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Genome-Wide Association Transethnic Meta-Analyses Identifies 
Novel Associations Regulating Coagulation Factor VIII and von 
Willebrand Factor Plasma Levels

A full list of authors and affiliations appears at the end of the article.

Abstract

BACKGROUND: Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are 

associated with risk of arterial and venous thrombosis and with hemorrhagic disorders. We aimed 

to identify and functionally test novel genetic associations regulating plasma FVIII and VWF.

METHODS: We meta-analyzed genome-wide association results from 46 354 individuals of 

European, African, East Asian, and Hispanic ancestry. All studies performed linear regression 

analysis using an additive genetic model and associated ≈35 million imputed variants with natural 

log-transformed phenotype levels. In vitro gene silencing in cultured endothelial cells was 

performed for candidate genes to provide additional evidence on association and function. Two-

sample Mendelian randomization analyses were applied to test the causal role of FVIII and VWF 

plasma levels on the risk of arterial and venous thrombotic events.

RESULTS: We identified 13 novel genome-wide significant (P≤2.5×10−8) associations, 7 with 

FVIII levels (FCHO2/TMEM171/TNPO1, HLA, SOX17/ RP1, LINC00583/NFIB, RAB5C-
KAT2A, RPL3/TAB1/SYNGR1, and ARSA) and 11 with VWF levels (PDHB/PXK/KCTD6, 
SLC39A8, FCHO2/TMEM171/ TNPO1, HLA, GIMAP7/GIMAP4, OR13C5/NIPSNAP, DAB2IP, 
C2CD4B, RAB5C-KAT2A, TAB1/SYNGR1, and ARSA), beyond 10 previously reported 

associations with these phenotypes. Functional validation provided further evidence of association 

for all loci on VWF except ARSA and DAB2IP. Mendelian randomization suggested causal 

effects of plasma FVIII activity levels on venous thrombosis and coronary artery disease risk and 

plasma VWF levels on ischemic stroke risk.

CONCLUSIONS: The meta-analysis identified 13 novel genetic loci regulating FVIII and VWF 

plasma levels, 10 of which we validated functionally. We provide some evidence for a causal role 

of these proteins in thrombotic events.
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Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) regulate hemostasis 

and thrombosis, and higher plasma levels of these factors have been associated with risk of 

arterial and venous thrombosis, whereas lower levels are associated with hemorrhagic 

disorders1–4 and with reduced risk of thrombotic events.5 Previously published genetic 

association studies have investigated the contribution of nucleotide variation to plasma levels 

of these factors using genome-wide and exome-wide markers.6–8 These studies identified 

and replicated 8 genetic loci associated with plasma VWF levels (STXBP5, SCARA5, ABO, 
STAB2, STX2, VWF, TCN2 and CLEC4M), 5 of which were also associated with FVIII 

levels (STXBP5, SCARA5, ABO, STAB2, and VWF). These discoveries have broadened 

our understanding of the regulation of hemostasis through follow-up functional 

investigations.9,10

The causal effect of these factors on bleeding is well established; severe FVIII and VWF 

deficiencies lead to the bleeding disorders hemophilia A and von Willebrand disease, 

respectively. Although it is currently unclear whether FVIII and VWF levels causally 

influence the risk of thrombotic diseases, some genetic and observational evidence suggest 

an effect of these proteins on thrombotic disease. Genetic variants in the F8 gene and in 3 

VWF-associated genes (ABO, STXBP5, and VWF) are robustly associated with risk of 

venous thrombosis, but no causal association has been established.11–13

The aim of this investigation was to identify new genetic associations that influence plasma 

levels of FVIII and VWF by expanding the size and ancestral diversity of the discovery 

sample from previous genome-wide association studies (GWASs) and by improving 

coverage of the genome through the use of 1000 Genomes imputed data and the inclusion of 

chromosome X variants.14 For discoveries that reached genome-wide significance, we 

conducted first-pass functional characterization of the candidate loci both to provide 

additional evidence of association and to better understand the biology regulating plasma 

levels of these coagulation phenotypes. Finally, by applying our genetic findings as 

instrument variables, we characterized the causal effect of plasma FVIII and VWF levels on 

clinical cardiovascular events using Mendelian randomization (MR) analyses.

