
UC Davis
IDAV Publications

Title
Distributed Texture Memory in a Multi-GPU Environment

Permalink
https://escholarship.org/uc/item/15z072x5

Authors
Moerschell, Adam
Owens, John D.

Publication Date
2006

DOI
10.1145/1283900.1283905

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/15z072x5
https://escholarship.org
http://www.cdlib.org/

Graphics Hardware (2006)
M. Olano, P. Slusallek (Editors)

Distributed Texture Memory in a Multi-GPU Environment

Adam Moerschell and John D. Owens

University of California, Davis

Abstract
In this paper we present a consistent, distributed, shared memory system for GPU texture memory. This model
enables the virtualization of texture memory and the transparent, scalable sharing of texture data across multiple
GPUs. Textures are stored as pages, and as textures are read or written, our system satisfies requests for pages
on demand while maintaining memory consistency. Our system implements a directory-based distributed shared
memory abstraction and is hidden from the programmer in order to ease programming in a multi-GPU environ-
ment. Our primary contributions are the identification of the core mechanisms that enable the abstraction and the
future support that will enable them to be efficient.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture;
C.1.4 [Parallel Architectures]: Distributed Architectures.

1. Introduction

In recent years, both the performance and programmability
of graphics processors has dramatically increased, allowing
the GPU to be used for both demanding graphics workloads
as well as more general-purpose applications. However, the
demand for even more compute and graphics power con-
tinues to increase, targeting such diverse application scenar-
ios as interactive film preview, large-scale visualization, and
physical simulation.

These complex applications would benefit from scalable
graphics systems that allow users to add additional hard-
ware to a system and increase its performance. While CPU
scalability is common through building CPU clusters, most
graphics systems today only support a single GPU. One ma-
jor reason is the scarcity of well-established programming
models and software support for multi-GPU systems. Ma-
jor GPU vendors now support limited multi-GPU configura-
tions such as ATI’s Crossfire and NVIDIA’s SLI, but these
solutions are both limited in scalability and have feature sets
targeted mostly at games. Cluster-based software such as
Chromium [HHN∗02] is well-suited for many applications
that require scalable graphics, yet the programming model
of Chromium disallows many forms of data communication
that we believe would be useful and necessary in future scal-
able graphics systems.

The goal of this work is to explore a memory model for
multi-GPU systems that both permits generalized communi-

cation between GPUs and is easy to use for programmers.
We propose to virtualize the memory across GPUs into a
single shared address space, with memory distributed across
the GPUs, and to manage that memory with a distributed-
shared memory (DSM) system hidden from the program-
mer. While current GPUs have neither the hardware support
nor the exposed software support to implement this mem-
ory model both completely and efficiently, the system we
describe shows promise as a powerful abstraction for multi-
GPU graphics, and we hope that our work will influence the
design of future graphics hardware and software toward sup-
porting a DSM abstraction.

2. Background

Our work has been influenced by two families of previ-
ous machines, general-purpose multi-node computer sys-
tems and more specialized graphics systems that operate on
multiple compute nodes.

2.1. General purpose systems

The two most popular mechanisms for sharing memory in
multi-node systems are message passing and shared mem-
ory. Our design goal of making the migration from single-
node to multi-node systems as easy as possible motivates a
shared memory architecture, in which all nodes share a com-
mon address space and can transparently access data stored

c© The Eurographics Association 2006.

Adam Moerschell & John D. Owens / Distributed Texture Memory in a Multi-GPU Environment

on other nodes. For the programmer, this memory abstrac-
tion is the same as for a single GPU: any GPU can access
any memory in the system. The underlying memory sys-
tem, however, faces the challenge of distributing the mem-
ory across multiple nodes and managing communication be-
tween nodes while maintaining consistency.

One method of maintaining consistency is to use a
directory-based shared-memory architecture. The directory
is a data structure that stores a copy of each block of memory
and a set of state bits along with it. When the directory is dis-
tributed among nodes, this architecture is called distributed-
shared memory (DSM) and is scalable [LLG∗90]; our de-
sign is most influenced by that of Simoni [Sim90]. Within
the directory, the state tracks which CPU caches hold which
blocks and if a cache holds a dirty copy of the block. If a
cache has a read miss, it issues a nonexclusive read request
to the directory managing the missed block. The directory
then locates the block (from main memory or a dirty cache)
and sends it back to the requesting cache. In the case of a
write hit or a write miss, the cache must request exclusive
access from the directory. The directory will then invalidate
all other copies of that block in other caches, mark the block
as dirty, and allow the cache to proceed with the write.

