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Abstract

Atomistic Simulations of Screw Dislocations in Titanium

by

Max Nicholas Poschmann
Doctor of Philosophy in Engineering – Materials Science and Engineering

University of California, Berkeley

Professor Daryl C. Chrzan, Co-Chair
Professor Mark Asta, Co-Chair

This dissertation contains a variety of atomistic calculations concerning screw dislocations
in pure or nearly-pure titanium alloys. Many aspects of these dislocations are considered.
First, the core structures of 〈a〉-type screw dislocations in pure titanium at zero temperature
and no applied stress are calculated. The parameters required to converge calculations of the
cores structures are identified. The energy differences between core structures were found to
be small, which suggests that at practical temperatures there will be occupation of more than
one core structure configuration. Next, the effects of applied stresses with zero resolved shear
stress on these dislocations are considered. The results suggest that non-Schmid stresses alter
the critical resolved shear stress by inducing changes in the equilibrium core structure. This
corroborates earlier conjecture that the non-Schmid slip behavior of screw dislocations in
α-titanium alloys is due to non-planar core structure. Chapter 5 describes a new parameter
based on elasticity theory for dislocation core identification and classification. This parame-
ter is applied to the study of dislocation core structures in an empirical potential, examining
the dependence of the core orientation on temperature and applied non-Schmid stresses. It
is found that increasing the temperature leads to a larger variation in the core orientations.
It is also found that applied stress on the [11̄00] axis normal to the dislocation line direction
leads to a transition from the prismatic core structure to the pyramidal core structure. This
transition appears to shift to lower pressure at higher temperature, suggesting that entropy
of the core structures is important. It is demonstrated that temperature/non-Schmid stress
conditions that permit easier access to the prismatic core orientation lead to higher strain
rates for the same applied shear stress. In Chapter 6 I introduce a novel interstitial shuf-
fling mechanism to explain how dilute concentrations of interstitial impurities can promote
increased planarity of dislocation slip. This invites design of titanium alloys with increased
tolerance to variations in interstitial impurity content. Finally, in Chapter 7 nucleation of
the β to α phase transition in pure titanium is examined through a combination of elas-
ticity theory and molecular dynamics simulation. Screw dislocations in the β phase act as
heterogeneous nucleation sites and increase the α phase growth rate, but also restrict the
orientation of the α nuclei to certain directions along which the strain field of the dislocation
aligns with the strain required to complete the Burgers transformation path.



i

I have learned two ways to tie my shoes.
One way is only good for lying down.
The other way is good for walking.

Valentine Michael Smith
Stranger in a Strange Land

Robert A. Heinlein
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Chapter 1:

Introduction

I recently read – in the introductory paragraph of a popular science news article now
lost to the depths of the internet – a statement to the effect of “materials scientists live
in fear of defects.” While there are many engineers and technicians who hope not to find
unexpected defects in their products, generalizing this statement to all materials scientists
in all circumstances is simply not correct. My experience with materials science has been
one of seeking defects, not avoiding them. Whether it is myself or one of my computational
coworkers carefully introducing vacancies, dislocations or twin boundaries into an atomistic
supercell, a microscopist scanning their sample for dislocation slip traces, or a nuclear engi-
neer irradiating their sample until it is riddled with voids, the science of materials revolves
around identifying defects and studying their behavior. We do this because defects are where
the engineering opportunities are to be found. They give us leverage over material behav-
ior, allowing us to significantly change properties such as strength, toughness, conductivity,
and photoluminescence by making small changes to the composition or processing of the
material.

Defects also have surprising depth, which is another reason that materials scientists spend
so much time pursuing and studying them. In this dissertation I will focus on one class of
methods – atomistic simulations – to study one type of defect – screw dislocations – in
one class of alloys – pure and commercially-pure titanium. This work uses the techniques of
density functional theory and the modified embedded atom method, considers the role of the
dislocation core structure and how they are influenced by stress and temperature, examines
the interactions between screw dislocations and interstitial solutes (of which oxygen is the
most important), and studies the effect of screw dislocations in high-temperature β-titanium
in selecting the orientations of α-titanium grains that form during cooling. Still, this does
not exhaust the potential of this one defect type in one alloy class to surprise us and to
present new engineering possibilities.

1.1 Atomistic Simulations...

Atomistic simulations are the broad class of simulations in which the basic building block
of the system being simulated is the atom. In continuum simulations, on the other hand, the
system is assumed to be homogeneous throughout space and to reflect some bulk material
properties. Finite element method simulations hold a middle ground, with space subdivided
into regions large enough to contain many atoms, within each of which the material properties
are assumed to be constant. While these more coarse-grained simulation methods offer clear
advantages in terms of speed and scale, atomistic simulations are capable of much greater
precision and allow us to study the structure and behavior of defects on their true length
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scale. In this sense, atomistic simulations are much more physically satisfying than the
competing methods. Since the Nobel Prize-winning work of Jean Baptiste Perrin more than
a centuray ago, there has been no doubt of the theory that matter is composed of atoms.
Thus it follows that to precisely model how materials deform one ought to consider the
displacement of individual atoms.

This statement leads to an important question: what is the displacement of an individual
atom, and how can one simulate it? To implement atomistic simulations, rules that define
(1) the energy of the system and the forces that atoms will be subject to, and (2) how these
will cause the atoms to move. And these rules have to be defined in terms of the information
that is available in an atomistic simulation: what species of atoms there are, and where they
are. Many forms of both types of rules exist. For type (1), of greatest importance to this
dissertation are Density Functional Theory (DFT) and a simplification derived from DFT,
the Embedded Atom Method (EAM). Both of these will be discussed in more detail later in
the text, but can generally be summarized by the second Hohenburg-Kohn theorem[1]: the
energy of a system is entirely determined by the electron density, and finding the minimum
in energy with respect to variation in the electron density thus yields the ground state of the
system. Therefore in performing atomistic simulations, one is to a large extent interested in
electrons and the laws of quantum mechanics that govern their behavior.

The set of rules of type (2) also includes numerous options, including all the flavors
of optimization that can be applied to find the equilibrium state of a system (for example
Steepest Descent (SD), Conjugate Gradient (CG), and the various modern inertial optimiza-
tion algorithms such as quick-min[2] and FIRE[3]), as well as time-evolution methods such
as Molecular Dynamics (MD). Again, these methods will be discussed in more detail later.
For the moment, I would like to reiterate the distinction between the types of rules (1) and
(2) for atomistic simulations, as they are all-too-often conflated with one another. Type (1)
determines how the energies and forces are calculated, i.e. through DFT, or by EAM, or by
some pair potential. Type (2) determines what is done with those energies and forces, i.e.
are they fed into a CG algorithm, or used to integrate the equations of motion in MD. One
is not restricted in pairing between these types (though some pairs might be better suited to
one another), for example CG optimization may be performed on energies and forces arising
from DFT or from EAM, and MD can be integrated using forces generated by EAM or by
DFT (this case is often called ab initio-MD, and is not employed here).

1.2 ...of Screw Dislocations...

Since Griffith[4] showed that the energy required to break a plane of perfect interatomic
bonds in a perfect crystal is far greater than that needed to plastically deform a material it
has been known that plasticity is carried by defects. These defects contain broken bonds,
and in propagation through material produce strain by moving these broken bonds from one
region to another. While there are numerous defects that can propagate plastic strain – for
example twin boundaries that often dominate metals deformed at high strain-rates at low
temperatures, or grain boundaries that slide past one another at very high temperatures –
the most common and relevant in metals at normal working temperatures are dislocations.
Dislocations are line defects that can be defined (at least in a local sense) by two quantities:
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their Burgers vector[5] (which defines the magnitude and direction of plastic strain carried by
the dislocation), and their line direction (which is simply along which vector the dislocation
is oriented). Dislocations are typically grouped into three categories: edge, screw, and mixed.
Edge dislocations have their Burgers vector perpendicular to their line direction, and thus
represent the termination of a plane of atoms within the crystal. Screw dislocations (those
of greatest interest in this dissertation) have parallel Burgers and line vectors, and can be
best pictured by considering the threads on a screw or the ramp of a parking garage: if one
completes a revolution about the screw axis, one has increased (or decreased) their altitude
by a Burgers vector. The mixed type captures all other options, as their Burgers vectors lie
somewhere between perpendicular and parallel to the line direction.

In the above description, I called dislocations “line defects”. However, this is not an
entirely accurate or helpful picture. In fact, considering that atoms occupy some volume in
space a purely one-dimensional description is impossible. The defect is the disturbance of the
position of atoms, and therefore it also must occupy some volume. The atoms that are part
of this volume are in the dislocation core. Possible definitions of this core region are discussed
in later chapters of this dissertation. For now, it is enough to say that the importance of
dislocation core structure in controlling dislocation motion is well known in bcc[6], fcc[7],
and hcp[8–11] metals. Because the core structure of dislocations is closely related to their
dynamics[12], gaining a better understanding of these cores through atomistic modeling is
of significant value to predicting the mechanical properties of alloys.

Dislocation core spreading and the resulting effects on slip were first introduced by
Peierls[13] and expanded on by Nabarro[14]. According to their model, for a given burgers
vector, line direction, and material there is a plane in which the dislocation will spread and
have a minimal barrier to slip. For a dislocation with edge character this plane will always
be the plane that contains both the burgers vector and line direction, but for a pure screw
dislocation these directions are parallel and thus there are many possible glide planes. As
illustrated by Clouet et al.[10] the difference in energies of screw dislocation cores spread on
different planes can be very small, and yet still have significant implications for plasticity.
Cross slip involves large dislocation segments – magnifying these differences. Clearly then
accurately predicting slip behavior requires sufficient precision to both find the ground state
core configuration and the energetic difference between that configuration and other nearby
configurations. Further, the effects of stress and temperature on the core structure, as well as
the time evolution and correlation of core structures, are important but not well-understood
for hcp metals. All of these topics are considered in this dissertation.

1.3 ...in Titanium

The class of high-purity hexagonal close packed (hcp) titanium alloys known as commer-
cial purity (CP) titanium (ASTM grades 1-4) possess a number of desirable properties that
have made them popular in aerospace applications such as airframe skin and components, as
well as for naval applications. These desirable properties include high strength, low density,
high melting point, formability, and excellent resistance to corrosion due to passivation by a
surface oxide layer. Despite these many attractive properties and the abundance of titanium
in the crust of the Earth (it is the 4th most common metal[15]) the uses of titanium are
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limited by high costs. This puts titanium in an interesting position: it is both a commonly-
used material with clear and established technological applications, and a material that is
probably under-utilized and whose uses could be expanded if production costs are reduced.

Much of the expense of titanium production is wrapped up in processing of the ore to re-
move excess oxygen. Oxygen alters the mechanical properties of titanium alloys significantly
and in ways that are not desirable for most applications. In the concentration range typical
for CP-Ti alloys (approximately 0.1 to 0.4 wt% oxygen) increasing oxygen content increases
yield strength and flow stress, but significantly decreases other desirable properties[16] such
as ductility and particularly toughness. For this reason, one of the focuses of this work is on
the interactions between oxygen interstitials and screw dislocations in titanium.

Beyond the good technological and economic reasons for working on titanium, it is also a
scientifically stimulating subject. Hexagonal metals have a surprising amount of character,
and behave significantly differently from each other. While crystallographically speaking the
same dislocations and twins are possible in all hcp metals, the distribution of defects found
varies widely from one to another. For example, the ordering of twin boundary energies
differs from one hcp metal to the next[17]. Another example is the structure of dislocation
cores: titanium, zirconium, and magnesium all display different ground state core structures
for the same screw dislocation core. The lower symmetry of hcp metals and the variation of
c/a ratios allows for a good deal of variety, and thus it becomes easy to immerse oneself in
just one hexagonal metal.

1.4 Dissertation outline

In the next chapter I will describe the methods and concepts used that are common to
multiple of the subsequent sections. Some of these (such as DFT, EAM, and MD) have
already been briefly discussed, but much greater detail will be provided in Chapter 2. Other
techniques that will be described include the Nudged Elastic Band (NEB) method.

In Chapter 3 the structure and properties of 〈a〉-type screw dislocation cores in pure
titanium will be discussed. This begins with calculation of the ground state core structure
and other nearby local minima at zero temperature and stress. Next, in Chapter 4 the effects
of applied stress on the core structure will be investigated, and the role of these effects in
observed non-Schmid-Law behavior examined.

Chapter 5 explores the time-evolution of dislocation core structures at temperatures in
the range 100 K to 500 K and under a range of applied stresses. This section includes the
development and implementation of a new method applicable to (but not limited to) rapidly
and automatically determining dislocation core orientation, which allows for determination
of the core structure for many thousands of sections of dislocation line. These calculations
are used to present the first atomistic observations of the locking-unlocking mechanism based
on the dislocation core structure for dislocations.

In Chapter 6 the interactions between 〈a〉-type screw dislocations and interstitial solutes
(primarily oxygen, but with some additional comments on the next-most-important solutes
nitrogen and carbon) are studied. This investigation leads to a new proposed slip-plane
softening mechanism, which I refer to as the Interstitial Shuffling Mechanism (ISM). This
mechanism provides a new explanation for the existence of planar slip in titanium alloys with
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high oxygen but low aluminum concentrations, and knowledge of it provides a new potential
pathway to designing tougher and less expensive titanium alloys.

In Chapter 7 a detour into high-temperature β (bcc) titanium is taken. The role of screw
dislocations in the β phase in nucleating α titanium during cooling is examined, and it is
shown that these dislocations are important nucleation sites as well as powerful selectors of
which orientation variants of α titanium grow. This section also provides a good example
of the importance of using long dislocation line segments in certain atomistic simulations,
which is rarely done. It is also a good case for the recently-developed Polyhedral Template
Matching[18] algorithm for phase identification, as the orientation-mapping abilities of PTM
prove very useful.

Finally, this dissertation will wrap up in Chapter 8 with a brief summary followed by
some thoughts on future work stemming from the presented ideas.
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Chapter 2:

Methods

In this chapter I will outline the various methods that are used in the later chapters. In
particular, methods that are used in multiple of the following chapters are the focus of the
following sections, while certain methods used only once will be described in the relevant
chapters. Here, the goal is to provide the context necessary to understand the calculations
performed throughout this dissertation rather than a complete derivation or instruction
manual for the following techniques.

2.1 Density Functional Theory

There is a sense in which all the mysteries of condensed-matter physics have been resolved
for some time now. In the explosion of modern physics that occurred between Einstein’s 1905
papers that introduced relativity[19] and quantum mechanics[20] and Feynman’s 1949 work
in unifying these ideas[21], the laws needed to understand physics on the atomic scale were
discovered and written down. In theory, one can solve virtually all the practical problems
of materials that one can think of. In practice, however, the situation is entirely different.
The laws of quantum mechanics do not lend themselves to exact solutions for systems more
complicated than a hydrogen atom, and the resources required to numerically compute the
solutions to more complicated problems naively would be immense. Thus in the period
following Feynman much of the work in condensed-matter physics has been focused on finding
effective approximations that can be employed to simplify problems and methods to solve
these problems efficiently. In this time, no development has been more significant than the
invention of Density Functional Theory (DFT).

DFT got its start in the work of Hohenburg and Kohn in 1964[1], in which they provided
the first two crucial building blocks for the theory. These are:

1. the potential energy of any system of interacting particles in an external potential is a
unique functional of the ground-state particle density, and

2. it is possible to define a universal functional for the energy of the system of interacting
particles in terms of the particle density, minimization of which would yield the ground-
state energy and particle density.

These statements offer some tantalizing possibilities. For many material systems of interest it
is reasonable to make use of the Born-Oppenheimer approximation[22] that the atomic nuclei
are effectively stationary. This permits us to consider the entire system to be one of identical
interacting particles (electrons) in an external potential that results from the Coulombic
interactions of the electrons and nuclei. Therefore realization of the second theorem would
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yield a method for calculating the ground-state energy and electron density of any atomic
configuration one can design.

In 1965, Kohn and Sham[23] provided a method for realizing this possibility. Their
groundbreaking ansatz was that the correct ground-state particle density of an interacting
particle system of interest can be found exactly by considering an auxiliary system of non-
interacting particles. Doing so relies on the unproven assumption that the non-interacting
particle ground state density represents the ground-state density of the interacting many-
particle system. Nonetheless, this was the crucial simplification required to make DFT
calculations tractable. The Kohn-Sham energy functional is:

EKohn−Sham[n] =
∫
Vext(r)n(r)dr + 1

2

∫ ∫ n(r)n(r′)
|r − r′|

drdr′ + Ts[n] + Exc[n] + EII (2.1)

where Vext(r) is the external potential, n(r) is the non-interacting particle density, Ts[n] is
the kinetic energy of the non-interacting particles, Exc[n] is what is called the exchange-
correlation functional, which in a sense absorbs all the physics of the interacting particle
system that would otherwise be missing from the non-interacting system, and EII is the
energy of Coulombic interaction between the nuclei. The second term in this functional
captures the Hartree energy, the Coulombic repulsion between non-interacting electrons.

Most of the terms in the Kohn-Sham functional are straightforward to compute, given
an electron density. The one question mark in Equation 2.1 is the exchange-correlation
functional Exc[n]. This term represents the energy due to electron-electron interactions
that is not captured by the Hartree energy, namely exchange and correlation energies. The
exchange energy provides a negative contribution to the energy that arises from two sources:
the Pauli exclusion principle, and correction of the self-interaction of electrons implicit in
the Hartee term of the functional. The correlation energy is somewhat more nebulous. The
definition varies from source to source, but roughly it includes all the correlations of many-
electron systems not otherwise accounted for[24].

The functional derivative ofExc[n] is the exchange-correlation potential Vxc(r)[24]. This is
a crucial point at which approximation enters into DFT. Getting the exchange and correlation
of the system exactly correct would require returning to the many-particle system, so instead
simplifications are used in place of this. The simplest of these approximations is based on
the assumption that at any point the electron density can be represented locally as being
equal to that of a homogeneous electron gas, and the (known) exchange and correlation of
a homogeneous electron gas with the given density can be used in place of the exchange
and correlation of the real system at that point. This form for Exc[n] is known as the
Local Density Approximation (LDA) and was provided by Kohn and Sham[23] as the first
exchange-correlation potential.

With an exchange-correlation potential in hand, one can define a Schrödinger-like equa-
tion for Kohn-Sham DFT[24]:

(−1
2∇

2 + Vext(r) + VHartree(r) + Vxc(r))ψi(r) = εiψi(r) (2.2)

VHartree is the potential corresponding to the Hartree term in Equation 2.1 (i.e. its functional
derivative), ψi(r) are the wavefunctions, and εi the Kohn-Sham equation eigenvalues.
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While LDA proved surprisingly accurate for such a simple approximation, it has obvious
shortcomings when the electron density varies rapidly. In their same paper, Kohn and
Sham suggested the next step in of the approximation: include gradient terms in Exc[n].
Approaches based on this suggestion are known as Generalized-Gradient Approximation
(GGA) potentials. Unlike LDA, however, there is not a unique approach to GGA. Because
of this, many different GGA potential forms exist. By far the most popular today (and the
one used in all DFT work presented in this dissertation) is the method of Perdew, Burke, and
Enzerhof[25] (known as PBE). In PBE, the various coefficients that arise when taking the
gradient of the exchange-correlation functional are constructed by enforcing seven physical
constraints, and thus all parameters for the gradients are fundamental constants. The lack
of fitting parameters as well as the efficiency and accuracy of PBE has lead to it being one
of the dominant forms for exchange-correlation in DFT over the last two decades.

Once an exchange-correlation functional form is chosen, the Kohn-Sham functional is
complete. However, there remains room for further simplification before moving on. Consider
the structure of an atom. In the center is the nucleus, which consists of neutrons and
protons. Surrounding this are the tightly-bound core electrons, and further out are the
valence electrons. In most of the common pictures of interatomic bonding, only the valence
electrons play an important role. Therefore it seems reasonable to replace the nucleus plus
all-electron picture of our atom with one that has an ionic core that includes some of the more
tightly-bound electrons, plus the valence electrons. In doing so one can significantly reduce
the degrees of freedom of the problem and thus greatly increase computational efficiency.
Potentials that follow this ion-plus-valence-electrons model are known as pseudopotentials.
Choosing a pseudopotential amounts to answering the question “how will I replace the ionic
core with an effective potential?”. But I will put that question on hold for a moment.

Next is the problem of how to actually solve for the ground-state electron density of a
system of interest. This involves choosing a basis, which invites some consideration of the
system of interest. In this work, all the systems considered are metals, and I am interested
in bulk properties. Thus an obviously useful configuration is a periodic system, and a
useful choice of basis set is plane waves. The choice of basis set and pseudopotential are
closely connected, as choice of a useful pseudopotential for a given basis can greatly simplify
electronic structure calculations[24].

Many pseudopotential types have been developed and are described at length in resources
such as Martin’s Electronic Structure textbook[24]. Here, I will describe only the Projector
Augmented-Wave (PAW) method[26] which is employed in the calculations presented below.
This is an efficient and robust method regarded as one of the standard pseudopotentials in
DFT, though to be more accurate it is actually a simplified all-electron method rather than
a proper pseudopotential method. The goal of this method is to achieve the accuracy of all-
electron methods for all observables using pseudo-wavefunctions instead of all-electron wave-
functions. This is done by defining a transformation T that links the pseudo-wavefunction
|Ψ̃〉 and all-electron wavefunction |Ψ〉:

|Ψ〉 = T|Ψ̃〉. (2.3)

|Ψ̃〉 only differs from |Ψ〉 in a spherical region called the augmentation sphere about each
atom. In this region, |Ψ̃〉 is expanded in terms of spherical Bessel functions. Outside of the
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sphere, |Ψ̃〉 consists of the same plane waves as |Ψ〉. In typical PAW implementations the
electronic states that are inside the augmentation sphere are considered to be frozen and
are not relaxed during calculation. By eliminating these degrees of freedom computational
efficiency can be greatly improved. However, as described in Chapter 3, it is important to
check which states can be considered to be frozen.

Having chosen a basis set, the remaining task is to integrate Equation 2.1 over it and
minimize. It appears that this requires integration over all space, but thanks to Bloch’s the-
orem it is only necessary to integrate over a primitive cell in reciprocal space (the Brillouin
zone). In practice, a sum of samples taken at special points is used in place of integration
(k-point sampling), with the set of special points selected referred to as the k-point mesh.
At each of these points a sum over the chosen plane wave basis functions is performed, up to
a chosen cutoff wavevector magnitude (often specified in terms of energy). Typically these
points are chosen to be an evenly-spaced grid in reciprocal space, which can then be reduced
to a smaller set of points (the irreducible wedge) by using the symmetry operations of the
system of interest to determine which points are redundant. In most of the calculations
presented in this dissertation the k-point meshes are of the Monkhorst-Pack[27] form, cen-
tered on the Γ-point because most of the lattices are hcp. One interesting note on k-point
sampling is that the k-point mesh density is one parameter with respect to which the DFT
energy is not variational. In other words, increasing the k-point mesh density (increasing
calculation accuracy) does not always decrease the computed energy of the system. Adding
more k-points does not increase the degrees of freedom of the system, just the level of detail
of bookkeeping (and thus the accuracy of the approximation to the real system).

Unfortunately, for DFT calculations of metals integration is not quite that simple. Metal-
lic bonding is defined by partially-filled valence bands, which leads to discontinuities in the
functions being integrated. For example, consider the total charge of the system I:

I =
∫
Brillouin Zone

S(E(k)− Ef )g(k)dk (2.4)

where Ef is the Fermi energy, Ek) is the energy of the band as a function of k, g(k) is the
density of states, and S is a step function defined as S(x) = 1−Θ(x) with Θ(x) a Heaviside
step function. Clearly the discontinuity of S(E(k)−Ef ) will make this function very difficult
to integrate, and inaccurate if naively summed over some finite set of points. This is especially
problematic for calculations of forces (which naturally require differentiation). In this work,
this problem is alleviated by employing the method of Methfessel and Paxton[28]. In this
method, S is replaced by a smooth function that can be used to integrate accurately. In
particular, they use

S0(x) = 1
2(1− erf(x))

SN(x) = S0(x) +
N∑
n=1

AnH2n−1(x)e−x2
(2.5)

where Hn(x) is the Hermite polynomial of degree n, and An are coefficients given in their
paper. To use this method in conjunction with a k-point sampling method, they provide the
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definition of x in Equation 2.5 as the list of points xi that correspond to the k-point mesh
points ki:

xi = E(ki)− Ef
W

, (2.6)

with W this smearing or broadening parameter. This parameter adds an effective electronic
temperature to the system, and is proportional to the amount of smoothing of the function
S. To put it another way, for smaller W the system approaches the un-smoothed one, and
thus greater integration difficulty from discontinuities arises and more k-points are required.
For larger W the effects of smoothing are greater, and electronic entropy influences the
calculated energy of the system to a greater degree, which reduces accuracy. In the DFT
metals community, the usual compromise is to choose the greatest value for W that results
in an electronic entropy contribution to the total energy of less than 1 meV per atom in the
system. This is done in this work.

The above summarizes the components required to compute the energy of a system of
interest using DFT. However, for the purposes of this work I wish to go a step further
and actually optimize the structure of the system as well. This requires computation of
forces (as alluded to above) as well as stress to guide rearrangement of ions in the system.
To calculate the forces on the ions, the theorem attributed to Hellmann and Feynman but
in fact documented by numerous authors[29–32] is employed. This theorem results from
perturbation theory applied to the derivative of the energy with respect to the positions of
each ion in the system, and some helpful cancellation results in:

Fi = −
∫
n(r)∂v(r)

∂Ri

d3r − ∂EII
∂Ri

(2.7)

where Fi is the force on ion i at position Ri.
To compute stresses and thereby relax the shape of atomic configurations in DFT, the

generalized virial theorem of Nielsen and Martin[33, 34] is used.
I am quite thankful that it was not necessary to implement software to invoke all of

the above. Instead, the DFT calculations presented in this dissertation were computed
using the Vienna Ab initio Simulation Package (VASP)[35, 36]. This robust, efficient, and
well-documented software package enabled me to take advantage of modern supercomputing
resources to perform many relatively large-scale DFT calculations (including up to some
hundreds of atoms). The workflow to complete a DFT calculation including structural
relaxation, from my perspective, is as follows:

1. construct the atomistic representation of the system of interest,

2. select the level of exchange correlation potential appropriate for the system and the
desired results (here, the PBE form of GGA),

3. select the form of pseudopotential (here, PAW),

4. choose which electronic states will be considered to be (frozen) core states,

5. set the size of the planewave basis set to be used,
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6. set the k-point mesh density and geometry desired,

7. select a smearing parameter and order,

8. choose tolerances for energy and force convergence.

Given all this input from the user (me), the workflow from VASP’s perspective is:

1. guess an initial electron density function n(r) and calculate the corresponding energy
using Equation 2.1,

2. calculate v(r) corresponding to n(r),

3. calculate the (pseudo) wavefunctions that solve Equation 2.2 for v(r),

4. determine a new n(r) corresponding to the wavefunctions and calculate the corre-
sponding energy using Equation 2.1,

5. if the change in energy is smaller than the selected tolerance, calculate forces and stress;
if larger, return to 2,

6. if forces and stress are smaller than the selected tolerance, terminate calculation; if
not, adjust lattice vectors and ionic coordinates then return to 2.

In this way, all the complexity of the preceding section is effectively replaced by carefully
choosing a set of parameters. Of course, these choices must be made in the light of under-
standing of the significance of each to the calculation at hand as well as the interplay between
them. In practice, these choices are checked and re-checked to ensure the convergence and
also the significance of the calculation results.

2.2 Embedded Atom Method

While DFT was a massive step forward in terms of what systems one could calculate
the structure and energy of, the O(n3) or O(n2log(n)) computational intensity vs number
of electrons (n) scaling of most DFT implementations (including VASP) makes performing
DFT calculations of systems with more than some hundreds of atoms impractical. In this
dissertation the largest DFT calculations involve 577 atoms. For many of the systems of
interest here, that is simply not enough atoms to accomplish our research goals. Therefore
in many of the following chapters a higher level of approximation that provides access to
larger system sizes and faster computation is applied, and that is the Embedded Atom
Method (EAM).