METHODS

Because of patient confidentiality agreements and to comply with the study participants’ 

consent, the original data and study materials cannot be made available to other researchers 

for purposes of reproducing the results or replicating the procedure. Analytical methods will 

be made available on request, and summary statistics have been made publicly available 

through the U.S. National Library of Medicine’s National Center for Biotechnology 

Information database of Genotypes and Phenotypes (dbGaP).
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Study Design and Participating Cohorts

This project was organized within the CHARGE Consortium (Cohorts of Heart and Aging 

Research in Genomic Epidemiology) Hemostasis Working Group.15 We meta-analyzed 

phenotype-genotype associations of low-frequency and common (minor allele frequency 

[MAF] >0.01) variants in 32 610 individuals from 9 studies with FVIII levels, and in 46354 

individuals from 18 studies with VWF levels. A total of 20 studies contributed to 1 or both 

of the analyses; these included participants of European, African, East Asian, and Hispanic 

ancestry. Descriptions and ancestry composition of participating cohorts are found in Table I 

in the online-only Data Supplement. All studies were approved by appropriate institutional 

review committees, and all participants gave written informed consent for themselves and 

their minor children for the use of their DNA.

Study-Level Methods

Genotype Calling and Quality Control—All participating cohorts performed 

genotyping using commercial genotyping platforms available from Illumina or Affymetrix. 

Each study performed genotyping quality control checks and imputed the ≈35 million 

polymorphic autosomal and X-chromosome variants described in the 1000 Genomes 

population phase 1 version 3 for each participant using available imputation methods.16 

Variant calling and quality control procedures for each cohort are described in Table I in the 

online-only Data Supplement.

Statistical Analyses

Association Analyses—Plasma FVIII activity or VWF antigen levels were measured in 

all participants (reported in percent or international units per milliliter × 100). Participants 

with plasma FVIII or VWF levels (or activity levels) 3 standard deviations (SDs) above or 

below the population mean were removed, as were individuals on anticoagulation therapy. 

Natural log-transformed FVIII activity and VWF antigen levels (percent or international 

units per milliliter × 100) were analyzed separately within each study. Study-specific 

regression analyses using an additive model of inheritance were performed for imputed 

variant dosages and phenotype levels, adjusting for sex, age, study design variables, and 

population substructure using principal components. All analyses were stratified by ancestry 

and then metaanalyzed. X-chromosome variants were additionally stratified by sex, with 

dosage values for male subjects coded as 0/2.

Quality Control—Study-specific findings were uploaded centrally, and a qualitycontrol 

pipeline of all individual studies before meta-analysis was conducted with the EasyQC 

software package.17 Variants with β or standard error values >5 or imputation values <0.3 

were excluded from the analysis. Estimated minor allele counts calculated for all single 

nucleotide polymorphisms (SNPs) were a function of allele frequency, total number of 

samples per cohort, and imputation quality; values <10 were excluded from analysis. Alleles 

were harmonized according to the 1000 Genomes phase 1 version 3 reference panel, and 

duplicated SNPs or SNPs that had inconsistencies with the reference were excluded.

Meta, Transethnic, and Multiphenotype Discovery Analyses—Meta-analyses were 

performed in METAL within each ancestry group using a fixed-effects inverse-variance-
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weighted approach and then combined in a transethnic analysis using the same method.18 

The transethnic analyses are presented as discovery results, and we used the ancestry-

specific analyses to inform and interpret these signals. An association was considered 

genome-wide statistically significant at a value of P<2.5×10−8 to correct for the low-

frequency variants that were not included in the initial generation of GWASs,19 and only 

variants that passed quality control in at least 3 cohorts were reported. Variants with MAF 

<1% were filtered out after the meta-analyses. A genomic control coefficient was computed 

for each discovery cohort and was used to correct for cryptic relatedness. Finally, a locus 

was defined as ±1 Mb from the SNP with the lowest P value, and the SNP with the lowest P 
value was selected to represent the locus. Multiphenotype methods are described in the 

Methods in the online-only Data Supplement.