2.2. Graphics systems

Eldridge et al. [EIH00] list five metrics to measure the per-
formance of a graphics system: input rate, triangle rate, pixel
rate, texture memory, and display bandwidth. In a scalable
system, doubling the number of graphics pipelines should
double each of these metrics.

Current vendor support for multi-GPU configurations in-
cludes NVIDIA’s SLI [NVI05] and ATI’s Crossfire [Per05].
These configurations can scale triangle rate and pixel rate,
but do not scale texture memory. Both SLI and Crossfire
replicate texture memory in the common case that textures
are resident on the GPU†. As a result, data rendered to tex-
ture must be broadcast to all GPUs in the system, unless the
textures are not persistent between frames. Both systems are
highly optimized for game applications and have found lim-
ited use in more general-purpose applications. Both SLI and
Crossfire are limited to 4 GPUs in current systems.

Chromium [HHN∗02] allows streams of graphics API
commands from precompiled applications to be filtered and
forwarded to nodes in a cluster. Though Chromium has good
performance scalability, it only allows limited forms of com-
munication, supporting “only architectures that do not re-
quire communication between stages in the pipeline that are
not normally exposed to an application” [HHN∗02]. Our

† If the aggregate texture size exceeds the amount of GPU mem-
ory, textures are demand-loaded from the CPU and thus may not
be wholly redundant across GPUs. This demand-loading is not cur-
rently exposed to the programmer.

system, in contrast, presents an abstraction for sharing tex-
ture memory that is not normally exposed to applications.

Igehy et al.’s parallel API allows for the synchronization
of multiple streams of graphics commands to the same draw-
able image [ISH98]. Instead of using application level bar-
riers and semaphores, they propose a method for creating
barriers and semaphores that operate at the graphics con-
text level. Our system is not limited to rendering to a single
drawable image, but when operating in a multi-GPU envi-
ronment, synchronization between GPUs is important. The
focus of this paper is more on mechanisms for transferring
data and maintaining consistency and less on mechanisms
for synchronization, so for simplicity, we use application
level synchronization. Igehy et al.’s primitives would be de-
sirable in a final implementation focused on performance.

Voorhies et al. [VKL88] present graphics as a virtual re-
source. In current systems, graphics hardware is seen as a
virtual resource to the system, but the graphics programmer
can not see texture memory as a distributed virtual space. We
believe our work is consistent with the goals of Voorhies et
al. in that a virtualized memory system will allow portable,
efficient implementations of both applications atop the ab-
straction and the underlying mechanisms beneath it.

3. Implementation

The goal of our system is to allow programs to run across
multiple GPUs with a common, consistent, distributed mem-
ory address space. The core of our implementation is a
directory-based distributed shared memory system that han-
dles the details of memory management transparently from
the programmer. In the terminology of traditional DSM sys-
tems, the CPU’s memory is main memory and the GPU’s
memory is treated as a cache. Such a system can be scalable
across a large network of CPUs and GPUs because there is
no central resource [LLG∗90].

At a high level, we implement our system as a parallel pro-
gram across multiple CPU nodes, each of which can support
one or more GPUs. The CPUs and GPUs must cooperate
to implement distributed shared memory across them. We
have identified two fundamental mechanisms which are nec-
essary to support shared memory: sharing and invalidation.
Sharing allows one node to retrieve a copy of memory that
is resident on a different node; invalidation allows a node
to notify other nodes that it requires exclusive access to a
portion of memory. Together, these two mechanisms allow
consistent migration of data between GPUs.

3.1. Data Structures

The shared memory abstraction creates a global texture ad-
dress space for all textures to all GPUs, allowing different
textures to be stored on different GPUs. The global address
space is made transparent to the programmer so they will
only need to work with texture IDs and coordinates local to
a given texture. These IDs and coordinates will be globally

c© The Eurographics Association 2006.

Adam Moerschell & John D. Owens / Distributed Texture Memory in a Multi-GPU Environment

accessible to any GPU. However, to render a scene, a GPU
must have all necessary texture data resident on that GPU.
Thus our system requires the ability to transfer texture data
between GPUs, and our first decision is the unit of transfer.

We choose the page as the fundamental unit of memory
in our system. A page is a contiguous block of a single tex-
ture; we can configure the size of a page, but it is typically
larger than a single texel but smaller than an entire texture.
All transfers in our system are transfers of pages. We chose
pages because texels are too small: the number of requests
becomes unreasonably large and degrades performance. En-
tire textures are too large: we often transfer data that we will
not use. (We discuss performance implications of page size
in Section 5.)