EAM has its roots in a corollary of DFT, known as the quasiatom. The concept of a
quasiatom (introduced by two professors from my undergraduate department at Queen’s
University, Malcolm Stott and Eugene Zaremba) is that if an atom is added to an electronic
host system, the energy of that addition is a functional of the electron density of the unper-
turbed host system[37]. This concept was expanded upon by Daw and Baskes, who showed
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that this idea could be applied to all atoms in a system, with each being embedded into the
system containing all the others[38, 39]. This transforms the quasiatom concept:

Equasiatom = Ez(ρh(R)) (2.8)

with z the atomic number, ρh the host electron density and R the embedding position, to a
method for calculating the energy of the entire system, along the lines of:

EEAM =
∑
i

Ezi
(ρh,i(Ri)) + 1

2
∑
i,j
i 6=j

φij(Rij). (2.9)

Here, the first sum runs over all atoms i in the system, and ρh,i(Ri) is the host electron
density at the position of the ith atom (Ri), if the ith atom is omitted. The second sum is
over atom pairs, with φij(Rij) representing the Coulombic repulsion between cores separated
by distance Rij.

On the face of it, this doesn’t make the problem any simpler. To calculate the energy
exactly, one would have to find all ρh,i(Ri), which actually seems like more work than the
DFT problem was. However, what it provides is a useful framework for developing empirical
potentials in which ρh,i(Ri) is taken to be the sum of fixed density functions about each
atom center (which are assumed to be zero beyond a certain cutoff radius, usually a few
times the nearest-neighbor distance in the system), and the embedding energy as a function
of density is fit to experimental and/or calculated data. Empirical potentials of this form
are commonly referred to as EAM potentials.

By considering the electron density to simply be a sum of fixed densities the amount
of computation required is greatly reduced. Compared to DFT, this effectively skips the
electronic structure part of the optimization (often referred to as the “inner loop”) and goes
directly to energy and force evaluations. Further, not worrying about interacting electrons
and considering only short-range interactions improves the computational scaling to O(n).
However, empirical potentials (including EAM) are naturally less flexible than ab initio
techniques (such as DFT), because calculations are only valid when the atomic configurations
are similar to those which the potential was fit to represent. Configurations that would induce
large changes in the electron density (such as placing two atoms very near each other) do
not yield meaningful results in EAM (nor in fact in frozen-core DFT with core radii set too
large). Of course, properties that can derived from the ground-state electron density in DFT
such as specific heat or susceptibility are not available from EAM, since the electron density
is not realistic, and typically is not explicitly calculated at all.

On the other hand, EAM was a major improvement in accuracy over (but is also more
computationally expensive than) its predecessor empirical methods such as pair potentials.
By approximately including effects of changes to the electron density around an atom EAM
is able to reproduce energies of surfaces, cracks, and vacancies in metallic systems that
pair potentials could not. In EAM, the presence of an atom affects the way that nearby
atoms bond to each other through its contribution to the electron density. This matches the
common understanding of metallic bonding, but is the sort of behavior that is absent when
only pairwise interactions are considered.



13

The most commonly-used empirical potential in this dissertation is in fact not of the orig-
inal EAM form, but a more recent form developed by Baskes, Nelson, and Wright known as
the Modified Embedded Atom Method (MEAM)[40, 41]. This method builds on EAM chiefly
by including 3-body interaction terms, and thus capturing some of the angular dependence
of atomic bonding.

Calculations involving empirical potentials are implemented in the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) software package[42]. This is
an open-source package that has many forms for empirical potentials implemented, as well
as optimization methods, MD with a rich variety of options, NEB, and more.

2.3 Optimization

The above sections cover the two choices for rules of type (1) employed in this dissertation,
as introduced in Chapter 1. These rules determine how the energies, forces, and stresses
on atomic configurations are calculated in atomistic simulations. In this section and the
following, options for rules of type (2) – how to evolve the structure given energy and forces
– are described. This section in particular describes how this is done in simulations that
do not consider time or temperature. Optimization methods are used simply to find the
lowest-energy configuration. The degree to which this tends to be a global or local minimum
depends on both the method used and the potential energy landscape of the system of
interest.

Perhaps the most obvious way to optimize a system is called Steepest Descent (SD). At
each step of SD, the gradient of the energy in configuration space is determined from the
calculated forces, and the system moved in the direction of the gradient by an amount scaled
to magnitude of the forces. If this process is repeated sufficiently, eventually the system
reaches the force tolerance at the bottom of the nearest local minimum of the potential
energy.

While the merit of SD is clear, in practice it can be very inefficient for finding minima.
Often it takes many steps along the same direction, for example in optimizing a 2-dimensional
parabolic function it may simply alternate between two orthogonal directions over and over
and take many steps to converge for even this simple problem[43]. To avoid this re-use of
directions and in general improve the rate of convergence, one can make use of information
from previous steps in the optimization to improve the next step. One method of doing this
is to take each step along a direction that is perpendicular to all previous search directions.
If those directions are generated from gradients, then this corresponds to the method of
conjugate gradients (CG). This method is described in detail in the excellent (and excellently-
named) work “An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain”[43]. In brief, the first step taken is the same as in SD. For all following steps, the
gradient is calculated but then orthogonalized (following a Gram-Schmidt process) with all
previous gradients before the next step is taken.

Another way to take into account previous steps is to use an “inertial” term in the
optimization, as is done in the FIRE[3] algorithm for example. As a brief summary, this
algorithm directs that if the current force and the most recent direction of optimization are
well-aligned, then the optimization should be accelerated in this direction. When they are
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not, the added “inertia” is canceled. This method in particular is mentioned because it is
used in this work in conjunction with the nudged elastic band method in some cases, as will
be described below.

It is worth noting also that optimization is important to the creation and core functioning
of methods such as DFT and EAM. For example, in the inner loop of a DFT calculation the
electron wavefunctions are being optimized to yield the lowest energy for the current ionic
coordinates. In VASP, this is done with a CG-like algorithm. For empirical potentials, the
fitting process typically involves a good deal of optimization.

2.4 Molecular Dynamics

When interested in the time-dependent evolution of a system at finite temperature, rather
than advancing down an energy gradient what one must do is integrate equations of motion.
For practical temperatures (well above the Debye temperature) and most atomic species
(those heavy enough to neglect tunneling effects), it is appropriate to employ the classical
equations of motion, as the behavior of the ions will not display any appreciable amount of
quantum behavior. Therefore the relevant equations are those due to Hamilton:

dpi
dt

= −∂H
∂ri

dri
dt

= +∂H
∂pi

(2.10)

where ri are the atomic coordinates, pi the momenta of the atoms, and H the Hamiltonian
of the system:

H(r,p) =
∑
i

p2
i

2mi

+ V (r), (2.11)

with mi the mass of the ith atom, and V (r) the potential energy of the system. V (r) (as well
as a function for calculating forces F i(r)) is the part supplied from a method such as DFT
or EAM, so in general can be a very complicated function. Further, typical MD simulations
contain thousands to millions of atoms. These factors make it impossible to deliver an
analytical solution for the time evolution of the system, and instead this is determined
numerically using a timestepping algorithm.

One of the earliest and most popular MD algorithms (known as integrators) – and the
only one used here – is the velocity Verlet algorithm[44]. To make use of the algorithm, first
one chooses a timestep (∆t). In typical atomistic simulations this is 1 fs. Then, assuming
that at time t the positions and momenta of all particles in the system are known (they may
begin from rest, or one might supply an initial randomized velocity distribution to induce a
desired temperature for the system), the algorithm proceeds as follows to t+ ∆t[45]:

pi(t+ ∆t
2 ) = pi(t) + ∆t

2mi

F i(r(t))

ri(t+ ∆t) = ri(t) + ∆tpi(t+ ∆t
2 )

pi(t+ ∆t) = pi(t+ ∆t
2 ) + ∆t

2mi

F i(r(t+ ∆t))

(2.12)
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and so on for following steps.
The velocity Verlet algorithm is useful because it obeys the basic rules for classical sim-

ulations: it is time-reversible[45], and in the limit of infinitesimal timesteps conserves the
energy of the system.

While this last point is certainly a good feature, often one does not desire to perfectly
conserve the total energy of a system. The physical system of interest does not exist in
a vacuum, and in fact will be in contact with media with which it can exchange energy
and volume. Therefore in atomistic simulations the goal is often to maintain a selected
temperature and stress state. The tools which permit us to achieve these goals are known
as thermostats and barostats.

The thermostat used in this work is called the Langevin thermostat, and functions by
modifying the force on each atom during the MD simulation by adding a random force and
a damping term. To put it another way, the force experienced by an atom when a Langevin
thermostat is employed is F Langevin

i [46]:

F Langevin
i = F i − γi

pi
mi

+ FR
i (t) (2.13)

where γi is the damping coefficient and FR
i (t) is the random force. FR

i (t) is a Gaussian
process with the following properties[46]:

〈FR
i (t)〉 = 0

〈FR
i (t)FR

i (t′)ᵀ〉 = 2γikBTmiδ(t− t′)
(2.14)

where kB is the Boltzmann constant, T is the target temperature, δ(t) is a Dirac delta
function, and 〈x〉 indicates the expectation value of x. The dispersion of the Gaussian is
chosen to be σi:

σ2
i = 2miγikBT

δt
. (2.15)

In this way, the Langevin thermostat approximates a heat bath by adding energy to the
particles according to a random distribution corresponding to the desired temperature, but
also removing velocity (and thus kinetic energy) through the damping term to ensure the
system does not become over-heated.

Similarly to how a thermostat can be used to hold the system at a desired temperature,
a barostat can be employed to apply a desired stress to the system. Examples of target
stresses include setting all stress components to zero (i.e. allowing the system to relax at
low pressure), or setting one component to some large value and the rest to zero, as might
be the case in a uniaxial tensile test. As with the thermostat, applying a barostat alters the
equations of motion to be integrated in MD. When a barostat is used in this dissertation, it
is that due to Parrinello and Rahman[47]. This barostat is a particularly useful extension
of the earlier formulation of Hoover et al.[48], which adds the capacity to set each stress
component independently.

The role of the barostat is to adjust the vectors that define the dimensions of the periodic
simulation cell (h) such that the target stress (σtarget) is reached. The positions of the atoms
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in the cell are then scaled to the new lattice vectors. This, of course, requires that one knows
the stress in the system at the current time (σactual). This is found using a virial theorem:

Ωσactual =
∑
i

pipi
mi

−
∑
i

∑
j>i

Fij
rij
rijrij (2.16)

where Ω is the volume of the cell (i.e. ||h||), Fij is the magnitude of the force acting between
atoms i and j (a formalism for extracting useful approximations for these from EAM and
MEAM type potentials exists for this purpose), rij is the vector connecting these atoms,
and rij its magnitude.
σtarget is converted to a symmetric form Σ:

Σ = h−1(σtarget −
Tr(σtarget)

3 )h−ᵀΩ (2.17)

And this is used to evolve the cell vectors:

W
d2h

dt2
= (σactual −

Tr(σactual)
3 )h−ᵀΩ− hΣ. (2.18)

Here, W is a relaxation time for the stress, and enters MD simulations as a parameter
chosen by the user. Anderson suggests[49] and Parrinello and Rahman reiterate[47] that a
good choice for W is on the order of the length of the cell divided by the speed of sound in
the system.

2.5 Nudged Elastic Band Method

A key technique in this work is the nudged elastic band (NEB) method[50]. NEB is a
method for computing energy barriers for transitions between local minima in phase space.
Often the energy barriers of interest are large, and thus the transition is unlikely to occur
within the timescale of an MD simulation. Thus, it must be forced to happen for the energy
barrier to be computed. This is done by constructing an “elastic band” consisting of N + 1
images Q0 through QN , each a replica of the entire atomistic system. Q0 and QN are the
endpoint images, and thus are the states of the system in the local minima of interest. The
images Q1 through QN−1 lie between them in phase space, in order. A common practice
is to use linear interpolation of the positions of all atoms to form the initial guess for the
intermediate images. In relaxing the system, all images simultaneously relax while each
image is considered to be attached to its neighbors by “springs”.

To accomplish this, first find the tangent (τ̂ ) in phase space at each image[51]:

τ i = Qi −Qi−1
|Qi −Qi−1|

+ Qi+1 −Qi

|Qi+1 −Qi|

τ̂ i = τ i
|τ i|

.
(2.19)

The component of the potential energy gradient in phase space (∇V ) that is perpendicular
to τ̂ is then calculated:

∇V (Qi)|⊥ = ∇V (Qi)−∇V (Qi) · τ̂i (2.20)
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and the force due to the springs (given spring constant k) also found:

F s
i |‖ = k((Qi+1 −Qi)− (Qi −Qi−1)) · τ̂i. (2.21)

Equations 2.20 and 2.21 are summed to yield the force added to each image FNEB
i :

FNEB
i = F s

i |‖ −∇V (Qi)|⊥. (2.22)

The situation then is akin to two valleys separated by mountains. The elastic band is
stretched over the mountain tops, and allowed to relax with the hope that it will locate the
lowest mountain pass that connects the valleys. The “altitude” of this pass is actually the
energy barrier to completing the transition between the two states of interest, which can be
used to estimate the transition rate. The performance of this method can be improved by
using what is known as the Climbing Image NEB (CI-NEB) method, in which the sign of
the second term in Equation 2.22 is replaced with:

FNEB
max = −∇V (Qmax) + 2∇V (Qmax) · τ̂max (2.23)

for the image with the maximum energy, to ensure that it finds the very top of the pass[52].
The CI-NEB method is implemented in LAMMPS, and can be added to VASP by in-

stalling the Transition State Tools package[51, 52].
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Chapter 3:

〈a〉-Type Screw Dislocation Core Struc-
tures at 0 K and 0 Applied Stress

This chapter includes work that has previously been published in Reference[53] with the
permission of co-authors.

3.1 Introduction

In hexagonal close packed (hcp) α-titanium alloys the glide of 〈a〉-type screw dislocations
with Burgers vector a 〈112̄0〉

3 on the {11̄00} (prismatic) planes plays a dominant role in plastic
deformation[16]. These screw dislocations are by far the most commonly observed defor-
mation mechanism in α-titanium alloys, and motion of these dislocations accounts for the
majority of plastic deformation at common operating temperatures and strain-rates. The key
role of dislocation core structure in controlling dislocation motion and dynamics[12] is well
known in bcc[6], fcc[7], and hcp[8–11] metals. However, the configuration of 〈a〉-type screw
dislocation cores in titanium (along with many other metal systems) is not fully understood
in part because the compact nature of the dislocation core has prevented a complete exper-
imental analysis. Therefore gaining a better understanding of these cores through atomistic
modeling is of significant value to predicting the mechanical properties of α-Ti and its alloys.

Dislocation core spreading and the resulting effects on slip were first introduced by
Peierls[13] and expanded on by Nabarro[14]. According to their model, for a given Burgers
vector, line direction, and material there is a plane in which the dislocation will have a mini-
mal barrier to slip. For a dislocation with edge character this plane will always be the plane
that contains both the Burgers vector and line direction, but for a pure screw dislocation
these directions are parallel and thus there are many possible glide planes.

The geometry of the hcp system and the relevant slip planes is illustrated in Figure 3.1.
An example 〈a〉-type screw dislocation would be aligned along the blue vector, and be able
to slip on any of the highlighted planes (as well as any others containing the Burgers vector,
in principle), as all three contain the Burgers vector/line direction of the screw dislocation.

As illustrated by Clouet et al.[10] in recently reported density-functional-theory (DFT)
based calculations, the difference in energies of screw dislocation cores spread on different
planes can be very small, and yet the differences still have significant implications for plastic-
ity in α-titanium. Clouet et al.’s calculations indicate that core spreading on the first-order
pyramidal ({11̄01}, referred to simply as pyramidal going forward) plane is the stable con-
figuration for 〈a〉-type screw dislocations in titanium. However, the barrier to cross slip onto
the prismatic plane (i.e. a change of dissociation plane) followed by slip on the prismatic
plane is lower than that for slip on the pyramidal plane. All of the energies involved are
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Figure 3.1: The hcp crystal system. Atom positions are red spheres, and the two 〈a〉-type lattice
vectors are shown with red and blue, while the c lattice vector is yellow. The red, blue, and green
planes are the prismatic {11̄00}, pyramidal {11̄01}, and basal (0001) planes. Three primitive cells
are shown to highlight the hexagonal structure.

quite small: Clouet et al. found these mechanisms to have energy barriers of 21.7 meV/b
and 33.4 meV/b respectively, where b indicates the magnitude of the Burgers vector, which
is approximately 2.93 Å for these dislocations. However, cross slip involves large dislocation
segments, magnifying these differences. Therefore this small difference is able to explain the
previous in-situ TEM observation of “jerky” slip in titanium[8]. Because the largest barrier
along the prismatic slip path is the change between core configurations it was proposed that
prismatically spread cores are “unlocked” and free to slip with little barrier, while pyrami-
dally spread cores are “locked” and must await activation into the prismatic configuration
before slipping. Clearly accurate predictions of slip behavior require sufficient precision to
both find the ground-state core configuration as well as the energetic difference between that
configuration and other nearby configurations.

Several authors have examined ground-state core configurations for 〈a〉-type screw dis-
locations in hcp titanium recently[10, 54–56]. While these studies all include DFT results,
they vary significantly in simulation cell configuration as well as calculation parameters. In
the DFT calculations of Clouet et al., periodic supercells were used and the results indicate
a stable pyramidal core configuration as well as a metastable prism configuration that is only
slightly higher in energy[10]. Ghazisaeidi and Trinkle performed both DFT and modified
embedded atom method (MEAM) classical potential calculations using a lattice Green func-
tion boundary condition approach, finding a mirrored (prismatic) core configuration that
was 12 meV/b lower in energy than an unmirrored (mixed prismatic/pyramidal) configura-
tion within the MEAM potential[54]. Due to the boundary conditions, they are not able to
compare core structure energies in DFT. Similarly, Rao et al.[57] found that the prismatic
dislocation core is the stable configuration in the MEAM potential within fixed boundary
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conditions. DFT calculations by Yu et al. employed periodic supercells to find a stable con-
figuration with an asymmetric prismatic core that appears to have a small component in the
pyramidal plane[58]. Tarrat et al. found six different core configurations in DFT calculations
by varying the initial position of the singularity of the dislocation when it is introduced into
their pseudo-hexagonal cluster simulation cell[56]; all six of these configurations were found
to have excess energies within approximately 22.6 meV/b of each other, and an asymmetric
core of mostly prismatic character was found to be the stable configuration.

In the modeling of dislocation cores by atomic-scale simulations the results can be affected
by convergence issues associated with the supercell size and geometry, numerical settings in
the DFT calculations, and the choice of interatomic potential model for classical simulations.
Considering first the size effects, if I assume from the outset that the calculations are model-
ing a straight dislocation (i.e. the periodic dimension of the supercell along the line direction
as short as possible), I might at least hope to model physically realizable dislocation den-
sities. In α-titanium alloys that have been cold worked 9%, one might observe dislocation
densities as high as 3×1014 m−2 (3×10−6 Å

−2
)[16]. Within the periodic boundary condition

approach at least two dislocations per supercell are required. A dislocation density of 3×1014

m−2 corresponds to ∼350000 atoms per supercell, well beyond the capacity of brute-force
DFT calculations. In addition to the quadrupolar configuration used in this work, there are
several approaches to first-principles dislocation modeling with the goal of eliminating - to
the largest extent possible - effects associated with the finite size of the supercells. These
include the approaches of Woodward and Rao[59] and Zhao and Lu[60], which in general
use a high-precision calculation technique near the dislocation core, assume little distortion
from a perfect lattice far from the core, and bridge these regions by an appropriate method.
In all cases checks are needed to ensure the final results are not affected by the details of the
simulation geometry and size. Additionally, these methods lead to difficulty in calculating
energy differences between different structures.

The second set of convergence issues arises in all DFT calculations. Parameters related
to the basis set and the sampling of electronic states, as well as the choice of exchange-
correlation potential can all influence significantly both calculation accuracy and cost. In
assessing convergence with respect to these various parameters, it is important to emphasize
that I am interested in results beyond simple energies and forces, such as the configuration
of atoms in the dislocation core region. More specifically I wish to know which of several
possible dislocation core configurations (and possibly their superpositions) is the ground-
state. Determining this configuration from the atom positions is not exact or straightforward,
and therefore stating whether a calculation has converged to a given structure is not easily
done. Considering these difficulties and the differences in cell configurations between the
various studies, it is not surprising that there has been disagreement between previously
published computational results.

Here I demonstrate the dependence of the calculated ground-state dislocation core struc-
ture on a number of parameters and suggest minimum settings for converged calculations by
DFT. In the present work I consider two arrangements (Figure 3.2) of periodic arrays of dis-
locations and demonstrate the high sensitivity of the final core structures to choice of valence
electronic states and k-point mesh density. Within each arrangement I also use two initial
positions of the dislocations, one between basal planes and the other within basal planes.
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(Meta)stable pyramidal and prismatic dislocation core structures exist within both the DFT
and MEAM potentials, and the relaxed structure resulting from my anisotropic elasticity
theory solution depends only on the initial dislocation positions. The pyramidal configu-
ration results when the dislocations are initialized between basal planes, and the prismatic
configuration results when the dislocations are initially within basal planes. In DFT I find
the ground-state core structure to be purely pyramidal. I find that it is necessary to include
the semi-core 3p electrons as valence states in order to converge the ground-state dislocation
core configuration in either arrangement, and in particular to correctly find the difference in
energy between this state and other metastable core configurations. It is demonstrated that
a k-point mesh of at least 1×1×15 is necessary to converge the dislocation core structure for
a supercell one Burgers vector deep. Use of higher k-point densities or inclusion of additional
semi-core electronic states as valence electrons results in the same core structure. I include
MEAM calculations to demonstrate the effects of supercell size, and these findings suggest
that my DFT calculations are performed with large enough supercells to avoid significant
finite-size effects associated with stress gradients near the dislocation core structures.

3.2 Methods

All DFT calculations were performed using the Vienna ab initio simulation package
(VASP)[35, 36]. The projector-augmented wave (PAW)[26, 61] method was used, and the
calculations were performed spin-averaged. Three PAW potentials for titanium were tested,
all of which are based on the Perdew-Burke-Ernzerhof (PBE)[25] form of the general gradient
approximation (GGA). The three functionals differ in which electrons are frozen in the core,
versus considered as part of the valence states. The standard functional (4s-valent) includes
4 valence electrons (3d24s2), the pv functional (3p-valent) includes 10 (3d24s23p6), and the
sv potential (3s-valent) includes 12 (3d24s23p63s2). Inclusion of more electrons improves
calculation accuracy, but significantly increases the computational cost. Brief convergence
testing (based on the requirement that the energy term due to entropy of the electron system
at the effective electronic temperature associated with the finite smearing be no larger than
0.001 eV/atom) led to the choice of second-order Methfessel-Paxton smearing [28] with a
broadening of 0.2 eV. After other parameters were converged, broadenings of 0.15 eV and
0.1 eV were tested and no changes to the dislocation core structure were found. The cutoff
energies for the plane wave basis were 400 eV, 600 eV and 700 eV for the 4s-valent, 3p-
valent, and 3s-valent potentials, respectively. These were compared to calculations with
cutoff energies of 600 eV, 700 eV and 800 eV, respectively and all other parameters set to
converged values. No substantial differences were found, indicating the first set of cutoffs
was sufficient for convergence. Electronic structure self consistency loops were terminated
at an energy tolerance of 10−6 eV, and ionic relaxation was terminated at a force tolerance
of 0.002 eV/ Å.

For all dislocation calculations I use periodic dislocation arrays arranged such that each
dislocation has four nearest neighbors, and every dislocation has the opposite sign of Burgers
vector from its neighbors. These arrangements are known as quadrupolar, and minimize the
elastic energy of a periodic dislocation array due to some cancellation of long-range stress
fields[62]. The line direction of all dislocations is [112̄0], and therefore the Burgers vectors
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Figure 3.2: Outlines of supercell configurations used for dislocation calculations. Arrows indicate
lattice vectors for a single supercell. (a) shows the O arrangement, which has dislocations of opposite
signs (positions indicated by dots, with Burgers vector sign corresponding to color) alternating on
the same basal and prism planes. (b) is the S arrangement, which has dislocations of only one sign
on a given basal or prism plane.

for the 〈a〉-type screw dislocations are ±a [112̄0]
3 . Dislocation supercells are oriented such that

[0001] is parallel to the x-axis, [11̄00] is parallel to the y-axis, and the line direction/Burgers
vector [112̄0] is parallel to the z-axis. Supercell lattice vectors are tilted to account for the
distortion from the dislocations as prescribed by Lehto and Öberg[63]. Initial displacements
were determined using the method of Daw[62], which yields good starting points that account
for elastic anisotropy while only requiring lattice parameters and elastic constants as inputs.

For DFT calculations of dislocations I use supercells in both the so-called O and S
arrangements (outlines of these supercells are shown in Figure 3.2 a and b) for dislocation
quadrupoles[9] with two dislocations per unit cell. It is useful to compare these configurations
because while both result in zero stress at the dislocation centers, the gradient in the stress is
quite large in small supercells. This gradient differs for different quadrupolar configurations,
and because the dislocation cores spread beyond their centers one might expect different
stress gradients to lead to different ground-state core configurations. DFT calculations were
performed on an O-arranged supercell with 12 periodic units along the x-axis, 4 along y-axis,
and 1 along the z-axis for a total of 192 atoms, as well as an S-arranged supercell with 8
periodic units along the x-axis, 8 along y-axis, and 1 along the z-axis for a total of 256
atoms. These arrangements were selected to maximize the separation of dislocations along
the prism plane without increasing the number of atoms past a reasonable number for DFT
calculations.

For calculations involving either quadrupolar arrangement I proceeded by taking the con-
figuration generated by linear anisotropic elasticity theory code and relaxing ionic positions
in VASP, starting with a low number of k-points and gradually increasing until no further
changes in the core configurations are observed. In this way k-point convergence proceeds
independently for each PAW potential considered. An issue that arises during this process
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is that convergence of the core configuration is not as clearly defined as typical convergence
criteria such as energy or force tolerances. There is, to my knowledge, no commonly recog-
nized order parameter by which a core structure can be characterized. Therefore the tasks
of classification and determination of convergence of core structures are performed manually.
Two calculations are performed to assist this task: Nye tensor analysis (via the method of
Hartley and Mishin[64]), and differential displacement maps (also know as “arrow plots”,
following Vitek[6]).

In the differential displacement map representation, the dislocation core is imaged as a set
of arrows pointing between neighboring columns of atoms. The length of each arrow depends
on the differential displacement between the columns, i.e. the change in the displacement
when a dislocation is introduced to the system. For this reason, one requires a reference
configuration (a perfect lattice of the similar geometry but containing no dislocations) to
generate the differential displacement map. Call the set of atomic positions in the reference
state rref and the positions after the dislocation has been introduced rdis. The length (l) of
the arrow connecting columns i to column j is:

l = ((rdisi − rdisj )− (rrefi − r
ref
j )) · b

∣∣∣(rdisi − rdisj )
∣∣∣

3 |b| (3.1)

where b is the Burgers vector and the last term in the scaling enforces that a loop of three
perfectly connected arrows (cycling uniformly) represent enclosure of the full Burgers content
of the dislocation. Any other path which sums to three arrows fully connecting columns also
encloses the full Burgers vector. The length of the arrows is a representation of the amount
of distortion created by the dislocation, and if long arrows are extended along a plane, this
indicates the dislocation is spread in that plane.

The Nye tensor is an alternative method for visualizing the distribution of Burgers vector
content. It is more detailed but also more involved to compute. The definition of the Nye
tensor α is:

α =
∫
A

(α · n)ds (3.2)

where A is the surface of a circuit that completely encloses the Burgers vector and n is
the normal to that surface[64]. Now consider sets of lattice vectors xref and xdis, and a
transformation G such that xdis = xref ·G. By definition for the perfect reference system on
any path Cref , one knows

∫
Cref dxref = 0. By the Burgers construction then,

∫
Cdis dxdis =

−b. Combining this with the definition of G:

b = −
∫
Cref

dxref ·G. (3.3)

Then by Stokes’ theorem:
b = −

∫
A

((∇×G) · n)ds. (3.4)

Finally, combining Equations 3.2 and 3.4 yields the expression used to calculate α[64]:

α = −(∇×G). (3.5)

Thus, calculation of the Nye tensor requires computing the lattice correspondence tensor
that connects the reference and dislocation atomic configurations, and taking its curl. In
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a 3-dimensional simulation, the Nye tensor has 9 components. For the purposes of this
dissertation which focuses on screw dislocations, only the screw component is visualized.
This is the diagonal entry corresponding to line the direction of dislocation. The Nye tensor
is typically visualized as a density plot. This makes it convenient to overlay the Nye tensor
and differential displacement map representations of the dislocation core structure.

