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Network Based on Dixon and ZTE MR Images
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Quanzheng Li1

1Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 
Boston, MA, 02114 USA

2Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of 
California, San Francisco, CA 94143 USA

Abstract

Positron Emission Tomography (PET) is a functional imaging modality widely used in 

neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation 

correction is necessary during image reconstruction. For PET/MR hybrid systems, PET 

attenuation is challenging as Magnetic Resonance (MR) images do not reflect attenuation 

coefficients directly. To address this issue, we present deep neural network methods to derive the 

continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR 

images as the network input, the existing U-net structure was adopted and analysis using forty 

patient data sets shows it is superior than other Dixon based methods. When both Dixon and zero 

echo time (ZTE) images are available, we have proposed a modified U-net structure, named 

GroupU-net, to efficiently make use of both Dixon and ZTE information through group 

convolution modules when the network goes deeper. Quantitative analysis based on fourteen real 

patient data sets demonstrates that both network approaches can perform better than the standard 

methods, and the proposed network structure can further reduce the PET quantification error 

compared to the U-net structure.

1. Introduction

Positron Emission Tomography (PET) can produce three dimensional images of biochemical 

processes in the human body by using specific radioactive tracers. It has wide applications in 

neuroscience studies, such as measurement of metabolism for brain tumor imaging, 

dopamine neurotransmitter imaging related to addiction, β-amyloid and tau imaging in 

Alzheimer’s disease, translocator protein (TSPO) imaging related to microglial activation 

and so on. Due to various physical degradation factors, correction items, such as randoms, 

scatters, normalization and attenuation correction, should be included in the reconstruction 

process to obtain meaningful quantitative results. For attenuation correction, information 

from computed tomography (CT) has been treated as a reference standard to reflect the 

attenuation coefficients in 511 Kev after a bilinear scaling (Kinahan et al 2003).
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Recently, PET/MR systems begin to be adopted in clinics due to MR’s excellent soft tissue 

contrast and the ability to perform functional imaging. In addition, simultaneously acquired 

MR images can provide useful information for PET motion compensation (Catana et al 
2011) and partial volume correction (Gong et al 2017c). One concern is that the MR signal 

is not directly reflective of attenuation coefficients, and hard to be used for attenuation 

correction without approximation. Many methods have been proposed to generate the 

attenuation map based on T1-weighted, Dixon, ultra-short echo time (UTE) or zero echo 

time (ZTE) MR images, which can majorly be summarized into four categories. The first 

category is segmentation based methods. The MR image is segmented into different tissue 

classes with the corresponding attenuation coefficients assigned to produce the attenuation 

map (Martinez-Möller et al 2009, Keereman et al 2010, Berker et al 2012, Ladefoged et al 
2015, Sekine et al 2016, Leynes et al 2017, Khalifé et al 2017, Yang et al 2017). Another 

category relies on the atlas generated from prior patients’ CT and MR pairs. Pseudo CT will 

be created by non-rigidly registering the atlas to patient MR images (Wollenweber et al 
2013, Burgos et al 2014, Izquierdo-Garcia et al 2014, Yang et al 2017a). With the 

availability of time-of-flight (TOF) information, emission based methods have been 

developed to estimate the activity image and the attenuation map simultaneously without the 

use of MR information (Defrise et al 2012, Rezaei et al 2012, Li et al 2017), or aided by MR 

information (Mehranian and Zaidi 2015, Kim et al 2016, Mehranian et al 2017). Finally, 

there are efforts adopting machine learning based approaches to pseudo CT generation 

driven by prior MR and CT pairs, such as the random forest (Huynh et al 2016) and neural 

network methods(Han 2017, Nie et al 2017, Liu et al 2017, Leynes et al 2017b).

Over the past several years, deep neural networks have been widely and successfully applied 

to computer vision tasks because of the availability of large data sets, advances in 

optimization algorithms and emerging of effective network structures. Recently, it has been 

applied to medical imaging, such as image denoising (Wang et al 2016, Kang et al 2016, 

Chen et al 2017), image reconstruction (Wu et al 2017a, Gong et al 2017b) and end-to-end 

lesion detection (Wu et al 2017b). Several pioneering works have shown that neural 

networks can be employed to generate the pseudo CT images from T1-weighted MR images 

for the brain region, with evaluations on the pseudo CT image quality only (Han 2017, Nie 

et al 2017). Take one step further, Liu et al (2017) used convolutional auto-encoder (CAE) to 

generate the CT tissue labels (air, bone, and soft tissue) from T1-weighted MR images and 

evaluated its performance for PET images. In that work additional CT segmentation is 

needed and the attenuation coefficients were assigned based on tissue labels, which are not 

continuous. Recently Leynes et al (2017b) combined ZTE and Dixon images to generate the 

pseudo CT for the pelvis region using the U-net structure (Ronneberger et al 2015).