All textures in our system are stored as pages, using
the page table primitive of the Glift GPU data structure li-
brary [LKS∗06]. This primitive has the same interface as a
standard texture call (accessed with s and t coordinates), but
is actually stored as individual pages indexed by a page ta-
ble. A texel lookup, then, requires first looking up the page
address in the page table, then using that index to calculate
and look up the texel. Changing or updating a texture page
requires both updating the contents of the page as well as the
entry in the page table that points to the page.

The basic page table simply stores a pointer to the page
data. To that pointer we add a flag that indicates if the page
data is resident on the GPU or not. The contents of a single
texture, then, might be distributed among multiple GPUs.
We can also share pages between GPUs by storing the con-
tents of the page on multiple GPUs.

We keep track of the status of each page using a simple di-
rectory organization. The directory resides on the CPU, and
within it each page has an entry containing a presence bit for
each GPU in the system, a single dirty bit, and a pointer to
the CPU memory associated with the page.

3.2. Read Procedure

Armed with the page-table abstraction for texture data, we
next show how a texture read is supported in our system.
The challenge in supporting a read is that any texture read
may result in many page requests, some of which may be
resident on the local GPU, but some of which may only be
resident on a remote GPU.

Because we do not know a priori which texture data is
needed for a given texture call, and because the GPU exposes
no capability to page in texture data in the middle of a pass,
we divide a texture read call into two passes, requesting the
necessary nonresident data from the directory between the
passes.

Consider a fragment program that contains a texture read.
We divide this fragment program into two separate partial
fragment programs and run them as two passes on the GPU.
On the first pass, we compute all calculations up to the tex-
ture access. Instead of requesting the texture data at this

point, we instead retrieve the resident/nonresident flag. Any
texel request that is not resident must then retrieve its tex-
ture page from the directory or a remote GPU, so we also
calculate the page’s global address. The result of this pass
is a buffer of required texture pages; these requests are all
nonexclusive, because these pages are read-only. We read
that buffer back to the CPU.

When the CPU receives the list of global addresses, it
looks up the location of those pages from the directory and
sends a request to the remote GPUs for each page that is dirty
on the remote GPU. The remote GPU on that node renders
the desired pages into a texture and supplies the resulting
texture to the local node. Then the local CPU both renders
those pages back onto the local GPU and also updates its
page table.

At this point all necessary texture data is resident on the
local GPU, and we can begin the second pass. The partial
fragment program in this pass begins where the last one left
off, by requesting texel data, which is now wholly resident
on the GPU. Internally, texture references become indirect
lookups of texture data via the page table.

We discuss the necessary code changes to support this op-
eration below (Section 3.5).

3.3. Write Procedure

Writes to texture memory, as in a render-to-texture call, are
more complex but use a similar factorization. Writes require
three passes, and one of the primary difficulties is that a write
operation might write to some texels in a page but not change
other texels.

The write procedure is similar to the read procedure; we
retrieve all requested texture pages from remote nodes. Un-
like the read procedure, however, we plan to write to some of
these pages. Thus we mark these requests as exclusive and
invalidate them on their remote nodes. We accomplish this
invalidation by setting the dirty bits, clearing the presence
bits, and updating the page tables on the remote nodes to in-
dicate their data is no longer valid. On the local node, we
also create a write mask texture that indicates which texels
will be updated by the write.

At the end of the first pass, all relevant texture pages to be
read are local to our GPU. On the second pass, we write the
computed write data into a buffer the size of the computation
domain, generate the write mask, and request exclusive ac-
cess to the pages that have been touched. On the third pass,
we write back into the texture pages addressed by the page
table, using the value of the write mask at each texel to select
between the old value and the new value.

3.4. Memory Consistency Model

Our system observes the three requirements Culler et al. list
to guarantee sequential consistency [CGS97]. Every GPU
will issue texture memory operations in program order.

c© The Eurographics Association 2006.

Adam Moerschell & John D. Owens / Distributed Texture Memory in a Multi-GPU Environment

Writes complete in the order they are issued, and reads com-
plete only after previous writes to the same address have
completed. The programmer must use proper application
synchronization primitives to avoid race conditions when
multiple GPUs are updating the same texel.

3.5. Programmer’s View

The ultimate goal of our system is to make scalable multi-
GPU support transparent to the programmer. We could ex-
pose the necessary support in two ways. First, graphics calls
could be intercepted and modified to allow the program to
run on multiple GPUs. This could be implemented in a low
level driver or graphics library without any change to ex-
isting applications. A second implementation would be to
create a new set of multi-GPU API calls to replace cur-
rent pixel and texture operations. This would essentially pro-
vide a DSM-supported multi-GPU programming environ-
ment. Programs would have to be written using this new API
to take advantage of multiple GPUs. Though these methods
provide different interfaces to the programmer, they both de-
pend on the same low-level mechanisms.