Classical potential calculations were performed using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS)[42]. The modified embedded atom method[41]
(MEAM) potential of Hennig et al.[65] for titanium was used. This potential is advantageous
in that it reproduces the elastic constants of α-Ti well and was fit to a number of defect
energies for this structure. However, the potential was not fit to properties specific to
dislocations. This leads to some discrepancies between DFT and MEAM results, as discussed
below. Despite these differences the significantly reduced computational cost of MEAM
relative to DFT allows us to use much larger supercells and thereby examine finite-size
effects in my calculations. For MEAM calculations of dislocations I again used both O- and
S-arranged supercells, and varied the size of both arrangements from the size used for DFT
calculations up to supercells with over 1000 atoms. Relaxations were performed at zero
temperature and terminated when the norm of the forces on all atoms is less than 1 µeV/ Å.

3.3 Generalized Stacking Fault Energy Calculations

A useful preliminary to dislocation core structure calculations is to calculate the General-
ized Stacking Fault (GSF) energy surface[66] for the system of interest. In GSF calculations
a continuum of possible stacking faults on a selected plane are considered, and an energy
surface representing these is formed. This energy surface can provide an idea of what the
dislocation behavior will be, because a stacking fault is analogous to a dislocation core of
infinite width spread on the plane of the fault. Planes that have low-energy paths across the
GSF surface in the direction of a Burgers vector of interest will accommodate slip of disloca-
tions with that Burgers vector more easily than those where all paths are high-energy. Also,
accessible local minima in the GSF surface may indicate possible dislocation dissociation
configurations.

I performed GSF calculations for pure titanium first within the MEAM potential. Three
planes were of interest, because they represent the lowest-index planes along which 〈a〉-type
screw dislocations can slip. These were the prismatic, pyramidal, and basal planes. In the
case of the prismatic and pyramidal planes, there are two variants of each plane – one with
narrow spacing (referred to as “dense”), and one with wide spacing (referred to as “loose”).
This is a consequence of the two-atom basis in hcp. GSF calculations for both dense and
loose prismatic and pyramidal planes were carried out to determine which is preferred for
dislocation slip. The results for the prismatic planes are shown in Figure 3.3, pyramidal in
Figure 3.4, and basal in Figure 3.5. Fortunately, these planes have short periodic lengths. In
the plane of interest only one unit vector in each direction is required. Perpendicular to this
plane I used enough layers to make the system roughly 30 Å tall, then added a vacuum gap
of 15 Å to avoid creating a second stacking fault layer in the supercell. The system is able
to relax into this gap along the vertical direction to accommodate the stacking fault layer.

These GSF calculations yield a few interesting observations. The most significant are
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Figure 3.3: Stacking fault energy surfaces calculated from MEAM on the loose and dense prismatic
planes.

Figure 3.4: Stacking fault energy surfaces calculated from MEAM on the loose and dense pyramidal
planes.



26

Figure 3.5: Stacking fault energy surfaces calculated from MEAM on the basal plane.

that slip appears simplest on the loose prismatic plane, where slipping directly along the
Burgers vector direction (i.e. the x-axis on the plot) requires overcoming a barrier of only
17 meV/ Å2. The dense prismatic plane appears totally unfavorable, with no low-energy
paths or local minima. More curious is the pyramidal plane. The dense pyramidal plane has
regions of much higher energy than the loose variant, as one would expect. However, the path
along the Burgers vector direction is relatively unobstructed, with a minimum barrier of 25
meV/ Å2 at a position halfway along the Burgers vector direction and slightly displaced along
the [1̄102] direction. While overall the energies on the loose variant are lower, its minimum
barrier for slip is 49 meV/ Å2. The basal plane displays a local minimum midway along the
Burgers vector direction, and a minimum slip barrier of only 13 meV/ Å2 if a rather indirect
path across the surface is taken. This is surprising, as basal core spreading is not observed
experimentally in pure titanium. It is likely that this barrier is underestimated within the
MEAM potential.

Next, I undertook to repeat portions of the above calculations within DFT. Because
DFT calculations are significantly more computationally intensive than MEAM, I was more
selective about which calculations were performed. I eliminated the dense prismatic plane
and the loose pyramidal plane completely, as the other variants of these were much lower
in energy in the MEAM calculations. For the loose prismatic plane and dense pyramidal
plane, only sections of the GSF surface were calculated. Regions away from the x-axis were
ignored as they were found to be much higher in energy, and only the left half of the surface
was calculated due to the symmetry of the GSF surfaces. Results for the loose prismatic is
shown in Figure 3.6, dense pyramidal in Figure 3.7, and basal in Figure 3.8.

The DFT results largely – but not completely – agree with those from MEAM. On the
loose prism plane the minimum barrier is 15 meV/ Å2 halfway along the [112̄0] axis. On the
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Figure 3.6: Stacking fault energy surfaces calculated from DFT on the loose and dense prismatic
planes.

Figure 3.7: Stacking fault energy surfaces calculated from DFT on the loose and dense pyramidal
planes.
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Figure 3.8: Stacking fault energy surfaces calculated from DFT on the basal plane.

dense pyramidal plane the minimum barrier is 23 meV/ Å2, and again it occurs at a position
with a small displacement in the [1̄102] direction. The most significant difference from the
MEAM results is that the barrier to the dissociation on the basal plane is 26 meV/ Å2, twice
as high as in MEAM. This agrees with the previous speculation that the MEAM is in error
in this case. However, the good agreement for the two more relevant planes is encouraging
for using the MEAM potential in place of DFT for calculations that are not feasible in DFT.

3.4 Core Structure Calculations

3.4.1 DFT

Relaxation of the 192 atom O-arranged supercell with dislocations placed between basal
planes within the 4s-valent potential and a 1× 1× 4 k-point grid results in a clearly prism-
oriented dislocation core structure that is spread approximately 4 c-vectors in width, with
minimal spread in the perpendicular (basal) direction (approximately 1 a-vector). A differ-
ential displacement map and the screw component of the Nye tensor for a dislocation core
relaxed with these settings is shown in Figure 3.9a. The width of spreading is determined
from the differential displacement map construction, using a cutoff of a b

6 displacement of
neighboring columns of atoms. When the k-point mesh in increased gradually to a 1×2×19
mesh the width along the prism plane is reduced to 3.5 c-vectors and the width in the basal
plane increased to 1.5 a-vectors (Figure 3.9c). While the structure remains mostly prismatic
in nature, its symmetry is reduced such that it is apparent that it has gained a pyramidal
component to the spreading of the core. Most of this change in core structure is captured
by a 1 × 1 × 9 k-point mesh (Figure 3.9b), but plotting displacement magnitudes between
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relaxation with this mesh and with the 1× 2× 19 mesh shows that there are still some small
differences in dislocation core structure that require the higher k-point density to capture.
Different core structures are separated by only tenths of Angstroms in terms of atomic coor-
dinates, and rearrangements on the scale of hundredths of Angstroms within a core structure
are important to capture if I wish to directly compare the energies of different structures.

Use of the 3p-valent potential and a 1 × 1 × 4 k-point mesh results in almost the same
prismatic core structure as for the same mesh and 4s-valent potential. However, use of
higher k-point density in the 3p-potential leads to much more significant changes in the core
structure. With a 1× 1× 9 k-point mesh I find a core structure that is almost equally split
between prismatic and pyramidal spreading (based on the differential displacement map)
where the right-hand side of the structure appears to be spread on one plane and the left-
hand the other. Increasing the k-point density to 1×1×15 I find a pyramidal structure with
only small tails that extend along the prism plane. Further increase of the k-point density
to 1 × 2 × 25 leads to only very small (thousandths of Å) changes in atom positions and I
obtain essentially the same dislocation core structure. Figure 3.9d-f shows the progression
of relaxed core structures with increasing k-point mesh density when the 3p-valent potential
is used.

I find that use of the 3s-valent potential results in the same pyramidal configuration
observed with a k-point density that is well converged for the 3p-valent potential. In the
3s-potential all k-point meshes used result in this pyramidal core structure. Comparing
relaxation with various k-point meshes in the 3s-valent potential to relaxation with the
1 × 2 × 25 mesh in the 3p potential, displacement magnitudes are larger for lower k-point
densities and uniformly reduce as k-point density is increased. The atomic positions in the
configuration computed with the highest k-point density used in conjunction with the 3s
valent potential (1 × 2 × 15) differ from the converged result of the 3p valent potential by
less than one hundredth of an Angstrom. Therefore I find that the 3p valent potential is
sufficient to determine the ground-state dislocation core structure, and the inclusion of 3s
semicore states in the valence has minimal effect.

With this pyramidal core configuration stabilized, it is possible to calculate the energy
associated with this structure at different parameter settings either with the atomic positions
held fixed or permitted to relax. In both the 4s-valent and 3p-valent potentials with 1 ×
1 × 4 k-point mesh, this pyramidal configuration is significantly higher in energy than the
prism structure presented, and is unstable when atomic positions are relaxed. For higher-
density k-point meshes this pyramidal structure is actually lower in energy than the prism
configurations that resulted from the initial relaxation, but the energy differences between
the structures are significantly different from those found under converged conditions. For
example, use of the 4s-valent potential in conjunction with a 1 × 1 × 15 or a 1 × 2 × 19
k-point mesh results in an energy difference between pyramidal and prismatic structures
roughly double that found under converged conditions. On the other hand, use of lower-
density k-point meshes within the 3p-valent potential results in an underestimate of the
energy difference between core structures. These energy differences are summarized in Table
3.1.

Returning to the settings sufficient to find the converged pyramidal core structure (3p-
valent potential and 1 × 1 × 15 k-point mesh), I can stabilize a prismatic dislocation core
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Figure 3.9: Relaxed dislocation core structures calculated with different DFT parameters. Dots
represent columns of atoms, arrows are from the differential displacement map construction[6] and
coloring between atoms represents the screw component of the Nye tensor. a-c result from the
4s-valent potential, d-f from the 3p-valent potential. a and d used a 1× 1× 4 k-point mesh density,
b and e 1 × 1 × 9, c and f 1 × 2 × 19. The core structures in a-d are purely prismatic, e is mixed
pyramidal and prismatic, and f is entirely pyramidal.
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Table 3.1: Difference in energy between prismatic and pyramidal dislocation core structures
(i.e. Eprismatic − Epyramidal) for calculations using different semicore states and k-point mesh
densities. * indicates that pyramidal core structure was unstable, and the energy for the pyramidal
core corresponds to a calculation on the converged-settings atomic positions under the indicated
parameter settings.

Potential Valence k-Point Mesh Eprismatic − Epyramidal per b [meV]

4s 1× 1× 4 -118.3*

4s 1× 1× 9 29.2

4s 1× 1× 15 32.5

4s 1× 2× 19 33.7

3p 1× 1× 4 -89.7*

3p 1× 1× 9 11.4

3p 1× 1× 15 18.4

3p 1× 2× 19 18.4

structure by relaxing from a configuration where the initial position of the dislocation line is
in a basal plane rather than between basal planes (as used in the above). This prismatic core
structure was found to be 18.4 meV/b higher in energy than the pyramidal core structure,
in good agreement with the results of Clouet et al.[9]. This prismatic core structure is not
equivalent to that which is found to relax from the inter-basal initial site when insufficient
k-point density is used. The prism core resulting from insufficient convergence is more
extended on the prism plane, and is unstable at higher k-point densities. This new structure
that results from the alternative dislocation placement is metastable under fully converged
conditions. Further, I find that a mixed prismatic/pyramidal core structure is also metastable
with these same parameter settings, if relaxation is initiated from a mixed configuration. This
mixed configuration is 12.6 meV/b higher in energy than the pyramidal configuration.

Use of the 3p-valent potential and 1× 1× 4 k-point mesh in conjunction with the tradi-
tional 256 atom S-arranged supercell with dislocations placed initially between basal planes
leads to the same result as for the O configuration: the core structure is extended along the
prism plane with no pyramidal component. Also in agreement with the results from the O
arrangement, I find a similar mixed prismatic/pyramidal core structure when a 1 × 1 × 9
mesh is used. However the results of the two configurations begin to differ at this point. For
higher k-point mesh densities the core configuration in the S arrangement does not become
fully pyramidal, but instead remains in the mixed state described above. Increased k-point
mesh density up to 2 × 2 × 15 yields similar results, as does use of the 3s-valent potential.
This core structure is shown in Figure 3.10b. As in the O arrangement no changes are found
for meshes denser than the k-point mesh of 1× 1× 15.
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Figure 3.10: DFT calculated core structures in S-type 256-atom supercell: (a) stable pyramidal
core structure, (b) metastable mixed core structure, and (c) metastable prism core structure.

As with the O-arranged supercell I also placed the dislocations initially within basal
planes and thereby stabilized prismatic dislocation cores (Figure 3.10c). In this configuration
this core structure is 10.2 meV/b higher in energy than the mixed core.

One complicating factor in the S arrangement is that the elastic energy of the system
can be lowered by moving the dislocations on the prism plane, but without resulting in
dislocation annihilation because the dislocations are immobile on the basal plane. This
results in a dipolar arrangement. I placed dislocations initially in this arrangement (in
which dislocations of opposite sign lie in the same basal plane) in the inter-basal site and
allowed them to relax. The result was a pyramidal core structure (Figure 3.10a) which is
lower in energy than the mixed structure by 10.7 meV/b after accounting for the change in
elastic energy due to the displacement of the dislocations following the method of Daw[62].
The basal site is not possible in this arrangement and therefore was not also tested.
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The relative energies of the three dislocation core structures in the two arrangements are
summarized in Table 3.2. The stable pyramid configuration is taken as reference in each
configuration. The energy differences between the various core structures show only a weak
dependence on the arrangement used.

Table 3.2: List of the 6 core structures stabilized in DFT and energy found for each. The energy
is taken relative to the pyramidal structure for each configuration, which in both cases is the stable
core structure.

Arrangement Number of Atoms Core Structure
Relative

Energy per
b [meV]

O 192 Pyramidal -

O 192 Mixed 12.6

O 192 Prismatic 18.4

S 256 Pyramidal -

S 256 Mixed 10.7

S 256 Prismatic 20.9

3.4.2 MEAM

The goal in undertaking MEAM calculations on these dislocation cores is to determine
to what degree the predictions of the potential agree with DFT calculations, and to gain
some insight into supercell size and configuration effects. To this end I performed relaxations
of quadrupolar dislocation configurations in both the O and S arrangements, and in each
arrangement used multiple supercell sizes ranging from the corresponding size in the DFT
simulations to over 1000 atoms. Four sizes of the O arrangement were used, and three sizes
of the S arrangement. For each arrangement and size I utilized two initial positions of the
dislocations, thus there were 14 configurations in total. The configurations as well as the
resulting structures and energies are summarized in Table 3.3.

As in the DFT calculations, placing the dislocations initially between basal planes results
in a pyramidal core structure, while placing the dislocations within basal planes results in
a prismatic core structure. Thus the MEAM potential also finds the two structures to be
metastable, as previously demonstrated by Ghazisaeidi and Trinkle[54]. My further findings
also agree with those previously obtained using the same potential, in that the predicted
core structure is predominantly prismatic. I find this to be the case at any supercell size
and configuration except the smallest O-arranged supercell. For this outlier I find that there
is overlap of Nye tensor distributions between neighboring dislocation cores after relaxation
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Table 3.3: List of the 14 quadrupolar configurations used with MEAM and the resulting core
structure and energy found for each configuration. The energy is taken relative to the prism
structure for each configuration. The only pyramid configuration for which this energy is negative
is the smallest (192 atom) O-arranged supercell.

Arrangement Number of
Atoms

Core
Positions

Core
Structure

Relative Energy
per b [meV]

O 192 Inter-basal Pyramidal -1.0

O 192 Basal Prismatic -

O 768 Inter-basal Pyramidal 5.3

O 768 Basal Prismatic -

O 1728 Inter-basal Pyramidal 7.8

O 1728 Basal Prismatic -

O 3072 Inter-basal Pyramidal 9.1

O 3072 Basal Prismatic -

S 256 Inter-basal Pyramidal 12.2

S 256 Basal Prismatic -

S 576 Inter-basal Pyramidal 7.3

S 576 Basal Prismatic -

S 1024 Inter-basal Pyramidal 8.7

S 1024 Basal Prismatic -

in the MEAM potential, which was not the case in DFT. This overlap is likely the cause
of the stability inversion. This core overlap does not exist in any of the larger supercells.
My largest calculations indicate that the prismatic core is stable, and is lower in energy
than the pyramidal core by 9 meV/b in this MEAM potential. This is similar to the 12
meV/b reported by Ghazisaeidi and Trinkle[54] from calculations using lattice Green function
boundary conditions, as well as the 4 meV/b reported by Rao et al.[57] within fixed boundary
conditions.

3.5 Conclusions

I find that for sufficiently converged DFT calculations at feasible supercell sizes, the
lowest-energy core structure of 〈a〉-type screw dislocations in hcp titanium is predicted to
be spread on the first-order pyramidal plane. The DFT results are found to be sensitive to
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the nature of the frozen core approximation and k-point sampling: inclusion of 3p semi-core
states in the valence and at least 15 (k-points times Burgers vectors) along the dislocation
line direction are required to obtain converged results for the core structure. I find that
for underconverged calculations (particularly for insufficient k-point meshes) a prismatic or
mixed dislocation core structure is predicted to be lowest energy. For the 4s-valent potential
the energy difference between core structures is overestimated, but it would also appear
that the metastability of the prismatic core structure is enhanced since no combination of
settings was sufficient to find the pyramidal configuration without starting the calculation
in this configuration. This may explain some of the disagreement between published results,
though it is likely that use of non-quadrupolar supercells may lead to different conclusions
within calculations that are otherwise well-converged with respect to DFT parameters.

The lack of perfect agreement between calculations using different supercell configura-
tions indicates that stress gradient effects are significant at these supercell sizes. Because
dislocation cores have finite size, part of the core is subject to non-zero stresses even in a
perfect quadrupole and these stresses influence relaxed atom positions. No known periodic
supercell results in zero stress and zero stress gradient at the dislocation core and therefore
these effects are always present to some degree. While increasing supercell size will decrease
the stress gradient, this decrease is slow (the stress field around a dislocation falls off as
1/r, and its gradient as 1/r2) and increasing the size a significant amount is not currently
feasible within pure DFT calculations. Therefore it is important to note when examining
or comparing dislocation core calculations that supercell configuration and resulting stress
gradient plays a role in the calculated core structure.

Comparison to MEAM calculations suggests that my supercells for DFT calculations are
large enough to avoid the most serious small supercell size effect, dislocation core overlap.
However, this does not allow us to say for certain that the proximity of dislocations does
not have any influence on the core structure. The elastic strain field around a dislocation
decays algebraically, and therefore the interaction between neighboring dislocations is never
completely eliminated. This applies in real materials as well as simulations, but the dislo-
cation density in my DFT simulations is approximately three orders of magnitude higher
than in even the most heavily cold-worked titanium. One solution to this issue is to use the
Green’s function boundary conditions introduced by Rao et al.[67], as done by Ghazisaeidi
and Trinkle[54]. A recently developed method that couples DFT and EAM by matching
electron densities between the two in a transition region[68] provides an electronic structure
focused alternative. It has been demonstrated that by modeling the region around the dis-
location core with DFT and allowing the long-range stress field to be relaxed in a classical
potential, one can treat lower dislocation densities without significantly increasing the com-
putational cost[60]. However, convergence with any of these methods still depends on the
size of the DFT region and calculation of total energy is not available within these methods.

The second conclusion from the comparison between MEAM and DFT is that even for
very similarly configured supercells the ground-state dislocation core structures do not agree.
This is unfortunate because larger supercell sizes and finite temperature molecular dynamics
simulations are much more accessible within MEAM. While the same dislocation core struc-
tures are possible within the potential of Hennig et al.[65], the prediction of Clouet et al.
that locking unlocking mechanism in titanium is related to the dislocation core structure[10]
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relies on the pyramidal core structure being the ground-state rather than simply a possible
configuration.

Finally, it is important to note that all of these calculations are performed for perfectly
straight dislocations. In my calculations the thickness of the supercell along the dislocation
line is the magnitude of only one a-vector. This imposes the constraint that the disloca-
tion does not bend and that there cannot be any variation of the core structure along the
dislocation line. These conditions are necessary to complete these calculations with present
resources, and it is reasonable to believe that the ground-state core structure is one that
does not have any variation along the line direction. I can confirm that this is the case for
dislocations in the MEAM potential for lengths up to 96 Burgers vectors. In the more real-
istic and useful scenario of finite temperature and applied stress causing dislocation motion,
it is well known that dislocations bow at pinning sites. This is necessarily accommodated
by deviation from the straight dislocation configuration used here and the nature of this
deviation is likely significant to the dislocation motion and related material properties.

In summary for this chapter, I have four main findings:

1. Within DFT calculations using periodic quadrupolar supercells the calculated lowest-
energy dislocation core structure of the 〈a〉-type screw dislocation in α-titanium is
spread on the first-order pyramidal plane.

2. I find that it is necessary to include the semi-core 3p electrons as valence states in the
DFT calculations, in order to converge the ground-state dislocation core configuration
in either arrangement, and in particular to find the pyramidal component of the core
structure.

3. It is demonstrated that a k-point mesh with at least 15 points along the Burgers
vector direction is necessary to converge the dislocation core structure for a supercell
one Burgers vector deep.

4. With the MEAM potential considered in this work, I find the ground-state core config-
uration to be spread predominantly on the prismatic plane, in contrast with the DFT
results.
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Chapter 4:

Non-Schmid Effects on 〈a〉-Type Screw
Dislocation Core Structures

4.1 Introduction

Titanium alloys are known to exhibit a deviation from the Schmid law for dislocation
slip[69–74]. In hcp α-titanium alloys the glide of 〈a〉-type screw dislocations with Burgers vec-
tor a 〈112̄0〉

3 on the {11̄00} (prismatic) planes plays an important role in plastic deformation[16].
Experimental observations indicate there is a tension-compression asymmetry in the critical
resolved shear stress (CRSS) for these dislocations[72, 73], and more generally a substantial
loading orientation dependence of the CRSS[70, 71], particularly at lower temperatures. In
these studies it was suggested that the non-Schmid law behavior may arise from a change
in the core structure of the dislocations. The important role of dislocation core structure in
controlling tension-compression asymmetry is well known in bcc metals[6], but the effect of
applied stress on the configuration of a-type screw dislocation cores in hcp titanium has not
been thoroughly investigated.

Under zero applied stress, the difference in energy between dislocation core structures
can be very small and yet still have significant implications for plasticity in α-titanium, as
discussed in Chapter 3. First-principles calculations indicate core spreading on the {11̄01}
first-order pyramidal plane is the energetically most stable configuration[10, 53], but that the
barrier to cross slip into the {11̄00} prismatic plane followed by slip on the prismatic plane is
lower than that for slip on the pyramidal plane[10]. Here I show that stresses with zero RSS
can have significant effects on the core structure of 〈a〉-type screw dislocations in titanium
and thereby influence the energy barrier for slip. In particular, I find for certain directions of
applied stress that compression (tension) enhances the pyramidal (prismatic) character of the
dislocation core. The nudged elastic band method is used to calculate barrier energies and
transition paths for dislocation slip. This allows me to determine how non-Schmid effects
can influence dislocation mobility by changing the dislocation core structure. My results
suggest that the tension-compression asymmetry may be attributable to these effects.

4.2 Methods

The setup and necessary calculation parameters for convergence of dislocation core struc-
ture calculations were discussed in Chapter 3 and published in Reference [53]. The following
sections summarize those findings and the methods used in the present study.



38

4.2.1 Density Functional Theory

All DFT calculations were performed using the Vienna ab initio simulation package
(VASP)[35, 36]. The projector-augmented wave (PAW)[26, 61] method was used, and the
calculations were performed spin-averaged. Use was made of the Perdew-Burke-Ernzerhof
(PBE)[25] form of the general gradient approximation (GGA), and the PAW potential em-
ployed in the calculations included the 3d24s23p6 electrons as valence states. The second-
order Methfessel-Paxton smearing scheme[28] was used in the Brillouin-zone integrations
with a width of 0.2 eV. The cutoff energy for the plane wave basis was 600 eV for dislocation
core calculations. A Γ-centered k-point mesh with 15 points along the Burgers vector was
used for all calculations. These calculation parameters are based on the convergence tests
described in Chapter 3.

4.2.2 〈a〉-type Screw Dislocations

For all dislocation calculations I use periodic dislocation arrays arranged such that each
dislocation has four nearest neighbors, and every dislocation has the opposite sign of Burgers
vector from its neighbors. These arrangements are known as quadrupolar, and minimize the
energy of a periodic dislocation array due to cancellation of long-range stress fields[62]. The
line direction of all dislocations is [112̄0], and therefore the Burgers vectors for the 〈a〉-type
screw dislocations are ±a [112̄0]

3 . Dislocation supercells are oriented such that [0001] is parallel
to the x-axis, [11̄00] is parallel to the y-axis, and the line direction/Burgers vector [112̄0] is
parallel to the z-axis. Supercell lattice vectors are tilted to account for the distortion from the
dislocations as prescribed by Lehto and Öberg[63]. Initial displacements were determined
using the method of Daw[62], which yields good starting points that account for elastic
anisotropy while only requiring lattice parameters and elastic constants as inputs.

For DFT calculations of dislocations I use cells with 12 periodic units along the x-axis,
4 along y-axis, and 1 along the z-axis for a total of 192 atoms. The O arrangement for
dislocation quadrupoles[9] was used with two dislocations per supercell. This arrangement
was selected to maximize the separation of dislocations along the prism plane while keeping
the total number of atoms in the supercell at a level that was reasonable for performing
well-converged DFT calculations.

4.2.3 Nudged Elastic Band Method

Energy barriers for dislocation slip were calculated via the nudged elastic band (NEB)
method[50]. We employed the implementation of this approach within VASP available
through the Transition State Tools package[52, 51]. For prism slip the endpoints are taken
to be the relaxed configuration of the dislocation and the same configuration translated by a
[0001] lattice vector. Linear interpolation is used to create the initial configuration for each
image, and there were 3 intermediate images. In the structural relaxations use was made of
a tolerance for convergence corresponding to a maximum force component on any atom of 2
meV/ Å.
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4.3 Results

4.3.1 Core Structure Under Applied Stress

I began by applying a series of strains to the supercells containing dislocation quadrupoles.
These applied strains were chosen to induce tensile and compressive stresses of ±{1,2,3} GPa
along each of the [0001], [11̄00], and [112̄0] axes (x, y, and z in the supercell) in turn. Second-
and third-order elastic constants[75] of pure, undeformed hcp titanium were used to compute
the required homogeneous strains due to the large stresses targeted. The supercells were
relaxed in DFT, and the resulting core structures visualized using differential displacement
maps[6] as well as the screw component of the Nye tensor (αscrew)[64]. One relaxed core
for each applied stress on the x- and y-axes is shown in Figure 4.1. Stresses applied on the
z-axis were not found to induce any change in dislocation core structure.

Under zero stress the ground-state core is spread along a {11̄01} pyramidal plane, as
discussed in Chapter 3. Under all applied stresses considered, the principal direction of
dislocation core spread remains along this same axis. However, the degree of spreading
of the dislocation core along the [0001] axis varies significantly with applied stress. With
positive (tensile) stress applied along the x-axis, the core constricts noticeably and is spread
nearly exclusively on a pyramidal plane. With negative (compressive) stress on the x-axis,
the pyramidal component remains but significant spread is also added from the ends of
the pyramidal section, extending in the [0001] direction. This creates a core that has both
pyramidal and prism components. This trend is reversed for stress applied along the y-axis,
as one would expect from the Poisson effect. In fact, the change in core structure is larger
for the same magnitude of stress when it is applied along the y-axis.

The larger change in core structure when stress is applied on the y-axis is more apparent
in the Nye tensor distribution than in the arrow plot. To more clearly illustrate the difference,
Figure 4.2 plots the difference in Nye tensor screw components between the highest tensile
stress on the y-axis and highest compressive stress on the x-axis. This shows that the
core under tension on the y-axis has considerably more of its Burgers vector content in the
periphery of the core rather than in the center. While the total area over which the two
cores are spread is similar, the core is more evenly distributed with tension along the y-axis.
As will be shown in the next section, it is much easier for the dislocation to glide under
tension on the y-axis than under no applied non-Schmid stress, and this is likely related to
this increase in ground-state spreading.