In this work, we focus on using neural network based methods to predict the continuous 

attenuation map specifically for brain PET imaging under two scenarios:

i. When there are only Dixon MR images available, we adopted the U-net structure 

(Ronneberger et al 2015) to generate the pseudo CT images. Forty patients’ data 

sets were used in the experiment and cross-validated to evaluate the performance. 

The segmentation and atlas methods based on Dixon MR images provided by the 

vendor were used as comparison methods;
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ii. When both Dixon and ZTE MR images are available, we proposed a new 

network structure based on group convolution modules to more efficiently 

combine ZTE and Dixon information. Fourteen patient data sets with both Dixon 

and ZTE images were employed in the experiments. The ZTE segmentation 

method provided by the vendor was adopted as the comparison methods.

The main contributions of this paper include (1) using deep neural networks to generate 

continuous attenuation maps for brain PET imaging;(2) proposing a new network structure 

to generate the attenuation maps utilizing multiple MR inputs; (3) a comprehensive 

quantitative comparison with the standard methods.

2. Method

2.1. PET attenuation model

For PET image reconstruction, the measured sinogram data y ∈ ℝM×1 can be modeled as a 

collection of independent Poisson random variables and its mean y ∈ ℝM × 1 is related to the 

unknown image x ∈ ℝN×1 through an affine transform

y = Px + s + r, (1)

where P ∈ ℝM×N is the detection probability matrix, s ∈ ℝM×1 is the expectation of 

scattered events, and r ∈ ℝM×1 denotes the expectation of random coincidences. M is the 

number of lines of response (LOR) and N is the number of pixels in image space. The 

reconstructed image quality strongly depends on the accuracy of the detection probability 

matrix P, which can be decomposed to (Qi et al 1998)

P = NABGR, (2)

where G ∈ ℝM×N is the geometric projection matrix whose element gi,j denotes the 

probability of a photon pair produced in voxel j reaching the front faces of detector pair i, R 
∈ ℝN×N models the image domain blurring effects, B ∈ ℝM×M is the sinogram domain 

blurring matrix (Gong et al 2017a), diagonal matrix N ∈ ℝM×M contains the normalization 

effects, and diagonal matrix A ∈ ℝM×M models the attenuation factors. The ith diagonal 

element of attenuation matrix A is calculated as

aii = e
−∑ j li jμ j, (3)

where μ ∈ ℝ
Nμ × 1

 is the attenuation map, lij denotes the interaction length of LOR i with 

voxel j. In PET/CT, CT images are used for the attenuation map generation by the bilinear 

scaling method (Carney et al 2006)
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μ j =
9.6e−5 HU j + 1000 if HU j < Threshold,

a HU j + b if HU j > Threshold .
(4)

Here HUj represents the HU units in CT voxel j. a, b and Threshold are values depending on 

the energy of the CT and are given in Carney et al (2006).

2.2. Pseudo CT generation using deep neural network

The basic module of a convolutional neural network includes a convolution layer and an 

activation layer. The input and output relationship of the ith module can be denoted as

yi = f i yi − 1 = g wi ⊛ yi − 1 + bi , (5)

where yi−1 ∈ ℝN×N×C is the module input with spatial size N × N and channel size C, yi ∈ 
ℝN×N×H denotes the module output with spatial size N × N and H channels, wi ∈ 
ℝM × M × C × H is the convolutional filter with kernel width M, b ∈ ℝ1×H is the bias term, ⊛ 
stands for the convolution operation, and g represents the non-linear activation function. The 

rectified linear unit (ReLU) activation function, defined as g(x) = max(x, 0), is employed as 

the activation function. To stabilize and accelerate the deep network training, batch 

normalization (Ioffe and Szegedy 2015) is often added after the convolution operation. After 

stacking L units together, the network output can be calculated as

yout xinput = f L f L − 1 … f 1 xinput . (6)

In this work, MR images are treated as the network input and pseudo CT images are output 

of the network. The network is trained based on prior acquired MR and CT pairs from 

different patients, with the objective function

L = CTtrue − yout MR , (7)

which is the L1 norm of the difference between the ground truth CT image CTtrue and the 

output from the neural network yout(MR). We have also tried L2 norm and found that L1 

norm can produce less blurred structures.

