clear trend that as more thresholds are applied the lower the value

of the clumping factor goes. This is because as more regions of the volume are

excluded from the averaging process the remaining regions are more homogeneous

exhibiting less variations. If no thresholds are applied, the H II clumping factor

starts around 200 at z ∼ 9 (Figure 3.8). Such high values arise because when the

first couple of ionizing sources created high H II, they are localized and spread far

apart, making the H II density very clumpy. As more of the universe is ionized, the

H II density becomes more homogeneous. We see the single and double thresholded

H II clumping factors become the same after overlap with a value of ∼ 4.5 because

the second threshold xe > 0.05 is satisfied everywhere.

The clumping factor that is not based on the H II density alone is CRR.

We see from Equation (3.25) that CRR depends on electron number density, H II

number density, and the case B hydrogen recombination coefficient αB(T ), which is

itself dependent on the gas temperature T (fit to Table 2.7 in Osterbrock & Ferland

(2006) implemented in Enzo). αB(T ) depends on T to a negative power and this

causes Equation (3.25) to sometimes have a very low numerator compared to the

denominator. This as well as the exclusion of gas in the voids leads to the low

clumping factor value of ∼ 2 we see in the graph. It is very possible to have a value

that is smaller than unity, which can lead to even more confusion with the original

definition of the clumping factor in Equation (3.16). There, the clumping factor

can only have a value of greater than 1, and 1 occurs only for the homogeneous

distribution of the gas number density case.

3.5 A Global Estimate for Circumgalactic Absorp-

tion of Ionizing Radiation

The ionizing escape fraction from galaxies is an important parameter in

models of reionization. Typically, one thinks about the escape fraction as a prop-

erty of individual galaxies, determined by the absorption of ionizing radiation on
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used in ṘH II curve in Figure 3.8, CtH II is used in ṘtH II curve in Figure 3.12, CttH II
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small scales in the ISM. However it is interesting to ask whether there is signifi-

cant absorption in the denser Circumgalactic Medium (CGM) surrounding galax-

ies. If we write the total escape fraction as the product of escape fractions, then

fesc = fesc(ISM)fesc(CGM). Here we use our simulation to derive an estimate of

the globally averaged escape fraction as a function of redshift due to the circum-

galactic medium f̄esc(CGM).

Recall from §3.2 that the halo escape fraction is not a model input pa-

rameter, but is rather an ouput since the equation of radiative transfer is solved

throughout the computational domain. Our halos are not well resolved internally,

and so we are underestimating the amount of absorption of ionizing radiation on

galaxy ISM scales. However if significant absorption occurs on scales of the virial

radius or larger, then that would be simulated reasonably accurately. In the fol-

lowing we assume this is the case, and present results that can be taken to be an

upper limit on the total escape fraction (ISM+CGM).

Rather than measure the escape fraction halo by halo and take the average

over all halos, we use a simpler method. Since we know every ionization requires an

ionizing photon, and we have the ionization rate density as a field defined at every

grid cell, then we can estimate f̄esc(CGM) as follows (hereafter we drop the CGM

modifier with the reader’s understanding that this is what we are estimating):

f̄esc(It) =

∫
Vt

nH IΓ
ph
H Id

3x

/∫
V

nH IΓ
ph
H Id

3x, (3.27)

where ΓphH I is evaluated cell by cell via Equation (3.23), V is the simulation volume

and Vt denotes that the integration includes only cells which satisfy ∆b < 100. In

other words, f̄esc is the ratio of the number of ionizations in the IGM, as defined by

the overdensity threshold, to the total number of ionizations in the volume. The

modifier It refers to this method of estimating f̄esc (a superior method is presented

below).

The result is plotted in Fig. 3.18. At high redshifts the escape fraction

is high and relatively constant at f̄esc ∼ 0.65 − 0.7. As overlap is approached

f̄esc drops considerably, reaching values of ∼ 0.2 by z = 5. There is no obvious

reason why the escape fraction should drop so dramatically at the epoch of overlap.
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Figure 3.18: Estimate of the globally averaged ionizing radiation escape fraction

due to circumgalactic absorption f̄esc(It) computed as the ratio of the volume

integrated ionization rate in the IGM (∆b < 100) to the total ionization rate (Eq.

(3.27)).
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Figure 3.19: Evolution of the volume averaged rate densities for: (1) ionizing

photons injected into the IGM (ṄIGM), (2) gas photoionization (Ṅt), and (3) gas

recombination (Ṙt) integrated over the singly thresholded volume Vt defined as

∆b < 100. The ionization rate density curve tracks the photon injection rate

density curve in the photon starved regime at high redshifts, but begins to fall

below it as the globally averaged ionization parameter approaches unity (Fig. 3.20).

After overlap, in the photon abundant regime, the ionization rate density is ∼ 20×
the photon injection rate density, but comes into balance with the recombination

rate density.
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To investigate this properly would require a statistical analysis of individual halo

escape fractions, which we defer to a subsequent paper. Perhaps this is an artifact

of how we are estimating f̄esc. While it is true that every ionization requires an

ionizing photon in the photon starved regime (i.e., before overlap), after overlap

the volume becomes optically thin to ionizing radiation, and it is not true that

every ionizing photon causes an ionization in the box. This is illustrated in Fig.

3.19.

The curve labeled Ṅt is the actual ionization rate density measured in the

simulation averaged over the entire 20 Mpc cubic volume satisfying the overdensity

threshold ∆b < 100; i.e. precisely the numerator of Eq. (3.27) divided by 203. The

curve labeled Ṙt is the recombination rate density averaged over the same volume;

i.e.

Ṙt =

∫
Vt

nenH IIαB(T )d3x. (3.28)

We see that ionization rate density Ṅt grows with redshift and reaches a

maximum at z ≈ 6.5, and then drops by roughly 0.8 dex by overlap completion

at z = 5.8. It continues to decrease thereafter. The reason for this sudden drop is

that after overlap there are very few neutral atoms left to ionize (nH I/nH ∼ 10−5).

This can be illustrated by considering the global ionization parameter, which

is the number of ionizing photons per neutral H atom ΓIP = 〈nph〉/〈nHI〉 averaged
over the entire volume. Specifically, we integrate the grey radiation energy density

divided by the mean photon energy ε̄ over the singly thresholded volume, and

divide by the number of H I atoms in the same volume:

ΓIP =

∫
Vt

(E/ε̄)d3x

/∫
Vt

nHId
3x. (3.29)

We see from Fig. 3.20 that ΓIP grows from ∼ 10−3 at z = 10 to unity at z ≈ 6.5

just before overlap. Thereafter ΓIP grows very rapidly, reaching a value around

105 at the overlap redshift, and leveling off at around 106 below that. From the

standpoint of the global ionization parameter, reionization begins photon starved

but completes photon abundant.

Returning to Fig. 3.19 we see that the recombination rate density Ṙt curve

tracks the ionization rate density curve to z ∼ 7, but is about 0.7 dex lower in
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Figure 3.20: Redshift evolution of the global ionization parameter as defined in

Eq. (3.29).
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magnitude, as it must be if the ionized volume filling fraction is to grow. As

overlap is approached ionizations and recombinations come into balance, but the

recombination rate density has dropped considerably since it reached its maximum

value at z ≈ 6.5. This is also the redshift at which the ionization rate achieves

a maximum, and when the global ionization parameter reaches unity. We also

observe that the fesc curve in Fig. 3.18 begins its precipitous drop at this redshift.

We believe all of these events signal the rapid rise in the global ionization parameter

below z = 6.5, and not some change in the escape fraction of young galaxies.

Counting the fraction of all ionizations occurring outside halos is not a

reliable estimate of the escape fraction for ΓIP � 1 because it does not count

the photons in the radiation field that have nothing to ionize. Therefore we need

to modify Eq. (3.27) to include photons which build up the background of the

radiation field:

f̄esc =

∫
Vt

(nH IΓ
ph
H I +

1

ε̄

dE

dt
)d3x

/∫
V

(η/ε̄)d3x. (3.30)

Here the numerator is the rate at which ionizing photons are causing ionizations

in the IGM and building up the UV background, and the denominator is volume

integrated ionizing photon production rate.

Fig. 3.21 plots f̄esc calculated according to Eq. (3.30). Each contribution to

f̄esc is plotted separately, as well as the sum. We see that f̄esc is roughly constant

with redshift with a value of around 0.6. We see that as the contribution due to

ionizations declines below z ∼ 7, the contribution due to the change in radiation

background intensity increases in a compensating fashion. This confirms our earlier

suspicions and gives us a better estimate of the mean circumgalactic attenuation

of ionizing radiation from young galaxies.

To complete the picture we plot in Fig. 3.19 the number density of ionizing

photons escaping into the IGM, calculated as ṄIGM = f̄escṄsim, where Ṅsim is

the ionizing photon production rate in the simulation, and f̄esc is the improved

estimate for the escape fraction calculated using Equation (3.30). We see that at

high redshifts the ṄIGM and Ṅt track each other closely. This tells us two things.

First, that reionization at high redshifts when QH II � 1 is photon starved, in the
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Figure 3.21: Redshift evolution of the globally averaged escape fraction contri-

bution from circumgalactic absorption as estimated by the number of ionizations

occuring in the IGM and the buildup of the ionizing radiation background. The

curves labeled f̄esc(It), f̄esc(Ė) plot the contributions of the first and second terms

in Eq. (3.30), while the curve labeled f̄esc plots their sum.
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sense that every ionizing photon emitted results in an ionization. And second that

our estimate of f̄esc is reasonably accurate at these redshifts. However, as redshift

decreases, the two curves systematically begin to deviate from one another in the

sense that Ṅt < ṄIGM . Beginning at z = 6.5 the ionization rate density begins

to decrease while the ionizing photon production rate into the IGM continues to

rise. After overlap the large disparity between the ṄIGM and Ṅt curves can then

be understood as saying that the IGM becomes photon abundant.