4.3.2 Dislocation Mobility Under Applied Stress

The energy barriers to dislocation slip on the prismatic plane under each of the stresses
on the x- and y-axes discussed above were calculated using the NEB method with 5 images.
Plots of energy vs. reaction coordinate are shown for three example NEB calculations in
Figure 4.3. A summary of these results is shown in Figure 4.4. While stress applied on the
x-axis had a marked effect on the core structure as represented by the Vitek arrow plots,
the change in the barrier to slip on the prismatic plane across the stress range is relatively
small. On the other hand, the change in energy barrier when stress is applied on the y-axis
is considerable. Under 3 GPa tension along the y-axis, the barrier of 8.5 meV/b is less than



40

Figure 4.1: Relaxed 〈a〉-type screw dislocation cores structures for a series of stresses on the x [0001]
(left) and y [11̄00] (right) axes of the supercell. The color distribution is the screw component of
the Nye tensor, the arrows are Vitek arrows, and points represent positions of columns of atoms in
the reference state without dislocation (blue) and with the dislocation (red).

one third of the 30.6 meV/b barrier under zero stress, while the barrier rises to 41.1 meV/b
under 3 GPa of compression along the same axis.
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Figure 4.2: Difference in Nye tensor screw components between +3 GPa on y-axis and -3 GPa on
x-axis (i.e. αy+3

screw−αx−3
screw). Vitek arrows are shown for the core with -3 GPa stress applied on the

x-axis to assist in locating the dislocation core center.

Figure 4.3: Energy vs. reaction coordinate for NEB calculations of 〈a〉-type screw dislocation slip
on the {11̄00} prismatic plane under three applied stresses on the y-axes.

4.4 MEAM Calculations

In Chapter 3 the ground-state configuration of 〈a〉-type screw dislocations in the MEAM
potential was calculated, and was found to be prismatic. While this is not in agreement
with my DFT calculations, it is interesting to test if the response of the MEAM potential to
non-Schmid stresses parallels that in DFT. Accordingly, calculation of the ground state core
structure in the same range of applied stresses on the [11̄00] axis as for the DFT potential (up
to 3 GPa in tension and compression) was performed. The results are plotted and contrasted
with DFT results in Figure 4.5.
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Figure 4.4: Energy barrier to 〈a〉-type screw dislocation slip on the {11̄00} prismatic plane under
applied stress on the x- and y-axes.

Interestingly, the effects of non-Schmid stresses on the ground state core structure are
larger for the MEAM potential than for the DFT. Under tension the core becomes very
extended along the prism plane with no significant components on other planes. Under
compression, on the other hand, the core structure comes to resemble the DFT core quite
closely, falling somewhere between the no stress and 3 GPa compression ground state core
structures calculated by DFT. Using the NEB method to measure the barrier to prism slip
under applied stress on the [11̄00] axis, I find it is 2.0 meV/b under 1 GPa tension, 7.3 meV/b
under no stress, and 14.5 meV/b under 1 GPa compression. This shows a strong trend that
follows the same pattern as my DFT calculations. More discussion of the effects of stress on
dislocation cores in the MEAM potential will be discussed in the next chapter.

4.5 Discussion

Clouet et al. argued that prismatic slip of 〈a〉-type screw dislocations in titanium is
accomplished via a rearrangement of the dislocation core from its ground state pyramidal
structure to a prismatic structure[10]. My findings here are consistent with this analysis
both under no applied stress and at all applied stresses considered. In each NEB calculation
I find the endpoints have pyramidally-configured dislocation cores, while the center image
has chiefly prismatic core structure. An example of a transition core structure is shown in
Figure 4.6(a), and the difference in Nye tensor screw components between the relaxed and
transition core in Figure 4.6(b). It is in fact the rearrangement between these core structures
that accounts for the majority of the energy barrier for slip. Under no applied stress, for
example, the energy difference between the pyramidal and prismatic states is 18.4 meV/b[53],
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Figure 4.5: Relaxed 〈a〉-type screw dislocation cores structures in DFT (left) and MEAM (right)
for a series of stresses on the and [11̄00] axes of the supercells. The arrows are Vitek arrows, and
points represent positions of columns of atoms.

which accounts for most of the 30.6 meV/b barrier to slip calculated here.
This rearrangement provides the link between the applied stress and the slip barrier.

Tension along the y-axis [11̄00] promotes a core structure that is more extended along the
prismatic plane and correlates with a reduction in the energy required to convert the core
into one that can slip easily along the prismatic plane. Conversely, compression on this
axis promotes a more compact pyramidal core structure that provides greater resistance to
prismatic reconfiguration and slip.

Consider an experimental tension or compression test on a single-crystal hcp-Ti specimen
oriented to favor prismatic slip, i.e., with the maximum resolved shear stress on the prismatic
plane. In this geometry the axis for uniaxial tension or compression is the midway between
the [11̄00] and [112̄0] directions in the hcp structure. Tension (compression) along this axis
leads an tensile (compressive) component of the stress along the [11̄00] and [112̄0] directions.
As described previously, there is a negligible effect on the energy barrier for slip resulting
from of tension or compression on the [112̄0] axis. Therefore only the component of this stress
resolved on the [11̄00] axis is relevant to core structure rearrangement. My prediction based
on the non-Schmid effects on core structure is that uniaxial compression in this direction
leads to a larger change in the energy barrier for slip than tension, which matches with
experimental observations on high-purity titanium samples where compression far from the
[0001] direction leads to the greatest suppression of dislocation slip, and tension along the
same axis leads to the lowest yield strength[73]. The same study found that the tensile
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Figure 4.6: (a) Transition-state dislocation core structure for prismatic slip under 2 GPa of com-
pressive stress on the y [11̄00] axis. (b) Difference in Nye tensor screw components between the tran-
sition state core in (a) and the relaxed core under the same applied stress (i.e. αtransitionscrew −αrelaxedscrew ).
Differential displacements maps are shown for the transition state core to assist in locating the dis-
location core center.

direction leading to the highest yield strength (for tension) was the nearest to the [0001]
axis of those tested, also in line with the predictions of my calculations. Further, their
pole figures demonstrate that grains in samples tested in compression tend to rotate such
that the compressive axis becomes aligned along their [0001] axis, further suggesting that
plasticity is better-accommodated when compression is far from the [11̄00] axis. However,
these experiments were performed on polygranular samples at much lower stresses than those
in my calculations, which limits direct comparison between the two. My calculations agree
with the trends observed in these experiments, and suggest a possible cause for these trends.
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A related observation from Figure 4.1 is that there does not appear to be a discrete
switching between core structures, i.e. pyramidal at zero stress to prismatic at some critical
stress. Rather, applying tensile stress on the y-axis causes a smooth extension of the core
along a prismatic plane, while considerable pyramidal character remains. In compression
on the same axis, the prismatic extension is smoothly reduced and again the pyramidal
component remains. Similarly, the transition state cores found in the NEB calculations are
not entirely prismatic in nature. Rather than observing a pyramidal to prismatic switching,
I see a continuum of cores from “mostly pyramidal” to “mostly prismatic” during slip. Many
of these core structures are in fact non-planar, as Sakai and Fine, Naka et al., and Neeraj
et al. suggested to be the explanation for their observation of non-Schmid slip behavior in
α-titanium alloys[70–72].

Non-planar dislocation core structures are understood to be the underlying cause of non-
Schmid behavior in bcc metals[76], but those core structures are strikingly more non-planar
than observed here. Further, the non-Schmid stresses applied in my DFT calculations are
much higher than those in the experimental observations of non-Schmid slip behavior in
titanium alloys. However, my calculations suggest that the dislocation core structure in
α-titanium can be skewed by non-Schmid stresses. Moreover, there is a continuum of dislo-
cation core structures which can be occupied. Previous calculations of the energies separating
the “pure” prismatic and pyramidal stresses in DFT at 0 K put them within tens of meV
per Burgers vector of each other[10, 53, 54, 56, 57]. This suggests that 〈a〉-type screw dis-
location cores will occupy different structures according to a thermal distribution at finite
temperatures. Applying non-Schmid stresses would thus produce a skew in these distribu-
tions, creating non-Schmid slip behavior even at much lower stresses than those applied in
my zero-temperature DFT calculations. Additionally, it is possible that the dislocation core
structure is more susceptible to applied stress when titanium is alloyed.

4.6 Conclusions

I have performed density functional theory calculations to determine the ground state
core structure of 〈a〉-type screw dislocations in titanium under a range of applied stresses.
These calculations indicate that the core structure is altered by applied stresses that have
zero resolved shear stress on the dislocation. The core can be made to extend or contract
along the prismatic [11̄00] plane, but always retains a pyramidal component over the range
of stresses considered. Nudged elastic band calculations under the same range of stresses
show that increased prismatic components are correlated with a lower barrier to slip of the
dislocation on the prismatic plane, while contraction into a compact pyramidal core leads to
a higher barrier to slip on the prismatic plane. These results corroborate earlier conjecture
that the non-Schmid slip behavior of 〈a〉-type screw dislocations in α-titanium alloys is due
to non-planar core structure.
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Chapter 5:

Finite Temperature Analysis of 〈a〉-Type
Screw Dislocation Core Structures

5.1 Introduction

Thus far the discussion of dislocation core structures has focused entirely on relaxed
core structures at 0 K, whether considering applied stress or not. While it is no doubt
important – not to mention surprisingly complicated – to gain an understanding of the
potential energy landscape for dislocation core structures, this does not very well reflect the
behavior of dislocations in situations that engineers care about for practical applications. In
real engineering applications these dislocations exist at finite temperature. As the differences
in energy between different core structure configurations are small (comparable to thermal
energies at working temperatures if the intrinsic length scale of the dislocation segment is
take to be on the order of the Burgers vector), one would expect thermal occupation of the
available states at modest temperatures. However, the free energy of competing dislocation
core structures, which governs the equilibrium probability of the dislocation taking on these
core structures, is not a topic that has been given much thought.

It seems likely that the dislocation core structure is somewhat correlated spatially. If at
a given position on the dislocation line the core is extended prismatically, it is reasonable to
expect that two Burgers vectors along the line dislocation line the core structure is likely to
be prismatic, and that in fact there might be an energy cost to transitions between regions
of differing core structures. If this were the case then applying an Ising-like model[77–79] for
the dislocation core structure might be appropriate, particularly if there is a small number
of important states.

Besides fitting the core structure data to an existing model (which will have to be work
for a future researcher, as I have not done this) there are many other interesting ques-
tions that might be answered if one had access to dislocation core structures at different
times, temperatures, and stress states. For example, it is theorized that a locking-unlocking
mechanism[10] is crucial to the motion of 〈a〉-type screw dislocations in titanium. However,
this prediction has so far been based solely on TEM observations (which are unable to re-
solve dislocation core structures for titanium) and zero-temperature DFT calculations. So
despite the theory being fundamentally dependent on occasional activation of prismatic core
structures by thermal fluctuations of atoms in the dislocation core, there is so far no time- or
temperature-dependent atomistic data available to support the hypothesis. Here, I develop
a method to measure the dislocation core structure efficiently from MD data, and use it to
develop the temperature and stress dependence of dislocation core structure distributions.
Further, the lock-unlocking mechanism is demonstrated by showing the correspondence be-
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tween prismatic core configurations and slip of the dislocations on the prismatic plane.

5.2 Choice of Core Structure Descriptor

At the outset of this investigation there is a fundamental issue: there is no existing
method by which one could acquire sufficient information about dislocation core structures
from a simulation to have any semblance of statistically significant data. So far the method
for determining the core structure of a segment of dislocation in an atomistic simulation
has been to calculate the Nye tensor or differential displacement maps (or both), look at
the data, and make a determination. This method is time consuming and requires a great
deal of human input and decision making that leaves plenty of room for bias or error in
classifying dislocation cores. It is also a very coarse classification method. Human observers
of dislocation core structures have tended to sort the structures into a small number of
bins, for example in hcp metals most references only discuss basal, prismatic, pyramidal,
and something along the lines of asymmetric or mixed[10, 11, 53, 57, 56]. This human
classification scheme may in fact be glossing over the significance of core structures that do
not fit neatly into one of these bins, or the importance of intermediate core structures.

Automatically characterizing dislocation core structures requires making some definitions.
This includes important considerations such as which atoms should be considered to be part
of the dislocation core, and how atoms in the core contribute to the characterization of the
core. One reasonable set of choices is to allow all atoms to contribute to core structure
identification and to weight contributions by a function of the atomic strain. Intuitively
this makes sense, because a dislocation core is a highly strained region, and thus the atomic
strains in the core should be large compared to the surrounding elastically-strained material.
The atomic strain may fall off quickly or slowly as a function of distance from the dislocation
core, and measuring the rate at which it does could provide an estimate of the dislocation core
size. Moreover, considering more-strained atoms to contribute more to the assessment of the
dislocation core orientation matches (and formalizes) the existing practice when identifying
core structures by hand.

Previously, two methods for visualizing dislocation core structures were discussed: the
Nye tensor and differential displacement maps. These are effectively two choices for the
function of strain used. The differential displacement map construction is useful for visual-
ization, but is a bit of an odd beast if one attempts to use it to automate dislocation core
identification. At each atom position there are 6 different vectors (for hcp) connecting to the
neighboring columns, each with different length and direction. Attempting to make use of
these do determine the degree to which an atom contributes to the Burgers vector content
is far from straightforward. The Nye tensor on the other hand contains the information
required in a relatively straightforward manner. One could take the magnitude of the screw
component of this tensor to be the weighting factor used. However, the Nye tensor is not
very convenient to compute, and now that the goal is to calculate millions of dislocation core
structures, efficiency has become more important. Because the Nye tensor is calculated as
the curl of the atomic strain, it requires calculation of the strain of the neighboring atoms to
those of interest, which in turn means finding reference-dislocation pairs for the neighbors
of the neighbors of the atoms of interest, which is not computationally ideal.
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One sometimes-used definition for a dislocation core is that it is the region in which
the stress predicted by linear elasticity theory is greater than the ideal strength of the
material[80–82]. The intuition behind this is that in this region elasticity theory has broken
down and therefore this region is “plastic”. This definition is interesting because it suggests
that the extent to which an atom is within a dislocation core can be calculated from the
strain itself (rather than from a derivative of the strain), eliminating a layer of difficulty of
computation compared to the Nye tensor. Following the work of de Jong et al.[75], the ideal
strength of a material can be accurately estimated if one knows the second and third order
elastic constants for the material. This is done by finding the eigenvalues of the symmetrized
Wallace tensor[83] (B), which is a function of stress (and thus of strain, provided one knows
the elastic constants at the given strain state). When an eigenvalue of the symmetrized
Wallace tensor goes to zero, the ideal strength has been reached.

Another way of thinking about this is that the nearness to plasticity (i.e. exceeding
the ideal strength) can be assessed by calculating the size of the smallest eigenvalue of the
symmetrized Wallace tensor. If one has access to atomic strains, this can be done for each
atom. This forms the basis for a new method of determining dislocation core structures. For
each atom in a simulation a parameter υ is computed:

υi = min(eig(Bref ))−min(eig(Bi))
min(eig(Bref ))

(5.1)

where Bref is the symmetrized Wallace tensor for the reference (undeformed) system, and
Bi is the symmetrized Wallace tensor for atom i in the current configuration of an atom-
istic simulation. Given that min(eig(Bref )) > 0 for a stable reference configuration and
min(eig(Bref )) ≥ min(eig(Bi)), the parameter υ ≥ 0.

This is an appealing and straightforward parameter to characterize dislocation core
spread, but how well does it work in practice? One way to determine this is to compare it
with an established dislocation identification method such as the Nye tensor for the same
dislocation. One test case that is both simple and important is the representation of the
ground-state dislocation cores calculated by DFT. A comparison of these between the exist-
ing Nye tensor and differential displacement map visualizations and υ is presented in Figure
5.1, which shows that all methods yield structures that are clearly oriented on the same
pyramidal planes.

Another important test case is the performance of this parameter on atomic positions
extracted from an MD simulation, because these will have thermal noise. If this parameter
is to be used to classify core structures generated by MD simulations, it must be able to
tolerate this noise. An example of this is shown in Figure 5.2, for a timestep from an MD
simulation at 300 K using the MEAM potential for titanium.

As Figure 5.2 demonstrates, υ represents the core structure as effectively as the Nye
tensor screw component, and does so with a lower computational cost. There is also a
elegance benefit to using υ rather than α: calculation of this parameter makes use of no
adjustable parameters, whereas there is an angular cutoff set in Nye tensor calculation that
can significantly affect results if chosen poorly.
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Figure 5.1: Top: Nye tensor screw component and differential displacement map representation of
the ground-state dislocation cores for 〈a〉-type screw dislocations in titanium calculated by DFT in
Chapter 3 of this dissertation. Bottom: New parameter υ representation of the same dislocation
cores.

5.3 Fitting the Core Structure Descriptor

Taking υ as the choice for weighting the contribution of each atom to the dislocation
core, the next step is to choose a method of extracting the relevant information about the
core structure. What information is relevant depends on the system and the researcher, so
this method will not be unique. In this case, I am interested in finding the distribution
and evolution in space and time of screw dislocation core structures in titanium. From my
experience, I know that these tend to be fairly planar and extended along pyramidal and
prismatic planes. Therefore in this study the key parameter of interest is the angle the core
makes with some fixed plane of interest (I take the basal plane as reference here, which
makes the prismatic plane 90◦ and the first-order pyramidal planes 61.5◦ and 118.5◦ for the
c/a ratio of the MEAM potential at 0 K). For other problems, completely different features
that can be extracted using the υ calculation may be of more interest. For example, in bcc
metals the width of the dislocation core is typically of more interest than its orientation, as
screw dislocations in bcc metals can spread with 3-fold symmetry but require constriction
to become glissile[6].
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Figure 5.2: Left: Nye tensor screw component representation of the sample dislocation core. Right:
New parameter υ representation of the same dislocation core. This example comes from an MD
simulation at 300 K using the MEAM potential for titanium. I would like to make it clear that
this is no carefully-chosen example case, rather it is the very first core that I had at hand.

To extract the core orientation I fit to a 2-dimensional Gaussian function of the form:
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(5.2)

where ξ and ψ are the components of position projected onto the plane normal to the dislo-
cation line direction, {ξ0, ψ0} is the center of the dislocation, θ is the dislocation orientation
angle relative to the basal plane, and σ1 and σ2 are the magnitudes of the major and minor
axes. These allow for definition of the eccentricity of the core (i.e. a characterization of how
planar the core structure is) E = σ1

σ2
. Viewed as a contour plot (as in Figure 5.3) the result

looks elliptical.
For this example core, θ is found to be 90.97◦, indicating that it is almost exactly aligned

along the prismatic plane. E is 2.20, indicating a definite extension of the core along this
plane. Both of these findings match with what I would have determined visually from the
Nye tensor shown in Figure 5.2.

5.4 Application to 〈a〉-Type Screw Dislocation Cores in MD

As discussed previously in this dissertation, the MEAM potential for titanium that I
have been using predicts a prismatic core structure as the ground state for 〈a〉-type screw
dislocations, which does not agree with DFT calculations (in which a pyramidal core struc-
ture is predicted). However, it is also known that there are strong effects of stresses with no



51

Figure 5.3: Fit of Equation 5.2 to the parameter υ calculated for the same dislocation core shown
in Figure 5.2.

resolved shear stress for prism slip on 〈a〉-type screw dislocations in the MEAM potential
when stress is applied along the [11̄00] axis. In fact, I showed that this non-Schmid stress
can induce a transformation of the dislocation core structure from prismatic to pyramidal.
Some interesting aspects of this can now be studied using the approach outlined above.
For example, what is the transition pressure between these structures? Does temperature
change the transition pressure? How does the distribution of core structures behave as it
approaches the transition? Is one core structure favored at higher temperatures? What are
the correlation lengths and times between different core orientations?

To address these questions, a series of MD simulations using a supercell with dimensions
300 Å × 325 Å on its face and 94 Å along the dislocation line (i.e. 32 Burgers vectors deep)
containing two dislocations arranged in the S configuration[9] (described in Chapter 3) were
performed. In these simulations the temperature is in the range 100 K to 500 K, and the
non-Schmid stress on the [11̄00] axis is in the range 0 to 1 GPa. Each simulation made use
of an NσT ensemble with a Langevin thermostat and Parrinello-Rahman barostat[47], and
is run for 100 ps using 1 fs timesteps. The atomic positions were saved every 1 ps, and these
were used to generate the dislocation core orientation data. To accelerate data collection,
DXA[84] in OVITO[85] is employed to locate the centers of the dislocations, and υ is only
calculated for atoms near to these centers. υ is calculated for every slice of the supercell
(each slice is 1 Burgers vector thick, the minimum repeat length along the dislocation line
direction) at each saved timestep, and thus there are 6400 core orientations calculated for
each simulation. Unfortunately, not every calculation yields reliable data. The eccentricity
E is used to filter the data set used for further analysis. Orientations corresponding to cores
with 1.25 ≥ E ≥ 4.00 were used for the analysis, and those outside of that range were
discarded. This is based on a heuristic analysis that eccentricities outside of that range
typically correspond to failed convergence of the fit in Equation 5.2. It also naturally makes
sense that when E is close to 1 the orientation is not significant, since the core is roughly
circular. However, some of the small-E states may correspond to kink structures or other
compact transitional cores. More work is required to identify any such cases and include
them in the future automated analyses. In the simulations presented here, this typically
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removes 10-15% of the total data. Figure 5.4 shows an example distribution of E for a
simulation at 300 K and no applied stress.

Figure 5.4: Core structure eccentricities of all slices of both dislocations in an MD simulation at
300 K. The lines show the cutoffs core eccentricities included in the following analysis.

One issue that can arise with the development of a new method such as this is visualization
of the resulting data. In the present case visualization is complicated because the interest is in
the variation of the orientation of dislocation cores in space as well as time. A comprehensive
method for visualizing this information is presented in Figure 5.5.

This method represents all the available core orientation data in both space and time for
one dislocation in a simulation, and is somewhat informative to look at. For the example
in Figure 5.5, one can quickly glean that orientations are centered on the prismatic plane
(90◦, black line) overall, but at many timesteps the structure tends to lean towards one or
the other of the pyramidal planes (61.5◦ and 118.5◦, red lines). Unfortunately, this method
is somewhat overwhelming to view, and many of the data points are obscured by others. A
similar but simplified modification is shown in Figure 5.6. In this version, only the median
orientation at each timestep is shown as a point, and a line plots the range of the lower and
upper orientation quartiles. Use of quartiles is preferable to standard deviation because the
deviations from the midpoint often tend to be asymmetric. In this visualization it is easy
to follow the shifting of the overall structure along the line over time, as well as to see the
variation from the midpoint at each step. Figure 5.6 makes it clear that while sometimes the
cores in a timestep are centered on the prismatic plane, at most times the center is actually
a state that lies between the prismatic and ideal pyramidal configurations. States falling
between have not been given a lot of consideration up to this point, but now they begin to
look important.
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Figure 5.5: Core structure orientation of all slices of one dislocation in an MD simulation at 300
K. Each segment parallel to the y-axis represents one timestep, and the points within a timestep
are the orientations of every slice (1 Burgers vector in thickness) along the dislocation line. The
size of each point is scaled by the value of E for that core. The black line shows the position of the
prismatic orientation and the red lines are the pyramidal orientations. The colors of the points are
varied to assist in distinguishing points.

Another useful visualization method is to throw out the time and position data altogether
and simply look at a histogram of the orientations. This is shown for the example case at 300
K in Figure 5.7. This gives a good perspective on the data as a set, for example it makes the
prismatic centering of the data more clear than in the previous images. It is worth pointing
out that there is no difference between the two dislocations in the simulation (apart from
the sign of their Burgers vectors), and therefore they are sampling the same distribution.
Given enough time, the blue and yellow distributions would fully overlap.

5.4.1 Effects of Temperature

The visualization methods of Figures 5.6 and 5.7 will be the focus of the following dis-
cussion. Now, I will turn to some interesting features that can be investigated using these
new developments. Starting with something straightforward, I will examine the change in
the core structure distributions as a function of temperature. Simulations at 100 K, 300 K,
400 K, and 500 K under no applied stress were each conducted for 100 ps, and the results
are summarized in Figure 5.8.

Clearly as the temperature increases the width of the dislocation core orientation distri-
butions increases significantly. At 100 K virtually all cores are prismatically-oriented, with
few outliers further than 10◦ from the prismatic orientation. At 500 K almost all possible



54

Figure 5.6: Simplified presentation using quartiles and median for core structure orientation of
all slices of both dislocations in the same MD simulation at 300 K as shown in Figure 5.5. Each
segment parallel to the y-axis represents one timestep. The black line shows the position of the
prismatic orientation and the red lines are the pyramidal orientations. The blue data corresponds
to the dislocation shown in Figure 5.5, while the orange is the dislocation that was left out in that
plot.

core orientations have at least some representation, and at most timesteps even the median
core orientation is at least 10◦ from prismatic. The increase in the spread of the core orien-
tations within each timestep is also significant. At higher temperatures we find dislocations
ranging from prismatic to pyramidal on the same dislocation at the same instant frequently.
Another observation is that at higher temperatures the overall orientation of the dislocation
changes much more rapidly, i.e. the median core orientation for a dislocation changes from
pyramidal to prismatic to the other pyramidal regularly. At 100 K there are none of these
changes observed.

These behaviors at elevated temperatures largely match expectations. Slightly surprising
is that the “pyramidal” structure does not seem to correspond to the ideal pyramidal plane
angles (the red lines in the figures), but ultimately this is not shocking. Nye tensor and
differential displacement map plots shown in Chapter 3 were never extended precisely along
the pyramidal plane. Returning to the data plotted in Figure 5.1 and applying the fit of
Equation 5.2, I find that in fact they also fall between the prismatic plane and the ideal
pyramidal plane (the pyramidal core from DFT calculations was found to be oriented at
69◦). This is one lesson that can be learned from removing the human element of classifi-
cation and instead looking at algorithmically generated data. Accepting that orientations
around 70◦ and 110◦ match those that have previously referred to as pyramidal, occupation
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Figure 5.7: Histogram of all core structure orientations slices for both dislocations in the same
MD simulation at 300 K as shown in Figure 5.6. The black line shows the position of the prismatic
orientation and the red lines are the pyramidal orientations.

of these states is not surprising. The prismatic orientation is the ground state with no ap-
plied stress and the pyramidal orientation is accessible within thermal energies (recall the 9
meV/b potential energy difference I calculated in Chapter 3). It follows that increasing the
temperature would allow for significant occupation of the pyramidal structure.

The histograms resulting from higher-temperature simulations indicate that the occu-
pations of orientations varies somewhat smoothly. This is mildly surprising, since up to
this point the discussion has revolved around a finite number of possible core structures
rather than a continuous distribution of structures. Physically, though, this makes sense.
Intermediate core structures are necessary for transitions between primary structures (i.e.
prismatic, pyramidal, basal) to occur. Moreover, thermal fluctuations induce variation about
a local equilibrium structure, as can be seen in the 100 K distributions which certainly do
not sample any local basins of attraction other than the prismatic core structure. Given
the low potential energy differences between the core structures discussed previously, it is
not surprising to conclude that the potential energy landscape is relatively flat and that this
leads to the smooth orientation distributions.

5.4.2 Effects of Non-Schmid Stress

On the subject of the various core structures found in earlier optimization calculations,
I showed in Chapter 4 that by applying stresses with zero resolved shear stress the ground-
state core structure of 〈a〉-type screw dislocations in the MEAM potential can be changed.
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Figure 5.8: Core orientations (left) and histograms (right) of all core structure orientations slices
for both dislocations in MD simulation at 100 K, 300 K, 400 K, and 500 K (top to bottom) under
no applied stress. The black line shows the position of the prismatic orientation and the red lines
are the pyramidal orientations.

More specifically, I showed that when a large compressive stress is applied on the [11̄00] axis



57

the equilibrium core structure changes from prismatic to pyramidal. The υ parametrization
can be used to investigate the pressure at which this transition occurs. I began investigation
into this by performing a series of simulations with different applied stresses on the [11̄00]
axis, all at 100 K. This temperature was chosen because Figure 5.8 indicates that there will
be minimal spread of the orientations due to thermal fluctuations, and thus it will be simple
to assess which core structure is favored. The results of these simulations are summarized
in Figure 5.9.