Our system is most similar to the first implementation. We
currently take a stream of OpenGL calls from an unmodi-
fied application and transform it into a multi-GPU program.
The programmer must currently make two specific manual
changes to the input stream of OpenGL calls. We believe
both of these changes are straightforward to automate.

Fragment Program Factorization The major change to
GPU code necessary for read and write operations is to fac-
tor the fragment program, splitting at texture accesses. (We
discuss alternatives in Section 6.) Each level of indirect tex-
ture lookup incurs an additional pass, though all texture ac-
cesses at any level of indirection can be satisfied on the same
pass up to the output limit of the GPU fragment program.
Currently, we perform this transformation manually, but it
could easily be automated. Intermediate data in a partitioned
program is stored in local textures; systems that solve the
multipass partition problem (MPP) [CNS∗02] all perform a
similar operation.

Image Space Partitioning Splitting the output image be-
tween multiple GPUs requires changing the viewport and
perspective calls to support rendering only part of the final
image.

This architecture is orthogonal to a cluster- and stream-
based system such as Chromium, which primarily manages
the “top-to-bottom” application-to-display flow. Instead, we
provide “side-to-side” communication, allowing one global
address space for textures across all GPUs.

3.6. Threading System

One of the most challenging aspects of implementing our
system was a design that avoids deadlock (Figure 1). A sim-
ple example will illustrate the problem: consider two GPUs,

 Windowing
System Event Loop

 Event
Handler

Memory
Manager

GPU
Threads

CPU
Thread

command

reply

OpenGL
 Thread

command

com
m

and

rep
ly

Figure 1: Our multi-GPU threading system, showing the
communication paths between each of the threads (Sec-
tion 3.6).

each of which is performing a texture read for which some
of the texture is on the other GPU. If implemented incor-
rectly, the first GPU could be stalled waiting for data from
the second GPU at the same time the second GPU is waiting
for data from the first.

Our solution has three threads per GPU and one thread per
CPU. For each GPU, we have a thread that reacts to events
(the “event loop”), a thread that handles these events (the
“event handler”), and a thread that interacts with the graphics
system (the “OpenGL thread”). Each CPU contains a piece
of the distributed memory directory, which is controlled by
a “memory manager”. Each thread operates on commands
placed in its command queue, and will wait for replies to
commands it issues to other threads.

Windowing System Event Loop We begin with the event
loop, which reacts to mouse or keyboard events from the
application. (This event loop is similar in structure to the
GLUT event loop.) We require one event loop per GPU,
though some events could have the same callbacks within
the event handler and appear identical. Events detected by
this thread are placed in the event handler’s command queue.

Event Handler The event handler processes commands
from its command queue, which come from either the event
loop or from the event handler itself. It is the source of all
commands sent to the graphics hardware, initiating GPU
passes by requesting the OpenGL thread to read or write lo-
cal data or process a set of OpenGL commands. It can also
request remote data from the memory manager.

OpenGL Thread The OpenGL thread communicates with
the graphics hardware and only has a single input queue
of commands. It also is the only thread with access to the
OpenGL context. The event handler and memory manager
cooperate to ensure that any command sent to the GPU
through the OpenGL thread is able to be fulfilled, so it never
needs to block. It receives local read, write, and graphics
commands from the event handler and remote read and in-
validate memory operations from the memory manager. It

c© The Eurographics Association 2006.

Adam Moerschell & John D. Owens / Distributed Texture Memory in a Multi-GPU Environment

replies to read and write commands from the event handler
with a list of remote pages.

Memory Manager The memory manager provides the in-
terface between the GPU and the rest of the system. It imple-
ments one node of the distributed shared memory directory
and communicates with remote nodes to send and receive
data. It receives requests from the event handler and sends
remote read and invalidate commands to the OpenGL thread
as well as replies to the event handler.

Deadlock Avoidance In a multithreaded system, a cycle of
thread dependencies results in deadlock. Our system must
stay deadlock-free and at the same time ensure memory con-
sistency. In our system, the event handler can block waiting
for replies from either the OpenGL thread and the memory
manager; the memory manager will only block waiting for
replies from the OpenGL thread; and the OpenGL thread
never blocks. The lack of a possible cycle in these depen-
dencies ensures that deadlock will not occur.

4. Applications

Our evaluation system for applications has dual 2.0 GHz
AMD Opterons with 4 GB of RAM and dual NVIDIA
GeForce 7800 GTXs over PCI-Express busses running
driver version 1.0-8756 and Cg version 1.4 (26 Sept. 2005).
Our operating system is Red Hat Linux Fedora Core 4.