2.2.1. Single input—In many cases, only one MR sequence is available for attenuation 

correction, either T1-weighted, Dixon or UTE/ZTE. The network implemented for this 

scenario is based on the U-net structure (Ronneberger et al 2015). The overall network 

architecture is summarized in Fig. 1. It consists of repetitive applications of 1) 3×3 

convolutional layer, 2) batch normalization layer, 3) ReLU layer, 4) convolutional layer with 

stride 2 for down-sampling, 5) transposed convolutional layer with stride 2 for up-sampling, 

and 6) mapping layer that concatenates the left-side features to the right-side. The input has 
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nine channels with a spatial size of 144 × 144 and the bottom layer has an spatial size of 9 × 

9. The number of features N after the first convolution module is 16. To make full use of the 

axial information, nine neighboring axial slices were stacked occupying nine input channels 

to reduce the axial aliasing artifacts. As only Dixon images are utilized as single input, this 

method is referred as Dixon-Unet.

2.2.2. Multiple inputs—For current PET/MR scanners, more than one MR sequence can 

be acquired for attenuation correction. For example, both Dixon and ZTE MR images are 

available in GE SIGNA scanner. When multiple MR images are included as network input, 

the number of features N after the first convolution module should be enlarged to digest the 

additional spatial information. For the U-net structure, the number of trainable parameters 

increases quadratically with N, and overfitting can be a serious pitfall when increasing the 

network complexity while not providing enough training pairs. It is shown in previous 

studies that designing a “wider” network can make more efficient use of model parameters 

(Szegedy et al 2016, Chollet 2016, Xie et al 2017). To preserve the network capacity while 

restricting the network complexity, the group convolution module as illustrated in Fig. 2 was 

adopted to replace the convolution module when the network goes deeper. The group 

convolution module is similar to the module presented in ResNeXt network structure (Xie et 
al 2017). Traditionally the convolution kernel considers cross-channel correlations and 

spatial correlations together. The group convolutional module presented in Fig. 2 first deals 

with the cross-channel correlation through 1×1 convolution and then handles the spatial 

correlation in smaller groups. The hypothesis is that when the network goes deeper, the 

spatial content and the cross-channel correlations can be decoupled (Chollet 2016). In our 

implementation, N is set to be 19 for the U-net with both Dixon and ZTE as input. For 

GroupU-net, the number of groups is set to be N and we only use the group convolution 

module when the input channel size is ≥ 4N. N is set to 32 to match with the number of 

trainable parameters in U-net (2.7 million). These two methods are labeled as DixonZTE-

Unet and DixonZTE-GroupUnet, respectively.

3. Experimental evaluations

3.1. Data sets

The patient study was approved by the Institutional Review Board and all patients signed an 

informed consent before the examinations. In total forty patients acquired from 2014 to 2016 

were used in this study. All patients had whole-body PET/CT, followed by additional 

PET/MRI scanning without second tracer administration. For both PET/CT and PET/MR, 

only data acquired in the bed position that includes the head are used in the study. No 

pathology in the brain was reported for any of the patients. The average patient weight was 

73.2241 ± 17.0 kg (range, 39.5-109.8 kg). For PET/MRI, the average scan duration of the 

whole brain was 224.6 ± 133.7 s (range, 135-900 s). All forty patient data sets have Dixon 

MR images and fourteen patient data sets with additional acquired ZTE MR images. Thirty 

seven of the total forty patient data sets had FDG scans. The average administered dose of 

FDG was 305.2 ± 73.9 MBq (range, 170.2-468.1 MBq). Twelve of the fourteen patients with 

additional ZTE scans had FDG PET scans.
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PET/CT examinations were performed in the GE Discovery PET/CT scanner or the Siemens 

Biograph HiRez 16 PET/CT scanner. For CT images acquired from the GE Discovery 

PET/CT scanner, the reconstruction has a axial field of view (FOV) of 700 mm and the 

matrix size is 512 × 512 with voxel size 2.73 × 2.73 × 3.75mm3. For CT images acquired 

from the Siemens Biograph HiRez 16 PET/CT system, the reconstruction has a axial FOV of 