As discussed previously, the core structure under no applied stress is purely prismatic
with very little deviation. With 125 MPa compression applied on the [11̄00] axis, evidence
of a small number of excursions toward pyramidal core structures can be observed. Further
increasing the compression to 200 MPa, the dislocations spend approximately equal time in
prismatic and pyramidal orientations. This, roughly speaking, is the transition pressure at
100 K. It is clear that the transition from one core structure to the other is not sharp (in
this supercell), which makes determining the pressure at which it occurs inexact. In the
histogram from the 200 MPa, 100 K, simulation one can see the appearance of shoulders,
indicating that in this case the pyramidal orientations are occupied to a greater extent than
simply as variations about the prismatic orientation. Further increasing the compression to
500 MPa results in only pyramidal core structures. With this simulation I was somewhat
fortunate that the two dislocations happened to occupy opposite pyramidal orientation –
as mentioned before, the dislocations sample the same distribution so there is no reason
to expect this. This results in a lovely histogram that neatly shows the orientations of
the two pyramidal structures occupied at this temperature and pressure. At the highest
compressive stress simulated (1 GPa), the dislocations happened to select the same pyramidal
plane and not transition to any other structures, and thus the distributions overlap. If
one compares the histograms resulting from the 500 MPa and 1 GPa simulations quite
carefully, it can be observed that the peaks of in the distributions are actually slightly
different. With 500 MPa compression applied the lower-angle pyramidal orientation peak is
at 71.5◦, while under 1 GPa it is at 68.0◦, which is closer to the ideal pyramidal orientation
(and very similar to the orientation calculated for the DFT ground-state). I did not plot
the distribution corresponding to an applied compression of 250 MPa, but this condition
results in pyramidal cores peaked at 74.6◦, which continues this trend. These are substantial
differences in core orientations, and the trend implies that the effect of non-Schmid stresses
goes beyond selecting the degree to which the prismatic and pyramidal orientations are
occupied: in fact, they also influence the preferred configuration of pyramidal core structures.

Given the significant changes induced by the non-Schmid stresses on the dislocation
core structures, one would anticipate strong effects on dislocation slip behavior and thus
on plastic deformation. More specifically, in light of the core structure based explanation
for the locking-unlocking mechanism proposed by Clouet et al.[10], the expected behavior
is that under zero non-Schmid stress the dislocations should be able to slip easily on the
prismatic plane (known to be the dominant slip plane in titanium), whereas under large
non-Schmid stresses that induce the pyramidal core orientation slip should be much more
difficult. In other words, it is expected that the dislocation cores will be unlocked under no
applied compression on the [11̄00] axis, and locked under 500 MPa and 1 GPa compression on
the same axis, based on the orientation distributions shown in Figure 5.9. For intermediate
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Figure 5.9: Core orientations (left) and histograms (right) of all core structure orientations slices
for both dislocations in MD simulation at 0 MPa, 125 MPa, 200 MPa, 500 MPa, and 1 GPa (top to
bottom) non-Schmid stress applied on the [11̄00] axis at 100 K. The black line shows the position
of the prismatic orientation and the red lines are the pyramidal orientations.

stresses for which both prismatic and pyramidal cores are represented I expect some slip
to occur, but less than for the totally unlocked state. To investigate these predictions, I
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performed simulations very similar to the previous set described above, but with a shear
stress of 200 MPa oriented with the maximum resolved shear stress on the prismatic plane
applied in addition to the non-Schmid stresses. A plot of strain vs time for simulations with
0 MPa, 200 MPa, 500 MPa, and 1 GPa non-Schmid stress applied at 100 K is shown in
Figure 5.10.

Figure 5.10: Shear strain vs time for MD simulations with 200 MPa shear stress for prismatic slip
and 0 MPa, 200 MPa, 500 MPa, and 1 GPa non-Schmid compression along the [11̄00] axis applied
at 100 K.

Examining the strain data in Figure 5.10, it is evident that my predictions largely held
true. Slip occurs readily when no non-Schmid stress is applied – the unlocked configuration
– and with increasing compression on the [11̄00] axis the strain decreases. When 1 GPa
compression is applied – the locked configuration – the dislocations hardly slipped at all. At
200 MPa, substantial slip occurred because the prismatic orientation is accessible. The only
surprising simulation is that under 500 MPa compression. Under these conditions the core
is almost entirely pyramidally oriented when there is no shear applied, so I anticipated little
or no prismatic slip to occur. However, it is now clear that this stress is not high enough
to make the prismatic orientation inaccessible at 100 K, and thus under applied shear stress
the cores were able to transform into the prismatic configuration and accomplish substantial
slip. One neat feature of applying this technique is that I can compute the core structure
distributions during slip just as simply as at rest, and thus verify that the differences in
strain are in fact due to the amount of locking of the dislocation cores. The core structure
distributions corresponding to the simulations under shear stress at 100 K are shown in
Figure 5.11.

It is clear that the greater the fraction of the dislocation cores that are oriented along the
prismatic plane, the greater the degree of prismatic slip. It is also plain that under 500 MPa
and 1 GPa compression the dislocation cores still have a strong tendency toward pyramidal
orientation, which is what is expected based on the calculations with no shear stress applied.
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Figure 5.11: Core orientations (left) and histograms (right) of all core structure orientations slices
for both dislocations in MD simulation with 200 MPa shear stress for prismatic slip and 0 MPa, 200
MPa, 500 MPa, and 1 GPa (top to bottom) non-Schmid stress applied on the [11̄00] axis at 100 K.
The black line shows the position of the prismatic orientation and the red lines are the pyramidal
orientations.
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However, the key difference between these two stress states is the accessibility of the prismatic
configuration. At 500 MPa the cores can regularly reconfigure to prismatic and slip, as can
be seen in the quartile representation which shows frequent switching back and forth across
the prismatic line. On the other hand, under 1 GPa compression the prismatic orientation is
nearly forbidden. There are only a small handful of slip events observable in Figure 5.10 for
this stress state, and each of them corresponds to one of the rare occasions that a dislocation
core orientation is prismatic. These unlocking events are short-lived, and the cores rapidly
return to one or the other of the pyramidal configurations. This lends strong support to the
locking-unlocking hypothesis that was formulated in DFT, as the behavior of the dislocation
core structures in MEAM under 1 GPa compression on the [11̄00] axis matches well with
DFT under no applied stress (they show nearly the same ground-state configuration, and
have similar energy differences between pyramidal and prismatic configurations).

The existence of the locking-unlocking mechanism due to core structure reorientation can
be made more evident by comparing the dislocation core configurations with the positions
of the dislocations during the simulation at 1 GPa compression and 200 MPa shear stress at
100 K. The dislocation center positions is a convenient byproduct of using DXA to locate
the dislocations as a preprocessing step during calculation of υ. This comparison is shown in
Figure 5.12, and it is absolutely clear that every single movement of the dislocations along
the prismatic plane corresponds to a brief unlocking of the dislocation core structure.

Clearly the locking-unlocking mechanism can explain the behavior under these stress
conditions at 100 K. A further prediction of the locking-unlocking theory is that increasing
the temperature should promote changes in the dislocation core structure, and thus allow
the dislocations to unlock more readily. I test this by performing the same MD simulations
again, but now at 300 K. First, I will examine the configurations of the core structures
without shear stress applied, to parallel Figure 5.9. This is shown in Figure 5.13.

Examination of Figure 5.13 yields many of the expected observations, as well as a surpris-
ing finding. First, the anticipated: for all stress states, the variation in the core orientations
is greater at 300 K than at 100 K. This is true both in terms of the widths of the quar-
tiles at each step, and the variation in the median orientations from step to step. This is a
straightforward effect of temperature: higher temperature induces broader distributions of
the occupied orientations. A related effect is that the dislocations change their overall orien-
tations more frequently. For example, at 100 K and 500 MPa compression the dislocations
settled into pyramidal orientations and never changed to prismatic or the other pyramidal.
At 300 K and 500 MPa, a number of reorientations can be observed. Given the findings from
the simulations under shear stress, this suggests that there should be somewhat more slip at
300 K under the larger compressions than there is at 100 K. This would be in line with pre-
vious predictions based on a dislocation core structure explanation for the locking-unlocking
mechanism[10].

On the other hand, comparing the simulations with 0 MPa, 125 MPa, and 200 MPa
compression at 300 K with the same applied stresses at 100 K, it appears that at higher
temperature there is significantly less occupation of prismatic core structures. This is true
not just in the sense of greater fluctuation away from these states (which certainly accounts
for some of the difference) but also in the locations of the medians. In fact while at 100 K
compression of 200 MPa is found to be the transition pressure, at 300 K there are almost no
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Figure 5.12: (Top) Dislocation core orientations during a MD simulation at 1 GPa compression and
200 MPa shear stress at 100 K. (Bottom) Dislocation centroid positions parallel to the [0001] axis
the during the same simulation. Excursions of the core structure into the prismatic configuration
are highlighted, and the correspondence between these and slip steps of the dislocations shown.
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Figure 5.13: Core orientations (left) and histograms (right) of all core structure orientations slices
for both dislocations in MD simulation at 0 MPa, 125 MPa, 200 MPa, 500 MPa, and 1 GPa (top to
bottom) non-Schmid stress applied on the [11̄00] axis at 300 K. The black line shows the position
of the prismatic orientation and the red lines are the pyramidal orientations.

prismatically oriented median structures at this pressure. This suggests that the transition
pressure is reduced at higher temperature. Another way of stating this is that the pyramidal
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orientations are favored by higher temperature, which implies that these are higher-entropy
structures. Calculations on the temperature-dependence of dislocation core structures in
semiconductors suggests that in that case vibrational entropy plays an important role in
the dislocation structural properties at high temperatures[86]. However, I have seen no
literature discussing entropy of competing dislocation core structures in metals. Even when
high-temperature effects on core structure are discussed, the entropy of the structures is
assumed to be the same[87].

This increase in pyramidal occupations at higher temperatures also suggests another
surprising conclusion: increasing the temperature could actually decrease the strain rate for
some stress states. Certainly at 500 MPa or 1 GPa compression it is expected that the
increased accessibility of the prismatic configuration will lead to easier prismatic slip. At
0 MPa compression, though, the core structure is always prismatically oriented at 100 K,
but at 300 K there is significant pyramidal orientation occupation. If the locking-unlocking
mechanism dominates the strain rate, then there should be less slip at 300 K than at 100 K
for small non-Schmid stresses. To discover whether this is the case, MD simulations under
200 MPa shear strain at 300 K were carried out and the resulting strains plotted in Figure
5.14.

Figure 5.14: Shear strain vs time for MD simulations with 200 MPa shear stress for prismatic slip
and 0 MPa, 200 MPa, 500 MPa, and 1 GPa non-Schmid compression along the [11̄00] axis applied
at 300 K.

Clearly Figure 5.14 demonstrates that 300 K is sufficient temperature to unlock the dis-
locations under 1 GPa compression. This validates a key prediction of the locking-unlocking
mechanism. It is also plain to see that the differences in strain between the different non-
Schmid stress simulations are much smaller at 300 K than at 100 K. What cannot be seen
by eye is that the plastic strain under 0 MPa compression at 300 K is actually somewhat
lower than that at 100 K: 2.01% vs 2.45%. This proves the more surprising conclusion that
increased temperature can reduce the strain rate if it promotes a core structure that is less
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favorable for slip. Figure 5.15 shows the core structure distributions for these simulations at
300 K with applied shear stress, which validates that the changes are in fact due to changes
in dislocation core orientations.

5.5 Conclusions

In this chapter I have developed (along with Ian Winter) a parameter (υ) based on elas-
tic stability analysis that can accurately and rapidly characterize the extent of a dislocation
core. I have also designed (along with Ian Winter and Daryl Chrzan) a fit to this parameter
that can be used to extract the dislocation orientations of these cores, where the orientation
corresponds to a primary plane of core spreading. Molecular dynamics simulations were per-
formed over a range of temperatures and applied stresses – both non-Schmid and with shear
stress oriented for prismatic slip – and core orientation distributions were calculated using
this new method. This data illustrates a number of facts about the dependence of disloca-
tion orientations on temperature and stress state. With increasing temperature, the width
of orientation distributions is increased as higher-energy core structures become thermally
occupied. With increasing compressive stress applied on the [11̄00] axis, the dislocation core
orientations shift from prismatic to pyramidal, but there is apparently no sharp transition
between these states for this system size. For example, simulations at 100 K and 200 MPa
compression show approximately equal occupation of prismatic and pyramidal orientations.
Interestingly, for this MEAM potential the transition pressure from the prismatic to pyrami-
dal core structure is lowered by increased temperature, implying that higher temperatures
favor pyramidal orientations. This implies that these orientations have higher entropy than
the prismatic orientation, a new wrinkle in the already-complicated field of screw dislocation
core structures.

In molecular dynamics simulations with shear stress applied to induce prismatic slip, the
locking-unlocking mechanism is apparent. Under 1 GPa compression at 100 K, every slip
step of the dislocations can be shown to correspond to an unlocking event. At 300 K and
the same stress, slip is substantially easier because the prismatic core structure is thermally
accessible. In a surprising, but ultimately consistent, development the strain rate under no
compression is reduced in these simulations by increasing the temperature, because this leads
to a higher pyramidal core structure occupation.

These simulations provide the first atomistic observations of the locking-unlocking mech-
anism for 〈a〉-type screw dislocations in titanium. However, this is only one of many possible
applications for this method. As previously discussed, there is a great deal still unknown
about the form of the thermal distribution of dislocation core structures. Unfortunately,
fully exploring time and spatial correlation of these core structures will require significantly
more computational effort, as the (spatial) correlation length is greater than the depth of
the supercells used for the calculations presented here. This insufficiency in supercell length
may be responsible for the lack of an observed sharp transition between the dislocation core
structures as a function of pressure at a fixed temperature, which otherwise is a surprising
finding. Addressing these correlations and the energies of transitions between core struc-
tures of different orientations appears to be a promising area for further study. Perhaps
addressing these areas could lead to the development of an Ising-like model for dislocation
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Figure 5.15: Core orientations (left) and histograms (right) of all core structure orientations slices
for both dislocations in MD simulation with 200 MPa shear stress for prismatic slip and 0 MPa, 200
MPa, 500 MPa, and 1 GPa (top to bottom) non-Schmid stress applied on the [11̄00] axis at 300 K.
The black line shows the position of the prismatic orientation and the red lines are the pyramidal
orientations.
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core structures.
Another opportunity created by development of the parameter υ is to study other crystal

systems. Traditionally, dislocation core structures in bcc metals have been given the greatest
amount of attention due to the importance of steels for commercial applications and the
complicated extended structures of dislocations in bcc metals. In this case, a new type of
fit (i.e. replacing Equation 5.2) would likely be required, because typically it is the size
rather than the orientation of the core that is more interesting. In fact, it was in an effort
to characterize the size of dislocation cores in a titanium-niobium alloy that Ian and I first
began exploring development of the parameter υ. Certainly this remains a direction worth
exploring.
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Chapter 6:

〈a〉-Type Screw Dislocation – Interstitial
Interactions

6.1 Introduction

Titanium alloys possess a number of highly desirable properties, including excellent cor-
rosion resistance and high specific strength, which make them attractive structural materials
for a wide range of commercial applications. Titanium alloys find widespread use as struc-
tural materials in aerospace and marine applications, as well as in biomedical implants.
Despite these many attractive properties and the abundance of titanium in the crust of the
Earth (it is the 4th most common metal[15]) the uses of titanium are limited by high costs.
While the cost of metals is usually determined by scarcity, in this case

“The root cause of the high cost of titanium is its very strong affinity for oxygen.”
- Fang, Middlemas, Guo, and Fan [88]

Naturally occurring titanium ores contain large amounts of oxygen. Of known reserves,
approximately 93% are ilmenite (FeTiO3) and the remaining 7% are rutile (TiO2)[15]. The
Kroll process, developed in the first half of the twentieth century, remains by far the most
popular commercial method by which titanium ore is converted into high purity titanium
alloy[89]. This process includes a number of energy intensive steps such as high-temperature
carbo-chlorination of the ore to produce titanium tetrachloride (TiCl4), followed by reduction
with molten magnesium at over 1000 K for several days[88]. The energy input required
during these steps is so high that raw titanium ore represents only 4% of the total cost of
a commercial purity titanium alloy[89]. Efforts to reduce the cost of processing titanium
are ongoing and have resulted in several new techniques. Among these are the Armstrong
process in which boiled titanium tetrachloride and boiled sodium are combined continuously
to produce high purity titanium powder, the FFC electrochemical process in which titanium
oxide is reduced by calcium[90], and the DRTS process in which titanium slag is ball milled
with magnesium hydride to form titanium hydride (TiH2) which is then dehydrogenated[88].
However, none of these new methods have yet made a significant commercial impact.

Oxygen alters the mechanical properties of titanium alloys significantly and in ways that
are not desirable for most applications. Specifically, in the hexagonal-close-packed (hcp) α
phase of titanium, small variations in the content of interstitial impurities are observed to
have deleterious effect on fracture toughness. For example, comparing CP α-Ti grades 1 and
3, a difference in oxygen content of 0.17 wt. % leads to nearly a factor of 7 decrease in impact
toughness[91]. In addition, interstitial solutes are known to lead to increased planarity of
slip (see below) which may contribute to many fatigue initiation modes. Because of such
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embrittlement effects, in the processing of titanium, and manufacturing of components using
this material, significant precautions must be taken to constrain variations in the content
of interstitial solutes such as oxygen. The consequence is significant increase in cost, and
challenges to the application of titanium in modern additive-manufacturing processes.

Despite the fact that the embrittling effects of interstitial impurities in α-Ti have been
well documented for more than four decades[92], consensus on the microscopic origins of these
effects has remained elusive. This situation inhibits the use of modern alloy-design strategies
to develop alternative compositions and processing strategies to mitigate the detrimental
effects of impurity content, with an ultimate goal of lowering cost and expanding usage
of this Ti more broadly for applications requiring lighter-weight structural materials. In
this chapter I propose an atomic-scale mechanism underlying the macroscopic embrittling
effect of oxygen in hcp titanium alloys, referred to as an interstitial shuffling mechanism
(ISM). This mechanism is identified through consideration of observed effects of oxygen
concentration and temperature on deformation microstructures in α-Ti, coupled with first-
principles calculations of generalized stacking-fault energies and atomistic simulations of
dislocation glide in the presence of oxygen solute (see Figure 6.1). The identification of
this ISM mechanism provides a framework for fundamental understanding of experimental
observations, and it offers a path forward in the design of titanium alloys that make use
of deliberate additions of interstitial solutes, but which display increased tolerance to small
variations in the content of these alloying elements.

6.2 Methods

6.2.1 Modified Generalized Stacking Fault Calculations

In generalized stacking fault energy calculations[66] a continuum of possible stacking
faults are considered, and an energy surface representing these is formed. The method pre-
sented here is modified to accommodate investigation of interstitial effects by performing
calculations in series (with each input configuration depending on previous output) and by
searching along a path in the direction of the Burgers vector through the stacking fault en-
ergy surface with relaxations permitted perpendicular to the Burgers vector. This approach
allows for examination of steric interactions between oxygen interstitials and dislocation
slip, isolated from dislocation core effects and without the need for expensive dislocation
quadrupole configurations. It also solves the issue of where to place the oxygen interstitial
that would arise if the entire stacking fault energy surface was calculated with each config-
uration independently initiated. In the generalized stacking fault construction a slip plane
of interest is selected, and supercell constructed that is long (at least 30 Å) in the direction
normal to this plane, with the perpendicular directions generally shorter. The supercell has
periodic boundaries in the directions contained in the slip plane, but is non-periodic (using
a vacuum layer of at least 15 Å in plane-wave based DFT calculations) perpendicular to the
slip plane. A single oxygen atom is placed in an octahedral site on the slip plane, which is
chosen to be midway up the supercell.

The calculation proceeds as follows:
(1) atom positions are fully relaxed,
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Figure 6.1: (a-f): Microstructures observed on the [21̄1̄0] orientation of temperature-controlled
deformation tests. The scale bar applies to all (a-f), and the arrows indicate the [011̄0] direction in
each panel. Only wavy slip was observed in pure Ti samples (a-c). Conversely, Ti-0.3O deformation
microstructures were very sensitive to temperature. At 77K, planar slip dominates (d). At 300K,
both wavy and planar slip modes are present (e). At 500K, only wavy slip was observed (f). The hcp
lattice with octahedral (white) and hexahedral (blue) sites, and prism, pyramidal, and basal planes
(red, blue, green) is shown in (g). (h) shows the orientation of (i-l). (i-l) demonstrate the key steps
in ISM. In (i), the first dislocation (cross symbol) on a prism slip plane encounters an octahedral
oxygen and slip is resisted. It eventually (j) overcomes this obstacle, and in the process shuffles the
oxygen to a hexahedral site. The dislocation continues slipping, and subsequent dislocations follow
behind (k). These dislocations see a reduced barrier from the hexahedral oxygen, and thus easily
slip on this plane (l).
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(2) atoms above the slip plane are displaced by a fraction of the Burgers vector relative
to those below,

(3) constrained relaxation of atomic positions,
(4) repeat (2)-(3) until slip is complete.
As the oxygen atom is on the slip plane, it is displaced by half the step size to avoid

biasing its relaxation. During constrained relaxation titanium atoms are allowed to relax
within the plane normal to the Burgers vector. The reasoning behind this is allowing as
much relaxation as possible most closely reflects realistic conditions. However, if atoms
are allowed to relax along the Burgers vector they will simply always undo the applied
slip. The oxygen atom is always permitted to relax without constraint. Lattice parameters
are kept fixed with the justification that in a bulk crystal the large undeformed volume
would constrain the dimensions of the area around the dislocation or stacking fault. The
modification introduced here to allow planar relaxation of the titanium atoms is an important
one, as the novel findings presented below only occur if this relaxation is allowed.

The energy (E) is output after each relaxation, and the generalized stacking fault energy
at each step is calculated as follows:

GSF (λ) = E(λ)− E(λ = 0)
A

(6.1)

where λ is the fraction of slip along the Burgers vector and A is the slip plane area per
supercell.

6.2.2 Dislocation Calculations

Calculations on quadrupolar dislocation configurations were initialized by introducing
two 〈a〉-type screw dislocations with Burgers vector a 〈112̄0〉

3 (of opposite sign for the two
dislocations) into a pure Ti supercell of the desired size using the method of Daw[62] and
accounting for the distortion from the dislocations as prescribed by Lehto and Öberg[63].

To measure dislocation bowing angles, I constructed six configurations employing the
method of Cai et al.[93], modified to include homogeneously strained layers at the surfaces
to suppress the image forces on the dislocation[94]. The supercells contained 1,806,336,
3,612,672, and 5,419,008 titanium atoms and 1 oxygen atom placed in the slip plane of the
dislocation (one case of octahedral and one of oxygen in basal-plane site was considered for
each supercell size). The three supercell sizes differed only in the length along the dislocation
line direction (which corresponded to the length between oxygen pinning sites), and were 281
Å, 563 Å, and 845 Å. I performed constant strain-rate MD simulations for each simulation
cell at zero temperature, with a strain-rate of 8.17× 106 s−1.

6.2.3 Computational Settings

All DFT calculations were performed using the Vienna ab initio simulation package
(VASP)[35, 36]. The projector-augmented wave (PAW)[26, 61] method was used, and the cal-
culations were not spin-polarized. Use was made of the Perdew-Burke-Ernzerhof (PBE)[25]
form of the general gradient approximation (GGA), and the PAW potential employed in the
calculations included the 3d24s23p6 electrons as valence states for titanium. For oxygen, the
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PBE potential with Wigner-Seitz radius 0.82 Å was employed. The second-order Methfessel-
Paxton smearing scheme[28] was used in the Brillouin-zone integrations with a width of 0.2
eV. The cutoff energy for the plane wave basis was 400 eV for modified GSF calculations
involving only titanium, 520 eV for modified GSF calculations which included oxygen atoms,
and 600 eV for calculations including dislocations. Electronic structure self consistency loops
were terminated at an energy tolerance of 10−5 eV, and ionic relaxation was terminated at
an energy tolerance of 10−4 eV for modified GSF calculations and force tolerance 0.02 eV/ Å
for dislocation calculations. K-point meshes for modified GSF calculations were generated
using the K-Point Grid Server[95] with minimum real-space grid distance of 37 Å, and for
dislocation calculations a 1 × 1 × 5 Γ-centered grid was used. These parameters have been
demonstrated to be sufficient to capture the relevant information about these dislocation
core structures[53].

Classical potential calculations were performed using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS)[42]. The modified embedded atom method[41]
(MEAM) potential of Hennig et al.[65] was used for pure Ti calculations, as well as the
closely related potential for Ti-O systems by Zhang and Trinkle[96]. This Ti-O potential has
been shown to represent the relative energies of the important interstitial sites for oxygen in
titanium (octahedral, hexahedral, and crowdion) accurately, as well as the barriers between
these sites[96]. Relaxation was performed at zero temperature and terminated when the
norm of the forces on all atoms was less than 10−4 eV/ Å.

6.2.4 Experimental Methods

The experiments described here were carried out entirely by Ruopeng Zhang. However,
because they form a crucial part of this chapter I will briefly describe his methods and include
the resulting images.

Pure Ti (with < 0.1 wt% O) and a binary Ti-0.3 wt%O alloy were obtained from TIMET
and annealed at 900◦C in vacuum for 24 hours to achieve similar grain size and evenly
distributed orientations. Both materials were polished and cut into pieces with a thickness
of 2 mm. These pieces were then ground down to a thickness of ∼150 µm. The samples were
divided into three different temperature groups and temperature-controlled deformation was
conducted to introduce dislocations. For the low temperature test, pure Ti and Ti-0.3O thin
foils were first submerged in liquid nitrogen and then bent at center to 30◦ after thermal
equilibrium had been established. For the room temperature test, pure Ti and Ti-0.3O thin
foils were bent at center to 30◦ at room temperature. For the high temperature test, pure Ti
and Ti-0.3O thin foils were first preheated to 150◦C and then covered by Crystalbond 509
to prevent further oxidation and achieve a more stable temperature profile. The thin foils
were continuously heated up to 230◦C and then bent at the center to 30◦. To validate the
experimental setup, a deformation-free pure Ti sample was also prepared to investigate the
amount of dislocations introduced by twin-jet polishing.

3 mm disks were cut from the regions near bend curves on the deformed thin foils. The
final polishing was conducted with a twin-jet electropolisher using a solution of 6% perchloric
acid and 94% methanol. The samples were polished at -40◦C for ∼5 minutes.

Transmission electron microscopy analysis was performed using a JEOL 3010 microscope
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with operating voltage of 300 kV.
Figure 6.2 shows the state of the pure titanium material without any applied deformation,

demonstrating that the vast majority of dislocations observed in the deformed material were
produced during the bending experiment.

Figure 6.2: Bright field image from a [21̄1̄3] orientation of the non-deformed pure Ti control sample.
The dislocation density is very low compared to the deformed samples.

6.3 Deformation microstructures in α-Ti: planar slip

Insights into the origin of the interstitial solute atoms on the mechanical behavior of
α-Ti can be achieved by consideration of the dislocation microstructures that result from
deformation of samples with varying oxygen content, and at varying temperatures. When
the oxygen content is increased, and/or the deformation temperature of oxygen-containing
samples is decreased, there is an increasing tendency for dislocations to exhibit planar slip,
i.e., the motion of large collections of dislocations on a narrow band of slip planes, with
infrequent cross-slip out of well-developed slip bands. The behavior is illustrated qualita-
tively in Figure 6.1, panels (a)-(f) which show microstructures of 〈a〉-type screw dislocations
obtained by deforming single-phase α-Ti alloys with two different oxygen concentrations, at
three different temperatures spanning 77 K to 500 K. Planar slip bands were only observed in
samples with higher oxygen concentration deformed at lower temperatures (see in particular
panels (d) and (e)). Similar observations have been reported previously in the literature
(c.f., Williams et. al.[97]).

The formation of planar slip bands is known to be correlated with the degradation
of a number of mechanical properties in α-Ti, including a reduction in formability[92],
toughness[98, 99], and fatigue life[100], and an increase in susceptibility to stress-corrosion
cracking[101]. Planar slip is associated with an observed decrease in work hardening[98] that
contributes to reduction in toughness. Further, the formation of planar slip bands lead to
pronounced stress concentrations at the edges of the associated dislocation pileups that can
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assist crack nucleation in fatigue and stress-corrosion cracking. Accordingly, if one seeks
to mitigate the effect of oxygen content on failure mechanisms in α-Ti, it is important to
understand the intrinsic origin of their role in promoting planar slip.