Functional Characterization of Candidate Loci Through Gene Silencing

In the absence of replication cohorts, we conducted first-pass functional characterization of 

the candidate loci to provide additional evidence of association. For each genome-wide 

significant locus, we selected candidate genes that could be responsible for the observed 

associations. Selection was based on proximity to the most associated SNPs in each region, 

information from public databases on putative effect of the SNPs in terms of regulation of 

expression and function of nearby genes, and hypothesized biological mechanisms to 

regulate VWF/FVIII. This selection process identified to 3 candidate genes for each 

associated locus. To screen for functionality, human umbilical vein endothelial cells (Life 

Line Cell Technology) were plated on collagen-coated 96-well plates and transfected with 

small interfering RNA (siRNA) siRNA (Silencer Select, Thermo Fisher Scientific) directed 

against the candidate genes using the transfection reagent oligofectamine (Thermo Fisher 

Scientific). Cells were cultured for 4 days after transfection, and media was then replaced 

with control media or media containing 10 μmol/L histamine for 30 minutes to stimulate an 

inflammatory response. The FVIII and VWF in the media were measured by an ELISA 

using antibodies from Fitzgerald Industries and had detection ranges of 0.003 to 0.21 IU/mL 

for the FVIII assay and 0.5 to 120 ng/μL for the VWF assay. Every experiment was repeated 

4 times, and results are expressed as the mean±SD of the relative expression compared with 

a negative control (transfected with scramble siRNA).

Follow-Up Genetic Analyses

Conditional Analyses—To identify additional independent genetic signals at the 

associated loci, we used an approximate method implemented in Genome-Wide Complex 

Trait Analysis (GCTA tool) for conditional and joint analysis using meta-analysis summary 

statistics.20 We used best-guess imputation for variants with imputation quality >0.3 in 8481 

European-ancestry individuals from the FHS (Framingham Heart Study) as the reference 

panel. A description of the FHS is given in the Methods in the online-only Data Supplement. 

To prevent spurious conditional associations arising from a discrepancy between linkage 

disequilibrium in our GWAS and the reference panel, we also performed the conditional 

analysis on the results of the European-ancestry meta-analysis as a sensitivity analysis, 

because different genetic variants showed the strongest association in the transethnic 

analysis compared with the European-only analysis.
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Mendelian Randomization—For the sentinel variant in each locus in FVIII and VWF 

analyses, we conducted in silico lookups for the associations of each individual variant with 

3 major cardiovascular events: coronary artery disease (CAD) in the 

CARDIOGRAMplusC4D Consortium,21,22 ischemic stroke (IS) in the MEGASTROKE 

analysis within the International Stroke Genetics Consortium,23 and venous 

thromboembolism (VTE) in the INVENT Consortium (International Network on Venous 

Thrombosis).11 We conducted 2-sample MR analyses to detect any potential causal effects 

of plasma FVIII and VWF levels on each cardiovascular outcome separately. We used 

summary statistics to generate 1 causal estimate per significant locus as the ratio of the 

association of the variant with disease to the association of the variant with the exposure, 

and estimates were then meta-analyzed using an inverse-variance-weighted approach as our 

primary MR estimate, known as the inverse-variance-weighted estimate.24 Additional 

methods to avoid bias resulting from heterogeneity and the final variants composing the 

instrumental variables are described further in the Methods and Tables II through IV in the 

online-only Data Supplement. Because FVIII plasma levels are determined largely by VWF 

plasma levels owing to the carrier role of VWF for FVIII in plasma, essentially all genetic 

predictors of plasma VWF levels are also predictors of FVIII plasma levels. The inverse, 

however, is not true, and a small subset of variants predict FVIII plasma levels without 

predicting VWF levels. To investigate the independent causal role of FVIII plasma levels 

from that of VWF plasma levels on cardiovascular disease events, we applied a multivariable 

MR approach in which we adjusted for VWF variant effects in the estimate of causal 

association between FVIII and cardiovascular disease outcomes.25

RESULTS

FVIII, VWF, and Multiphenotype Meta-Analyses

Agnostic Discovery—Data used for FVIII meta-analysis was available from 25 897 

European ancestry, 4500 African ancestry, 773 East or Indian Asian ancestry, and 1440 

Hispanic participants. Transethnic meta-analysis for FVIII resulted in 13 887 196 variants 

passing all filters and identified 1431 variants that reached genome-wide statistical 

significance at 11 loci. Data used for VWF were available from 42 379 European ancestry, 

3700 African ancestry, and 275 Hispanic participants. Meta-analysis for VWF resulted in 10 

537 485 variants passing all filters and identified 2453 genome-wide significant variants at 

17 loci (Figure 1A and 1B). European-specific meta-analysis identified 1 significant variant 

at 1 additional locus. Analysis using combined FVIII and VWF phenotypes (Methods in the 

online-only Data Supplement) identified 2828 variants reaching genome-wide significance 

at 2 additional loci, which were not identified in single-phenotype analyses.