500 mm and the matrix size is 512 × 512 with voxel size 1.95 × 1.95 × 5.00mm3. PET/MR 

examinations were performed in the GE SIGNA PET/MR system (Grant et al 2016). The 

transaxial and axial FOV of the PET/MR system is 600 mm and 250 mm, respectively. The 

crystal size is 4.0 × 5.3 × 25 mm3. PET images were reconstructed using the ordered subset 

expectation maximization (OSEM) algorithm with TOF information. The point spread 

function (PSF) (Alessio et al 2010) was also included to improve the image quality. Two 

iterations with sixteen subsets were run. The voxel size is 1×1×2.87 mm3 and the image size 

is 300×300×89. Dixon MR images were acquired using the head and neck coil array 

(repetition time, ~4 ms; first echo time/second echo time, 1.3/2.6 ms; flip angle, 5°; 

acquisition time, 18 s) and the image size is 256 × 256 × 120 with voxel size 1.93 × 1.93 × 

2.6 mm3. ZTE images were acquired using the same head and neck coil array (repetition 

time, ~0.7 ms; echo time, 0 ms; flip angle, 0.6°; transmit/receive switching delay, 28 ms; 

readout duration, 440 ms; acquisition time, 41 s) and the reconstructed image size is 110 × 

110 × 110 with voxel size 2.4 × 2.4 × 2.4 mm3 (Yang et al 2017).

3.2. Implementation details

When preparing the training pairs, we first registered CT images and ZTE images (if 

applicable) to the Dixon MR images through rigid transformation using the ANTs software 

(Avants et al 2009). Then random rotation and permutation was performed on the training 

pairs to avoid over-fitting. Fig. 3 shows some of the example pairs from different patient data 

sets used in the training phase for the multiple input scenario. When using only Dixon 

images as the input, in order to make full use of all the data sets in both the training and 

testing periods, the forty patient data sets were randomly separated into five groups. For each 

group, the whole eight data sets were used for testing and the remaining thirty two from 

other groups were employed in training. Among the forty patients, there are fourteen 

patients with additional ZTE scans. When using both Dixon and ZTE images as inputs, the 

fourteen patient data sets were randomly separated into seven groups. For each group the 

network was trained using the data sets from other groups.

The network structures were implemented in TensorFlow using Adam algorithm as the 

optimizer (Kingma and Ba 2014).The learning rate and the decay rates used are the default 

settings in Tensorflow. For the single input case, the batch size was set to 60 and for the 

multiple input case, the batch size was set to 30. 1000 epochs were run for both cases as the 

training cost function becomes steady after 1000 epochs.

3.3. References methods

From the Dixon MR image, water and fat tissues were segmented and corresponding 

attenuation coefficients were assigned to generate the attenuation map. This method is 

labelled as Dixon-Seg. Alternatively, the patient MRI image can be registered to the MR 

template enabled by prior patients’ MR and CT pairs through non-rigid registration. Air, soft 
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tissue, sinus and bone exist in the generated CT image. This method is named as Dixon-

Atlas (Wollenweber et al 2013). For the segmentation method using ZTE images, the ZTE 

images were first N4 bias corrected (Tustison et al 2010) and then normalized by the median 

tissue value. Thresholding was performed to segment the images into air, soft tissue and 

bone regions. This method is labeled as ZTE-Seg. All of these three methods are available in 

the PET reconstruction tool box provided by the vendor.

3.4. Evaluation metrics

The predicted pseudo CT image quality was evaluated using the relative validation loss, 

defined as

Relative validation loss =
CTpseudo − CTtrue

CTtrue
, (8)

where CTpseudo is the generated CT using different methods, and CTtrue denotes the ground-

truth CT. Bone regions were also quantified using the Dice index, defined as

Dice index = 2
Bonepseudo ∩ Bonetrue
Bonepseudo + Bonetrue

. (9)

Regions with attenuation coefficient higher than 0.1083 cm−1 (200 HU unit) were classified 

as the bone area. For PET image quantification, the relative PET error was used which is 

defined as

Relative PET error =
PETpseudoCT − PETCT

PETCT
, (10)

where PETpseudoCT is the PET image reconstructed using the pseudo CT, and PETCT is the 

PET image reconstructed using the ground-truth CT. The reason we use absolute value here 

is to ensure the total error will not vanish when summing up the voxel errors inside a region. 