The ratio of ionization rate density and the photon injection rate into the

IGM is plotted in Fig. 3.22. The ratio is unity initially, and slowly decreases

until z ≈ 7, and then drops rapidly as overlap is approached. After overlap the

ratio is about 0.05. In other words, after overlap, the photon production rate is

about 20× the ionization rate in a volume averaged sense. Since the ionization

and recombination rates are in balance after overlap, we conclude that the volume

averaged photon injection rate is about 20× the recombination rate.

3.6 An Improved Model for the Evolution of QH II

In this section we compare the evolution of the ionized volume fraction QH II

from our simulation with the analytic model introduced by Madau et al. (1999).

We are motivated to do this because as we have seen from §3.4, Equation (3.1) is

not a useful predictor of when QH II reaches unity. We therefore want to investigate

the accuracy of the time dependent model from which Equation (3.1) is derived as

a limiting case.

Madau et al. (1999) derived the following ODE for the evolution of QH II

(their Equation 20):

dQH II

dt
=
ṅion
n̄H

− QH II

t̄rec
(3.31)

where ṅion is ionizing photon injection rate, n̄H is the mean density of H atoms in

the universe, and t̄rec is some characteristic recombination time taking the clumpi-

ness of the IGM into account. For a constant clumping factor and comoving
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Figure 3.22: Ratio of the volume integrated photoionization rate in the IGM Ṅt

to the integrated photon injection rate into the IGM ṄIGM , where the IGM is

defined as cells with ∆b < 100. The ratio is near unity initilly, remains high until

z ≈ 7 (QHII ≈ 0.5), and then drops rapidly as overlap is approached and the IGM

becomes highly ionized.
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emissivity Madau et al. (1999) show that

QH II(t) ≈
ṅion
n̄H

t̄rec. (3.32)

Setting Q = 1 one arrives at ṅiont̄rec = n̄H, the basis for deriving Equation (3.1).

Madau et al. (1999) state that this relation should still be valid provided the

clumping factor and comoving emissivity are slowly varying on a timescale of t̄rec.

We utilize the differential form for our comparison because our emissivity is not a

constant value, nor is it slowly varying on a recombination time as Q → 1, as we

show below.

A practical issue when testing Equation (3.31) is how t̄rec should be eval-

uated when Q < 1, and in particular when Q � 1. In the limit Q � 1 one is

dealing with isolated H II regions evolving under the influence of local conditions.

Yet the definition for t̄rec in Equation (3.21) invokes global values for C and 〈nH II〉.
Should these quantitles be evaluated locally only within ionized regions? Or are

global estimates good enough? In particular, since Madau et al. (1999)’s Equation

(20) uses n̄H as a proxy for 〈nH II〉, what is the appropriate value for C to use?

A second practical issue is what to take for ṅion. This is commonly under-

stood to be the rate at which ionizing photons are injected into the IGM (e.g.,

Haardt & Madau 2012, §9.3), which in our parlance is ṄIGM . Or should we take

the actual ionization rate density measured in the simulation Ṅt? As we saw in

the previous section, these two rates diverge as overlap is approached, and differ

by more than an order of magnitude after overlap (Fig. 3.22).

To examine these issues we plot in Figure 3.23 Q(z) from our simulation,

as well as theoretical curves obtained by integrating Equation (3.31) under various

assumptions. The curve labelled Q(sim) is the ionized volume fraction from our

simulation that is at least 99.9% ionized (Well Ionized). The other four curves are

obtained by integrating Equation (3.31) setting ṅion = Ṅt for various choices for

t̄rec (we investigate the ṅion = ṄIGM case at the end of this section.) The integral

is approximated by summing a piecewise linear interpolation of the two terms on
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the RHS of Equation (3.31) using the trapezoidal rule:

Q(t) =

∫ t

t∗

dQ

dt
dt ≈

∑ dQ

dt
∆t

=
∑
i

(Term1 − Term2)i∆ti (3.33)

where t∗ is the time when the first star forms in the simulation.

The curve labeled Q(〈trec〉) uses the volume averaged recombination time

(volume average of Equation 3.18). The two curves labeled Q(tMadau) use Equation

(3.21) to evaluate t̄rec for C = 2 and 3, substituting n̄H for 〈nH II〉 and assuming

a constant T=104K for the IGM. The curve labeled Q(trec,eff ) uses the effective

recombination time definition

t̄rec = trec,eff ≡
〈nH II〉

〈nH IIneαB(T )〉
. (3.34)

This particular definition makes the last line of Equation (3.20) true trivially, with

no assumption about the IGM temperature or ionization state of the hydrogen.

It involves no ad hoc clumping factors, and represents the actual appropriately

averaged recombination time in the simulation. All the above volume averaged

quantities have the threshold of ∆b < 100 applied, and thus exclude dense gas

bound to halos. Several of the curves derived from integrating dQ
dt

reach values

above unity at the end of the overlapping phase. While it is physically impossible

to have Q > 1 it is not mathematically forbidden, and so we show the complete

curves because they give us some insight about the relative contribution of the

recombination term (Term2) as compared to the ionization term (Term1).

The Q(〈trec〉) curve ionizes the quickest, reaching Q = 1 at z ∼ 6.5, which

is substantially before the simulation which achieves it at z ≈ 5.8. The reason

for this, as we will analyze shortly, is that recombinations play essentially no role

in this model. The Q(trec,eff ) curve has the same shape as the Q(sim), but is

everywhere higher, and crosses Q = 1 at z ∼ 6.1. Given that this integration

uses the actual ionization rate density and effective recombination time in the

simulation, this discrepancy demands an explanation. We address this below.

Finally the Q(tMadau) curves do not match the shape of the Q(sim) curve, ionizing

more quickly at early times, and exhibiting a maximum value for Q at z ∼ 6.
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Figure 3.23: Top: Comparison of the evolution of the ionized volume fraction Q

from our simulation with the analytic model introduced by Madau et al. (1999).

Q(sim) is calculated directly from counting the cells satisfying the Well Ionized

threshold of fi > 0.999. The other curves are calculated from integrating Equation

(3.33) with the different expressions for t̄rec in Term2, as described in the text.

Bottom: Plot of Term1 and Term2 individually using the different expressions for

t̄rec.



109

To understand this behavior more fully we plot in Figure 3.23 bottom the

values for Term1 and Term2 in Equation (3.31). The blue curve is Term1 of Equa-

tion (3.31). The other four curves plot Term2 with their respective values for t̄rec.

The ionization curve dominates all the recombination curves at high redshifts, and

reaches a maximum at z ∼ 6.5. This is a partial reflection of the plateauing and

subsequent decline of the SFRD shown in Figure 3.3. More fundamentally, it is

a reflection of the rapid drop in the neutral fraction of the IGM as overlap is ap-

proached. The curve using the volume averaged recombination time 〈trec〉 yields
such low values compared to the others that we multiply it by 100 to make it

more visible. Although this is not the relevant recombination time to use, since it

weights low density regions, it is effectively the limiting case t̄rec → ∞. We can

therefore interpret the blue curve in Figure 3.23a as an integration of the ioniza-

tion term only. It is significantly higher than the Q(sim) curve, suggesting that

recombinations are important in the simulation at some level. The ionization term

dominates the recombination term by factors of 6 − 10 in the trec,eff curve until

just before overlap, and the two terms come into balance after overlap. The two

tMadau recombination curves are subdominant to the ionization term until z ∼ 6,

and at lower redshifts they become dominant. This explains the turnaround in the

corresponding Q curves in Figure 3.23a.

The differences in the magnitude of the recombination curves in Figure

3.23b, especially at higher redshifts, is directly attributable to the magnitude of t̄rec.

For completeness we plot t̄rec versus redshift in Figure 3.24, both unnormalized and

normalized by tHubble. In addition to the three curves for trec,eff and tMadau for C =

2, 3, we also plot tMadau for C = CttH II and C = Ctdm. We see that all the curves

with the exception of the Madau formula curve using the thresholded dark matter

clumping factor exhibit an increasing recombination time with decreasing redshift,

in line with our expections. The latter curve shows the opposite trend, which

is due to the fact that the dark matter clumping factor increases with decreasing

redshift, even if it is thresholded to exclude halos (see Figure 3.12 bottom). Among

the remaining curves the trec,eff has the highest values, and increases more sharply

than the tMadau curves due to the temperature of the IGM. To demonstrate that, we
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plot one additional curve (dashed curve) for trec,eff evaluated assuming a constant

T = 104K in the recombination rate coefficient.

We now comment on the often-made assumption in reionization models

that t̄rec � t. Madau et al. (1999) make this assumption in order to derive Equa-

tion (3.1). It is this assumption that allows for an instantaneous analysis of the

photon budget to maintain the universe in an ionized state while ignoring history

dependent effects. Referring to Figure 3.24b we see this is never true for trec,eff
and it is not true for tMadau at redshifts approaching overlap for any sensible value

of C. We therefore conclude that history-dependent effects cannot be ignored, and

that this is the reason Equations (3.1), (3.22) and (3.26) mis-predict the epoch

of reionization completion. For the same reason applying these formulae at lower

redshifts is highly suspect.

Returning to the discrepancy between the Q(sim) and Q(trec,eff ) curves in

Figure 3.23a, since the most sensible choice for trec did not give us satisfactory

agreement, we wondered what the origin of the discrepancy could be. Since we

have shown that recombinations are relatively unimportant at high redshifts, but

that the discrepancy is already present at high redshifts, the only possibility is

that there is something wrong with the first term of Equation (3.33). Examining

the derivation for Equation (3.31) in Madau et al. (1999), it is stated that it

“approximately holds for every isolated source of ionizing photon in the IGM.” That

suggested that our calculation of n̄H may be off from what is originally intended

if it is a global average over the entire simulation box. Since the original dQ
dt

is

derived from the analytical Strömgren sphere model, it assumed a single ionizing

source at the center of the volume, and the the average density of the box is just

the uniform density everywhere, which might be the discrepancy. In an Inside-out

model, I-fronts are not initially propagating in a gas with an average density given

by n̄H , but somewhat higher density. Would agreement improve if instead of using

n̄H in the first term of Equation (3.31), we used the local average density?