Though this system is a small one, it successfully exposes
the interesting and relevant issues for graphics hardware,
and we have designed our system with scalable systems in
mind. Larger multi-node systems would primarily exercise
CPU scalability, which is already well-understood [LLG∗90,
Sim90]. The mechanisms we study here are applicable to any
size of multi-node system.

Our goal is supporting any GPU-based application; to test
it, we study two representative applications in detail. The
first is a GPGPU boiling simulation; the second is a trace
from a first-person shooter video game.

GPGPU—Boiling Simulation Our multi-GPU implemen-
tation of Harris et al.’s boiling simulation [HCSL02] applies
a set of simple equations to a 2D input array containing heat
data. At a resolution of 512×512 the simulation runs at 2.65
frames per second with our 2-GPU system. It requires four
render-to-texture passes per frame; in each of them, each
fragment accesses up to 5 texels in two textures, with the
largest step in any direction being a single texel.

Dividing this application across multiple GPUs requires
partitioning the computational space and allowing each GPU
to operate on a subsection of the heat data. Since each frag-
ment needs to access the texture values of its neighbors, on
every frame, each GPU will need remote data that is out-
side of its computational domain. Any data along a partition
will need to be shared between GPUs. Since we have chosen
the page as our fundamental unit of memory, GPUs sharing

0

10

20

M
em

or
y

U
sa

ge
(M

B
)

M
em

or
y

U
sa

ge
(M

B
)

1.0 2.0 4.0 8.0 16
.0

32
.0

64
.0

12
8.0

25
6.0

51
2.0

Page Width (texels)Page Width (texels)

shared
GPU 0

GPU 1
total

Figure 2: As pages become larger, the amount of texture
data that is unique to only one GPU (GPU 0 or GPU 1) de-
creases, while the amount of memory on both GPUs (shared)
increases. “total” indicates the total amount of texture data
loaded (the amount of data stored in the CPU directory.)
Data from the boiling simulation at 1024×1024.

a partition boundary must have shared copies of the pages
along the boundary.

Standard Graphics—Game Trace For a standard graphics
application we choose a 500-frame trace of the “GLQuake”
demo from id Software, captured with GLIntercept. This
trace uses 135 RGBA8 textures, ranging in size from 8×8
texels to 512×256 texels. At 1024×768 resolution, it runs at
20 frames per second on our 2-GPU system.

To divide this application across multiple GPUs, we par-
tition the output image. One half of the scene will be ren-
dered on each GPU. The projection and viewport commands
are modified to display the proper image. Textures must be
shared on demand as each frame in the trace will have dif-
ferent texture requirements.

5. Analysis of Results

We now analyze three results in more detail: page size, mem-
ory usage, and performance.

Choosing the proper page size is important for perfor-
mance and efficiency. Figure 2 shows the memory footprint
of the boiling simulation for different page sizes. Ideally,
both GPUs would have the same amount of data and no
shared data at all. Small page sizes result in very little shared
data, but also result in an increase in page requests and hence
overall memory traffic.

Figure 3 shows our system’s performance when using dif-
ferent page sizes on the boiling simulation. As predicted,
smaller pages incur performance hits due to increased com-
munications overhead. The overhead of transferring redun-
dant data causes large page sizes to incur performance hits as

c© The Eurographics Association 2006.

Adam Moerschell & John D. Owens / Distributed Texture Memory in a Multi-GPU Environment

0

1

2

3
Fr

am
es

pe
r

Se
co

nd
Fr

am
es

pe
r

Se
co

nd

1 10 100 1000

Page Width (texels)Page Width (texels)

Figure 3: Frames per second for our dual-GPU boiling sim-
ulation at 512×512 as a function of page size.

Write Pass Stage %
1 Read Request Pass (R) 45.48
1 Read Request Uniquify 0.05
1 Non-Exclusive Read Requests 13.18
2 Write Request Pass (R) 21.81
2 Write Request Uniquify 9.61
2 Exclusive Write Requests 9.11
3 Page Writes 0.77

Table 1: Boiling simulation at 512×512 with 64×64-pixel
pages in dual-GPU configuration, showing the aggregate
percentage of time spent in each pass of the write procedure
for the four render-to-texture passes. Stages with (R) require
one or more stream-compacted screen readbacks.

well. The spikes in the graph occur when pages line up such
that page boundaries correspond to the partition boundary.
If a page spans the partition, both GPUs will be writing to
texels in the same page, and thrashing will occur, causing a
decrease in performance.