Table 1 shows the genetic discovery results for the FVIII, VWF, and combined FVIII-VWF 

phenotypes. Overall, 23 unique loci were identified. Among these, 13 were new associations 

not previously reported. Among the newly identified loci, 7 were associated with FVIII 

levels (FCHO2/ TMEM171/TNPO1, HLA, SOX17/RP1, LINC00583/NFIB, RAB5C/
KAT2A, RPL3/TAB1/SYNGR1/PDGB, and ARSA), and 11 were associated with VWF 

levels (PDHB/PXK/ KCTD6, SLC39A8, FCHO2/TMEM171/TNPO1, HLA, GIMAP7/
GIMAP4, OR13C5/NIPSNAP, DAB2IP, C2CD4B, RAB5C/KAT2A, RPL3/TAB1/
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SYNGR1/PDGB, and ARSA). Figure IA through IN in the online-only Data Supplement 

shows regional plots for the novel loci plotted for the 2 phenotypes. The lowest MAF for the 

index variant was 0.02, whereas the effect size per allele ranged from 0.015 to 0.032 (in log-

transformed units) for FVIII levels and from 0.014 to 0.060 for VWF levels.

Among the 23 genome-wide significant findings, 10 loci were previously reported to be 

associated with plasma levels of FVIII, VWF, or both: STXBP5, SCARA5, ABO, 
ST3GAL4, STAB2, STX2, VWF, TCN2, CLEC4M, and TMLHE-F8 region.

Conditional Analyses and Variant Characterization—In follow-up analyses, we 

conditioned on sentinel variants to determine whether secondary independent genome-wide 

significant signals were present. Results and additional independent variants are summarized 

in Table 2, along with findings from in silico investigations of the putative functional variant, 

and in Tables V and VI in the online-only Data Supplement. SCARA5, ABO, VWF, and 

STAB2 were predicted to have >1 independent signal both for FVIII and VWF analyses 

(details in Methods and Tables V and VI in the online-only Data Supplement), some of 

which are in agreement with previous publications.6 Among the independently associated 

variants within the ABO locus, SNPs rs10901252 and rs687621 perfectly discriminate B and 

O blood groups from A, and rs8176685 can reasonably capture information to tag A1/A2 (r2 

0.59/D’ 0.99 with the tag SNP), confirming that ABO blood groups are essential 

determinants of VWF and FVIII plasma levels.

Variance Explained—Overall, the top variants for these loci (including the strongest 

independent associated variants in each locus that reached genome-wide significance after 

conditional analyses) explain 17% of the phenotypic variance for FVIII and 21.3% of the 

variance for VWF. ABO locus was by far the strongest determinant, alone explaining 13.6% 

and 16.2% of these variances, respectively.

Functional Analyses

We silenced 21 genes across 12 loci to assess the in vitro impact on FVIII and VWF 

secretion (Figure 2A and 2B). These include the main candidate genes identified by 

proximity (Table 1). Our results suggest that 10 of the 12 candidate loci had ≥1 genes that 

changed VWF levels in media under basal or histamine-stimulated conditions. Specifically, 

silencing PDHB, SLC39A8, TMEM171, TNPO1, HLA-C, GIMAP7, NIPSNAP3A, 
NIPSNAP3B, C2CD4B, and SYNGR1 increased VWF release into media under basal 

conditions, whereas ST3GAL4 silencing decreased VWF secretion. When cells were 

stimulated with histamine, silencing TMEM171, TNPO1, HLA-C, SNIP-SNAP3A (but not 

SNIPSNAP3B), C2CD4B, KAT2A, and TAB1 increased VWF release in the media, and 

RAB5C decreased VWF secretion (Table 1 and Figure 2A and 2B). For the experiments on 

the 5 genes that were shown to be associated only with FVIII levels (LINC00583, NFIB, 
SOX17, RP1, and TMLHE-F8), we could not find detectable levels of FVIII in media from 

treated human umbilical vein endothelial cells, and therefore, the experiments were 

inconclusive.
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MR Analyses and Cardiovascular Events