We therefore modify Equation (3.31) as follows:

dQ

dt
=

ṅion
δbn̄H

− Q

t̄rec
(3.35)

where we have introduced in the denominator of the first term a factor δb ≥ 1
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which corrects for the higher mean density within ionized bubbles. We measure δb
from each redshift output as follows: δb = 〈ρb〉tt/〈ρb〉t. The volume average 〈〉 with
subscript t is the usual ∆b < 100 threshold, the double subscript tt indicates the

additional threshold of xe > 0.1. Thus δb is the average baryon overdensity within

Ionized regions excluding gas inside halos. Figure 3.26 shows a plot of δb versus Q

together with a simple fitting formula which fits the data extremely well over the

domain 0.01 ≤ Q ≤ 1.

To see if this formulation improves agreement with our simulated data, in

Figure 3.25 we integrate Equation (3.35) again setting ṅion = Ṅt and using trec,eff
to evaluate the second term. For comparison we show the curve obtained setting

δb = 1, which repeats a curve already presented in Figure 3.23. Although the sim-

ulated and integrated analytic model curves do not agree exactly, the Q(δb, trec,eff )

curve shows much better agreement with the simulation, with error on the order

of 1% instead of 10%.

By not assuming a constant emissivity and using the modified differential

form in determining the volume filling fraction of Equation (3.35), we are able to

more accurately model the evolution of the simulated volume filling fraction of H II

to the Well Ionized level. For completeness we plot in Figure 3.27 the evolution of

trec,eff used in the above integration, including a reasonably good fit to the data.

Finally, we return to the question of what is the appropriate choice for

ṅion in Equation (3.35). This is commonly taken to be the rate at which ionizing

photons are injected into the IGM (e.g., Haardt & Madau 2012, §9.3), because

this can be connected to the observed UV luminosity density ρUV by the formula

ṅion = fescξionρUV , where fesc is the escape fraction for ionizing radiation, and

ξion is the rate of ionizing photons per unit UV (1500 Å) luminosity for the stellar

population (Robertson et al., 2013). However we have obtained excellent agreement

between simulation and Equation (3.35) using the mean ionization rate density in

the IGM Ṅt, which differs from the ionizing photon injection rate density ṄIGM as

Q→ 1. In Figure 3.28 we show the result of integrating Equations (3.31) and (3.35)

with the choice ṅion = ṄIGM , as originally proposed by Madau et al. (1999). Also

plotted in Figure 3.28 is Q(sim) (blue line) and our best agreeing model (green
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line). The red line ignores the δb correction, and deviates to the high side of Q(sim)

almost immediately, for reasons we discussed earlier. It crosses Q = 1 at z ≈ 6.6,

which is too early by ∆z = 0.8. The teal line includes the δb correction, and tracks

the Q(sim) closely to z ≈ 7, and thereafter deviates on the high side. It crosses

Q = 1 at z ≈ 6.4, which is too early by ∆z = 0.6. Both curves show an accelerated

change in Q as z decreases, which is characteristic of standard analytic ionization

models (e.g., Haardt & Madau 2012, Fig.14). By contrast, the simulation and our

best fit model using ṅion = Ṅt show a decelerated change in Q(z) as Q→ 1. This

is clearly due to the fact that the ratio of ionizations to emitted photons decreases

as Q → 1, as illustrated in Figure 3.22. The consequence of this flattening in

the Q(z) curve is a delay in redshift of overlap of ∆z = 0.6 − 0.8, relative to the

predictions of Equations (3.35) and (3.31), respectively, using the photon injection

rate as the source term.

We have seen above that the ionization rate density is the appropriate quan-

tity to use to source the dQ/dt equation, independent of δb corrections. Because

the ionization rate density is not directly observable, but since ṅion can be derived

from observables, we introduce a correction factor to convert from one to the other.

Defining

γ ≡ 〈nHIΓ
ph
HI〉

ṅion
=

Ṅt

ṅion
(3.36)

where the angle brackets denote an average over the singly thresholded volume

(IGM), we can recast Equation (3.35) into a form useful for observers:

dQ

dt
=
γṅion
δbn̄H

− Q

t̄rec
, (3.37)

where γ and δb are functions of Q. In Fig. 3.29 we plot data values for γ(Q)

taken from our simulation, as well as a simple powerlaw fit. The fit is not meant

to be definitive, but merely illustrative. More simulations need to be performed

under various circumstances, and better fits made, to see whether our γ(Q) is

approximately universal, or merely anecdotal.
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assume t̄rec = trec,eff as measured in the simulation (Fig. 3.27.
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3.7 Discussion

3.7.1 Significance of our Main Results

We have carried out a fully-coupled radiation hydrodynamic cosmologi-

cal simulation of hydrogen reionization by stellar sources using an efficient flux-

limited diffusion radiation transport solver coupled to the Enzo code (Paper I). This

method has the virtue of a high degree of scalability with respect to the number

of sources, which allows us to simulate reionization in large cosmological volumes

including hydrodynamic and radiative feedback effects self-consistently. In this

paper we have presented first results from a simulation in a cosmological volume

of modest size–20 Mpc comoving–to investigate the detailed radiative transfer,

nonequilibrium photoionization, photoheating and recombination processes that

operate during reionization and dictate its progress. In a future paper we apply

our method to larger volumes to examine the large scale structure of reionization,

evolution of the bubble size distribution, etc.

The simulation presented here is carried out on a uniform mesh of 8003

cells and with an equivalent number of dark matter particles. As such, the mass

resolution is sufficiently high to evolve a dark matter halo population which is com-

plete down to (Mhalo ≈ 108M�) and cools via H and He atomic lines. However,

a spatial resolution of 25 kpc comoving poorly resolves internal processes within

early galaxies, but does an excellent job of resolving the Jeans length in the pho-

toionized IGM (Bryan et al., 1999). Our simulation is most appropriately thought

of as a high redshift IGM simulation which evolves an inhomogeneous ionizing

radiation field sourced by star-forming early galaxies. Star formation is modeled

using a modified version of the Cen & Ostriker (1992) recipe that can be tuned to

reproduce the observed star formation rate density (SFRD) (Smith et al., 2011).

We have tuned our simulation to roughly match the observed SFRD (Bouwens

et al., 2011a; Robertson et al., 2013) for z ≥ 7, but due to the small boxsize, it

somewhat underpredicts the SFRD for z < 7. Our simulation also matches the

observed z = 6 galaxy luminosity function well, which gives us some confidence

that our ionizing souce population is representative of the real universe. However
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a substantial fraction of our ionizing flux comes from sources that are too faint to

be observed; we defer a discussion of this topic to Paper III in this series (So et

al., in prep.)

Our goal was not to predict the precise redshift of ionization completion,

as this would depend on details such as escape fraction of ionizing radiation from

galaxies and their stellar populations that we do not model directly. Rather our

goal was to examine the mechanics of reionization in its early, intermediate, and

late phases within a model which is calibrated to the observed source popula-

tion. Nonetheless, we present a model in which reionization completes at z ≈ 6,

consistent with observations.

At early and intermediate times we find that reionization proceeds “inside-

out", confirming the results of many previous investigations (Gnedin, 2000a; Ra-

zoumov et al., 2002; Sokasian et al., 2003; Furlanetto et al., 2004a; Iliev et al.,

2006; Trac & Cen, 2007; Trac et al., 2008). However, at late times isolated islands

of neutral gas are ionized from the outside-in as they have no internal sources of

ionization. Even this characterization is somewhat oversimplified when degree of

ionization is considered, as we discussed in Sec. 3.3.2. It accurately depicts how

reionization proceeds for a low degree of ionization (> 0). However for high degrees

of ionization, “inside-out-middle" is more appropriate, as filaments lag behind low

and high density regions, as discussed by Finlator et al. (2009b).

Our most interesting findings concern the widely used analytic model of

reionization introduced by Madau et al. (1999). Both the instantaneous (Equation

3.1) and time-dependent (Equation 3.31) versions of this model underpredict the

time (overpredict the redshift) when reionization completes, when applied to our

simulation. There are two reasons for this having to do with the detailed mechanics

of reionization at early and late times respectively. At early times, I-fronts are

propagating in regions of higher density than the cosmic mean since the first sources

are highly biased. Higher densities translate into slower bubble expansion rates,

retarding QHII (z) relative to a solution which assumes the cosmic mean density

(Figure 3.25). At late times, which we loosely define as QHII > 0.5, conversion of

ionizing photons into new ionized hydrogen atoms becomes inefficient. This can
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be seen by forming this ratio directly from the simulation data (Figure 3.22), or

by defining a global H I ionization parameter (Equation (3.29) and Figure 3.20).

The consequence of this dropping ionization efficiency, which is as low as 0.05 at

overlap in our simulation, is to further retard QHII (z) relative to a solution which

assumes an ionization efficiency of unity (Figure 3.28).

We have introduced a modified version of Madau et al. (1999)’s time-

dependent analytic reionization model in Equation (3.37). Modifications which

correct for the above-mentioned effects apply to the source term only, not to the

recombination term. These corrections are therefore totally independent of issues

like clumping factors and the temperature of the IGM, which enter into the char-

acteristic recombination time of the IGM. The modifications are introduced as

correction factors to the mean density of baryons in the vicinity of ionizing sources

at early times (δb), and the ratio of ionizing photons emitted to H I photoioniza-

tion rate at late times (γ). Fits of these two correction factors versus QHII are

presented in Figures 3.26 and 3.29 for consumption by other researchers. At this

point we do not know how general these results are. However we have indications

based on another simulation we have analyzed with a softer source SED that the

functional forms are representative of this class of reionization model.

