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Abstract

English and Mandarin Chinese are two distinct languages in
many aspects, such as orthography and morphology. Previ-
ous network analyses show strong clustering coefficients (C)
on English semantic networks, revealing the interconnected-
ness of semantic representations between words. However, it
is not clear whether such semantic representation properties
are language specific or general, and whether the linguistic-
feature difference (e.g., subword components such as orthog-
raphy and morphology) may affect the lexico-semantic struc-
ture. Here, we compared Cs of words in English and Mandarin
semantic networks based on a) feature norms empirically de-
rived from human subjects and b) distributed semantic infor-
mation of text retrieved by word embedding models. We con-
sistently observed higher Cs of Mandarin words than English
words, especially when the semantic network considers sub-
word features. Linear regressions suggested that the subword
components’ semantic properties in Mandarin, but not in En-
glish, could significantly and positively predict the C of words
in semantic networks. The results indicate an important role of
language-specific properties in lexico-semantic structures and
imply the diversity of human language processing.

Keywords: Network science; Semantic networks; Cross-
linguistic comparison; Feature norms; Word embeddings;
Computational modeling

Introduction
Network science benefits the understanding of human lexical-
semantic representation (Steyvers and Tenenbaum, 2005;
Borge-Holthoefer and Arenas, 2010) by amassing a vast
amount of words traditional methods typically fall short of
(e.g., behavioral studies) and providing global insight into
the interconnections, interactions and higher-order organiza-
tion of words (Karuza et al., 2016). Normally, a semantic
network is constructed with words as its nodes and seman-
tic relations/similarity among words as edges. The global
semantic system of words has been shown to affect many as-
pects of language processing (Hills et al., 2009a, 2009b; Xu et
al., 2021) and has revealed unique features such as strong in-
terconnectedness of semantic representations between words.
However, most previous studies have focused on a single lan-
guage. It is unclear whether such semantic representation
properties are language specific or general, and whether the
cross-linguistic difference, such as orthography and morphol-
ogy, may be associated with lexico-semantic structure.

Subword features in English and Mandarin Mandarin
Chinese and English are two distinct languages in orthog-
raphy and morphology, among other linguistics features. In
Mandarin Chinese script, four levels of structural complexity
are involved in a word: stroke, radical, character, and word
(see Figure 1; Yeh et al., 2017). The basic units are strokes.
Strokes could be combined as fixed sets to form radicals that
typically carry semantic or phonetic information about the
character. Approximately 96% of commonly used Mandarin
Chinese characters are constituted by semantic and phonetic
radicals (Li and Kang, 1993; Hsiao et al., 2007). Semantic

Figure 1: A demonstration of four levels in a Mandarin Chi-
nese word. Note that a character may also be a word by itself

radicals generally reflect the semantic categories of Chinese
characters and words (Huang and Hsieh, 2015) and facilitate
lexical-semantic processing (Feldman and Siok, 1999; Ding
et al., 2004). For example, Mandarin Chinese characters with
higher semantic transparency (i.e., the degree to which the
meaning of the character is directly related to the meaning of
its semantic radical) are processed more accurately and faster
(Hsiao et al., 2007). Moreover, Chinese characters with se-
mantic radicals that possess a larger family size (i.e., num-
ber of characters sharing the same semantic radicals; Feld-
man and Siok, 1997) are recognized faster than those with
a smaller semantic radical family size. Similarly, Studies in
English found that the morphological family size could influ-
ence lexical-semantic recognition and processing (Baayen et
al., 2006). However, with letters as fundamental units in its
writing system, English does not possess semantic subword
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components as prevalent as semantic radicals in Mandarin
words (Shen and Ke, 2007). Will the ubiquitous semantic
radicals in mandarin Chinese influence Mandarin speakers’
semantic knowledge organization and representation? We in-
fer that Mandarin Chinese characters/words with the same se-
mantic radicals might be ”stored” in the mental lexicon in a
more clustered manner due to a higher degree of similarity in
form.

Clustering coefficient and lexical-semantic processing
Clustering coefficient (C) of a word in a semantic network
quantifies the extent to which the word’s semantically simi-
lar words are also similar to each other (Steyvers and Tenen-
baum, 2005). It reflects how clustered (i.e., grouped together)
the semantic representations are for the word and its semanti-
cally similar words. The C of a node in a weighted network is
calculated by taking the sum of the geometric average of the
edge weights of that node (Onnela et al., 2005):

(1)

where deg(u) represents the number of edges to which a
given node is connected (D). The weights during the calcula-
tion of C are normalized via scaling the weights by the largest
weight in the network (Onnela et al., 2005) using the formula
W̃i j =Wi j/max(Wi j). Figure 2 presented an illustration of the
C of a node in different weighted networks.

Figure 2: An illustration of the C of a node u in three different
weighted networks: a, b, and c. The three networks have an
equal number of nodes but differ in edge weights.

C is a commonly studied metric in semantic networks. It
has been shown to influence the inhibition and facilitation
of lexical processing via the spreading activation between a
word and its neighbors (Vitevitch et al., 2011; Vitevitch and
Luce, 2016; Xu et al., 2021). Given its implication in lexical-
semantic processing, we focus on the cross-linguistic com-
parison on C. If rich semantic information of Mandarin Chi-
nese radicals affects the semantic structure, then the semantic
representation of Mandarin words is likely to be more clus-
tered; thus words in a Mandarin semantic network may have
higher C than in English.