Figure 3 shows forest plots representing the results from MR analyses. We first analyzed 

FVIII and VWF individually using the inverse-variance-weighted estimates that included the 

sentinel variant in each locus (after exclusion of variants with pleiotropic effects; Tables II 

through IV in the online-only Data Supplement). Both VWF and FVIII plasma levels 

showed a significant causal effect on CAD, IS, and VTE risk. For CAD, the odds ratios 

(ORs) associated with a per 1-SD change in natural log-transformed FVIII and VWF were 

1.15 (95% CI, 1.05–1.27) and 1.14 (95% CI, 1.05–1.23), respectively. For IS, the ORs were 

1.28 (95% CI, 1.14–1.43) and 1.19 (95% CI, 1.10–1.29), respectively. For VTE, the ORs 

were 2.75 (95% CI, 2.14–3.55) and 2.31 (95% CI, 1.89–2.81), respectively. Sensitivity 

analyses using both MR-Egger regression and weighted median estimates support the 

inverse-variance-weighted estimates, and no significant pleiotropic effect was evident after 

exclusion of the pleiotropic loci (Figure 3 and Table III and Figure IIA through IIC in the 

online-only Data Supplement).

We then performed multivariable MR analyses of the FVIII phenotype to identify causal 

effects of FVIII activity levels that were independent of VWF levels. For VTE and CAD 

outcomes, after adjustment of FVIII results by the effect of VWF, the ORs were modestly 

attenuated (20% and 16%, respectively) compared with the unadjusted estimates and CIs 

widened. For IS, however, adjustment of FVIII results by the effect of VWF resulted in an 

86% attenuation of the OR to 0.88 (95% CI, 0.51–1.51). We could not demonstrate a causal 

association of VWF levels with VTE and CAD that was independent of FVIII levels.

Of note, both the ABO and HLA loci were excluded from the instrumental variables for the 

MR analyses because of evidence of pleiotropic effects shown in the heterogeneity tests 

(Table III in the online-only Data Supplement). When we estimated causal effects using 

ABO alone as an instrument, estimates of causal effects were essentially the same across 

phenotypes and outcomes: OR of 2.57 (95% CI, 2.47–2.67) for FVIII and VTE, 2.28 (95% 

CI, 2.18–2.38) for VWF and VTE, 1.10 (95% CI, 1.06–1.14) for FVIII and IS, 1.09 (95% 

CI, 1.05–1.13) for VWF and IS, 1.10 (95% CI, 1.06–1.14) for FVIII and CAD, and 1.08 

(95% CI, 1.04–1.12) for VWF and CAD.

DISCUSSION

In the present study, we meta-analyzed data from >36 000 individuals with FVIII levels and 

>46 000 with VWF and identified 13 novel loci, of which 7 associated with FVIII plasma 

levels and 11 associated with VWF levels. Overall, new discoveries yielded an additional 

6.2% and 8.1% proportion of variance explained for FVIII and VWF, respectively, from 

previous estimations,8 and suggest that a great proportion of the genetic variance is 

explained by common variation. Furthermore, we presented experimental evidence of 

biological function on VWF regulation for 14 of these genes from gene silencing in vitro: 

PDHB, SLC39A8, TMEM171, TNPO1, HLAC, GIMAP7, NIPSNAP3A, NIPSNAP3B, 
ST3GAL4, C2CD4B, RAB5C, KAT2A, TAB1, and SYNGR1. Finally, we provide evidence 

in support of a causal role of FVIII levels on VTE and CAD events and of VWF levels on IS 

events.
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Characterization of the Novel Loci Regulating FVIII and VWF

As expected for traits with strong genetic correlation, most of the newly associated loci 

regulate both FVIII and VWF levels in blood. Our results show that most of the highest 

signal-independent variants associated with these traits were located in introns or noncoding 

regions, although a substantial proportion were in strong linkage disequilibrium (R2>0.8) 

with mutations causing missense or frameshift mutations in the nearby genes (Table 2 and 

Table VII in the online-only Data Supplement). We also explored expression quantitative 

trait loci associations using publicly available data, and we conducted pathway analyses for 

the novel loci. See the Methods and Tables VIII through XIII in the online-only Data 

Supplement for this information.