The significance of these results to high redshift galaxy observers is the

following. Setting QHII = 1 and δb = 1 in Equation (3.37), we derive

ṅion =
1

γ

n̄H
t̄rec

. (3.38)

This differs from the usual expression used to assess whether a given ionizing

photon injection rate can maintain an ionized IGM by the factor 1/γ, which is

a factor of ∼ 20 at overlap in our simulation. If this result is correct, then it

means that the required UV luminosity density to maintain an ionized IGM has

been underestimated by a factor of approximately 20. However, a more precise

statement would be that the UV luminosity density required to maintain the IGM

in a highly ionized state; fn = 10−5 is 20 times higher than what has been previously

estimated. Lower levels of UV luminosity density than that specified in Equation

(3.38) could still maintain the IGM in an ionized state, but one with a higher

neutral fraction.
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As we showed in Figure 3.24, the effective recombination time at and after

overlap in our model is comparable to the Hubble time, whether we use the Madau

formula to evaluate it for reasonable values for the clumping factor, or we evaluate it

directly from our simulation data. This fact casts in doubt the entire instantaneous

photon counting argument which is the basis of Equation 3.1, and the equation

becomes less useful for the purposes to which it has been applied (e.g., Robertson

et al. 2013). It means that the ionization state of the IGM has a memory on the

timescale of t̄rec which is always a significant fraction of tHubble before overlap, and

of order the Hubble time after overlap. We therefore recommend observers use

the time-dependent version Equation (3.37) in future assessments of high redshift

galaxy populations and their role in reionization.

3.7.2 Limitations of the Simulation

We conclude this section with a brief discussion of the known limitations

of our simulation and a comparison of our results with others in the published

literature. First the limitations. The principal limitation is the use of a uniform

grid, which prevents us from resolving processes occuring inside galaxy halos. The

main defect this introduces is an inability to calculate the ionizing escape fraction

directly, as is done in some high resolution simulations; e.g., Wise & Cen (2009);

Fernandez & Shull (2011). In our simulation, we calibrate our star formation recipe

to match the observed SFRD, and then use that that to calculate UV feedback

cell-by-cell via Equation (3.15). We use a value for εUV taken from Ricotti et al.

(2002) for an unattenuated low metallicity stellar population. We underestimate

the amount of internal attenuation of ionizing flux due to our limited resolution

within halos, and we do not incorporate an explicit escape fraction parameter in

Equation (3.15). Effectively, we assume fesc(ISM) = 1. Using a lower value for

fesc would result in a lower overlap redshift (Petkova & Springel, 2011b). Clearly,

it would be desirable to vary this parameter in future studies.

A second limitation of our simulation is that we have presented only one

realization in a relatively small box. Previous studies have shown that H II bubbles

reach a characteristic size of ∼ 10 Mpc comoving in the lates stages of reionization
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(Furlanetto et al., 2004a; Zahn et al., 2007a; Shin et al., 2008). At 20 Mpc on a

side, our box is scarcely larger than this. Therefore one can ask how robust our

results are to boxsize. We have addressed this by carrying out a simulation of

identical physics, spatial, and mass resolution in a volume 64 times as large as the

one described in this paper. The simulation is carried out in a box 80 Mpc on a side

on a uniform mesh of 32003 cells, and with an equivalent number of dark matter

particles. Results of this simulation will be presented in a forthcoming paper (So

et al., in preparation). For the present we merely state that the QHII (z) curve

for the 8003 simulation falls within the ±1σ band for the larger simulation, where

this band is obtained by subdividing the large simulation into 64 cubes of size 20

Mpc on a side, and calculating the mean and standard deviation. While the larger

box begins to ionize at a slightly earlier redshift, due to the presence of higher

sigma peaks forming galaxies, both simulations complete reionization at the same

redshift, zreion = 5.8. The QHII (z) curve for the 8003 simulation is near the lower

edge of the band, which means that at intermediate redshifts (7 ≤ z ≤ 8), where

the difference is largest, the small box simulation underestimates the fraction of

the volume that is ionized by about 20%, with differences smoothly decreasing to

lower and higher redshift.

A third limitation is that our SFRD systematically deviates from observa-

tions below z ∼ 7, flattening and then decreasing slightly, rather than continuing

to rise (Figure 3.3). The large box simulation does not show this effect, but rather

tracks the observed SFRD over the entire range of redshifts. The difference in the

mean SFRD between the large and small box simulations increases smoothly from

0.1 dex at z = 9 to 0.3 dex at z = 6. The higher levels of star formation in the

large box simulation account for the higher ionized volume fraction at intermediate

redshifts. Nonetheless, the two simulations complete reionization at virtually the

same redshift, which is a curious result which we address in a subsequent paper.

Another limitation of our method is the use of flux-limited diffusion (FLD)

to transport radiation. It is well known that FLD does not cast shadows behind

opaque blobs. This could potentially overestimate how rapidly the IGM ionizes,

and hence overestimate zreion. In Paper I we showed through a direct comparison
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between FLD and an adaptive ray tracing method incorporated in the Enzo code

on a standard test problem that the differences in the volume- and mass-weighted

ionized volume fraction are small. This was for a rather small volume with a

small number of ionizing sources. The differences will likely be even smaller as

larger volumes containing larger numbers of sources are considered. At the present

time, no fully-coupled radiation hydrodynamic simulations of reionization using ray

tracing in large volumes are available to compare our method against, to confirm

or deny this conjecture.

3.7.3 Comparison with Other Self-Consistent Simulations

Finally, we compare our results to the results of several recent fully-coupled

simulations of reionization including hydrodynamics, star formation, and radiative

transfer. Petkova & Springel (2011b) simulated a (10 Mpc/h)3 volume with the

Gadget-2 code coupled to a variable tensor Eddington factor moment method for

the ionizing radiation field sourced by star forming galaxies. They carried out

a suite of simulations with 2 × 1283 gas and dark matter particles, varying the

ionizing escape fraction and the mean energy per photon from hot, young stars.

The also performed one simulation at 2×2563 resolution to check for convergence.

Our simulation has 80/10 times superior mass resolution as their 1283/2563 sim-

ulations. Because Gadget is a Lagrangian code, our Eulerian simulation has 8/16

times lower resolution in the highest density regions, but 4.46/2.23 times higher

resolution at mean density, and even higher resolution compared to the Gadget

simulations in low density voids. Our method also has a more accurate adaptive

subcycling timestepping scheme for the coupled radiation-ionization-energy equa-

tions, obviating the need to model nonequilibrium effects by means of a gas heating

parameter ε.

Morphologically, our results are qualitatively similar, as are the neutral

hydrogen fraction versus overdensity phase diagrams. As might be expected from

the two methods, the phase diagrams show some differences at the highest and

lowest overdensities which is likely a resolution effect. The SFRD in the Petkova

& Springel (2011b) simulation is about an order of magnitude higher than observed,
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making a direct comparison on QHII (z) somewhat problematic. However, since

they vary the ionizing escape fraction, we can roughly compare their fesc = 0.1

case with our results. Their model completes reionization at z ≈ 5 compared to

our own which completes at z ≈ 5.8. They plot the quantity log[1 − QHII (z)],

which makes the end of reionization look abrupt. We plot QHII (z), which makes

the end of reionization look slow. When we plot log[1−QHII (z)] using our data,

it looks very similar to their curves, and shows a rapid plunge in the average

neutral fraction at late times. Petkova & Springel (2011b) do not compare with

the predictions of the Madau et al. (1999) model, nor do they investigate the

evolution of clumping factors, recombination times, or the number of photons per

H atom to achieve overlap as we do. We do not investigate the properties of the

z = 3 IGM via Lyman α forest statistics, as they do. Therefore further comparisons

are not possible at this time.

Finlator et al. (2012) examined some of the same issues we have, hence a

comparison with their results is informative. They carried out a suite of Gadget-2

simulations in small volumes (3, 6)Mpc/h coupled to a variable tensor Eddington

factor moment method. Unlike Petkova & Springel (2011b), the radiation trans-

port is solved on a uniform Cartesian grid, rather than evaluated using the SPH

formalism. The results presented in Finlator et al. (2012) use 2×2563 dark matter

and gas particles, which given their small volumes, yields a similar mass resolution

to our simulation, superior spatial resolution in high density regions, and slightly

coarser spatial resolution at mean density and below. However, their radiation

transport is done on coarse 163 mesh, which in their fiducial run is 536 comoving

kpc ≈ 20× as coarse as ours. Their simulation thus coarse-grains the radiation

field relative to the density field, which necessitates the introduction of a sub (ra-

diation) grid model for unresolved self-shielded gas (i.e., Lyman limit systems).

The effect of their subgrid model is to remove some gas in the overdensity regime

1 ≤ ∆b ≤ 50 in the calculation of the H II clumping factor, thereby lowering it.

Since our radiation field is evolved on the same grid as the density field, we have

not included an explicit subgrid model for unresolved self-shielded gas. Lyman

limit systems, with neutral column densities of ∼ 1017 cm−2, have a characteristic
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size of 10 physical kpc (Schaye, 2001; McQuinn et al., 2011). At z = 6 this is 70

comoving kpc, which is resolved by 3 grid cells in our simulation. While this is

lower than one would ideally like (5-10 cells), we believe we can make an apples-to-

apples comparison between our resolution-matched simulation results and Finlator

et al.’s results.

Our results are in broad agreement with those of Finlator et al. (2012),

with some minor quantitative differences. We both find that the unthresholded

baryon clumping factor Cb significantly overestimates the clumping in ionized gas

at redshifts approaching overlap, and therefore that it should not be used to es-

timate the mean recombination rate in the IGM. We confirm their findings that

properly accounting for the ionization state and temperature of gas of moderate

overdensities lowers the clumping factor to less than ≈ 6 (in our case less than 5;

see Figure 3.17). Finlator et al. quote a value for CHII of 4.9 at z = 6 taking self-

shielding into account, which is in good agreement with our value of CttHII ≈ 4.8.

However, they favor a lower value for C of 2.7-3.3 taking temperature corrections

into account. This can be compared with our value for CRR ≈ 2.3, which includes

temperature corrections but also excludes gas with ∆b < 1. Including this low

density gas, as Finlator et al. do, would raise this value somewhat since a larger

range of densities enter into the average. We conclude therefore that clumping

factors derived from our simulation are in good agreement with those reported by

Finlator et al. (2012).