As it is hard to visualize the error for all pixels, we calculated the relative PET error inside 

specific regions using the corresponding predefined masks.

3.4.1. Global quantification—We performed a global brain quantification using the brain 

mask from MNI-ICBM 152 nonlinear 2009 version (Fonov et al 2009). The Dixon image of 

each patient was first registered to the MNI template. Then the MNI template was back-

warped to the Dixon image space. Besides, a mask is defined to include the pixels whose 

intensity is larger than 30 percent of the max PET intensity (Ladefoged et al 2017). The final 

global brain mask is defined as the intersection of these two masks. Besides, the histograms 

of the error image inside the global brain mask, defined as PETpseudoCT – PETCT, were 

calculated to compare the global performance regarding the bias and standard deviation.
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3.4.2. Regional quantification—Apart from the whole brain quantification, we are also 

interested in the regional brain quantifications as they each play crucial roles in specific 

neuroscience studies. The automated anatomical labeling (AAL) template (Holmes et al 
1998) was back-warped to the PET image space and defined the regions. Four cortex lobes 

as well as the inner deep regions were used in the quantification. The mean and standard 

deviation of the relative PET error across all patients for each of the methods were 

calculated for all the regions and the whole brain.

4. Results

4.1. Using Dixon MR images as input

We first performed a comparison of the proposed Dixon-Unet method with the Dixon-Seg 

and Dixon-Atlas methods using all data sets. Fig. 4 shows three orthogonal views of the 

ground truth CT images and the generated pseudo CT images using different Dixon-based 

methods for one patient. Compared with the atlas method, the CT image produced by the 

proposed Dixon-Unet method has better bone and sinus structures. The Dixon-Seg method 

only shows the water and fat tissues. Table. 1 presents the quantitative comparison of the 

predicted CT images using relative validation loss and the Dice index. Clearly the Dixon-

Unet method has the smallest validation loss and the highest Dice index in the bone region. 

Fig. 5 presents the PET reconstruction error images using the attenuation map produced 

from the pseudo CT images shown in Fig. 4. Evidently the Dixon-Seg method has the largest 

error, especially near the bone and air-cavity regions. The Dixon-Atlas method produces 

smaller errors compared with the Dixon-Seg method, but still has large errors near the bone 

and the air cavity. Compared with these two methods, Dixon-Unet method shows smaller 

errors for the whole brain.

To quantitatively characterize the influence of different attenuation correction methods on 

PET images, the mean relative PET error across all the data sets for the whole brain and 

different regions were calculated and presented in Fig. 6. Clearly in all regions the Dixon-

Unet method is the best among all Dixon methods. The Dixon-Seg method has the largest 

error due to the missing of bone signals. Comparing the standard deviations, Dixon-Unet 

method has the smallest standard deviation in all regions, meaning it is robust across 

different populations by using the information from other patient data sets. For all regions, 

the error of the Dixon-Unet method is below 3%. Fig. 7 shows the histogram plot of the PET 

error images for the three methods. The plot indicates that the error image of the Dixon-Unet 

method has the smallest standard deviation and the histogram shape is more like a Gaussian 

distribution with zero mean. The histogram shapes of the Dixon-Seg and Dixon-Atlas 

methods are more screwed. Specially the Dixon-Seg method is negatively biased due to 

missing bone.

4.2. Using both Dixon and ZTE MR images as input

In the following analysis, results using Dixon-Atlas, ZTE-Seg, DixonZTE-Unet and 

DixonZTE-GroupUnet methods were presented and compared using the twelve patient data 

sets with FDG scans. Fig. 8 shows three orthogonal views of the ground truth CT images as 

well as the generated pseudo CT images using different methods for one patient. Compared 
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to the Dixon-Atlas method, the ZTE-Seg method can recover most of the bone regions as the 

contrast between the bone and neighboring pixels is good in the ZTE MR image. The 

images generated using the neural network methods are generally similar to the images 

generated using the ZTE-Seg method, but with more details revealed and closer to the CT 

ground truth. To compare the pseudo-CT qualities for each data set, Fig. 9 shows the CT 

validation loss using the U-net and GroupU-net structures. The proposed GroupU-net 

method has lower validation loss in 13 out of 14 data sets. Table. 2 presents the quantitative 

comparison of the predicted CT images. The proposed GroupU-net method has the smallest 

validation loss and the highest Dice index in the bone region. Fig. 10 gives three views of the 