For most loci, several genes were identified within the associated region, and we selected ≥1 

genes for further characterization using in vitro cell models. On the basis of our initial 

functional characterization, ≥1 plausible culprit genes regulating VWF secretion could be 

isolated at most loci. Several candidate genes that showed a clear change in VWF levels on 

silencing have been shown to participate in vesicle trafficking and exocytosis, as well as 

intracellular signaling and inflammatory response. The most relevant functional genes are 

described below and summarized in Figure III in the online-only Data Supplement.

VWF Biogenesis, Vesicle Trafficking, and Secretion

ST3GAL4 is a Golgi transferase that catalyzes transfer of sialic acids in VWF glycan 

branches that are essential to its biogenesis, adhesive activity, and clearance.26 It also has a 

role in clearance of desialylated platelets with effects on platelet homeostasis. Genetic 

variants in ST3GAL4 locus have been associated with total cholesterol, low-density 

lipoprotein cholesterol, alkaline phosphatase, increased platelet aggregation, fibrinogen, C-

reactive protein, and CAD (see further details and references in Table VII in the online-only 

Data Supplement). Our functional analyses showed a substantial reduction of VWF release 

on ST3GAL4 silencing, which strengthens the evidence of this gene as a novel VWF 

regulator in basal conditions.

SYNGR1 encodes an integral membrane protein associated with presynaptic vesicles in 

neuronal cells. Several commonalities have been described between the exocytic machinery 

that drives vesicle trafficking and membrane fusion in endothelial cells and synaptic 

machinery found in neurons,27,28 which suggests that SYNGR1 could have a role in vesicle 

trafficking and exocytosis of VWF from the Weibel-Palade bodies. Genetic variation in this 

locus has also been associated with IgG glycosylation, rheumatoid arthritis, and 

inflammatory bowel disease/Crohn disease, the last 2 consistent with an effect of 

deregulation of interleukin and inflammatory signaling pathways.

NIPSNAP3A and NIPSNAP3B were selected as the main biologically plausible genes for 

locus on chromosome 9, and results from the functional study show evidence of significant 

upregulated levels of VWF on silencing of either gene. Again, a reported role of these genes 

in vesicular trafficking29 suggests that these genes could be important in Weibel-Palade 

formation and exocytosis of VWF, both in basal conditions and under inflammatory stimuli.
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Among the 2 new loci found in the transethnic multiphenotype analysis, RAB5C is 

particularly interesting. It is a member of the Rab protein family, thought to ensure fidelity 

in the process of docking and fusion of vesicles with their correct acceptor compartment,30 

which may be relevant to the process of fusion of Wei-bel-Palate vesicles to release VWF in 

endothelial cells. RAB5C silencing caused a significant decrease of VWF release in media 

of endothelial cells on stimulation with histamine.

Our in vitro cell work showed a significantly increased VWF secretion on PDHB silencing. 

PDHB codes for a subunit of the pyruvate dehydrogenase complex, which converts pyruvate 

to acetyl-CoA in the mitochondrion. We speculate that it is possible that the metabolism of 

endothelial cells regulates vesicle trafficking and exocytosis of VWF, meaning that the 

exocytosis process is dependent on the energetic status of the endothelial cell. Genetic 

variation in this locus has also been associated with total cholesterol, systemic lupus 

erythematosus, and rheumatoid arthritis.

Intracellular Signaling and Inflammatory Response

TAB1 silencing increased VWF released in media in our in vitro functional analyses, 

whereas no effect could be seen for PDGFB, a gene that has been implicated in CAD and 

VTE risk. TAB1 is a regulatory protein that acts as a mediator of several intracellular 

signaling pathways, especially those mediated by transforming growth factor-β, WNT-1, and 

interleukin-1, which suggests that it might have a role mediating VWF release on certain 

cellular stimuli.

Similarly, silencing the C2CD4B gene in cultured endothelial cells resulted in strong 

upregulation of VWF release both in basal conditions and under stimulus conditions. Allelic 

variants in this gene have also been associated with fasting glucose homeostasis and type 

diabetes mellitus. Transcripts of this gene are found predominantly in the nuclear 

compartment of endothelial cells, and a possible role in regulation of transcription that might 

increase vascular permeability in acute inflammation has been suggested.31 Similarly, 

TNPO1 codes for a nuclear receptor (Transportin-132), which mediates nuclear import of 

several proteins, which could also suggest a role in regulation of transcription under certain 

circumstances.