Planar slip is also observed in α-Ti alloys that contain high concentrations of the sub-
stitutional solute element Al. In this case, planar slip is understood to originate from a
phenomenon referred to as “short-range-order softening”[92, 102–104, 99]. This mechanism
is associated with the propensity of Al atoms in the α-Ti-Al alloy to form pronounced short-
range order (SRO). The lead dislocation in a pileup encounters increased resistance to glide,
as its advance leads to the destruction of the SRO, with an associated energy cost that is
quantified in terms of the magnitude of a so-called diffuse anti-phase boundary (DAPB).
After the passage of the first few dislocations on a given slip plane, the SRO is destroyed
(due to the finite correlation length associated with the ordering) and it is “softened” to
the motion of subsequent dislocations on the same plane. This softening mechanism thus
promotes the formation of planar slip bands.

While the SRO slip-plane softening mechanism is accepted for α-Ti-Al alloys, it is unclear
whether the same mechanism is operative in Ti-O alloys, due to the much lower concentration
of solute atoms in this latter case. To investigate this possibility, David Olmsted undertook
a detailed computational study of equilibrium SRO and the associated magnitudes of DAPB
energies in the α-Ti-O system, employing the framework of first-principles cluster-expansion
methods and Monte-Carlo simulations[105]. These calculations establish that the DAPB en-
ergies in samples with the highest oxygen concentrations representative of CP α-Ti are two
orders of magnitude smaller than those computed in Ref.[104] for α-Ti-Al alloys. The mag-
nitudes of DAPB energies in α-Ti-O alloys calculated by David are even smaller than those
computed in Ref.[104] for high-temperature processed and rapidly quenched α-Ti-Al alloys
where planar slip was not observed experimentally[106]. Therefore SRO softening is not the
mechanism underlying planar slip for α-Ti-O alloys. In the following section, I present results
of first-principles generalized-stacking-fault energy calculations and atomistic simulations of
dislocation slip in α-Ti-O that lead to the identification an alternative interstitial shuffling
mechanism underlying planar-slip behavior.

6.4 Interstitial shuffling mechanism identified through computational
simulations

I begin by considering the results of calculations of generalized stacking fault (GSF) en-
ergies, obtained by first-principles DFT calculations. In these calculations I used a modified
GSF method in which steps along the direction of the Burgers vector through the stacking
fault energy surface were simulated, with relaxations permitted perpendicular to the Burgers
vector. The lowest-energy path across the associated γ-surface in the direction of a dislo-
cation Burgers vector is related to the energy barrier for slip of that dislocation. The GSF
energy on the {1100} prism plane for pure Ti and Ti with 1

8 of the octahedral sites on the
slip plane occupied by oxygen impurities are shown in Figure 6.3a. The prism plane is of
interest because slip of 〈a〉-type screw dislocations on this plane represents the most active
dislocation slip system in CP-Ti[16].

For pure Ti the GSF energy increases rapidly up to a shift of λ = 0.35 (i.e., 0.35 of the a
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Figure 6.3: (a) Modified generalized stacking fault energy on the prismatic plane calculated with
DFT. (b-f) show oxygen position for selected steps, starting from octahedral (b). (c) shows the
distorted octahedral site at the maximum in energy. In steps (d) and (f) the oxygen is in a octahedral
site formed at the stacking fault. (e) shows the hexahedral site. For directions, see Figure 6.1.

lattice spacing), then decreases to a local minimum at λ = 0.5. The barrier to complete the
slip (i.e., from λ = 0.5 to 1) is symmetric. In comparison, for the results along the same slip
path in the system containing oxygen, the GSF energy is seen to increase more sharply during
the early stages of slip, until λ = 0.45 when a sharp drop in energy occurs. This energy drop
is associated with the shuffling of the oxygen interstitial out of the low-energy octahedral
site, to a site within the basal plane that is associated with the so-called hexahedral[107]
position in the undeformed hcp structure. In the hcp structure the oxygen atom has a much
higher energy in this hexahedral site than it does in the more open octahedral interstitial
position. However, the octahedral site becomes increasingly compressed during slip, while
the basal-plane site becomes more “open” along the shear path.

The oxygen shuffle and associated drop in energy in GSF calculations was reported previ-
ously in Refs.[58, 108, 109]. In the context of the present study, however, the most interesting
finding, not reported in earlier calculations, is that when slip is completed (λ = 1) the oxy-
gen interstitial remains in the basal-plane site (the barrier to return to the octahedral site is
890 meV), and the barrier to further slip is reduced significantly. Specifically, consider two
complete slip paths for the oxygen-containing system shown in Figure 6.3a: λ = 0→ 1, and
λ = 0.5 → 1.5. For both the energy barrier to slip corresponds to the difference between
the lowest and highest GSF energies along the path. In the first slip event the barrier is
36.5 meV/ Å2, and in the second it is reduced to 9.8 meV/ Å2. Because the basal-plane site
is part-way out of the slip plane, the steric hindrance to slip is significantly reduced by the
shuffle of the oxygen atom into this site.

As discussed above, the effect of the density of oxygen on the slip plane is examined
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by changing the supercell size in MEAM calculations. In Figure 6.3a it appears that the
shape and magnitude of the barrier to slip depend strongly on the oxygen density. However,
Figure 6.4 illustrates that the additional energy per oxygen atom is roughly independent of
density over the range considered. There is also good agreement between DFT and MEAM
calculations based on this measure. The low energy associated with the oxygen atoms at λ
= 0.5 and 1.5 illustrate that the octahedral site in the basal plane at these slip values is very
similar to the octahedral site between basal planes at λ = 0.
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Figure 6.4: Additional energy per oxygen atom in modified generalized stacking fault energy
calculation on the prismatic plane calculated with DFT (blue) and MEAM (red) potentials. Square
symbols indicate no oxygen atoms in unit cell, and circles, diamonds and triangles 1 oxygen per 8,
18 and 32 sites on slip plane.

After prismatic slip the next most active dislocation mode in CP titanium alloys is asso-
ciated with glide of 〈a〉-type screw dislocations on the {11̄01} first-order pyramidal plane[16].
For this reason the procedure described above was used to examine the effect of pyramidal
slip. The results of these calculations are shown in Figure 6.5. Similar to what was found
for prism slip, a sharp drop in energy occurs near λ = 0.5 corresponding to the oxygen atom
moving from a site between basal planes to a site directly in a basal plane. Again this shuffle
is not reversed when slip is completed and the oxygen comes to be in a hexahedral site at
λ = 1. This results in a reduction to the barrier for slip after the first dislocation similar
to that on the prism plane. Using DFT energies, in the first slip event the barrier to slip is
GSF(0.45) - GSF(0) = 46.9 meV/ Å2, and in the latter the barrier is GSF(0.8) - GSF(0.5)
= 11.3 meV/ Å2.

The GSF calculations thus suggest the following interstitial shuffling mechanism (ISM)
for slip-plane softening, illustrated in Figure 6.1i-l. The first slip event on a given slip
plane leads to displacement of oxygen impurities to the basal-plane site (Figure 6.1i-j). The
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Figure 6.5: (Top) Generalized stacking fault energy on the pyramidal plane calculated with DFT
(blue) and MEAM (red) potentials. Square symbols indicate no oxygen atoms in unit cell, and
circles and triangles 1 oxygen per 4 and 16 sites on slip plane. (Bottom) Additional energy per
oxygen atom.

displaced oxygen atoms remain in these positions, which leaves the barrier to further slip
reduced (Figure 6.1k-l).

One potential criticism of this method is that the relaxation of the titanium atoms is over-
constrained. Restricting their relaxation parallel to the Burgers vector direction is necessary
to some extent within the GSF model, because if they are allowed to relax in this direction
the stacking fault will never be formed. However, this restriction almost certainly influences
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the calculated energy barriers for slip, and it is possible that it also changes the behavior of
the interstitial atom. This second possibility would be a serious problem for this work. To
check this, there are at least two available options. One is to constrain only the titanium
atoms that are not near the interstitial oxygen, and hope to thereby reduce the effect of
this constraint on both the calculated energies and the behavior of the oxygen. I have done
this, but will not present the data because it falls almost exactly in line with that presented
already. Another option is to use the NEB method which has been employed throughout
this dissertation. Originally in undertaking this work, the NEB method was deliberately
avoided because to use it I would have to choose which interstitial site the oxygen will end
in. Had I done this, the ISM likely would not have been uncovered. In fact, calculations
along these lines have been done by Kwasniak et al.[110] for the titanium-oxygen system in
DFT. However, because they assumed the oxygen returns to the octahedral site their NEB
calculations force it to do so, and thus while they see it shift to the basal-plane site they do
not see that it would tend to remain there when this site becomes the hexahedral site.

However, once one is aware of the possibility of a permanent shuffling of the interstitial,
NEB calculations starting and ending with oxygen in the different interstitial sites can be
performed and compared. To demonstrate that NEB calculations are in agreement with the
modified GSF calculations, I performed three NEB calculations in the MEAM potential.
These are shown in Figure 6.6. In the first (reaction coordinate 0 → 1) the oxygen begins
and ends in the octahedral site. In the second (reaction coordinate 1 → 2) it begins in the
octahedral site and ends in the hexahedral site, as occurs in the modified GSF calculations
for the first slip event. In the third (reaction coordinate 2 → 3) the oxygen begins and
ends in hexahedral site, as the modified GSF calculations suggest is that case for subsequent
slip events. I have put the energies in the same units as GSF calculations, and it can be
seen that they are on the same order but slightly lower than those from the modified GSF
calculations, which makes sense given the greater degree of relaxation permitted. The key
point, however, is that forcing the oxygen to return to the octahedral site is unfavorable
relative to permitting it to switch to the hexahedral site. Furthermore, the slip event in
reaction coordinate 2 → 3 requires the least increase in energy, again agreeing with the
modified GSF calculations and the ISM formulation.

Given the limitations inherent in the GSF model, which does not explicitly consider the
geometry of a localized dislocation core, it is important to verify the key findings using
models that involve explicit consideration of realistic dislocation structures. This was done
in the present work employing both DFT calculations and classical atomistic simulations
based on a modified embedded-atom-method (MEAM) potential[41]. This proceeds in the
following sections.

6.5 Oxygen - Dislocation Interaction Energy Calculations

I began this verification by comparing DFT and MEAM results for dislocation-oxygen
interaction energies. In these calculations I considered a periodic quadrupolar arrangement
of dislocations, with oxygen atoms introduced either far from the dislocation or within the
dislocation core, and in both the octahedral and basal-plane sites. Taking an octahedral
oxygen atom placed as far from the dislocation as possible to be the reference state in both
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Figure 6.6: NEB calculations for GSF-type model in MEAM with 1 oxygen per 32 slip plane
octahedral sites. For step 0 → 1 one Burgers vector of slip is simulated, with the oxygen starting
and ending in the octahedral site. The local minimum at reaction coordinate 0.5 corresponds to the
oxygen briefly switching to the basal-plane site. In step 1→ 2 the oxygen begins in the octahedral
site and ends in the hexahedral site, or in other words is shuffled. In step 2→ 3 the oxygen begins
and ends in the hexahedral site. This step presents the smallest barrier to slip, indicating the same
softening effect observed in the modified GSF calculations.

the DFT and classical atomistic calculations, I find that the MEAM potential well reproduces
the dislocation - oxygen interaction energies for several different configurations, as presented
in Table 6.1. The MEAM potential also well reproduces the DFT results for GSF energies
shown in Figure 6.3. Given this finding, I proceeded by focusing on use of the MEAM
potential as the basis for direct molecular-dynamics (MD) simulations of dislocation glide.

Both DFT and MEAM calculations used supercells that were three Burgers vectors deep
and contained one oxygen atom, which ensures that oxygen atoms do not sit in directly
neighboring sites. The DFT (MEAM) calculation supercells contained 576 (9216) titanium
atoms. The MEAM calculations involving the hexahedral site underestimate the DFT energy
by approximately 30 meV/atom, which is less than the 100 meV underestimate for the
hexahedral oxygen energy found by Zhang and Trinkle without a dislocation[96]. The larger
overestimate of the energy of an octahedral oxygen inside the dislocation core is likely an
effect of the small size of the DFT simulation cell: introducing an oxygen atom into one of the
dislocation cores changes the structure of that core, and in the case of our DFT calculation
this induces a small reconfiguration of the other core.

This data reveals an important difference between the interactions of octahedral and
hexahedral oxygen atoms with 〈a〉-type screw dislocations in titanium: while the ground
state of the entire system is an octahedral oxygen far from the dislocation core, the energy of
a hexahedral oxygen atom within a dislocation core is lower than that of a hexahedral oxygen
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Table 6.1: Dislocation - oxygen interaction energies from DFT and MEAM calculations with
oxygen in octahedral and hexahedral interstitial sites far from and within dislocation cores.

Oxygen
Position

DFT
Octahedral
Energy

MEAM
Octahedral
Energy

DFT
Hexahedral
Energy

MEAM
Hexahedral
Energy

Outside
Core

0
(reference)

0
(reference)

1.158
eV/atom

1.128
eV/atom

Inside
Core

0.204
eV/atom

0.266
eV/atom

0.135
eV/atom

0.108
eV/atom

far from a dislocation core. Thus there is an attraction between hexahedral oxygens and 〈a〉-
type screw dislocation core. This is true in both DFT and MEAM, and is in agreement with
the local minima of the additional energy per oxygen atom shown in the Figure 6.4 at λ =
0.5 and λ = 1.5 and the maximum at λ = 1.0.

While the short-range repulsive interaction between octahedral oxygen atoms and screw
dislocation cores has previously been discussed[58], the attraction between hexahedral oxygen
and screw dislocation cores is a new finding warranting further investigation. To verify
this interaction and determine its range, a series of MEAM calculations was performed,
each with the oxygen in a different position relative to the dislocation. Some of these
interaction energies are shown in Figure 6.7. This plot verifies that there is zero long-range
interaction between the oxygen octahedral and the dislocation. For the hexahedral oxygen,
however, there is an attraction that extends some tens of Å, depending on the direction of
the separation.

One possibility is that the attraction is due to a long-range elastic interaction between
the strain field of the dislocation and the stress induced by the interstitial on the surrounding
titanium lattice. This can be checked by calculating the eigenstrain ηhex for the hexahedral
oxygen and calculating the interaction energy following Hanlumyuang et al.[111]. For the
purposes of comparison, I also computed ηoct. For both interstitials I used a supercell
containing 13824 titanium atoms and 1 oxygen atom to calculate the eigenstrain within the
MEAM potential. The resulting eigenstrains were:

ηoct =


0.07 0 0

0 0.07 0

0 0 0.25

 (6.2)

ηhex =


0.64 0 0

0 0.64 0

0 0 −0.38

 (6.3)

which both only contain diagonal strain components. The interaction energy (Eint) for a
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Figure 6.7: Dislocation – interstitial interaction energies for various positions of the oxygen intersti-
tials relative to the dislocation core. Each interstitial type was placed in a series of positions within
the same prism plane as the dislocation, and within the same basal plane as the dislocation. The
dashed lines show the approximate extent of the dislocation core region. The interaction energies
within the core reflect both slip and rearrangement of the core, along with any elastic interaction
that might be present.

point defect with eigenstrain η at position r relative to a dislocation with strain field ∆
is[111]:

Eint = −v0

2 cijklηkl∆ij(r) (6.4)

where v0 is the volume of the primitive unit cell. The method of Stroh[112] for anisotropic
elasticity theory was used to determine the strain field due to the dislocation. Using this in
conjunction with the interstitial eigenstrains and Equation 6.4 I find that there is no elastic
interaction with screw dislocations, as these have chiefly shear strain fields.

Similarly, the elastic dipole tensor (P ) can be calculated to determine the elastic interac-
tions. One convenient method for calculating the elastic dipole tensor is to use the forces on
atoms calculated by LAMMPS to calculate the Kanzaki force[113] (F ). This can be done by
relaxing the atomic positions with the interstitial, then removing it and finding the resulting
force: this force is the negative of the Kanzaki force. The elastic dipole tensor is then:

Pij =
N∑
k=1

(rki − rinterstitiali )F k
j (6.5)

where the sum is over non-interstitial atoms and the positions are those relaxed with the
interstitial in place. Using Equation 6.5, the elastic dipole tensors for octahedral and hexa-
hedral interstitial oxygen atoms in titanium were calculated for the same supercells as used
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for the eigenstrain calculations:

P oct =


2.71 0 0

0 2.71 0

0 0 5.72

 (6.6)

P hex =


12.48 0 0

0 12.48 0

0 0 4.19

 (6.7)

in eV units. Similar to Equation 6.4, the expression for the elastic interaction energy between
the strain field from a dislocation and the elastic dipole tensor due to an interstitial is[114,
115]:

Eint = −Pij∆ij(r) (6.8)

However, this calculation still indicates no coupling with strain field calculated via Stroh
theory for 〈a〉-type screw dislocations.

So, it appears the unexpected elastic interaction does not arise from any unusual strain
field about the hexahedral interstitial. The other option is that the strain field around the
dislocation differs from that predicted by my linear elasticity model, and in a way that
causes it to couple to hexahedral oxygen but not octahedral oxygen. This additional field
has been examined before, and is referred to as the dislocation core field[116–118]. This
field results from terms in the displacement field resulting from elasticity theory that are
dropped from the expansion[119, 117]. Rather than compute the total strain induced on box
by the dislocation to investigate this possibility as done by other groups[117, 118], however,
I use OVITO to compute the elastic strain at each atom[120] in the supercell containing the
dislocations but no oxygen interstitials. This reveals substantial diagonal components of the
strain due to the dislocations, whereas Stroh theory predicted these to be near zero.

Equation 6.8 is then employed with these strains in place of ∆. This allows for a mapping
of predicted elastic interaction energies at every titanium atomic position in the supercell.
Of course the interstitials would sit between these atoms rather than directly on them, but
this still provides a reasonable prediction of the interaction. These maps are presented in
Figure 6.8.

Figure 6.8 reveals the relatively long-range interaction between hexahedral oxygen and
the dislocation core field, while there is minimal interaction with the octahedral oxygen
except within the dislocation core itself, in good agreement with the direct interaction energy
calculations shown in Figure 6.7. A few useful points of comparison between the direct
interaction energy calculation and the calculation using Equation 6.8:

1. the difference in interaction energy between the octahedral site midway between dis-
locations on the basal plane and the octahedral site midway between dislocations on
the prism plane is calculated directly to be 1 meV, and predicted to be 3 meV,



83

Figure 6.8: Elastic interaction energy (calculated with Equation 6.8) for the eigenstrains due to
oxygen interstitials in the atomic strain field due to a dislocation quadrupole calculated from relaxed
MEAM simulation. (Top) Interaction between octahedral oxygen and the dislocation strain field.
(Bottom) Interaction between hexahedral oxygen and the dislocation strain field.

2. the difference in interaction energy between the hexahedral site midway between dis-
locations on the basal plane and the hexahedral site midway between dislocations on
the prism plane is calculated directly to be 21 meV, and predicted to be 16 meV,

3. the difference in interaction energy between the lowest-energy octahedral site in the
prism plane containing the dislocations and the octahedral site midway between dislo-
cations on the prism plane is calculated directly to be -5 meV, and predicted to be -20
meV,

4. the difference in interaction energy between the lowest-energy hexahedral site in the
prism plane containing the dislocations and the hexahedral site midway between dis-
locations on the prism plane is calculated directly to be -175 meV, and predicted to be
-154 meV.

These points illustrate that the predictions based on the core strain field are in good
agreement with the direct calculations, and predict a medium-range attraction between
hexahedral oxygen and the dislocation core, but negligible interaction between octahedral
oxygen and dislocation. The predictions become less accurate very near to the core, but this
is not surprising because the interactions are predicted at titanium rather than interstitial
sites and the strain varies more rapidly nearer to the core.
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6.6 Molecular Dynamics Simulations

The MD simulations were designed to investigate whether the two main features of the
DFT-based GSF energy calculations, related to the proposed interstitial softening mecha-
nism, namely: (1) that interstitial octahedral oxygen atoms on a slip plane are shifted to
basal-plane sites and remain in these sites when a dislocation passes, and (2) that the barrier
for subsequent dislocation slip when the oxygen atom is displaced to the basal-plane site is
significantly reduced. These effects were explored in separate MD simulations using different
dislocation configurations.

To investigate the first effect, i.e., interstitial shuffling induced by dislocation glide, I
constructed a quadrupolar configuration of 〈a〉-type screw dislocations in a simulation cell
containing 491520 titanium atoms and 4915 oxygen atoms (initialized in octahedral sites),
30 Burgers vectors (88 Å) in depth along the dislocation line direction. Use of a sufficiently
deep supercell is critical, as insufficient dislocation line length in the supercell results in
oxygen-promoted changes of the dislocation core structure, involving a spreading on the
basal plane, followed by rapid cross-slip to avoid oxygen interstitials.

Molecular dynamics simulations were performed at room temperature (300 K), imposing
a shear strain rate of 8 × 107 s−1. The strain was oriented to induce prismatic slip of the
dislocations. This process was continued until the dislocations slipped through the oxygen
interstitials, crossed the periodic boundary and returned to the original positions. During
this process, more than half of oxygen atoms encountered by a dislocation are observed to
shuffle from octahedral sites to hexahedral sites and they remained in those positions for
the duration of the simulation. The results thus support the first key finding from the GSF
calculations.

The second type of MD simulation was designed to investigate the magnitude of slip-plane
softening resulting from the shuffle of oxygen impurities from octahedral to hexahedral sites.
In these simulations I investigated the maximum bowing angles of dislocations pinned at
hexahedral and octahedral oxygen for three different spacings of the solute atoms along
the dislocation line. The bowing angle θ is measured as the angular displacement of the
dislocation line from the ideal straight screw dislocation line direction. Following Foreman
and Makin[121], I assume this maximum bowing angle depends only on the strength of the
obstacle and the dislocation line tension T (with the latter assumed constant). When dis-
location bows around an obstacle, the component of its line tension that is exerted on the
obstacle is 2T sin(θ)[121]. The use of isolated interstitials in this way allowed for more accu-
rate measurement of the obstacle strength than obtainable from calculations involving many
interstitials. Additionally, the previously-discussed high strain-rate calculations resulted in
some debris trailed behind the dislocation, which hindered second passes through the same
slip plane.

The bowing angle is most readily observed in a simulation supercell that contains only one
dislocation. Therefore, I constructed three supercells containing one dislocation, differing in
the length along the dislocation line direction. For each supercell I performed two strain-
rate controlled MD simulations, one each with a single octahedral or hexahedral oxygen in
the dislocation slip plane. I then used the Dislocation Extraction Algorithm (DXA)[84] in
OVITO[85] visualization software to determine the position and shape of the dislocation at
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each step of the simulation. The maximum angle of the dislocation at the oxygen interstitial
position (θo for octahedral and θh for hexahedral) was thus determined.

I find the maximum dislocation bowing angles to be approximately constant with respect
to the interstitial spacing. For octahedral oxygen the maximum angle is between 11.4◦ and
11.8◦, and for hexahedral it is between 7.1◦ and 7.8◦. Table 6.2 shows all calculated values.

Table 6.2: Maximum bowing angle of dislocations pinned at octahedral and hexahedral oxygen
atoms with three different spacings. The relative strength of the obstacles is given by the ratio of
the sines of their bowing angles.

Interstitial Spacing θo θh
sin(θo)
sin(θh)

281 Å 11.8◦ 7.8◦ 1.51

563 Å 11.4◦ 7.1◦ 1.59

845 Å 11.8◦ 7.6◦ 1.55

Figure 6.9 shows corresponding images of the dislocation lines, with the adaptive Com-
mon Neighbor Analysis (a-CNA)[122] used to color the titanium atoms. Because the stress
on the simulation box was very similar under each of the conditions shown (in all cases ∼240
MPa), the ratio of the pinning strengths of the octahedral and hexahedral oxygen is equal to
the ratio of the sine of the maximum bowing angles. This ratio is consistent when the inter-
stitial spacing is varied, and indicates that octahedral oxygen presents a barrier to prismatic
〈a〉-type screw dislocation slip that is 155% of that presented by hexahedral oxygen. The
MD results thus confirm the second feature of the ISM, namely that shuffle of the oxygen
from octahedral to hexahedral sites leads to slip-plane softening, since the impurities in the
latter sites provide a lower pinning strength.

To put the results from the simulations that led to Figure 6.9 in further context, the
ratio of pinning strengths for the obstacles is sin(θo)

sin(θh) . The ratio of critical stresses scales as
( sin(θo)

sin(θh))
3/2[123]. Thus, the 1.55 times higher pinning strength of the octahedral site requires

1.93 times higher stress to overcome for equal obstacle concentrations. For an oxygen con-
centration of 0.3 wt% (as in the samples used to obtain the images in Figure 6.1), I find
that τc = 175 MPa for octahedral oxygen and 91 MPa for hexahedral oxygen, following the
analysis of Hanson and Morris[123]. These stresses (and the difference between them) are
similar to the yield stresses for CP-Ti alloys[92], supporting the validity of the atomistic
calculations presented here.

Along with the increased bowing angle associated with the oxygen impurities in an octa-
hedral relative to basal-plane hexahedral site, another difference between the configurations
shown in Figure 6.9 is the location of the oxygen relative to the dislocation when maximum
bowing occurs. For the octahedral site (Figure 6.9a and c) the oxygen is at the front of the
dislocation line, resisting slip of the line through the site. For the hexahedral site (Figure
6.9b and d) the oxygen trails the dislocation, preventing it from breaking free of the intersti-
tial. This is related to the attractive interaction between the hexahedral site and an 〈a〉-type
screw dislocation. I observe that this attraction leads to negative dislocation curvature early
in the simulation, with the dislocation segment near the hexahedral oxygen atom advancing
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Figure 6.9: Dislocation position as determined by DXA for octahedral (a) and hexahedral (b)
interstitials with spacing 281 Å at the critical bowing angle. The coloring of titanium atoms is
by a-CNA, with hcp lattice red and defect region orange. (c) and (d) show a series of timesteps,
with the red dislocation lines represent the critical configuration for either case. The large arrows
indicate the slip direction.

more rapidly than the rest of the line. This negative curvature reaches comparable values
to the maximum positive curvature, as shown in Figure 6.9b. By contrast, oxygen in the
octahedral site displays a repulsive interaction with 〈a〉-type screw dislocations, as discussed
previously in the literature[58].

6.7 Discussion in context of experimental observations

The Interstitial Shuffling Mechanism for slip-plane softening provides a framework to
understand a number of observations related to the effect of oxygen interstitials on the
mechanical behavior of Ti, as illustrated in Figure 6.11.

Many experimental observations[16, 97, 92, 102, 103, 124] indicate that increasing oxygen
content and/or decreasing temperature lead to an enhanced tendency towards planar slip
in α-Ti alloys. Consider first the oxygen concentration effect. Dislocations in a slip plane
that has already been softened through the ISM will experience an increased preference to
continue slipping in that plane with increasing oxygen concentration, because the barrier
to dislocation motion in alternative slip planes increases with increasing density of strong
octahedral pinning sites.

Turning next to the effect of temperature, thermal fluctuations will cause some of the
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oxygen atoms that have been shuffled by dislocations into the high-energy hexahedral sites
to hop back into the stable octahedral position. This hexahedral to octahedral hopping will
increase the resistance to slip in a given slip band, and therefore decrease the tendency to
planar slip. The extent to which these oxygen-atom hops are effective will depend strongly
on the temperature, through the normal Arrhenius dependence of the hopping rate, and
will be increasingly effective at mitigating the slip-plane softening effect with increasing
temperature. The characteristic time (thop) for a hexahedral oxygen to diffuse back to an
octahedral site at temperature T can be estimated given the attempt frequency (ν) and
energy barrier (E):

thop =
(
νe

E
KbT

)−1

. (6.9)

I compute thop using values for ν and E calculated byWu and Trinkle[125], and compare to
the typical time between dislocations passing an interstitial, tslip. Consider the representative
element containing one dislocation shown in Figure 6.10. The element height (L) is the
average spacing between active slip planes, and its width (d) is the average spacing between
dislocations on one of these slip planes. The dislocations are assumed to slip at velocity v.
Thus, one passes a given point on the slip plane once every tslip = d

v
seconds.