Table 2 shows performance for the boiling application
running under different configurations. Our dual-GPU im-
plementation has lower performance than our single-GPU
implementation due to the increased communications over-
head of swapping modified pages between the GPUs. Both
the single and dual GPU configurations using our system
are two orders of magnitude slower than the original single-
GPU implementation. The majority of the display time in
the simulation occurs in the four render-to-texture passes.
Table 1 shows what fraction of time is spent in each pass of
the write procedure. The main performance problem occurs

Our System Original
Single-GPU Dual-GPU Single-GPU

3.65 2.63 362.74

Table 2: Measured frames per second for the 512×512 boil-
ing simulation with 64×64-pixel pages.

0

100

200

300

N
um

be
r

of
Pa

ge
R

eq
ue

st
s

N
um

be
r

of
Pa

ge
R

eq
ue

st
s

0 100 200 300 400 500

Frame NumberFrame Number

GPU 0
GPU 1

Figure 4: Number of texture page requests for 8×8 pages
over 500 frames of the GLQuake trace at 1024×768, mea-
sured on both GPUs. This data was generated by clearing
the contents of GPU memory each frame.

when reading data back from the GPU. The readback pro-
cess itself is expensive, and the GPU sits idle while requests
are being processed.

As memory traffic increases, the memory manager
quickly becomes a large bottleneck. For maximal efficiency,
a high frame-to-frame coherence of textures minimizes
memory traffic and increases performance. Fortunately, real
applications typically exhibit such a coherence, as we show
in Plate 1. Similarly, the boiling simulation has high frame
coherence because any pages that are not on a partition bor-
der will never be needed on another GPU. We also note that
the GLQuake trace has a large variation in the amount of
texture pages needed each frame (Figure 4). Together, these
results imply that the contents of individual texture mem-
ories in a multi-GPU system are likely to be substantially
different, and that we will be able to scalably leverage the
aggregate texture memory in such a system.

6. Discussion

The system we present here meets our functionality goals but
does not yet deliver efficient parallel performance for sev-
eral reasons, including vendor hardware and system software
limitations and future work in our system. In this section we
identify these limitations.

Performance One of the main bottlenecks in our system
is processing read requests from fragment programs with
more than one texture access. Current hardware only sup-
ports up to four render targets, so each program must be
separated into multiple passes, incurring a full screen read-
back per pass per render target. More render targets would
help to reduce this cost. A second bottleneck in the system
is the processing of read and write requests. When reading
back requests from the boiling application, every pixel writes
to texture and thus makes an exclusive request. The proper
primitive here is not stream compaction, because there are

c© The Eurographics Association 2006.

Adam Moerschell & John D. Owens / Distributed Texture Memory in a Multi-GPU Environment

no pixels not requesting data, but instead uniquify, because
of the substantial redundancy in the request stream. Today,
however, implementing either compact or uniquify on the
CPU or the GPU are expensive operations; better support on
the GPU would significantly improve our performance.

Toward full GPU utilization One of the major sources of
inefficiency in our system is that the GPU is often idle.
For instance, when the GPU requires remote texture data,
it sends its requests to the memory manager on its host CPU
and idles until that response is fulfilled. If data is remote, that
request is inevitable, but the idle time is not.

One possible solution is to overlap GPU computation and
remote requests. Currently those two phases are serialized,
because the GPU waits for the remote request. We can ac-
complish this by dividing work into multiple batches per
frame and overlapping the first phase of batch n with remote
texture requests for batch n + 1; other partitions, such as a
screen-space subdivision with aggressive frustum culling,
may be possible. Essentially, this approach threads the in-
put application’s command stream to the graphics hardware
in the same way that multiple threads can effectively cover
high memory latencies in CPU systems.

Another possible solution that is applicable to read-only
remote texture memory in applications that can tolerate a
temporary lack of image quality is to store all textures as
mipmaps (subject to the discussion on mipmaps below) and
to replicate the coarsest levels of the mipmaps across all
GPUs. When the local GPU receives a request for a re-
mote texture page, it immediately satisfies it from the coarse
mipmap and at the same time requests it from the remote
GPU for use in future frames.

We do not currently optimize for the case when all tex-
tures are local. When this occurs, we can dynamically elimi-
nate the need for intermediate CPU communication because
no requests will be generated. This optimization could be
implemented using occlusion queries. When rendering to a
buffer to generate requests, all fragments not requesting a
page can be killed and an occlusion query can be used to see
if any fragments make it to the buffer.

6.1. Limitations in our System

One fragment per pixel One limitation of our system is
that texel requests can only be generated by one fragment
that contributes to a given pixel. An example of this is blend-
ing; consider a rendering pass that blends two fragments,
each requiring a remote texel read, at a single pixel loca-
tion. In our system, this requires two passes (Section 3.2).
The first pass produces a remote texture page address for
each of those two fragments, but those two addresses must
be stored in a single pixel location. If blending is enabled,
the two requests will be blended together, producing a single,
erroneous request. If we disable blending, the rear fragment
will be killed by the depth test. The fundamental problem is
that an arbitrary number of fragments may contribute to any

pixel, but we have no mechanism to store all fragments in a
render target, only all pixels.