DAB2IP is involved in several relevant cell-signaling pathways in response to inflammation, 

innate immune response, and cell growth inhibition, and genetic variation in this gene has 

been associated with abdominal aortic aneurysm and heart rate. Despite the strong genetic 

signal in our data, functional confirmation could not be achieved for DAB2IP in our 

secretion experiment, so additional investigative work is needed.

GIMAP7 showed a significant increase of VWF release on silencing. GTPases of immunity-

associated proteins are regulators of lymphocyte survival and homeostasis,33 although 

limited data have been published on the function of these proteins.

Finally, although it did not reach genome-wide significance in the transethnic meta-analysis, 

we found a single locus close to SLC39A8 that was genome-wide significant in our meta-

analysis of VWF associations in European-ancestry samples. This gene, which encodes a 
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zinc transporter that functions in the cellular import of zinc at the onset of inflammation, has 

also been associated with blood pressure, high-density lipoprotein cholesterol levels, and 

body mass index. Our functional work also suggested a strong effect on VWF levels in 

media from endothelial cells in vitro on SLC39A8 silencing.

Although further functional characterization of these genes is needed to fully characterize 

the role of all the investigated genes in VWF regulation, our results demonstrate that these 

studies are a valid tool to elucidate functional genes coming from genetic associations and to 

shed light into the most relevant biological pathways implicated in the regulation of the 

phenotype under study.

MR and Clinical Implications

Our results provide insights into the causal role of FVIII and VWF in 3 cardiovascular 

events, which are the leading causes of deaths globally.

Biological and genetic evidence indicates that circulating FVIII levels are determined mainly 

by levels of VWF.34 In the present study, we calculated the genetic correlation between 

VWF and FVIII on the basis of the genome-wide association results from Europeandescent 

individuals (Methods in the online-only Data Supplement) and found that the proportion of 

shared heritability of between these 2 phenotypes is 83.5%. This result is strengthened by 

the overlapping findings found in the individual GWASs and suggests that, with some 

exceptions, the genetic pathways that regulate VWF levels indirectly regulate FVIII levels. 

Given the role of VWF regulating FVIII, we used 3 loci that were uniquely associated with 

FVIII independently of VWF and pursued conditional analyses that adjusted for the effect of 

VWF plasma levels to test the causal effect of FVIII on cardiovascular events. For IS, we 

found no evidence of a causal effect of FVIII that was independent of the VWF effect, which 

suggests that VWF biology may causally contribute to IS risk. For VTE and CAD, however, 

we found evidence supporting a causal effect of FVIII independently of the VWF effect. 

Because no genetic loci were independently associated with VWF levels but not FVIII 

levels, we could not adjust the VWF analyses for FVIII. Nonetheless, given the similarities 

in the magnitude of the VWF-adjusted FVIII causal ORs with the VWF causal ORs for VTE 

and CAD, our data suggest that the VWF causal association for VTE and CAD may be 

driven primarily by the biological effect of FVIII, although this hypothesis could not be 

tested.

The results of the MR analyses suggest that both FVIII and VWF may be reasonable targets 

for the prevention or intervention of CAD and VTE, whereas VWF may be a reasonable 

target for IS. Indeed, over the past decade, this line of thinking and research has been 

pursued, and these molecules are currently under investigation as pharmaceutical targets for 

the prevention of thrombotic events.35–38 Here, we report 23 unique genetic loci associated 

with plasma levels of FVIII or VWF, of which 13 are newly reported associations. These 

discoveries may offer new targets in the development of pharmaceutical agonistics or 

antagonists that may modulate thrombotic risk.
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Strengths and Limitations