Figure 6.10: Representative element used to estimate slip event rate. L is the average distance
between active slip planes in the system, and d is the average distance between dislocations on an
active slip plane. These dislocations move at velocity v.

The picture described above suggests an interplay between the athermal slip-induced shuf-
fling of oxygen to hexahedral sites, which leads to slip-plane softening, and thermal recovery
assisted by hopping of oxygen back to octahedral positions. Deformation microstructures
featuring planar slip are anticipated when tslip < thop.

Previously reported calculated energy barriers and attempt frequencies[125] associated
with oxygen hopping from hexahedral to octahedral sites in α-Ti suggest that at room
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temperature thop is on the order of tens of seconds. For material undergoing planar slip, this
is much slower than tslip, which I estimate to be on the order of 10−5 seconds under typical
conditions (i.e strain rate of ∼10 s−1 and ∼1 µm between active slip planes). Thus, at these
modest strain rates at room temperature the tendency for planar slip can be understood.
By contrast, due to the rapid decrease in thop with increasing temperature, the tendency for
planar slip will be reduced at higher temperatures. For example, at 500K, thop is on order
of 10−5 seconds, similar to tslip and thus no planar slip is predicted or observed. The inverse
interplay between temperature and composition on the tendency for planar slip, suggested
by the ISM picture, is illustrated in Figure 6.11 and is qualitatively consistent with reported
experimental observations[97].

Figure 6.11: Comparison between characteristic time (left axis) for oxygen diffusion from the
hexahedral site to the octahedral with typical time (left axis) between dislocations on a slip plane
under different strain-rates (right axis), assuming 1 µm spacing between active slip planes. For
temperature and strain rate conditions below the curve I predict planar slip to occur, provided the
system contains sufficient oxygen.

The ISM picture also suggests that the tendencies for planar slip will be strongly depen-
dent on strain rate. In Figure 6.11, I compare thop with tslip to estimate what strain-rate and
temperature combinations are likely to result in planar slip based on ISM, provided there
is sufficient oxygen in the alloy. Combinations that fall into the lower region are likely to
exhibit planar slip because the dislocation velocity required to accommodate the strain rate
outpaces the diffusion of oxygen atoms from the hexahedral site to the octahedral. In the
upper region the temperature is high enough and strain rate low enough that oxygen atoms
tend to move back to the octahedral site between passing dislocations, and therefore planar
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slip is not predicted by ISM.

6.8 Outlook for alloy design

The ISM identifies that a key factor in mechanical response is the timescale for an oxygen
interstitial solute to hop out of the hexahedral back into the octahedral site (thop). If this
time scale is fast relative to the rate of dislocation passage during deformation (tslip), planar
slip can be mitigated. The ISM thus presents a principle for the design of α-Ti alloys with
decreased tendencies for embrittlement due to increasing oxygen content. Specifically, if
through alloying thop can be decreased, the temperatures above which planar slip is avoided
can be reduced (i.e., the black line in Figure 6.11 moved to lower temperatures). Work by
Wu and Trinkle[126] suggests that these possibilities might be realized by alloying. In their
study of substitutional solute effects on hopping rates they calculated the effect of many
metals on the relative stability of the octahedral and hexahedral interstitial sites for oxygen
in titanium. Their study also found that Al solutes increase the barrier to oxygen motion
from the hexahedral to octahedral site, while Sc solutes lower this barrier, based on DFT
calculations. This strategy thus suggests a framework for designing Ti alloys that are more
tolerant to increasing interstitial content, and which may behave in a more ductile manner
even under higher strain rates.

More generally, the ISM identified here may apply to other alloy systems containing inter-
stitial solutes that interact strongly with the relevant dislocations. The basic requirements
for the ISM to be operative are only two interstitial sites differing in dislocation pinning
strength, and the possibility for dislocations to shuffle interstitials from one of these sites to
the other. Due to the significant deleterious effects of planar slip on toughness, it is valuable
to identify mechanisms underlying this phenomenon and associated pathways to control
them. In this context, the ISM identified here contributes generally to the fundamental
knowledge of possible origins for embrittlement due to interstitial solutes, and provides a
framework for the design of improved Ti alloys in particular.
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Chapter 7:

β to α Transition at Screw Dislocations

This chapter is something of a change in pace from those that have preceded it. While
the focus remains on atomistic simulations of titanium, here I discuss phase transformation
rather than plasticity. Some constants remain: the same MEAM potential for titanium is
used, and the simulations involve quadrupolar arrangements of screw dislocations. Others
have changed: the dislocations are in the bcc phase rather than hcp, they are of interest as
heterogeneous nucleation sites rather than carriers of plasticity, and the temperature range
of the simulations is much higher.

This chapter involves work that was performed in collaboration with other students in
the Chrzan research group, which has been submitted for publication with Physical Review
Materials and is reproduced here with the permission of coauthors. Ian Winter assisted with
the elastic interaction calculation in Equation 7.5, which was the most important tool used to
make the predictions about nucleation to compare to my simulations. Henry Geerlings and
Daryl Chrzan worked through the elasticity theory required to construct the coexistence
supercells used for simulations in one of the checks on the calculation of the transition
temperature. Joseph Lin performed the preliminary simulations that lead to the interesting
observations reported here.

7.1 Introduction

Titanium alloys are of obvious technological importance due to their often superior me-
chanical properties. These properties are engineered into the material through a variety of
alloying additions and processing routes. A key aspect of this engineering is that Ti alloys
have multiple phases accessible at room temperature - the α-phase (hexagonal close packed
- hcp), the β-phase (body centered cubic - bcc) and the ω-phase (simple hexagonal). Alloy
engineering often exploits these phase transitions (or seeks to suppress them) to improve al-
loy properties, and consequently the mechanisms by which the phase transformations occur
are of interest.

Nucleated phase transitions offer the opportunity to influence the kinetics of the phase
transformation. More specifically, first-order transitions can nucleate homogeneously within
a (nominally) translationally invariant system and they can nucleate heterogeneously upon
some defect within the transforming system, the latter of which is often overwhelmingly
preferred. For example, suppression of heterogeneous nucleation sites for solidification can
lead to substantial supercooling of liquids. Thus, understanding the heterogeneous nucleation
paths available to the system can allow for control of a first-order phase transformation
of interest. In pure Ti, the β to α phase transition is expected to proceed via the well-
known Burgers path[127]. The Burgers path consists of both a strain and shuffling of atoms,
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described in more detail in Section 7.4. This path, however, involves overcoming an energy
barrier, and hence the transition is first-order.

Due to the technological importance of α/β-Ti alloys, the α to β and β to α transi-
tions in Ti have been studied extensively in experiment[128–137] as well as in phase field
simulations[138–140]. The consensus among these previous studies is that the orientations
of post-transformation α Ti grains are selected by the Burgers relation. Several of the stud-
ies which employed electron backscattering diffraction (EBSD) or X-ray diffraction further
concluded that there is selection among the possible orientation variants resulting from the
Burgers path[128–131]. In particular, Gey et al. have shown that increasing the degree of
hot rolling in the β phase increases the degree of variant selection, and that the α variants
preferentially selected are linked to the most active slip systems in the parent β grain[129].
Qiu et al. used anisotropic elasticity theory as well as phase field simulations to show that
the stress fields around dislocations in the β phase interact with α nuclei, and that this
elastic interaction dominates the variant selection during nucleation[138].

Atomistic simulations of the β to α transition around dislocations are presented, with
findings that are in good agreement with the preceding experimental and phase field work.
In this paper, the influence of 〈1 1 1〉β-type screw dislocations on the β to α transition
in pure Ti is studied using molecular dynamics (MD) employing an empirical potential.
Specifically, dislocations are introduced into the β-phase at high temperatures. The system
is then cooled to temperatures below the β to α phase transition temperature, and allowed
to evolve. Given sufficient time, the system transforms to the α-phase. The simulations thus
enable the dynamics of the transition to be studied in detail. Simulations are performed at
several temperatures and the nucleation and growth rates calculated across the temperature
range 1050 K to 1250 K1.

In the simulations, the α phase initially nucleates from the β phase as plates which have
an edge terminated at a dislocation core. In the very initial stages of nucleation, the habit
planes of these plates are determined by the stress field of the dislocations. However, as the
nuclei grow, their habit plane shifts. Further, evidence of tent-like structures and 3-variant
clusters as previously reported in experiment and phase field simulations[132, 137, 138] is
found. These atomic scale simulations show that existing dislocation microstructures have
the potential to alter dramatically the β to α transition kinetics and morphologies.

In the following, these results are presented in more detail. Section 7.2 introduces the
various methods employed, including calculation of the β to α transition temperature by
non-equilibrium thermodynamic integration. Section 7.3 illustrates the predictions of Ian
Winter’s elasticity theory modeling and compares to the results of my MD simulations of
the β to α phase transition. Next I discuss the findings for transformation rates, habit
planes, and final microstructures in Section 7.4. Finally, the conclusions are presented.

1Below I show that the equilibrium α→ β transition temperature is approximately 1700 K. Hence these
temperatures represent a substantial undercooling.
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7.2 Methods

7.2.1 MEAM Potential Validation

Molecular dynamics calculations are performed using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS)[42]. For our simulations of titanium, the modified
embedded atom method (MEAM) potential for titanium of Hennig et al.[65] is used. The
titanium potential is analyzed to determine its β to α phase transition boundary. Using a
non-equilibrium thermodynamic integration technique[141], the free energies of β- and α-
phases can be calculated with small errors for a range of relevant temperatures at which the
phases are at least metastable. The free energies of both phases are determined from 1200
K to 2000 K at zero pressure. All simulations employ 1 fs timesteps.

Determining the free energies by non-equilibrium thermodynamic integration requires
three steps. First, the spring constants for harmonic approximations to the β- and α-
phases are calculated within an NPT ensemble with a Nosé-Hoover barostat and Langevin
thermostat at zero pressure and 1200 K, averaged over 10 ps. For an equiaxed cell with
∼40,000 atoms the spring constants are 1.36 eV/ Å2 for β and 2.17 eV/ Å2 for α.

The second step is integration along the Frenkel-Ladd path[142] to find the free energy of
each phase at the lower limit of the temperature range of interest, with a NVT ensemble and
a Langevin thermostat set to 1200 K. The switching procedure took 20 ps and equilibrated
for 4 ps. From this, the free energies at 1200 K for β- and α-phases are determined to be
-5.368 eV/atom and -5.379 eV/atom, indicating that α is stable at this temperature.

Using these values as reference points, the remainder of the non-equilibrium free energy
curves are determined using reversible scaling[143, 144] of the MEAM potential in the third
step. Reversible scaling is done with a NPT ensemble with a Nose-Hoover barostat and a
Langevin thermostat from 1200 K to 2000 K. The forward and backward simulations last
100 ps. To ensure that a sufficiently large supercell is used, the transition temperature is
calculated for multiple supercell sizes. β supercells with side lengths which are multiples of 3
conventional bcc unit cells in the range 9×9×9 (1458 atoms) to 30×30×30 (54000 atoms)
are used. For each size, a corresponding α supercell is chosen to be approximately equiaxed
and have a similar number of atoms to the β supercells. The free energy curves calculated
for the largest supercells are shown in Figure 7.1a, and yield a transition temperature of
1694 K. The β to α transition temperature is found to vary with supercell size, as shown in
Figure 7.1, but our largest simulations indicate a value of ∼1700 K.

This value differs significantly from that given by Hennig et al. (1250 K), the creators of
this MEAM potential[65], which was calculated only from homogeneous transformation from
β ot α in very small supercells. Due to this discrepancy, additional coexistence calculations
were undertaken to verify accuracy of the reversible scaling method calculation. In these
the interface between the two phases was designed to be coherent and to reflect the elastic
constants of both phases at high temperature, such that it would minimally influence phase
evolution. These calculations begin with a supercell containing half α and half β titanium,
meeting at an interface that satisfies the Burgers orientation relation. The elastic energy of
the combined system can be expressed as

E = Vα
2 Cα

ijklη
α
ijη

α
kl + Vβ

2 Cβ
ijklη

β
ijη

β
kl, (7.1)
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Figure 7.1: (a) Free energy difference (free energies of individual phases in inset) calculated using
the reversible scaling method for the hcp and bcc phases for the 30 × 30 × 30 bcc unit supercell
size. (b) Variation of the transition temperature with supercell size.

where Vα (Vβ) refers to the volume of the α (β) phase, Cα (Cβ) corresponds to the elastic
constants of the respective phases in the given frame of reference, and ηα (ηβ) refers to the
strain applied to the given phase. By applying the constraint that the lattice vectors parallel
to the interface must match for both phases, the supercell can be constructed by solving for
the strains ηα and ηβ. This can be expressed as a system of equations of the following form:
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aα0 (1 + ηα11) = aβ0 (1 + ηβ11), (7.2a)
aα0 (1 + ηα22) =

√
2aβ0 (1 + ηβ22), (7.2b)

∂E

∂ηα33
= 0, (7.2c)

∂E

∂ηβ33
= 0, (7.2d)

∂E

∂ηα11
= 0, (7.2e)

∂E

∂ηα22
= 0, (7.2f)

with aα0 and aβ0 being the equilibrium lattice parameters of the α and β phases.
NPT-ensemble molecular dynamics simulations at temperatures ranging from 1200 K

to 1800 K are performed using these coexistence supercells containing 17600 atoms. At
temperatures 1700 K and below, the supercell transforms entirely to α. At temperatures
1712.5 K and above, the supercell transforms entirely to β. This indicates a transition
temperature slightly above 1700 K, which is in excellent agreement the reversible scaling
calculations.

The large difference between the temperature at which α becomes the more stable phase
(1700 K) and the temperature at which β rapidly transforms to α homogeneously in very
small (432 atom) supercells (1250 K) highlights the usefulness of non-equilibrium thermo-
dynamic integration for potential validation. The following sections detail simulations of
the β to α transition, which are performed at temperatures in the range 1050 K to 1400 K,
well below the transition temperature for this potential. Unfortunately the large difference
between the β to α transition temperature in this MEAM potential and that of actual ti-
tanium (1155 K[145]) means the behavior at a given temperature in our simulations cannot
be directly compared to that in experiment at the same temperature. Nevertheless, one can
reasonably expect that the qualitative properties of the transition will be well represented
by the potential.

7.2.2 Dislocation Supercell Construction

All dislocation calculations use periodic screw dislocation arrays arranged such that each
dislocation has four nearest neighbor dislocations, and is opposite in Burgers vector direction
to its nearest neighbors. These arrangements are known as quadrupolar, and minimize the
elastic energy of a periodic dislocation array due to cancellation of long-range stress fields[62].
The line direction of all dislocations is [1 1 1]β, and therefore the Burgers vectors for the screw
dislocations are ±a0

2 [1 1 1]β. Dislocation-containing supercells are oriented such that [1 1 2̄]β
is parallel to the x-axis, the line direction/Burgers vector [1 1 1]β is parallel to the y-axis,
and [1̄ 1 0]β is parallel to the z-axis. Supercell lattice vectors are tilted to account for the
distortion from the dislocations as prescribed by Lehto and Öberg[63]. Initial displacements
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are determined using the method of Daw[62], which yields good starting points that account
for elastic anisotropy while only requiring lattice parameters and elastic constants as inputs.

The quadrupolar arrangement used in this paper had dislocations of alternating sign on
the

(
1̄ 1 0

)
β
and

(
1 1 2̄

)
β
planes (i.e. along the x and z directions). The superlattice vectors

in these directions are 244 Å and 141 Å. For the majority of the calculations presented the
superlattice vector along the dislocation line direction is 46 Å and the supercell contained
86,400 atoms.

Stabilization of the dislocations within the supercell proved to be challenging. The posi-
tions produced from our linear elasticity method resulted in nearly immediate annihilation of
the dislocations at any simulated temperature. Relaxation of the positions at 0 K can often
solve this type of issue, but β-Ti is not stable at 0 K. To get around these issues, I scaled the
lattice vectors and atomic coordinates to those of tungsten, and relaxed the supercell to a
force tolerance of 10−4 eV/ Å within a tungsten Finnis-Sinclair EAM potential[146] for which
bcc is the stable phase from 0 K to at least 1350 K. With the relaxed cell and still within the
tungsten potential, an NPT ensemble with a Nose-Hoover barostat and Langevin thermo-
stat set at 0 pressure and 1350 K is used to achieve an equilibrated state over 100 ps. This
equilibrated configuration is then scaled to the lattice parameters of titanium (estimated via
molecular dynamics without dislocations) and the atoms converted to Ti.

Structural analysis of the dislocation cells before and after transformation is performed
using the OVITO software package[85]. Chiefly the polyhedral template matching (PTM)[18]
tool is used to identify the local structure as well as orientation at each atomic site. Averaging
of the atomic coordinates over 100 fs is performed within LAMMPS to smooth thermal
vibrations and allow for PTM calculation.

7.3 Results

7.3.1 Elasticity Theory Analysis

This subsection contains work that was chiefly performed by Ian Winter, though the
current formulation and results are my own. I am presenting this elasticity theory model
because it forms a key point of comparison with my MD simulations in this chapter.

The prediction of variant selection from elasticity theory is not a new idea. Cahn used
isotropic elasticity theory to analyze the nucleation of second phases on dislocations[147],
while Thomas and Nutting proposed that the preferred variants to nucleate from a dislocation
are those that best accommodate the strain field of a dislocation[148]. More recently, Qiu
et al. considered the variant selection of α precipitates nucleating from both edge and screw
dislocations in β-Ti using both anisotropic elasticity theory and phase field modeling[138].
They found that during nucleation the preferred variants are those with the most nega-
tive elastic interaction energy associated with the strain field of the dislocation. However,
they saw that the most dominant variants in growth were those for which the habit plane
was oriented nearly parallel with the dislocation line, an idea first proposed by Kelly and
Nicholson[149].

Here, only the preferential nucleation of variants on the dislocation are considered. These
variants will have the geometry imposed by our few-layer supercells, and therefore make for a
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good point of comparison. This geometry also represents the observations in the early stages
of nucleation in our many-layer supercells. As a result, an approach similar to Thomas and
Nutting’s proposed mechanism of variant selection is used in an anisotropic elasticity model
to identify the variants most likely to nucleate from a screw dislocation in β-Ti, with the
strain field of the straight 〈1 1 1〉β-type dislocation generated from continuum anisotropic
linear elasticity theory[150].

Burgers Transformation Path

The Burgers path consists of both a strain and shuffling of atoms[127]. The shuffling
of atomic {1 1 0}β planes is associated with the N-point phonon while the transformation
strain can be represented as eigenstrains for the orientations a = 〈1 1 0〉β, b = 〈0 0 1〉β, and
c = 〈1 1̄ 0〉β. The eigenstrains consist of a compressive strain along 〈0 0 1〉β and a tensile
strain along 〈1 1 0〉β. The Burgers transformation results in the α/β orientation relation
{1 1 0}β||(0 0 0 1)α (see Table 7.1 for all variants).

The lattice parameter of β-Ti is found to be aβ = 3.32 Å at 1200 K, while the lattice
parameters for the α phase are estimated to be aα = 2.97 Å and cα = 4.77 Å. The
Lagrangian strain is written in Einstein summation notation as

εjk = 1
2 (FmjFmk − δjk) . (7.3)

Here F is the deformation gradient, defined as Fmj = ∂xm

∂Xj
(x corresponds to the current

configuration and X the reference configuration), and δjk is the Kronecker Delta. Setting
the lattice vectors of the reference frame to be those defined above, the transformation strain
is

εT =


0.101 0 0

0 −0.099 0

0 0 0.016

 . (7.4)

Dislocation Induced Nucleation

To predict the variants that will nucleate on the dislocation and the orientations along
which they will grow, a comparison was made between the strain associated with the Burgers
transformation path and the stress field resulting from a single 〈1 1 1〉β-type dislocation a
distance rcore away from the center of the dislocation, with rcore being an estimate for the
dislocation core radius using elasticity theory[151]. This was done by calculating the elastic
energy density, taking into consideration the orientation of the α nucleus to the dislocation
as well as the orientation relationship between the β and α phases. As shown in Table 7.1,
there exist 12 unique variants associated with the Burgers transformation between the β
and α phases[127, 152]. With respect to the nucleation of a general α precipitate, there are
six unique habit planes in the β phase for which there are two unique variants. These two
variants are related by a π

2 rotation perpendicular to the habit plane. The elastic interaction
between an Eshelby inclusion with strain equal to the Burgers transformation strain for
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variant n (Equation 7.4) and the stress induced by a [1 1 1]β-type screw dislocation as a
function of angle θ around the dislocation (θ = 0 corresponds to the direction [1 1 2̄]β and
θ = π

2 to the direction [1 1̄ 0]β) can be assessed by computing the energy density eintn (θ),
following Qiu et al.[138]:

eintn (θ) = −σij(θ)ε0ij(Vn) (7.5)

here σ(θ) is the strain induced by the screw dislocation at radius rcore = 5.90 Å from the
dislocation origin and ε0ij(Vn) is the Burgers transformation strain associated with the nth
variant.

Table 7.1: List of the 12 unique variants for the Burgers orientation between the α and β
precipitates[127, 152].

Variant Plane Relation Direction Relations

V1 (1 1 0)β ‖ (0 0 0 1)α [1̄ 1 1̄]β ‖ [1 1 2̄ 0]α [1̄ 1 2]β ‖ [1̄ 1 0 0]α
V2 (1 1 0)β ‖ (0 0 0 1)α [1̄ 1 1]β ‖ [1 1 2̄ 0]α [1̄ 1 2̄]β ‖ [1̄ 1 0 0]α
V3 (1̄ 1 0)β ‖ (0 0 0 1)α [1 1 1̄]β ‖ [1 1 2̄ 0]α [1 1 2]β ‖ [1̄ 1 0 0]α
V4 (1̄ 1 0)β ‖ (0 0 0 1)α [1 1 1]β ‖ [1 1 2̄ 0]α [1 1 2̄]β ‖ [1̄ 1 0 0]α
V5 (0 1 1)β ‖ (0 0 0 1)α [1̄ 1̄ 1]β ‖ [1 1 2̄ 0]α [2̄ 1 1̄]β ‖ [1̄ 1 0 0]α
V6 (0 1 1)β ‖ (0 0 0 1)α [1 1̄ 1]β ‖ [1 1 2̄ 0]α [2 1 1̄]β ‖ [1̄ 1 0 0]α
V7 (0 1̄ 1)β ‖ (0 0 0 1)α [1̄ 1 1]β ‖ [1 1 2̄ 0]α [2 1 1]β ‖ [1̄ 1 0 0]α
V8 (0 1̄ 1)β ‖ (0 0 0 1)α [1 1 1]β ‖ [1 1 2̄ 0]α [2̄ 1 1]β ‖ [1̄ 1 0 0]α
V9 (1 0 1)β ‖ (0 0 0 1)α [1̄ 1 1]β ‖ [1 1 2̄ 0]α [1 2 1̄]β ‖ [1̄ 1 0 0]α
V10 (1 0 1)β ‖ (0 0 0 1)α [1̄ 1̄ 1]β ‖ [1 1 2̄ 0]α [1 2̄ 1̄]β ‖ [1̄ 1 0 0]α
V11 (1̄ 0 1)β ‖ (0 0 0 1)α [1 1̄ 1]β ‖ [1 1 2̄ 0]α [1 2 1]β ‖ [1̄ 1 0 0]α
V12 (1̄ 0 1)β ‖ (0 0 0 1)α [1 1 1]β ‖ [1 1 2̄ 0]α [1 2̄ 1]β ‖ [1̄ 1 0 0]α

Plotting all twelve unique variants (Figure 7.2) it is apparent that there is an absolute
minimum value that is obtained by three variants. The orientations at which a variant
displays an absolute minimum are: variant 4 at π

2 , variant 8 at 7π
6 , and variant 12 at 11π

6 .
These are also the three variants that satisfy the additional constraint proposed by Kelly
and Nicholson[149] that the Burgers vector in the β phase is contained by the α habit
plane (i.e. [1 1 1]β ‖ [1 1 2̄ 0]α). Therefore there are three potential variants favored
to nucleate from the screw dislocation: V4 at π

2 , V8 at 7π
6 , and V12 at 11π

6 . These three
variant and orientation pairs are the same as those along which α precipitates are shown
to nucleate in MD simulations. If the sign of the dislocation Burgers vector is reversed in
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the calculation the same three variants are found to be favored, but with minima rotated
by π, also in agreement with our MD simulations. All inputs used for the dislocation strain
field calculation (aβ, C11, C12, C44) were calculated for β-Ti at 1200 K. See the Section 7.2
for further details.

Figure 7.2: (Top) Plot of penalty function Πn(θ) with respect to direction symbolized by the angle
θ. The absolute minima occur at π2 ,

7π
6 , and 11π

6 in agreement with molecular dynamics simulations;
the secondary minima are at π

6 ,
5π
6 , and 3π

2 . θ = 0 corresponds to the direction [1 1 2̄]β and θ = π
2

to the direction [1 1̄ 0]β. (Bottom) Same plot, but for opposite Burgers vector sign. The same
variants are favored, but with a rotation by π.
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7.3.2 Few-Layer Supercell Molecular Dynamics

Molecular dynamics simulations of the β to α phase transition begin with a β supercell
with 16 layers along the dislocation line (86,400 atoms). Starting with both a reference
undeformed supercell and a stabilized titanium supercell containing two dislocations, MD
simulations are performed with an NPT ensemble using a Nosé-Hoover barostat and Langevin
thermostat at zero pressure and temperatures of 1050 K, 1200 K, 1225 K, 1250 K, 1275 K,
1300 K, 1350 K, and 1400 K. For each cell at each temperature ten independently-seeded
simulations 500 ps in length are performed, for a total of 160 simulations in this group.

A typical simulation result is shown in Figure 7.3. The visualization presented is from
OVITO. PTM is used first to identify a local crystal structure at each atom, using a root-
mean-squared deviation (RMSD) cutoff of 0.09 (i.e. atoms above this threshhold are identi-
fied as “other" and colored white). The atoms found to be bcc are then colored black. For the
atoms identified as hcp, the coloring is by the y-component of the orientation identified by
PTM. This is very useful for distinguishing the α variants. An undocumented bonus-feature
of PTM exists for the hcp crystal structure. Because there are two basis atoms in hcp, two
slightly different orientations are identified within the same grain, alternating on adjacent
basal planes. This leads to a striped appearance in our visualizations that allows us to easily
identify basal planes. In this color scheme variant 4 appears blue, variant 8 is yellow-green,
and variant 12 is red.

Examining all trials, there are three dominant variants (V4, V8, and V12) of α grains, in
agreement with our elasticity theory prediction. The angles at which these variants appear
are also in agreement with our prediction. Examples of all orientations are shown in Figure
7.4. It is worth noting that because the two dislocations have oppositely signed Burgers
vectors, the direction in which each variant nucleates is rotated by π when considering the
right-hand dislocation (Burgers vector into page) vs. the left-hand dislocation (Burgers
vector out of page).

Using PTM through OVITO, one can extract both phase and orientation information
over time rapidly from all our simulations. Figure 7.5 shows the fraction of atoms identified
as belonging to each variant type for the same simulation as shown in Figure 7.3. At
approximately 50 ps the primary V8 nuclei form, followed quickly by secondary nuclei of the
other two dominant variants. Transformation to α is complete at 100 ps. Following this,
growth of V12 grains at the expense of V4 leads to the coarse structure seen in Figure 7.3f.

Taking the total fraction of hcp atoms I fit the growth to the following Avrami-type
equation[153–155]: 0 t < thet

αmax(1− exp−( t−thet

τ
)3) +N0 t ≥ thet

(7.6)

to find the characteristic growth time (τ). This fit is shown for our example simulation in
Figure 7.6. In the fit, I allow also fit the nucleation time before rapid growth begins, which
yields a good estimate of the time to heterogeneous nucleation (thet). αmax is the (known)
maximum fraction of the supercell which is transformed to α (0.5% to 5% of the supercell
is identified as having no phase or remaining β after transformation). N0 is a small offset
allowed in the fit, and is less than 10−5 in all samples.

In the simulations starting from the configuration containing dislocations, transformation
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to α in all trials at temperatures 1250 K and below is observed. At 1275 K two trials
transform, while the other eight remain in the β phase. At temperatures 1300 K and above
all trials remain in the β phase. The results of fits for all simulations at 1050 K, 1200 K,
1225 K, and 1250 K are summarized in Table 7.2. When simulations are started from the
configuration without dislocations, transformation is only observed at 1050 K, demonstrating
the necessity of heterogeneous nucleation sites to induce transformation.