We find that approximately 2 photons per hydrogen atom (γ/H ≈ 2) are

required to reionize gas satisfying ∆b < 100–our proxy for the fluctuating IGM.

Finlator et al. (2012) quote a model-dependent value for γ/H which depends on

the redshift at which the IGM becomes photoheated and thereby Jeans smoothed

(their Fig. 7). For z = 6, γ/H ≈ 5, significantly higher than our number evalu-

ated directly from the simulation. However, for z = 8, when our box is already

significantly ionized, γ/H ≈ 3. Because there are many model-dependent assump-

tions that go into the Finlator et al. estimate, we consider this reasonably good

agreement. However we point out that our estimate is the first to be derived from

a self-consistent simulation of reionization with no subgrid models aside from the
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star formation/radiative feedback recipe.

Finally, Finlator et al. (2012) compare QHI (z) = 1 − QHII (z) for their

fiducial model with the time-dependent model of Madau et al. (1999). They point

out the sensitivity of the redshift of overlap on the choice of clumping factor,

which enters into the recombination time, and showed that CHII provides better

agreement with theory at early times than Cb, consistent with our findings. Since

small discrepancies in QHII (z) at early times are masked by plotting QHI (z),

Finlator et al. did not discover the need for our overdensity correction δb. Similar

to us, they found that even with the best clumping factor estimate the analytic

model predicts that reionization completes earlier than the simulation by ∆z ≈ 1.

They ascribe this delay to finite speed-of-light effects (which can only account for

∆z = 0.1), while we ascribe it to nonequilibrium ionization effects. Finlator et al.

(2012) did not propose modifications to the Madau et al. (1999) model to improve

agreement with simulation, as we do in Equation (3.37).

3.8 Summary and Conclusions

We now summarize our main results.

1. We use a fully self-consistent simulation including self-gravity, dark matter

dynamics, cosmological hydrodynamics, chemical ionization and flux limited

diffusion radiation transport, to look at the epoch of hydrogen reionization

in detail. By tuning our star formation recipe to approximately match the

observed high redshift star formation rate density and galaxy luminosity func-

tion, we have created a fully coupled radiation hydrodynamical realization

of hydrogen reionization which begins to ionize at z ≈ 10 and completes at

z ≈ 5.8 without further tuning. While our goal is not the detailed prediction

of the redshift of ionization completion, the simulation is a realistic enough

to analyze in detail the role of recombinations in the clumpy IGM on the

progress of reionization.

2. We find that roughly 2 ionizing photons per H atom are required to con-

vert the neutral IGM to a highly ionized state, which supports the “photon
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starved” reionization scenario discussed by Bolton & Haehnelt (2007).

3. Reionization proceeds initially “inside-out", meaning that regions of higher

mean density ionize first, consistent with previous studies. However the

late stages of reionization are better characterized as “outside-in" as isolated

neutral islands are swept over by externally driven I-fronts. Intermediate

stages of reionization exhibit both characteristics as I-fronts propagate from

dense regions to voids to filaments of moderate overdensity. In general, the

appropriateness of a given descriptor depends on the level of ionization of

the gas, and the reionization process is rather more complicated that these

simple descriptions imply.

4. The evolution of the ionized volume fraction with time QHII (z) depends on

the level of ionization chosen to define a parcel of gas as ionized. The curves

for ionization fractions fi = 0.1 and fi = 0.999 are very similar, but the curve

for fi = 0.99999 is significantly lower at a given redshift, amounting to delay

of ∆z ≈ 1 relative to the other curves for QHII � 1, smoothly decreasing

to 0 as the redshift of overlap is approached.

5. Before overlap, 30-40% of the total recombinations occur outside halos in

our simulation, where this refers to gas with ∆b < 100. After overlap, this

fraction decreases to 20% and continues to decrease to lower redshifts.

6. Before and after overlap, 3-4% of the total recombinations occur in voids

(defined as ∆b < 1.) While this is a small fraction of all recombinations, it

is about 10% of recombinations before overlap, increasing to about 20% by

z = 5. The contribution of voids to the ionization balance of the IGM is

therefore not negligible.

7. The formula for the ionizing photon production rate needed to maintain the

IGM in an ionized state derived by Madau et al. (1999) (Eq. 3.1) should

not be used to predict the epoch of reionization completion because it ig-

nores history-dependent terms in the global ionization balance which are not

ignorable. While not originally intended for this purpose, it is being used
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by observers to assess whether increasingly higher redshift populations of

star forming galaxies can account for the ionized state of the IGM. A direct

application of the formula to our simulation predicts an overlap redshift of

z = 7.4 compared to the actual value of z = 5.8.

8. Estimating the recombination rate density in the IGM before overlap through

the use of clumping factors based on density alone is unreliable because it ig-

nores large variations in local ionization state and temperature which increase

the effective recombination time compared to density-based estimates. For a

currently popular value of the clumping factor C = 3 (Shull et al., 2012), the

formula for t̄rec from Madau et al. (1999)(Eq. (3.21)) understimates by 2×
at all redshifts the effective recombination time measured directly from the

simulation. If we adjust C downward so that Eq. (3.21) matches trec,eff from

the simulation, then it is too low by 60% at z = 6 due to the aforementioned

effects.

9. The assumption that t̄rec/t� 1 which underlies the derivation of Eq. (3.1) is

never valid over the range of reionization redshifts explored by our simulation

(Fig. 3.24). Depending on how t̄rec is evaluated, t̄rec/t increases from 0.3−0.4

at z = 9.7 to≥ 1 at overlap. This means that an instantaneous analysis of the

ionization balance in the IGM post overlap is invalid because recombination

times are so long.

10. Retaining time-dependent effects is important for the creation of analytic

models of global reionization. The analytic model for the evolution of QHII

introduced by Madau et al. (1999)(Eq. (3.31)) retains the important time-

dependent effects, and predicts well the shape of our simulated curve, but

overpredicts QHII at all redshifts because it does not take into account

that reionization begins in overdense regions consistent with the inside-out

paradigm. It also assumes every emitted ionizing photon results in a prompt

photoionization, which is not true in our simulation at late timesQHII > 0.5.

The Madau model, which ignores these effects, predicts a universe which

reionizes too soon by ∆z ≈ 1. When we introduce correction factors for



130

these effects into Eq. (3.37) the simulation and model curves agree to ap-

proximately 1% accuracy. We recommend researchers use Eq. (3.37) for

future analytic studies of reionization.

11. Finally, we present in Figs. 3.26, 3.27, and 3.29 fitting functions for the

overdensity correction δb(Q), the effective recombination time derived from

our simulation, and the ionization efficiency parameter γ(Q) which may be

useful for other researchers in the field.
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Chapter 4

Radiative Feedback and the

Suppression of Star Formation in

Low Mass Haloes

4.1 Introduction

Throughout Chapter 2 and 3 we referenced how we calibrated the simula-

tion input against observations. We have done this in the hopes that it will enable

us to create a realistic simulation of reionization including all the relevant physical

processes given roughly the same amount of ionizing photons as observed. The

result is what we think of as a representative history of how the universe transi-

tioned from being mostly neutral to mostly ionized during EoR. Having the series

of events during EoR clearly mapped out in Chapter 3, we are poised to identify

the physics that are responsible. Of course, the one question that is of paramount

importance is what is the role of radiation transport during EoR? Since we ex-

pended considerable efforts in the implementation of the FLD radiation transport

module in Enzo, it is natural that we want to quantify its contribution to the more

realistic simulation results.

By comparing different simulations with and without radiation transport,

we can get a feel of how the different simulation parameters affect their overall SFR

131
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density. However, to isolate the effects of radiation we have to compare a simulation

with radiation against another simulation with similar parameters, differing only

in having the radiation effects turned off. Therefore, we also ran a simulation

that is identical to the fiducial run but with the FLD radiation transport module

switched off. We went another step further and ran an adiabatic simulation with

no cooling and supernova feedback. In this way, we would be able to judge how

radiation runs are different compared to other works in the literature that have

hydrodynamics but no SN feedback, or those with SN feedback but no radiation

transport.

Besides isolating the effects of radiation, we also want to make sure that

the SFR we arrived at was from careful tuning of the parameters and not by luck

or accident. When we first looked at the SFR density of our fiducial simulation,

we were content with our tuning of the input parameters because the SFR density

was able to match quite well with observations. However, we did not have another

simulation with different parameters to compare against to see if this SFR density

is stable against small changes in the physics. Since ultimately, we wanted to

simulate a larger, more representative volume of the universe, we ran a simulation

that is 64× bigger in volume. Additionally, when we later realized that photons

with energies above 4 Ryd should not be able to escape into the IGM, we ran

another simulation that is identical in all respects with our fiducial simulation

except that the input SED is truncated above 4 Ryd.

Another focus of this chapter is to better characterize the population of

radiating sources. In our model, the UV emissivity of a given galaxy (halo) is

proportional to its instantaneous SFR. Thus far, we have only considered the SFR

density, which is the integrated SFR in all galaxies, divided by the volume of

the box. Now we wish to examine the SFR in individual galaxies, and look for

correlations of SFR with dark matter halo mass. This would tell us the relative

contribution of galaxies of different mass to the overall ionizing photon budget.

The distribution of star formation would also shed light on the galaxy lu-

minosity function (LF). We have shown that given our star formation from the

fiducial run, we were also able to obtain a luminosity function that is similar to
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observations, even though that was not our intention to start off with (see §3.3).

It is unclear whether a different SFR in the radiation simulations can yield a LF

that stays consistent with the observed LF. As we will show below, there is no

one-to-one mapping between the two, and we examine how galaxies of different

mass and luminosity contribute to the composite LF.