A major strength of the study was the relatively large sample size and the use of a denser 

imputation panel than was used in past discovery efforts. With this approach, we had hoped 

to identify uncommon associated variants, but the MAFs of the variants in the newly 

associated loci were relatively common, with just 1 variant having an MAF of <0.10. Our 

study design did not identify new associations marked by rare variation. Increasing the 

number of study participants to increase statistical power or improving the quality of the 

imputation from genotyping arrays may help to identify uncommon or rare variants 

associated with the outcomes. Some of the novel findings may be false-positives because we 

did not have access to independent populations to replicate our discoveries. Replication is 

required to validate genetic associations, especially for those close to the threshold for 

statistical significance. To offset this limitation, we conducted functional validation by 

silencing candidate genes and measuring VWF release; we view this functional work as a 

strength of the study. We were able to test only the regulation of VWF expression, not the 

regulation of VWF clearance by macrophages.39 Nor were we able to test other mechanisms 

that regulate synthesis in megakaryocytes but not endothelial cells. Furthermore, the need 

for a particular cellular stimulus that cannot be mimicked by histamine stimulation for the 

effect to be produced would be missed by our approach. Finally, it could be that the effect of 

some genetic associations can be seen only through overexpression rather than silencing of 

the gene. We attempted to also measure FVIII release, but levels were too low, so new 

models are required to validate the impact of the candidate genes on FVIII levels; this is a 

limitation of our approach. All functional work was done in vitro, which carries limitations 

relative to in vivo investigations. The strong genetic coregulation of both FVIII and VWF 

levels allowed us to conduct multiphenotype analyses and to increase statistical power for 

discovery. Our MR approach using improved instrumental variants allows to establish for the 

first time a causal relationship between VWF and FVIII and several cardiovascular events. 

With only 3 loci associated with FVIII alone, the power of the VWF-adjusted MR analyses 

for FVIII and cardiovascular events was limited, and we could not investigate the association 

of VWF with cardiovascular events independently of FVIII. There is a degree of overlap 

between our sample and the sample from consortia providing cardiovascular events GWAS 

data, which might create some bias in MR analyses;40 this is a limitation of our work.

CONCLUSIONS

We found 13 novel genetic loci with modest contributions to plasma levels of FVIII or VWF. 

Our discovery approach including first-pass functional validation has provided relevant 

information on the best candidate gene at the novel loci. Finally, MR analyses provided 

some evidence implicating FVIII plasma levels in the risk of CAD and VTE and VWF 

plasma levels in the risk of IS. In summary, our work has identified novel loci regulating 

proteins essential for hemostasis and coagulation. These findings may provide genetic tools 

for therapeutic and preventive strategies and may be useful to identify new biological 

pathways on which to intervene to reduce the burden of arterial and venous outcomes.
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Clinical Perspective What Is New?

• Plasma coagulation factor VIII and von Willebrand factor concentrations are 

associated with risk of cardiovascular disease, but the genetic factors that 

control their levels are not fully understood.

• Using a multiethnic meta-analysis of genome-wide association studies, we 

identified 7 genome-wide significant novel associations for factor VIII and 11 

for von Willebrand factor.

What Are the Clinical Implications?

• We evaluated the effect of genetic variants with coronary artery disease, 

ischemic stroke, and venous thrombosis through mendelian randomization 

analyses and found evidence of a causal effect of factor VIII activity levels on 

venous thrombosis and coronary artery disease risk, and a causal effect of 

plasma von Willebrand factor levels on stroke risk.

• Our findings suggest that factor VIII and von Willebrand factor may be 

potential therapeutic targets to prevent thrombotic events.
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Figure 1. Manhattan plot for the transethnic analyses factor VIII (FVIII) and von Willebrand 
factor (VWF).
Representation of genome-wide results for FVIII (A) and VWF (B). Loci named by closest 

gene. Black indicates novel associations.
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Figure 2. Silencing candidate genes changes basal release and stimulated release of von 
Willebrand factor (VWF).
Human umbilical vein endothelial cells were transfected with short interfering RNA 

(siRNA) against selected genes for 4 days; the media was changed; and the cells were 

cultured for 30 minutes for basal release (A) or were stimulated with histamine 10 μmol/L 

for 30 minutes (B). VWF was then measured in the supernatant by an ELISA. n=4±SD. All 

results are relative to VWF release after transfection with a scrambled control siRNA, which 

is set as reference (100%). *P<0.05. **P<0.01. ***P<0.001.
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Figure 3. Mendelian randomization results.
Results show odds ratio (OR) (95% CI) per every higher SD change in FVIII (A) and von 

Willebrand factor (VWF; B). CAD indicates coronary artery disease; CVD, cardiovascular 

disease; FVIII, factor VIII; IVW, inverse-variance-weighted method; IVW.adjusted, IVW 

factor VIII adjusted for the effects of VWF; and VTE, venous thromboembolism.
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