We currently disable blending and only store the near-
est fragment. We could implement depth peeling [Eve01] at
the cost of one pass per layer. The proper solution would
be hardware support of an F-buffer [HPS05, MP01] to store
the intermediate fragments, coupled with the ability to read
those fragments back to the CPU.

Mipmapping Modern graphics hardware filters textures
through the mipmap [Wil83], a precomputed pyramid of pre-
filtered textures; each mipmapped texture read fetches and
blends eight texels. The mipmapping hardware is not ex-
posed to the GPU programmer, however: the fragment pro-
gram’s interface to the texturing system is limited to send-
ing a single address and returning a single (filtered) texture
value. Mipmapping texture page addresses is not meaning-
ful.

We do not currently support mipmapping in our sys-
tem. It would be straightforward to manually decompose
all mipmapped texture requests into eight separate accesses,
then perform the filtering in the kernel; such a strategy would
incur a significant performance penalty over using hardware
mipmapping, however. The best long-term solution would
be exposing filtering to the programmer within the fragment
program.

Flow control in fragment programs Because we parti-
tion fragment programs into multiple passes, we also do
not properly support flow control (conditionals and complex
loops) in fragment programs. Partitioning in the face of flow
control is a known hard problem; most solutions to the mul-
tipass partitioning problem assume a directed acyclic graph
(DAG) as the input and are not suited to partition fragment
programs with flow control. An instruction scheduling ap-
proach to the MPP [RLV∗04] offers a starting point for a
possible solution.

6.2. Implications for Graphics Hardware

Though the Glift page tables we use are reasonably efficient,
it is highly likely that the GPU features hardware-supported
page tables (that map texture IDs to texture addresses, for
instance, or supporting demand paging) that would deliver
higher performance. Exposing these hardware page tables to
the programmer, and generalizing their functionality, would
lead to better performance in our system, permit better mem-
ory management in graphics and GPGPU applications, and
allow data structures with superior performance.

One step in the right direction is DirectX 10 and the Win-
dows Display Driver Model (WDDM). The first version of
WDDM will support the virtualization of textures and render
targets on per surface basis, with the future intent of moving
to virtualization at the granularity of pages. This will eventu-
ally allow faults to occur within shaders and suspend the ex-
ecution of a context until faults are serviced. Currently, this

c© The Eurographics Association 2006.

Adam Moerschell & John D. Owens / Distributed Texture Memory in a Multi-GPU Environment

is only planned to work on a single GPU or in a restricted
multi-GPU environment similar to SLI or Crossfire [Bly06].
We believe that the paging infrastructure created by WDDM
could be leveraged to distribute texture memory over multi-
ple GPUs.

Above, we discussed the benefit of hardware support for
the F-buffer, for more render targets, and for exposing filter-
ing in fragment programs. Stream compaction would bene-
fit from either hardware support of the parallel scan prim-
itive or hardware support for efficient reductions; uniquify
requires an efficient sort. Another primitive that would sub-
stantially impact our implementation is block scatter. Sup-
porting generalized scatter, in which any fragment can write
to any destination, is problematic for many reasons (includ-
ing coherency, hardware efficiency, and proper write seman-
tics). However, a block scatter restricts the fragment desti-
nation to the same offset within an arbitrary block, mitigat-
ing the difficulties with arbitrary scatter. Block scatter with
blocks the size of pages would (among other benefits) reduce
our write procedure (Section 3.3) from three to two passes.

On the software side, making Cg thread-safe would elim-
inate the need for protecting each Cg call with a lock and
thus increase overall software performance.

7. Conclusion

Our system supports a distributed-shared memory abstrac-
tion for scalable, consistent, distributed texture memory over
multiple GPUs. While our implementation currently requires
manual, but simple, code transformations, it can be made
wholly transparent to programmers.

The core contribution of this paper is our identification
of the mechanisms for supporting this abstraction together
with the limitations that constrain its performance. Today, all
signs point to increased virtualization of texture memory in
future single-CPU-single-GPU graphics systems; we hope
the mechanisms and exposed limitations of this work help
point the way to flexible, powerful, high-performance virtu-
alization techniques for the parallel, multi-GPU systems of
the future.

Acknowledgements Many thanks to Eric Demers, Bob
Drebin, Mike Houston, Aaron Lefohn, Pat McCormick,
Henry Moreton, Shubhabrata Sengupta, and the anonymous
reviewers for their helpful comments and contributions to
this work.