PET reconstruction error images based on the corresponding pseudo CT images presented in 

Fig. 8. The Dixon-Atlas method has the largest error and the DixonZTE-GroupUnet method 

has the smallest error. Fig. 11 shows the plot of the mean relative PET error for all twelve 

patients across different regions. Clearly the Dixon-Atlas method has the largest mean error 

in all regions and the ZTE-Seg method generates smaller errors as compared with the Dixon-

Atlas method. The proposed neural network methods can be better than both Dixon-Atlas 

and ZTE-Seg methods. Specially, the DixonZTE-GroupUnet can produce the smallest errors 

in all regions. This trend can also be observed in the histogram plot of the PET error images 

shown in Fig.12. The DixonZTE-GroupUnet method has both the smallest standard 

deviation and the smallest systematic bias.

5. Discussion

Dixon MR acquisition is simple and fast. It is widely deployed in current PET/MR systems 

as an option for further attenuation map derivation. As the signal intensity is low in the bone 

region, it is hard to segment the bone out. In this work, we employed the deep neural 

network method to predict pseudo CT images from Dixon images. From the CT images 

presented in Fig. 4, we can notice that the shape of the bone region predicted by the neural 

network method is much better than the atlas method. This indicates the neural network can 

recognize the bone region from the Dixon image input. Further quantitative analysis based 

on 40 patient data sets reveals that the mean relative PET error of the whole brain using the 

neural network method is within 3%, which demonstrates the reproducibility of the proposed 

method.

With the developments of new MR sequences, multiple MR images are available during the 

same scan. It is thus crucial to find an optimum way integrating the information from 

multiple MR images while not increasing the network complexity much, especially when the 

training data sets are not large enough. In this work we have proposed a modified U-net 

structure, named GroupU-net, to digest both Dixon and ZTE information through group 

convolution modules when the network goes deeper. The group convolution module first 

considers the cross-channel correlation through 1×1 convolution, and then handles the 

spatial correlation in smaller groups. Quantification analysis shows that the GroupU-net 

structure has better performance than the U-net structure when the network complexity is the 

same. This demonstrates that model parameters can be used more efficiently by making the 

network wider when the network goes deeper. It also shows that improving the network 

structure can generate better attenuation maps. Designing and testing different network 

structures will be one of our future work.
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For the case of using both Dixon and ZTE images as network input, there are 12 patient data 

sets in each training group. Quantitative analysis demonstrates that 12 patient data sets can 

be used to train a network which provides higher CT prediction accuracy than the state-of-

art methods. One limitation of this work is that no brain pathology was reported for the brain 

data sets employed in this study. We are unsure about the prediction accuracy for MR 

images with abnormal regions. If the test data do not lie in the training space due to 

population difference, the trained network may not accurately recover unseen structures. The 

robustness of the trained network to diseased data sets deserves further evaluations.

As for the objective function employed in the network training, L1 norm was found to be 

better than L2 norm. L2 norm results in blurrier images. We also tried another objective 

function by including additional L1 difference between the gradient images of the ground-

truth CT and pseudo CT in both the horizontal and vertical directions. Though the generated 

CT image had a sharper bone, quantification for the inner regions, such as the putamen and 

caudate, showed worse results. The sizes of the air-cavity regions in the ZTE and Dixon MR 

images are different. As different methods extract information from Dixon only, ZTE only, 

or Dixon and ZTE combined, there will be difference about the delineations of air-cavity as 

shown in Fig. 4 and Fig. 8. Additionally, we noticed that for the MR and CT images 

acquired in two different scanners, the jaw and head-neck regions could not be registered 

well in some cases due to position difference. This can produce errors as the training 

presumes that the CT and MR images match perfectly. Generalized adversarial networks 

which do not depend on the paired MR and CT images might help solve this problem.