In order to investigate these questions, we present and discuss the following

analysis results. First, we list the suite of simulations that will be used in the

analysis in §4.2. There, we give a brief description of each simulation and note

the key differences between them. Then in §4.3, we compare and contrast the

SFR densities between the radiation simulations. Here, we will focus on the three

simulations with FLD radiation transport. After that, we want to compare the

SFR of halos of different mass ranges in §4.4. Again this is for the three simulations

with radiation, looking for trends and patterns. In §4.5, we compare the fiducial

radiation run with non-radiation runs. We want to see if we can spot any obvious

radiation effects on the halos’ gas content. In §4.6, we turn our attention to how

the radiation runs distribute their luminosity by comparing LF of the two smaller

radiation simulations against observation. We want to see if we can still recover

roughly the same LF by having similar SFR density earlier in §4.3. Then, in §4.7

we look at the overall ionized volume history between the radiation runs. We want

to make sure they do not reach EoR too quickly or slowly and identify any odd

behaviors.

4.2 Suite of Simulations

We list the suite of simulations for comparisons in Table 4.1. They all have

slightly different key input physics. The first simulation on the list BSM10RAD800

(BSM) is our fiducial run that was introduced in Chapter 2 and analyzed in detail

in Chapter 3. It is simulated in a box of sidelength 20 Mpc comoving with a

uniform grid of 8003 cells, using a distributed star formation and feedback recipe

described in Smith et al. (2011) and SED from Pop II stars (Ricotti et al., 2002).

The SED800B (SED) simulation differs from BSM by not having a component of
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the SED that is greater than 4 Ryd (>4 Ryd in the table); this has the effect of

slightly lowering the overall IGM temperature but increases slightly the ionization

rate (see §4.3). The NORAD800B (NORAD) simulation uses the same cosmology

input parameters as those of the BSM run but with the FLD radiation transport

module turned off, while keeping the same star formation and supernova (SN)

feedback. This simulation has only hydro+N body. The ADIAB800B (ADIAB)

simulation again uses the same cosmology as those of NORAD but this time turning

off star formation and SN feedback. This simulation has no cooling and does not

form any stars, and no SN winds to blow off collapsing gas. And finally the R3200B

(R32) simulation uses the same parameters as BSM but is now 80 Mpc comoving

on a side, with 64× the volume as BSM. This simulation is conducted at the same

mass and spatial resolution as BSM and includes higher order of the matter power

spectrum, resulting in more massive rare peaks of highly dense gas.

Table 4.1: Suite of simulations exploring the robustness of the results presented

in §4. Simulations will be referred to by italicized portion of names.
Simulation Names box size resolution SF/FB FLD RT >4Ryd
BSM10RAD800 (20 Mpc)3 8003 Yes Yes Yes
SED800B (20 Mpc)3 8003 Yes Yes No
NORAD800B (20 Mpc)3 8003 Yes No N/A
ADIAB800B (20 Mpc)3 8003 No No N/A
R3200B (80 Mpc)3 32003 Yes Yes Yes

4.3 Star Formation Rate Density

The star formation rate of our fiducial run described in §3 assumes the SED

from Ricotti et al. (2002), which models the UV emissivity of a low metallicity

Population II stellar population with a standard mass function (Salpeter). Since

we do not resolve the internal structures of the galaxies in the simulation, we

model the feedback processes via a subgrid model described in §2, which includes

photons in excess of 4 Ryd. However, there is evidence that these photons with

energies higher than 4 Ryd do not leave the galaxy and are absorbed within the

galaxy itself, therefore we ran a simulation with the same cosmology only slightly
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modifying the SED. The modification is only to zero out the distribution of UV

photons with energies higher than 4 Ryd. As a side effect of this modification, the

amount of radiation energy that was distributed beyond 4 Ryd is now distributed

to below 4 Ryd, contributing more energy to the 1 Ryd ionization threshold of

hydrogen. This in turn lowers the overall IGM temperature, but increases the

amount of ionization slightly, speeding up the process of reionization.

In Figure 4.1, we plot the different star formation rate densities (SFRD) in

units of M�yr−1Mpc−3 comoving vs. z. The blue curve is from our fiducial run and

is the same as in Figure 3.3. In green is the SED run with the modified SED where

UV photons with energies higher than 4 Ryd are absent. In red is R32 with the

fiducial cosmological parameters except the bigger volume of 80 Mpc comoving on

a side. In the process of trying to analyze the simulation with the bigger volume,

we ran into the trouble of the analysis machine not having enough memory to

hold all the data at once (∼ O(TB)). Therefore we resorted to analyzing smaller

chunks of them separately and tabulating the results for comparison afterwards.

We divided the halo finding into 64 equal subvolumes, each having the same volume

as our fiducial run of 20 Mpc comoving on a side. We then calculated a mean and

a standard deviation of the SFRD and plot the mean as the red curve and +/- one

standard deviation as the yellow region around the red curve.

The point of showing Figure 4.1 is that although resolution and the SED of

the star particles do affect the resultant SFRD in the box, the changes we applied

do not alter SFRD dramatically by orders of magnitude. We are still relatively

close to the observational constraints from Bouwens et al. (2007).

We see that the SFRDs in the SED and R32 simulations are higher than the

fiducial simulation, and in fact, in better agreement with observations (compare

with Figure 3.3). Therefore we can say that there is some sensitivity of the average

SFR on box size and radiation spectrum.

Regarding the box size sensitivity, a larger box samples the ΛCDM matter

power spectrum to lower wavenumbers, and therefore there is more total power

in the box. This increases the number of dark matter halos of a given mass, and

introduces the rare, more massive halos that were excluded by the smaller box.
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Figure 4.1: Plot of star formation rate density vs. redshift for three simulations.

Blue: Our fiducial run. Green: Run with a modified SED where UV photons with

energies higher than 4 Ryd are neglected. Red: Run with the fiducial cosmological

parameters except the bigger volume of (80 Mpc)3 comoving. Halo analysis done

by cutting the halo finding to 1/64th of volume at a time, red represents the mean

and yellow the +/- one standard deviation.
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Figure 4.2: Halo Mass Function of R32 at a redshift of 6.5. Even at this earlier

redshift we see that the box size samples the rarer density peak and produced halo

with roughly 1012M�, larger than the largest halo of BSM at a z = 5.0 shown in

Figure 3.4.

This is shown in Figure 4.2 which shows that the R32 simulation has generated

halos with mass of 1012M�. This compares directly with the halo mass functions

for the fiducial BSM shown in Figure 3.4. This also results in more star formation

overall for R32. We see in Figure 4.1 that the BSM run falls within the band for

redshifts z > 6, albeit close to the -1σ lower boundary.

Regarding the SED sensitivity, we speculate that the softer radiation spec-

trum heats the IGM to a lower temperature and hence pressure, which allows halos

to retain somewhat more of their gas. This supports slightly more star formation

in a halo of a given mass. This conjecture will be investigated in the next section.
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4.4 Star Formation Rate vs. Dark Matter Mass

Knowing that the SFRD is not significantly different gives us confidence

in our comparisons between the different simulations. We want to look at how

different halos of different mass (in this case we measured their dark matter mass

only) formed stars. We plot in Figures 4.3, 4.4, 4.5 the SFR versus the dark matter

mass of the host halos for the BSM, SED, and R32 simulations respectively. We

compare these three here because they all have radiation transport and we would

like to know what the simulations yield in terms of SFR of halos when radiation

is present.

The halos are found using the yt (Turk et al., 2011) parallel HOP halo

finder, then encapsulated in the ellipsoid 3D data object when determining its

SFR and gas mass. Since the 3D object wraps around all the dark matter particles

found during the halo finder phase, this can potentially lead to some region being

counted toward multiple halos. If the double counted region includes emissivity,

this may lead to a slight over-counting of the total emissivity. The alternative

is to use the virial radius to encapsulate halos in small spheres, but this would

lead to star forming regions not being accounted for. We deliberately choose the

former because we also want to understand the local regional attributes that causes

star formation, but perhaps a different approach will yield other interesting results

which we will discuss in §5.

Looking at Figure 4.3, we plot at z=5 the SFR in units of M�yr−1 vs. halo

dark matter mass in units of M� for 1215 star forming halos out of a total of

19879 halos found by the halo finder. This figure shows the most massive halo

is around 1011.5M� for the BSM simulation. It has the most SFR shown in units

of M�yr−1. For halos with smaller mass, the SFR decreases with a visible trend

with scatter around the peak of the trend. However, below 109M�, the trend ends

rather abruptly, at which point the scatter also increases. There is a significant

spread of low mass (<109M�) halo with SFR that is on par with those around

109M�, but also some roughly 109M� halos that have orders of magnitude smaller

SFR than their counterparts around the peak of the trend. We want to see if this

spread happens in the other simulation with radiation transport as well.
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Figure 4.3: Star formation rate within each halo vs. the halo’s dark matter mass

at z=5 for BSM. SFR decreases with decreasing dark matter mass with a visible

trend. There is a significant deviation from the trend when the dark matter mass

falls below 109M�. This is data from 1216 star forming halos out of a total of

19879 halos, which contains 98.6% of the emissivity in the simulation.
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We plot the same quantities in Figure 4.4 for the SED run, and we see that

the same general trend appears, but this time the data is from a slightly earlier

redshift of z=6. Here, we have 1151 star forming halos out of 44660 halos found

by the halo finder. The most massive halo at this earlier z have a mass of around

1011.3M�, and SFR again follows a trend toward around 109M� at which point the

trend ceases. The spread of data points after the trend ceases below 109M� does

not seem as prominent in the case of the SED run suggesting less SFR there for

the SED. The peak of the number distribution also seems to be shifted to slightly

higher than 109.5M� whereas it was slightly below 109.5M� in the BSM run. We

note that there is some overlap of the ellipsoid 3D object, because the emissivity

summed from halos is 101% of the total in the box. We do not consider the overlap

to be a substantial contribution of error to the trend in the figure because if there

is contamination at the high end of the trend, the shape of the trend would be

affected, and low end trend contamination would be buried in the trend where

there are more halo samples.

There may be other more subtle effects from having a different SED that

is not accounted for in this phase diagram, which we will discuss in §5.