References

[Bly06] BLYTHE D.: Private communication. Microsoft, 7 June
2006.

[CGS97] CULLER D. E., GUPTA A., SINGH J. P.: Parallel Com-
puter Architecture: A Hardware/Software Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[CNS∗02] CHAN E., NG R., SEN P., PROUDFOOT K., HAN-
RAHAN P.: Efficient partitioning of fragment shaders for multi-

pass rendering on programmable graphics hardware. In Graphics
Hardware 2002 (Sept. 2002), pp. 69–78.

[EIH00] ELDRIDGE M., IGEHY H., HANRAHAN P.:
Pomegranate: A fully scalable graphics architecture. In
Proceedings of ACM SIGGRAPH 2000 (July 2000), Computer
Graphics Proceedings, Annual Conference Series, pp. 443–454.

[Eve01] EVERITT C.: Interactive Order-Independent
Transparency. Tech. rep., NVIDIA Corporation, May
2001. http://developer.nvidia.com/object/
Interactive_Order_Transparency.html.

[HCSL02] HARRIS M. J., COOMBE G., SCHEUERMANN T.,
LASTRA A.: Physically-based visual simulation on graphics
hardware. In Graphics Hardware (Sept. 2002), pp. 109–118.

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R., FRANK R.,
AHERN S., KIRCHNER P., KLOSOWSKI J.: Chromium: A
stream-processing framework for interactive rendering on clus-
ters. ACM Transactions on Graphics 21, 3 (July 2002), 693–702.

[HPS05] HOUSTON M., PREETHAM A. J., SEGAL M.: A Hard-
ware F-Buffer Implementation. Tech. Rep. CSTR 2005-05, Stan-
ford University Department of Computer Science, 2005.

[ISH98] IGEHY H., STOLL G., HANRAHAN P.: The design of
a parallel graphics interface. In Proceedings of SIGGRAPH 98
(July 1998), Computer Graphics Proceedings, Annual Confer-
ence Series, pp. 141–150.

[LKS∗06] LEFOHN A. E., KNISS J., STRZODKA R., SENGUPTA

S., OWENS J. D.: Glift: Generic, efficient, random-access GPU
data structures. ACM Transactions on Graphics 26, 1 (2006),
60–99.

[LLG∗90] LENOSKI D., LAUDON J., GHARACHORLOO K.,
GUPTA A., HENNESSY J.: The directory-based cache coherence
protocol for the DASH multiprocessor. In Proceedings of the
17th Annual International Symposium on Computer Architecture
(1990), pp. 148–159.

[MP01] MARK W. R., PROUDFOOT K.: The F-Buffer: A
rasterization-order FIFO buffer for multi-pass rendering. In 2001
SIGGRAPH / Eurographics Workshop on Graphics Hardware
(2001), pp. 57–64.

[NVI05] NVIDIA DEVELOPER RELATIONS: NVIDIA GPU Pro-
gramming Guide, 2.4.0 ed., 8 July 2005. http://download.
nvidia.com/developer/GPU_Programming_Guide/
GPU_Programming_Guide.pdf.

[Per05] PERSSON E.: Programming for CrossFireTM, 2005.
http://www.ati.com/developer/.

[RLV∗04] RIFFEL A. T., LEFOHN A. E., VIDIMCE K., LEONE

M., OWENS J. D.: Mio: Fast multipass partitioning via priority-
based instruction scheduling. In Graphics Hardware 2004 (Aug.
2004), pp. 35–44.

[Sim90] SIMONI R.: Implementing a Directory-Based Cache
Consistency Protocol. Tech. Rep. CSL-TR-90-423, Stanford
University Computer Systems Laboratory, Mar. 1990.

[VKL88] VOORHIES D., KIRK D., LATHROP O.: Virtual graph-
ics. In Computer Graphics (Proceedings of SIGGRAPH 88)
(Aug. 1988), vol. 22, pp. 247–253.

[Wil83] WILLIAMS L.: Pyramidal parametrics. In Computer
Graphics (Proceedings of SIGGRAPH 83) (Detroit, Michigan,
July 1983), vol. 17, pp. 1–11.

c© The Eurographics Association 2006.

Adam Moerschell & John D. Owens / Distributed Texture Memory in a Multi-GPU Environment

151: 156:

Plate 1: Frames 151 and 156 from the GLQuake trace, split left/right across 2 GPUs. Before Frame 151, all texture pages (size
8×8) were randomly assigned to one of the two GPUs; white textures are remote. For this experiment, we have artificially
limited all pages to reside on only one GPU unless the page is used on both GPUs. After 5 frames, most pages have successfully
migrated to their local GPU, minimizing the number of required remote reads.

c© The Eurographics Association 2006.