Table 7.2: Heterogeneous nucleation time thet and transformation characteristic time τ from
Avrami equation fits to data from simulations containing dislocations.

Temperature 1050 K 1200 K 1225 K 1250 K

thet (ps) 1.95± 0.86 18.5± 3.7 36.4± 14.0 104.3± 30.0

τ (ps) 8.3± 1.0 16.2± 1.8 20.3± 2.3 22.5± 1.6

From the simulations of the supercell without dislocations I measure thom, the homoge-
neous equivalent to thet. At 1050 K, thom is 91.8 ± 51.0 ps, which is both much longer and
much more varied than the heterogeneous case at the same temperature. This demonstrates
the potency of the dislocation lines as heterogeneous nucleation sites. In fact, the nucleation
behavior without dislocations at 1050 K is similar to that with dislocations at 1250 K. In
terms of growth rate, τ at 1050 K without dislocations is 9.1 ± 1.2 ps, which is similar to
but a bit slower than the rate with dislocations. This indicates that the strain from the
dislocation may provide a boost to the α phase growth rate.

7.3.3 Many-Layer Supercell Molecular Dynamics

Following the procedure detailed in Section 7.2 for stabilizing dislocations in high tem-
perature β-Ti, I created a new supercell with 256 layers along the dislocation line direction
and the same area on the face normal to this direction as used previously, with a total of
1,382,400 atoms. This supercell is much longer along the line direction (737 Å) than the
separation between the dislocations (183 Å). Nucleation of the α phase in this supercell is
observed in two molecular dynamics simulations at 1250 K with NPT ensemble configured
as described previously. Early in this process it is apparent that various small proto-nuclei
form, fail to reach critical radius, and disappear. These nucleate with the same orientations
as observed in the shorter supercells, but do not span the entire length of the simulation cell.
It is also noteworthy that while all three possible orientations are sometimes present on the
same dislocation line, they are not observed at the same point along the line at the same
time. This is likely due to the elastic field around a nucleus making formation of a nearby
nucleus of differing orientation on the dislocation line less favorable.

While I was not able to conduct enough simulations to facilitate a detailed statistical anal-
ysis, it is clear that the nucleation rate (of supercritical nuclei) in the long supercells is lower
than in the short supercell at the same temperature. Fitting to the Avrami equation yields
nucleation times of 134 ps and 139 ps for the two samples, which are both approximately
one standard deviation longer than for the few-layer supercell at the same temperature. The
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characteristic growth times are 37.9 ps and 30.8 ps, which indicates much slower growth than
in the short supercells. In the short supercell once a proto-nucleus is formed it need not grow
very far before it runs into its own image through a periodic boundary and at this point
its length becomes effectively infinite. When the superlattice vector along the line direction
is larger than the critical nucleus size, the nuclei exist for much longer before this occurs.
During this stage the surface energy due to the nucleus surfaces normal to the dislocation
line direction increase the energy of the nucleus. Furthermore, as a nucleus grows along
the dislocation line it must compete with nuclei of other orientations that it encounters, as
it is unfavorable for two nuclei of differing orientations to exist in the same region of the
dislocation line at the same time. This progression can be observed in Figure 7.7. 2

7.4 Discussion

7.4.1 Nucleation Times and Transformation Rates

The increase in time to a successful α nucleation event with increasing temperature is
significant. Over the range 1200 K to 1250 K the increase is 5×. On the other hand, the
change in this time with respect to supercell length is small. In the many-layer supercells,
the time to form a supercritical nucleus is slightly longer than in the few-layer supercells.
Probably this is due to competition between two factors: (1) there is 16× more dislocation
line length on which to form a nucleus, which ought to increase the rate and (2) the size of
a supercritical nucleus is larger, because the nuclei do not immediately cross the periodic
boundaries and contact themselves.

In the few-layer supercells, growth rates drop consistently as temperature increases due
to the lower driving force to form α. The growth rate in the many-layer supercell is much
slower. This results from competition between neighboring nuclei with different orientations
on the same dislocation line, as well as the increase in surface area of the nuclei due to
their curved edges before they completely fill the supercell. It also appears that there is
little growth of the nuclei while they change in habit plane and pull away from parts of the
dislocation. In fact, there is some local shrinkage of supercritical nuclei where they pull away
from the dislocation line.

The success of Equation 7.6 in fitting the nucleation and growth data (as shown in Figure
7.6) is mildly surprising, as the model was derived to represent homogeneous nucleation and
growth at a constant rate. In our simulations (other than that without dislocations at
1050 K) the observed nucleation is plainly heterogeneous on the dislocation lines. However,
nucleation does not end there. Strain-induced nucleation of secondary grains adjacent to
the primary grains allows the growth to continue at a greater rate than if only primary
nucleation on the dislocation lines occurred. However, this is still not truly homogeneous
nucleation because it is induced only within a range (approximately 30 Å) of existing nuclei.
On the other hand, these secondary nuclei induce more secondary nuclei to form, and thus
can spread the α phase rapidly. Therefore while primary nucleation is heterogeneous on
dislocation lines only, secondary nucleation events occur throughout the supercell.

2The full trajectory data is available via the UC Berkeley Library Dash project at
https://doi.org/10.6078/D1QS94.

https://doi.org/10.6078/D1QS94
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7.4.2 Habit Plane Analysis

In the few-layer geometry the length of the supercell along the dislocation line direction is
as short as possible (without altering the transition temperature significantly, see Figure 7.1)
so that the separation between the dislocations can be maximized within resource limitations.
This effectively fixes the line direction of the dislocations, which is generally acceptable
because the line direction has been chosen to be one known to be common in the material.
In the case of phase nucleation along the dislocation in Ti this also imposes the undesirable
condition that the habit plane of the nucleus contains the chosen line direction. However,
there is no a priori reason to expect the elastically preferred habit plane to be perpendicular
to the 〈1 1 1〉β family of directions, and in fact there is evidence to suggest that it is
not. Kashchenko and Chashchina predicted from elasticity theory that for pure Ti this
habit plane should be {1̄ 1.5356 1̄}β[156], and Morris et al. made a similar prediction in a
titanium alloy[157]. This habit plane normal is clearly not perpendicular to the dislocation
line direction [1 1 1]β, unlike the {1̄ 2 1̄}β habit plane observed in the few-layer simulations.

In the many-layer supercells, as in the few-layer supercells, the precipitates are plate-
like and begin with {1̄ 2 1̄}β type habit planes (see Figure 7.7a). However, in the longer
cells most of these plates change growth direction to alter the habit plane during growth
of the supercritical nuclei, gliding portions of the dislocations with them (as done by one
of the plates in Figure 7.8). This shifts the habit plane from {1̄ 2 1̄}β to approximately
{1̄ 1.61 1̄}β before the transformation proceeds too far to allow habit plane identification.
This rotation is towards the direction predicted by elasticity theory calculations[156, 157],
but still limited by the periodic boundary conditions. Because the dislocation line must be
periodic, a section of it glides to connect the twisted line to its image (see Figure 7.8b),
and the energy associated with this increase in line length resists the rotation caused by
the precipitate. At the slipped segment the precipitate detaches from the dislocation line,
forming a curved edge. I anticipate that if the supercell was infinitely long the precipitate
would rotate all the way into the habit plane predicted by elasticity theory.

7.4.3 Post-Transformation Microstructure

After the transformation is complete the resulting microstructure is necessarily nano-
grained, due to the supercell size. In our few-layer simulations all primary α grains have the
orientation relationship [1 1 1]β ‖ [1 1 2̄ 0]α maintained along the short axis of the supercell
parallel to the dislocation line. Initially many secondary α grains are nucleated, and a very
small fraction of these do not share this orientation relation (see "Other" data in Figure
7.5). However, during growth all of those without this relationship eventually are consumed
by grains of the three dominant variants (V4, V8, V12). Further, many grains of these
dominant variants are also consumed by others during coarsening after the transformation
to α is complete.

I characterize boundaries between different grains by the angle between c-axes ([0 0 0 1]α
directions) in the adjacent grains and the angle the grain boundary makes with both c-axes.
Due to the constrained supercell geometry, all rotations are about the [1 1 2̄ 0]α axis. I
find only three distinguishable orientations of the basal plane and five grain boundary types,
which I will describe in descending order of occurrence.
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The most common boundary (type 1) has [0 0 0 1]α directions at an angle of π
3 , with

the boundary at π
6 to each, and the boundary is a plane of mirror symmetry. This finding

is consistent with previous experiment[132, 137] and phase field simulations[138]. Type 2
is a boundary (stacking fault) at which the hcp stacking changes (ABA|B|CBC). In this
type there is no difference in angle between the [0 0 0 1]α directions, and both [0 0 0 1]α
directions make an angle of π

2 with the grain boundary. These appear as green lines in the
PTM images due to the local structure in the boundary layer being identified as fcc. Type
3 boundaries have c-axes at π

3 as in type 1, but the boundary itself is perpendicular with
the c-axis on one side of the boundary. Type 3 boundaries are asymmetric and tend to be
shorter and broader (i.e. more atoms are identified as in the boundary rather than either of
the neighboring grains), indicating that its energy is somewhat higher than the previous two
types. The last two observed grain boundaries are much less common than the first three.
In type 4 the c-axes meet at a 2π

3 angle, with the grain boundary at π
3 to each. In type 5,

the adjacent grains differ by stacking rather than angle as in type 2, but both c-axes meet
the grain boundary at a π

6 angle.
Examining the simulation trajectories during the grain growth stage, the commonly-

observed type 1 grain boundaries often form when a new grain nucleates only a few atomic
spacings from an existing α grain (see Figure 7.3b,c). This nucleation is apparently accom-
modated by the stress in the β grain resulting from the nearby α-β interface. Further, it is
common to see two nearby α grains with π

3 difference in orientation induce the nucleation
of a grain oriented to form π

3 angles with both (see Figure 7.3d). This results in structures
similar to the tents seen by Balachandran et al. in EBSD[137] as well as Qiu et al. in in
phase field simulations[138].

After coarsening is complete typically only type 1 boundaries between distinguishable
orientations, type 2 boundaries (stacking faults) within grains, and some geometrically-
necessary type 5 boundaries which connect the type 2 stacking faults. In many cases coars-
ening results in only two large grains surviving (see Figure 7.3f), while as many as 30 grains
might exist at some point during a simulation.

In the many-layer supercells when the transformation is near completion the same types
of grain boundaries are observed as in the few-layer supercells (see Figure 7.7b), with a
similar columnar structure. Again the dominant boundary is the symmetric type 1 and the
type 2 is the next most common. A large triple junction of symmetric π

3 boundaries has been
observed to form when two grains grow into each other and induce a third grain to nucleate,
as similarly observed in the short supercells. This in some cases creates tent-like structures
formed when these three grains grow inwards toward the triple junction, a process shown in
Figure 7.9. Nearly all grain boundaries are parallel to the original dislocation line direction,
though type 2 boundaries are formed at a π

3 angle to the dominant grain boundary direction
towards the end of the grain growth process.

7.5 Conclusion

Nucleation of the β to α phase transition at 〈1 1 1〉β-type screw dislocations in pure
titanium was examined through a combination of molecular dynamics simulation using a
modified embedded atom method potential and elasticity theory analysis. Both methods
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predict the same three α variants and preferential directions for α nucleus growth in the
early stages of transformation, corresponding to orientations spaced uniformly about the
〈1 1 1〉β axis at angles θ = π

2 , θ = 7π
6 , and θ = 11π

6 from the 〈2̄ 1 1〉β axis perpendicular
to the dislocation. These directions are preferred because the strain field resulting from the
dislocation aligns best with the transformation strain required for the Burgers path that
takes the β phase to the α phase and result in habit planes that contain the dislocation line.

The tendency of the α precipitate to rotate towards the elastically preferred habit plane
has been demonstrated when the simulation supercell is large enough to accommodate such a
rotation. This rotation is still apparently resisted by lengthening of the remaining dislocation,
to which the α precipitate remains bound by a favorable surface energy term. Finally,
the post-transformation α microstructure is dominated by three orientation relationships
between neighboring grains.

This work demonstrates the role of the strain field around 〈1 1 1〉β-type screw dislocations
in providing heterogeneous nucleation sites for the α phase, and thus provides a link between
initial dislocation density in the β phase and post-transformation microstructure that could
prove useful to the engineering of titanium alloys. These findings match those from experi-
mental and phase-field simulation literature on the same system. In addition, these findings
extend those deduced from phase-field simulations by enabling the time scales associated
with nucleation to be explored directly. Within molecular dynamics simulations, the pro-
cesses determining nucleation rates are allowed to evolve at the atomic scale. Moreover, the
molecular dynamics simulations allow for the motion of the dislocation that accommodates
the habit plane shift after nucleation. This demonstrates the potential of molecular dynamics
simulations for studying variant selection in solid/solid phase transitions.
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Figure 7.3: Nucleation and growth of the α phase (colored atoms) from the β phase (black) at
1225 K viewed in the plane perpendicular to the dislocation line direction. Coloring is by PTM as
described above. White atoms have no identified structure in PTM within the RMSD cutoff of 0.09,
and correspond to dislocations, grain boundaries, or point defects. (a) 0 ps: initial dislocation cell,
(b) 20 ps: initial nucleation of α phase at each dislocation, (c) 40 ps: growth of primary nuclei and
formation of a secondary nucleus adjacent to the right-hand nucleus, (d) 60 ps: continued growth
and formation of secondary nucleus complementary to the primary and previous secondary nuclei,
(e) 80 ps: completed growth of fine-grained α, (f) 500 ps: coarsening has occured and removed all
high-energy grain boundaries.
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Figure 7.4: Examples of all three dominant orientations nucleating on both the left-hand and
right-hand dislocations. Coloring is by PTM as described above.

Figure 7.5: Atom fraction of α V4, V8, V12, and other (i.e. hcp atoms not matching any of the
three dominant variants) for the simulation at 1225 K shown in Figure 7.3.
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Figure 7.6: Avrami equation fit (black line) to α phase nucleation and growth data (blue points)
for the simulation at 1225 K shown in Figure 7.3.
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Figure 7.7: Front view of nucleation and growth of the α-phase from β (atoms removed) at 1250 K
along the [111]β screw dislocation lines in the supercell which is 737 Å in length. Atom coloring is
by PTM as described previously. (a) Configuration 40 ps into simulation, shows single nucleus on
left-hand dislocation and a number of smaller nuclei on the right-hand dislocation. These occupy
different segments of the line in the direction into the page. (b) Post-transformation microstructure
210 ps into simulation. The somewhat columnar structure is similar to that found in the few-layer
supercells, though not all grains completely fill the length of the supercell.
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Figure 7.8: Bottom view of nucleation and growth of the α-phase from β (atoms removed) at 1250
K along the [111]β screw dislocation lines in the supercell which is 737 Å in length. Atom coloring
is by PTM as described previously. (a) Configuration 40 ps into simulation, shows single nucleus
on left-hand dislocation and a number of smaller nuclei on the right-hand dislocation. (b) 150 ps
into simulation. This view most clearly shows the change of habit plane by the left-hand nucleus,
and how this leads to detachment of part of the nucleus from the dislocation line.
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Figure 7.9: Sections showing growth of two grains of the α-phase from β (atoms removed) which
nucleated on dislocation lines in the supercell which is 737 Å in length. In each grain the [0 0 0 1]α
direction is indicated by a line. Atom coloring is by PTM as described previously. (a) The two
original grains growing from the dislocations with 2π

3 orientation difference have intersected and
formed a type 1 grain boundary. (b) The nucleation of a third grain with complementary orientation
is induced by the strain around the original two grains. (c) The three grains have grown until they
form a tent structure with three type 1 grain boundaries. (d) Side view of the same structure,
without sectioning. This clearly shows the tent shape of the colony.
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Chapter 8:

Summary and future work

Thank you for the sustained attention required to make it this far. In this final chapter,
I will briefly summarize the preceding chapters, and then discuss any future work stemming
from each that seems interesting.

8.1 〈a〉-Type Screw Dislocation Core Structures at 0 K and 0 Applied
Stress

In Chapter 3 I demonstrated the dependence of the calculated ground state dislocation
core structure on a number of parameters and suggest minimum settings for converged calcu-
lations. I considered two arrangements of periodic arrays of dislocations and demonstrate the
high sensitivity of the final core structures to choice of valence electronic states and k-point
mesh density. Within each arrangement I also used two initial positions of the dislocations,
one between basal planes and the other within basal planes. (Meta)stable pyramidal and
prismatic dislocation core structures exist within both the DFT and MEAM potentials, and
the relaxed structure resulting from my anisotropic elasticity theory solution depends only
on the initial dislocation positions. The pyramidal configuration results when the disloca-
tions are initially between basal planes, and the prismatic configuration results when the
dislocations are initially within basal planes. In DFT I found the ground-state core struc-
ture to be purely pyramidal. I found it necessary to include the semi-core 3p electrons as
valence states in order to converge the ground state dislocation core configuration in either
arrangement, and in particular to correctly find the difference in energy between this state
and other metastable core configurations. I demonstrated that a k-point mesh of at least
1× 1× 15 is necessary to converge the dislocation core structure for a supercell one Burgers
vector deep. Use of higher k-point densities or inclusion of additional semi-core electronic
states as valence electrons results in the same core structure. MEAM calculations were un-
dertaken to demonstrated the effects of supercell size, and these findings suggest that my
DFT calculations were performed with large enough supercells to avoid significant finite-size
effects associated with stress gradients near the dislocation core structures. With the MEAM
potential considered in this work, I found the ground state core configuration to be spread
predominantly on the prismatic plane, in contrast with the DFT results. For both methods
the energy differences between core structures were found to be small (on the order of tens of
meV), which suggests that at practical temperatures there will be occupation of more than
one core structure configuration.

For this chapter I can recommend little future work. I have already undertaken the
tasks stemming from the conclusions of this section that occurred to me. However, as
DFT methodology as well as computational power continues to improve, it may be worth
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revisiting the calculations performed here. In particular it would be useful to redo the DFT
calculations with larger supercells, as this may improve the accuracy of the relative core
structures energies calculated. Further, it might be worthwhile to perform these calculations
with updated exchange-correlation functional such as meta-GGA as these become practical
for calculations of this size.

8.2 Non-Schmid Effects on 〈a〉-Type Screw Dislocation Core Structures

Chapter 4 continued Chapter 3 with DFT and MEAM calculations of 〈a〉-type screw
dislocation core structures in hcp titanium under a series of applied stresses with zero crit-
ical resolved shear stress were performed to investigate the origin of non-Schmid law slip
behavior in α-titanium alloys. It was found that compression applied on the [11̄00] direction
perpendicular to the Burgers vector leads to more compact pyramidally-oriented cores, while
tension applied on the same axis causes an extension of these cores along the prismatic plane.
Nudged elastic band calculations of the barrier to slip of the dislocations on the prismatic
plane showed that extension along this plane leads to reduced slip barriers. This suggests
that non-Schmid stresses alter the critical resolved shear stress by inducing changes in the
equilibrium core structure. These results corroborate earlier conjecture that the non-Schmid
slip behavior of 〈a〉-type screw dislocations in α-titanium alloys was due to non-planar core
structure.

One potentially worthwhile extension of this work would be to calculate the slip barrier
for planes other than the prismatic plane. If an applied non-Schmid stress creates a more
pyramidal core structure, then this work suggests that pyramidal slip would likely be easier
under those conditions. This could perhaps be used to calculate the change in the probability
(or rate) of cross-slip. Since cross-slip is important particularly in hcp alloys like the α-
titanium alloys that have a tendency towards planar slip and the resulting loss of toughness
(discussed in Chapter 6), understanding how core structure can effect cross-slip could be
important for building more complete models of plasticity in these alloys. Studying non-
Schmid effects is important for understanding the plastic asymmetry in materials, but it
may also lead to alloy design or processing ideas (such as pre-stressing parts perhaps) that
would improve performance.

8.3 Finite Temperature Analysis of 〈a〉-Type Screw Dislocation Core
Structures

In Chapter 5 I described the development of a new parameter υ based on elasticity the-
ory that can be used for dislocation core identification and classification. I applied this new
parameter to the study of 〈a〉-type screw dislocation core structures in titanium, examining
the dependence of the core orientation on temperature and applied non-Schmid stresses. It
was found that increasing the temperature leads to a larger variation in the core orienta-
tions. It was also found that applied stress on the [11̄00] axis normal to the dislocation
line direction leads to a transition from the prismatic core structure to the pyramidal core
structure in the MEAM potential. Further, this transition appears to shift to lower pres-
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sure when the temperature is increased, which implies that pyramidal cores are favored at
higher temperature, suggesting that they are higher-entropy structures than the prismatic
cores. Simulations with applied shear stress oriented for prismatic slip were also performed,
and it was demonstrated that temperature/non-Schmid stress conditions that permit easier
access to the prismatic core orientation lead to higher strain rates for the same applied shear
stress. The locking-unlocking mechanism[8] was observed quite clearly in a simulation with
large compression on the [11̄00] axis, as slip only occurred during the brief periods in which
the dislocation core structure was oriented prismatically. It was shown that increasing the
temperature allows for more unlocking of the cores when the non-Schmid stress causes the
pyramidal orientation to be preferred, but if the prismatic core orientation is preferred then
increasing the temperature can actually reduce the strain rate by promoting occupation of
pyramidal core structures.

I believe that the work detailed in this chapter presents the greatest opportunity for
future work. The new parameter υ can be applied to many scenarios other than the titanium
dislocation core structures discussed here, and if this case is any indication then this type
of study may lead to many interesting new ideas. One example for another study along
these lines includes looking at other hcp metals which have different preferred slip systems
and contrasting slip between these. Another idea is the application to bcc metals that was
actually the genesis of this method. This would require only developing a parametrization
of a fit υ that yields the information of interest (i.e. core size rather than orientation).
One might be interested in computing the equilibrium core size of dislocations in these
metals as a component of computational alloy design, because compact cores slip more
readily. Another example is designing gum-metal like alloys by looking for compositions
or temperature/pressure conditions that lead to extremely large dislocation cores like those
observed in gum-metal.

Besides the parameter developed here, some of the ideas generated by this study also
deserve further examination. For example the concept of dislocation core structure free en-
ergy certainly requires more thought. For metals like titanium in which there are competing
core structures of similar potential energy, the role of the entropy of these states may be
very important to plasticity at elevated temperatures. While I have observed implicit effects
arising from differences in core free energy here, I have not developed a theory of dislocation
core entropy. Perhaps it would be feasible to calculate a small number of dislocation core
parameters at zero temperature – potential energy of states, energy of boundaries between
states, entropy of states (likely involving configurational and vibrational components) – and
use these as inputs to a model that would correctly predict the occupation of core structures
over a range of temperatures. The results of such a model could then be compared to MD
simulations similar to those presented in this dissertation. I would be surprised if this is not
a project assigned to an incoming Chrzan group student...

8.4 〈a〉-Type Screw Dislocation – Interstitial Interactions

Based on computational studies of oxygen solute effects on deformation in titanium as
well as experimental evidence contributed by collaborators in Andrew Minor’s group, I in-
troduced a novel interstitial shuffling mechanism (ISM) explaining how dilute concentrations
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of interstitial impurities can promote increased planarity of dislocation slip, and reduce work
hardening. The ISM provides a framework to understand the dramatic effects on toughness
of Ti alloys associated with very small variations in interstitial content. These insights open
new avenues for the design of titanium alloys with increased tolerance to variations in inter-
stitial impurity content, with significant implications for more widespread use of this high
strength to weight material. More generally, the ISM identified here may apply to other alloy
systems containing interstitial solutes that interact strongly with the relevant dislocations.
The basic requirements for the ISM to be operative are only two interstitial sites differing in
dislocation pinning strength, and the possibility for dislocations to shuffle interstitials from
one of these sites to the other. Due to the significant deleterious effects of planar slip on
toughness, it is valuable to identify mechanisms underlying this phenomenon and associated
pathways to control them. In this context, the ISM identified here contributes generally to
the fundamental knowledge of possible origins for embrittlement due to interstitial solutes,
and provides a framework for the design of improved Ti alloys in particular.

One key feature lacking from this work is a broader model that incorporates the effects
on cross-slip, temperature, composition, interstitial strengthening, and the ISM all together
to present a complete picture of the strength, toughness, and degree of planar slip that can
be expected for an alloy at operating conditions of interest. Such a model would be of great
interest for both alloy design and component design, and would also serve as a useful point
of reference to provide further confirmation of the ISM.

Another ongoing extension of this project is the examination of the behavior of carbon
and nitrogen interstitial solutes in titanium. These solutes are the two next-most-important
interstitials in titanium alloys after oxygen, and are commonly thought of as behaving equiv-
alently to oxygen. However, preliminary investigation by myself and Jack Peterson suggests
that both of these present lesser opportunities for slip-plane softening than oxygen, because
they are larger atoms that do not fit as well in the intra-basal sites, leading to greater energy
differences between the octahedral and hexahedral sites for these interstitials, and a greater
interference with slip when sitting in the intra-basal site. However, full development of the
equivalent ISM pictures for these two is still ongoing work.

Finally for future work on this topic, the purpose of developing a model such as ISM is
to take advantage of it for alloy design. Now that this mechanism has been uncovered and
its importance to plasticity demonstrated, further work is required to exploit this knowledge
to develop tougher, more ductile, and more solute-resistant alloys. I have begun this work
by approximating the effects of substitutional alloying by adjusting the number of electrons
in DFT calculation, and this work suggests that slightly increasing the electron density of
the alloy should reduce the difference in energy between the octahedral and hexahedral sites,
and could also effect the energy barrier between these sites. This indicates that alloying with
substitutional elements such as vanadium or niobium could improve alloy performance with
respect to ISM, though considerably more work along these lines will be required to demon-
strate this. One crucial issue will be the limited solubility of these elements in titanium,
perhaps requiring the addition of multiple species with complementary effects. Another is-
sue is that these elements are known stabilizers of the β phase of titanium, which potentially
restricts processing routes if nucleation of β and segregation of these solutes to β grains is
to be avoided.
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8.5 β to α Transition at Screw Dislocations

In Chapter 7 heterogeneous nucleation of the α to β phase transition at 〈1 1 1〉β-type screw
dislocations in pure titanium was examined through a combination of elasticity theory and
molecular dynamics simulation using a modified embedded atom method potential. These
screw dislocations act as heterogeneous nucleation sites and increase the α phase growth
rate, but also restrict the orientation of the α nuclei to certain directions along which the
strain field of the dislocation aligns with the strain required to complete the Burgers trans-
formation path. Simulations and elasticity theory predict the same three α phase variants
along the same preferential directions for α nucleus growth in the early stages of transfor-
mation. Previous elasticity theory calculations indicate that this growth does not result in
the elastically preferred habit plane for the α nucleus. Molecular dynamics simulations on
many-layer supercells show that large α plates will change their growth direction towards
the predicted habit plane, but this rotation is resisted by the line tension of the dislocation
until the α precipitate detaches from the dislocation. These findings extend those previously
deduced from phase-field simulations by enabling the time scales associated with nucleation
to be explored directly.

Within the scope of this topic, a valuable future project would be the extension of these
ideas to edge dislocations in the β phase. Phase-field modeling by other authors suggest
that these are even more potent nucleation sites than the screw dislocations, and therefore
a full understanding of α phase nucleation and variant selection will include these. Further
extensions to planar defects such as twins, stacking faults, and grain boundaries in the β
phase might also yield interesting results.

This work, as well as elements of Chapters 5 and 6, suggest another generally-important
factor to consider in all future atomistic simulations of dislocations: the length of the su-
percell along the dislocation line direction. In Chapter 7 this is found to be a crucial factor
to find the correct habit plane for α grains during growth. In Chapter 5 I found that
unfortunately my simulations were shorter than the correlation length of dislocation core
structures along the line direction, which appears to influence the transition between states
based on preliminary modeling. In Chapter 6 it was commented that using insufficiently long
supercells can lead to unrealistic dislocation behavior, specifically that cross-slip around in-
terstitials appears to be much too easy in short supercells. All of these observations suggest
that the length of dislocation lines in simulations have been too short to represent properly
the dislocations in most atomistic simulations to date. However, the expense of simulations
and post-processing has been the factor dictating these sizes. Future research with greater
resource availability should make careful consideration of dislocation line lengths when pos-
sible. Allowances for transitions between core structures and non-straight dislocations (i.e.
with screw, mixed, and edge components) will be crucial for atomistic simulations that will
correctly predict plasticity in metals for practical applications.
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