Now we look at the simulation with a much bigger volume in Figure 4.5

from R32. The largest halo mass starts at around 1011.5M� at this earlier redshift

of z = 7.3. There is a much bigger sample of 26336 star forming halos out of 669217

halos. The high mass of the largest halo is an indication that there is more large

scale power in the matter power spectrum in the 64× bigger volume compared to

BSM. Since objects formed in the hierarchical fashion will accrete more mass over

time, we can safely assume that the most massive z=7.3 object will probably grow

to larger mass than the most massive halo in the BSM run when it reaches the

same z of 5. We again note the same slight overcounting of emissivity, but assume

it does not change the trend of the SFR seen in the phase diagram.

To see the drop-off in SFR more simply, we plot the sum of the SFR in each

mass bin from R32 in Figure 4.6. We see that on the x-axis in units of M�, between

1011.0 and 109.7 there is a peak of total SFR in each mass bin, which are fairly stable

with values around 102.7-103.0M�yr−1. Between 109.7-109.0M� however, the total
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Figure 4.4: Star formation rate within each halo vs. the halo’s dark matter mass

at z=6 for SED. SFR decreases with decreasing dark matter mass with a visible

trend. There is a significant deviation from the trend when the dark matter mass

falls below 109M�. This is data from 1151 star forming halos out of a total of

44660 halos, which contains 101% of the emissivity in the simulation. The total

emissivity exceeded 100% due to some star forming region being double counted

in halo analysis.
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Figure 4.5: Star formation rate within each halo vs. the halo’s dark matter mass

at z=7.3 for R32. SFR decreases with decreasing dark matter mass with a visible

trend. There is a significant deviation from the trend when the dark matter mass

falls below 109M�. This is data from 26336 star forming halos out of a total of

669217 halos, which contains 101% of the emissivity in the simulation. The total

emissivity exceeded 100% due to some star forming regions being double counted

in halo analysis.
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Figure 4.6: Sum of the binned star formation rate vs. halo dark matter mass

from R32 at z=7.3. This shows the order of magnitude drop in the total SFR per

bin below 109.7M�.

SFR in each bin drops by an order of magnitude over this halo mass range before

reaching another plateau around 101.5M�yr−1. This shows that the end of the

trend of SFR is real, and not just dispersed into the larger cloud that spreads

over different SFR values. We do not look at data for halos of dark matter mass

below 108M� since in that regime we are limited by the mass resolution of this

simulation.
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4.5 Effects of Supernova and Star Formation Feed-

back

Here we investigate the origin of the suppression of star formation in low

mass halos which we saw in the last section. Conventionally this is believed to be

the consequence of two physical effects (Finlator et al., 2012; Geha et al., 2012):

(1) reionization, which raises the gas temperature to T ≈ 104 K, and hence its

pressure, which allows it to escape the shallow potential wells of low mass galaxies;

and (2) supernova energy feedback, in which gas is ejected from low mass galaxies

kinetically. Here we compare three simulations, where ADIAB has neither cooling

nor star formation, NORAD has star formation and supernova feedback turned on

(which injects thermal energy into 27 neighboring cells (Smith et al., 2011)), and

the BSM run has the addition of radiation transport with the FLD module turned

on. We compare them by dividing the total gas mass in each dark matter mass

bins of NORAD and BSM by the same quantity in the ADIAB run. This way,

we can see the relative effects of adding supernovae, then adding radiation on the

halo gas mass. We study gas mass because it feeds star formation, and we wanted

a quantity we could measure in all three simulations.

In Figure 4.7, we plot the gas content of BSM and SED relative to ADIAB

at z=5. Examining the green curve labeled NORAD/ADIAB, we see that if we

add supernova feedback, the highest mass halos are having their gas blown away

by the energetic explosion. In our feedback recipe, the SN energy injection rate is

proportional to the SFR, which is much higher in the high mass halos. This may

have caused the high mass halos to lose much of their gas. The halos with masses

below ∼109.7M� are not affected as much. Some of these low mass halos even

have slightly higher gas content than halos of similar masses in the ADIAB with

no supernova effects. This might be due to gas accretion onto the low mass halos

from the gas blown out by the more massive halos. To confirm these hypotheses

we have to compare the SN energy injection to the gravitational binding energy.

The blue line of BSM/ADAIB shows a more global effect. The added ra-

diation decreases gas mass in halos across all mass ranges. The effect is more
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Figure 4.7: Halo gas mass ratio vs. dark matter mass for BSM and SED relative

to ADIAB run at z=5.

apparent in the lower mass halos, but even the most massive halo feels the effect.

Interestingly, the most massive halos in the BSM run have more gas mass relative

to the NORAD simulation. This could be due to the non-linear nature of the feed-

back process of structure formation, supernova feedback, and radiation feedback.

The radiation could have lowered the formation of new stars by heating up the

gas, thus resulting in less energetic supernova feedback that blows away less gas,

therefore retaining more gas as an end result. Another possibility is that the most

massive halo is less efficient at turning gas into stars when radiation is present,

therefore it has more gas than halos of similar masses in the NORAD simulation.

Further study of the combined baryon mass (stars+gas) is warranted to draw any

more convincing explanations. The proposed explanations are just speculations

for now.
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4.6 Halo Luminosity Function

To further validate our simulation against observations, we compare the

simulations’ luminosity function (LF) to those from observations. The LF is a

measurement of how much do galaxies shine at a certain brightness level. Observers

use the LF to try to determine the ionizing photon budget available to ionize the

universe during EoR (Bunker et al., 2004; Bolton & Haehnelt, 2007). Therefore, it

is important that we at least compare what our simulations yield in terms of the

LF, or else we may over or under produce galaxies of different brightness compared

to what was available in the early universe. In Figure 4.8, we plot in red the LF

of BSM and in orange that of the SED, and compare the two with points in blue

which are from Table 5 (z∼6) of Bouwens et al. (2007). The error bars from the

simulations are from one standard deviation of the available data points in each

magnitude bin.

In the figure, we are able to roughly reproduce the observed luminosity

function at the observable range (−22 < M < −18) at around the same redshift.

Even with a relatively small sample of halos (∼1,000), the standard deviation error

bars in each mass bin are roughly the same size as those from observations. As a

prediction we may even see a turn over of the luminosity function in the fainter

end. However, the turnover may be due to the missing under-resolved low mass

halo from the limitations of the mass resolution. Further simulations with better

mass resolutions may be needed to definitively say whether the turn over of the

LF will happen around a magnitude of -14 to -16.

We also note some limitations on this plot. The first limitation is that

the magnitude plotted from our data is the bolometric magnitude, as opposed to

the observational data which uses the AB magnitude system (Oke & Gunn, 1983;

Bouwens et al., 2007). This is because our radiation field uses the grey approxima-

tion averaging over all frequencies, therefore it is not frequency dependent. The

result is that we can only use the overall bolometric scale for magnitude calcula-

tions. Second, we see that we do not sample the brightest end of the LF well at

this redshift. This is due to the physical size of the simulation. Given a bigger box

with more large scale power in the matter power spectrum, we would have big-
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Figure 4.8: Red: Luminosity function measured in bolometric magnitude from

BSM; Orange: Luminosity function measured from SED; Blue: Luminosity func-

tion measured in 1350Å, AB magnitude from Table 5 (z∼6) from Bouwens et al.

(2007).
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ger objects that are forming more luminous sources. We are expecting the same

analysis on R32 to give us brighter points near MBol ∼-22.

4.7 Ionization History

Finally, we compare the ionization histories of our three radiation simula-

tions. The ionization history of the universe is one deceptively simple diagram.

Usually it is regarded as the fractional volume of the universe that is deemed “ion-

ized” (we continue to use the Well Ionized level of less than one part neutral in 103

hydrogen atoms) vs. redshift z. On the surface, this may tell us only when the

universe starts to get significantly ionized and when EoR ends. Often people use

volume fractions of 20% and 80% to set the duration of EoR, but as we have shown,

the extended tail near reionization completion is rather important. It is hard to

simulate all the physics involved in EoR accurately. By investigating the ionization

history, photon production, and recombination rates we wish to understand more

about the interplay between the physical processes (see §3.6).

Since so many processes are involved in modeling the flattening tail end of

the volume fraction of ionized hydrogen (QHII , to Well Ionized level), we want to

make sure that QHII asymptotically approaching unity is not an anomaly of the

BSM simulation (discussed in §3.7.3). We plot in Figure 4.9, QHII vs. z for the

radiation runs BSM, SED, R32. The blue curve is theQHII evolution of BSM, green

is SED, and red is the mean for R32, and the yellow region is the +/- one standard

deviation from the mean of R32. Standard deviation comes from analyzing the

bigger simulation R32 in 64 cubic subvolumes of size (20 Mpc)3. Although Q can

never exceed 1.0, the yellow region where it exceeded the maximum value is just

an artifact of plotting + and - of one standard deviation. We clearly see that

having a different SED (softer spectrum but with more energy distributed toward

the ionization threshold of hydrogen), enables the SED run to achieve a higher

QHII at earlier z than 6.0. The bigger box with more matter power and hence

more total star formation in R32 has a similar effect on QHII compared to BSM,

reaching higher QHII quicker before z of 6.0.



149

Figure 4.9: Plot of ionized volume fraction (to Well Ionized level) vs. redshift.

Blue: BSM; Green: SED; Red: mean of R32; Yellow: mean of R32±σ.
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This is the expected behavior given the different physics we put into the

simulations. What is interesting and perhaps even surprising is, again, the tail

end of QHII as it approaches unity. Notice how the yellow region, the standard

deviation for R32 narrows after z ∼ 6.0. And around the same z both BSM and

SED also converge to the same ionized volume fraction. SED has a earlier rise,

but also flattens earlier, whereas BSM gets to the same ionized fraction later, but

catches up at the end. There was no input parameter that directly forced these

simulations to finish EoR at the same time, so having them all finish EoR at around

the same time is unexpected.