6. Conclusion

We have proposed a neural network method to generate the continuous attenuation map for 

brain PET imaging based on the Dixon MR images only, and based on Dixon and ZTE 

images combined. Analysis using real data sets shows that the neural network method can 

produce smaller PET quantification errors as compared to other standard methods. When 

both Dixon and ZTE images are available, the proposed GroupU-net structure, which 

extracts features from Dixon and ZTE images through group convolution modules when the 

network goes deeper, can have better performance than the U-net structure. Future work will 

focus on designing and testing different network structures to better improve the results as 

well as testing the robustness of the trained network to diseased data sets.
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Figure 1. 
The schematic diagram of the U-net architecture. Numbers on top of the module stand for 

the number of features in the channel. Numbers on the left size of the module indicate the 

spatial input size. N is the number of features after the first convolution module. For the 

proposed GroupU-net structure, the convolution module inside the dashed box will be 

replaced by the group convolution module as indicated in Fig. 2. The group module will 

only be used when the block input has features ≥ 4N. The number of groups in the group 

convolution module is set to be N.
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Figure 2. 
The schematic diagram of the group convolution module. The ReLU and Batch 

normalization layers are added after each convolution operation during implementation.
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Figure 3. 
Examples of the training pairs used in the network training. Top row is the CT label image, 

middle and bottom rows are the corresponding Dixon MR images (middle) and ZTE MR 

images (bottom).
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Figure 4. 
Three views of the attenuation maps (unit, cm−1) derived from the true CT image (first 

column) and the generated pseudo CT images using the Dixon-Seg method (second 

column), Dixon-atlas method (third column) and the proposed Dixon-Unet method (last 

column).
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Figure 5. 
Three views of the PET reconstruction error images (PETpseudoCT – PETCT, unit: SUV) 

using the Dixon-Seg method (left column), the Dixon-atlas method (middle column) and the 

proposed Dixon-Unet method (right column).
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Figure 6. 
The bar plot of the mean relative PET error for all the patient data sets. Standard deviation of 

the relative PET error for all the patients are plotted as the error bar.
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Figure 7. 
The histogram of PET error images for the three Dixon methods.
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Figure 8. 
Comparison of the true CT image (first column) with generated pseudo CT images using the 

Dixon-Atlas method (second column), the ZTE-Seg method (third column), the DixonZTE-

Unet method (fourth column) and the DixonZTE-GroupUnet method (last column).
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Figure 9. 
Comparison of the validation loss regarding the predicted CT images using U-net and the 

proposed GroupU-net when both Dixon and ZTE MR images are used as network input.
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Figure 10. 
PET reconstruction error images (PETpseudoCT – PETCT, unit: SUV) using the Dixon-Atlas 

method (first column), the ZTE-Seg method (second column), the DixonZTE-Unet method 

(third column) and the DixonZTE-GroupUnet method (last column).
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Figure 11. 
The bar plot of the mean relative PET error for the patient data sets with both Dixon and 

ZTE images. Standard deviations of the absolute error for all the patients are plotted as the 

error bar.
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Figure 12. 
The histogram plot of the PET SUV difference inside the whole brain for Dixon-Atlas, ZTE-

Seg, DixonZTE-Unet and DixonZTE-GroupUnet methods.
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Table 1

Comparisons of the generated pseudo-CT images when only Dixon images are available (based on 40 patient 

data sets). The Dice index of bone regions was computed for the whole brain, regions above and below the 

eyes.

Methods Relative validation loss (%) Dice of bone whole Dice of bone above eye Dice of bone below eye

Dixon-Seg 32.70 ± 5.38 – – –

Dixon-Atlas 22.86 ± 2.34 0.52 ± 0.05 0.61 ± 0.06 0.30 ± 0.05

Dixon-Unet 13.84 ± 1.43 0.76 ± 0.04 0.82 ± 0.04 0.63 ± 0.06
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Table 2

The comparison of the generated pseudo-CT when both Dixon and ZTE images are available (based on 14 

patient data sets). The Dice index of bone was computed for the whole brain, regions above and below the 

eyes.

Methods Relative validation loss (%) Dice of bone whole Dice of bone above eye Dice of bone below eye

Dixon-Atlas 23.33 ± 3.23 0.52 ± 0.05 0.61 ± 0.06 0.29 ± 0.05

ZTE-Seg 16.20 ± 2.28 0.69 ± 0.05 0.75 ± 0.05 0.56 ± 0.07

DixonZTE-Unet 13.58 ± 1.53 0.77 ± 0.04 0.83 ± 0.04 0.66 ± 0.07

DixonZTE-GroupUnet 12.62 ± 1.46 0.80 ± 0.04 0.86 ± 0.03 0.69 ± 0.06
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