Chapter 5

Conclusions and Future Work

Here I will summarize the conclusions from the first two chapters of the

thesis (Chapter 2 and Chapter 3), and update the last chapter based on our latest

work. In Chapter 2, we find that we were able to implement a radiation transport

module in Enzo. The tests show that the code is parallelized to be scalable, and

is sufficiently fast to finish our cosmological simulation. The accuracy of the FLD

solver is verified and validated through comparisons with analytical solutions and

other numerical solutions. With the code deemed acceptable, we used it to run a

moderate size cosmology run aimed at revealing the details of physical processes

during the epoch of reionization. Although there are known shortcomings to using

the FLD approximation for radiation transport, principally the lack of shadows

behind opaque clouds, we have seen from tests that on a cosmological scale, those

errors should not affect the end results we care about such as ionization fraction

in the volume.

In Chapter 3, we used the methods described in Chapter 2 in a cosmological

simulation that gives us a moderate sample of the universe. We matched the

observed star formation rate density as a starting point to investigate the mechanics

of accounting for photoionizations and recombinations. We found support for the

“Inside-Out” scenario at the beginning of reionization as it progressed in a “photon

starved” environment. Later when the universe is in a “photon abundant” situation,

the left over neutral region is ionized in a generally “Outside-In” fashion, and of

course the details depend on where one draws the line for gas characterized as

151
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ionized. Upon detailed analysis of the clumping factor, we concluded that it is

unreliable in predicting the end of reionization using the instantaneous model of

Madau et al. (1999) and one must account for history effects when calculating

for QHII . This is because the recombination time is not much smaller than the

Hubble time, an argument used originally to justify the instantaneous balance of

recombinations and photoionizations. We eventually found an appropriate way of

calculating for an effective (not a volume averaged) recombination time for the

purpose of estimating QHII . We also noticed that the sources of ionization term

in the original formulation of the Madau et al. formula should be photoionization

instead of photon production rate in the numerator. The denominator should be

the average density of the ionized bubble region where the ionization front has

passed. With these appropriate modifications, we are able to get good (∼ O(1%))

agreement of QHII from the formula with our simulation. We hope the observation

and simulation communities find the distinction between photoionization rate and

photon production rate to be a step in the right direction in estimating the photon

budget required to achieve end of epoch of reionization.

In Chapter 4, we set out to analyze various simulations with different physics

input. We want to compare and contrast the different simulations to see what

happens when we vary the input physics slightly and the result of having radiation

transport. We first look at the effect of having slightly varying physics on halo

star formation rates. We showed that in the three runs BSM, SED, R32 that even

at different z we see the same halo star formation vs halo dark matter mass trend,

which drops out starting below the dark matter mass of around 1010 to 109M�.

The phenomenon indicates that there is a halo mass threshold below which star

formation is much reduced by some mechanism which we do not fully understand,

merely observe at this point. Due to the limitation of previous version of the

analysis code, we were not able to analyze the stellar mass content of the halos

derived from this ellipsoidal container, but since this limitation no longer exists,

it is something that we plan to look into for a much better comparison with the

literature.

There are limitations to our simulations, many of them are discussed in
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§3.7.2. However, for the newer topics we want to investigate in Chapter 4, we will

mention a few more because they are now more relevant. There is a possibility that

the lower mass halos around 108M� are not resolved enough spatially. This will

affect their ability to form stars and contribute to the ionization locally. In fact,

they may become sinks for the radiation coming from larger halos instead, thus

skewing the result of how many photons per hydrogen atom are needed to ionize

the IGM. If they do indeed form stars, this will also change the 2D histogram and

possibly continue the trend of star formation to below 109M�. What is needed is

to check the NORAD star formation rate for these low mass halos against the star

formation rate of halos in BSM or SED.

Throughout this thesis, we investigated ionization due to photons, but there

is also collisional ionization happening that the simulations keep track of. This

effect is significant in the high density and high temperature regions, where super-

nova feedback raises the temperature to near 107K and the gas is dense locally.

Most of our later results are based on the thresholded regions where we mask out

these dense hot spots, so we do not expect our results to be affected much even if

we do account for this type of ionization. We also failed to count the ionizations

that come from singly or doubly ionized helium, but due to their relative abun-

dance, we do not expect a difference much more than 10%. We also neglected the

Hubble term by using the differential form from Madau et al. (1999) because we

believe that is a small contribution, but we will investigate further in future work.

In Bouwens et al. (2011a), the calculation of star formation rate density

and luminosity function required the observers to make dust corrections. When

we did the SFRD comparison it is with points after the dust corrections. In the

future, we could do some comparison of the R32’s SFRD and LF with dust and

compare them to the uncorrected observations. If dust is taken into account, this

can potentially change the amount of ionizations in the intergalactic medium.

As suggested in Geha et al. (2012), the apparent quenching of star formation

rate within small mass halos can be due to a number of things. The proximity

(2∼4 virial radii) from a much larger halo as neighbor would be a likely culprit. A

low mass halo’s radiation pressure from stellar and SN sources can blow away the
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gas within the halo, preventing further star formation. Another possibility is the

neighboring high mass halo’s radiation may simply be heating the gas in the smaller

halo, preventing collapse of gas in the smaller halo to form stars. Another culprit

could be quenching due to ram stripping if the smaller halo passes by the much

larger halo in its orbit. The presence of AGN feedback or stellar wind feedback

due to the halo’s intrinsic star formation may also hinder the formation of newer

stars.

A point that may need reconciliation is the mass cutoff for the star formation

trend seen in Figures 4.3, 4.4, 4.5. The mass cut off may seem like 109, but in Figure

4.6, the drop off is shown to start around 1010M� and ends around 109M�. It is

unclear whether following the same proxy for SFR (Balogh et al., 1999) that was

used in Geha et al. (2012) would show the trend ending at the same halo mass. A

second point that needs addressing is that the point of cut off used in Geha et al.

(2012) is based on stellar masses, but the graph we plotted is the halo’s dark matter

mass. This will require the halo analysis to include the stellar content which we are

ready to tackle in the near future. A third point is that although the trend ends,

the lower mass halos have a large scatter of star formation rates. In other words,

there are low mass halos with much less star formation due to quenching, but also

some with much bigger star formation than expected had the trend continued to

this mass regime. Some possible explanations could be the star formation is newly

collapsed halos that are just forming due to the hierarchical structure formation,

lower masses collapse later in time. Or that these small mass halos have undergone

an episode of recent merger with a neighbor, therefore experiencing enhanced star

formation for a short duration.

The stellar content would be an easy check with simulation data, but the

others such as proximity to a larger neighbor, ram stripping due to trajectory,

radiation pressure from winds hypothesis will require very detailed analysis of the

halo properties and possibly their environments. One thing that we can do is

analyze the halos and see if any other halo centers are within a certain number of

virial radii from the larger host. We need to re-run the halo catalog to include more

information than is available right now (primarily to include the stellar content).
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We can plot the SFR vs. distance to the host halo as a 2D scatter plot, with

the size of the points indicating the halo’s total mass, and the color of the dots

indicating either the ratio of of stellar to gas mass, or stellar to dark matter mass.

We should be able to draw some preliminary conclusion based on the graph to say

whether proximity is an effect pending the plot’s outcome.

We will also need to find a way to emulate the spectral index in order to do

an apples-to-apples comparison for the cut off of SFR (Balogh et al., 1999). We

currently do not have AGN feedback implemented in our subgrid model, therefore

we will not be able to address that effect in this version of Enzo. If we are to use

the public version of Enzo, however, we should be able to investigate this effect

further.

In the near future, we would like to analyze and compare the effects of

having a softer SED, between the BSM and SED run. We may want to be able to

adjust the SED to properly represent the UV sources of radiation, which means

going with the SED from the SED run. In addition, we would want to use this

learning experience to gauge the effects of adding X-ray, a much harder form of

radiation, and study the detail mechanism of Helium pre-heating and its effect

on EoR. The different SED already have an effect on the QHII , so we should also

expect to see an effect by the addition of hard X-ray photons. The answer will come

when more simulations are run, including the stellar content from the current suite

of simulations. We need the analysis at more redshifts, so that a more substantial

comparison can be made at different epoch during EoR, rather than the current

single snapshots.

We also touched on the possibility that high redshift galaxies exhibit a

turn over for the luminosity function. This may affect results that use a photon

budget derived from the luminosity function. Together with the modification to the

Madau et al. (1999) formula, this may require many to revisit predictions or limits

set by the computational, semi-analytic, and observational community members

such as Bunker et al. (2004); Bolton & Haehnelt (2007); Haardt & Madau (2012);

Finkelstein et al. (2012); Robertson et al. (2013); Wang (2013) to name a few.

Perhaps even new analysis that link together high, intermediate, and low redshift
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observation data is needed in a comprehensive manner such as Kuhlen & Faucher-

Giguère (2012), constraining parameter space by matching lower z observation of

the luminosity function.

We also note the limitations of our simulations as discussed in §3.7. Our

star particle maker uses the Cen & Ostriker (1992) recipe with the addition of

distributed feedback from Smith et al. (2011). This is a simple and easy to imple-

ment subgrid model that neglects all the physics that is happening in the sub-kpc

scale below our resolution. Therefore, it is possible for galaxies to exhibit a dif-

ferent SFR and hence a different overall LF if we were to change our star maker

recipe. This remains to be checked and its effect quantified by people that focus

on galactic scale star formation. Unfortunately, the lack of dynamic range due to

limited CPU resources and scalable code is still very much a bottleneck in the field

of computational cosmology simulations.

Finally, we note the interesting phenomenon that reionization completes at

roughly the same redshift for three simulations with different SFR densities (com-

pare Figure 4.1) This is not what is predicted by analytic models of reionization.

This could be due to any number of things, but we suspect that this could the

result of there being a favorable time to reionize the universe. Given the fact that

we varied the SED, box size, and yet arrived at a sort of convergence for when

more than 99.9% of the universe is considered to be ionized, we may be seeing a

stability of the solution in the highly non-linear system of equations that describe

the physics of EoR. Of course this result is only preliminary, and it awaits to be

seen just how far do we have to nudge different parameters to break away from

this stable point. Or, maybe it is not possible to reionize the universe at other

redshifts given the physical laws we observe today at all. Either way, the epoch of

reionization contains many other mysteries and discoveries that await us.
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