Present study
In this study, we have two main objectives. First, we aim to
compare the lexical-semantic structure across languages, fo-
cusing on English and Mandarin Chinese. We analyze the
clustering coefficient (C) of semantic networks built using

feature norms, and word embedding models including both
word and subword information. Considering that subword
components influence word semantics and Mandarin radicals
carry rich semantic information (Feldman and Siok, 1997),
we hypothesize higher C values in Mandarin networks than
English. Furthermore, we expect the cross-linguistic differ-
ence in C to be more pronounced in embedding networks
with subword-level information, further highlighting the role
of subword components.

Second, we aim to directly investigate the role of sub-
word components in semantic structures and examine poten-
tial cross-linguistic differences. In view of previous findings
on semantic transparency’s influence on lexical-semantic rep-
resentation and processing, we introduce a new metric, se-
mantic consistency (SemC), to quantify the subword compo-
nent’s impact. SemC is computed based on the average se-
mantic similarities between words sharing the same subword
component. Figure 3 illustrates SemC computation. In step
1 (Figure 3a), we extracted subword components from indi-
vidual English and Chinese words (e.g., ”second” and ”hand”
for ”secondhand” in English, and ”扌” and ”丁” for ”打” in
Chinese). 1.

In step 2, we computed each subword component’s SemC
by measuring the average semantic similarities between
words sharing the same components (Figure 3b). A higher
average semantic similarity suggests a more consistent se-
mantic representation for that component. For example, the
Mandarin radical ”扌” may have higher SemC, as words con-
taining it, like ”打” (hit), ”推” (push), and ”捏” (pinch), are
semantically similar. Similarly, ”hand” in English may have
high SemC, as words like ”handicraft”, ”handkerchief”, ”sec-
ondhand”, and ”handicap” are semantically related. Lastly,
we computed each word’s SemC (henceforth SemC-word)
by averaging2 the SemCs of its subword components (Figure
3c). We then used the calculated SemC to predict C. As se-
mantic subword components are more prevalent in Mandarin
than in English (Li and Kang, 1993; Shen and Ke, 2007), we
hypothesize that subword components’ semantic properties
significantly predict word C in Mandarin semantic networks,
but not in English.

Network Structure Comparison Across
Languages

For each language, we built semantic networks using fea-
ture norms (Deng et al., 2021; Devereux et al., 2014) and
word embeddings (Bojanowski et al., 2017; Cao et al., 2018;
Mikolov et al., 2013). These resources are comparable across
languages, and Andrews et al. (2009) demonstrated that the

1For English, this was done with a Python package
polyglot that offers trained morfessor models (F = 0.76;
Virpioja et al., 2013) to generate morphemes from words.
https://polyglot.readthedocs.io/en/latest/MorphologicalAnalysis.html.
For Mandarin, this was done with an online dictionary
https://tool.httpcn.com/zi/

2We also tried the maximum SemC and found that the maximum
and mean measurements were strongly correlated, Rspearman > 0.9
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Figure 3: An illustration of the calculation of SemC for English and Mandarin Chinese words.

two approaches together offer better insights into word se-
mantic representations. We did not use word association
(Nelson et al., 2004, another common resource for construct-
ing semantic networks, due to the lack of comparable Chinese
word association norms.

Semantic feature norms are conceptually and
experientially-based (e.g., ”banana is a fruit”), provid-
ing a transparent semantic similarity through overlapping
features among words (Mirman and Magnuson, 2008. Their
use in constructing semantic networks has been validated in
previous studies (Hills et al., 2009b; Peters and Borovsky,
2019).

Embedding models like word2vec are context-based,
learning word vector representations from text corpora.
Semantically-related words in similar contexts are closer in
vector space, making these models suitable for capturing se-
mantic associations (e.g., ”king” and ”queen”). Embedding-
derived semantic networks have demonstrated psychological
plausibility through network metrics, including C (Kajic and
Eliasmith, 2018; Steyvers and Tenenbaum, 2005; Utsumi,
2015).

Feature networks

Data To ensure dataset comparability between languages,
we used the Centre for Speech, Language and the Brain con-
cept property norms for English (Devereux et al., 2014) and
the Chinese Conceptual Semantic Feature Dataset for Chi-
nese (Deng et al., 2021). The tasks were similar across both
languages. Participants saw a concept word in each trial and
provided at least five features using provided relation words
(e.g., ”banana is a fruit,” where ”banana” is the concept, ”is”
the relation, and ”a fruit” is the feature). For both datasets,
each concept received responses from at least 30 participants.

The selection criteria for concept norms were also similar
in both languages, prioritizing words with higher concrete-
ness. Mandarin data included all concepts translated from En-
glish data. However, the sample sizes differed: 638 concept
words for English and 1,410 for Mandarin. We controlled for

sample size when constructing and analyzing semantic net-
works (details provided below).

Determining semantic relations The semantic relations
between each of the two concept words were determined by
a semantic similarity measurement that both Devereux et al.
(2014) and Deng et al. (2021) adopted. As semantically
similar words tend to share features, concept words×feature
matrices were constructed to represent semantic information
of words. Each word has its semantic vector decomposed
from its feature representations. Cosine similarity was then
used to measure the vector distance between every two words.
The greater the cosine between two words - suggesting more
shared features - the higher the semantic similarity is between
the two words.

Network construction For each language, we constructed
a weighted semantic network with the concept words as
nodes, and their semantic similarity as weights of the network
connections.

Because the large difference in the number of concept
words between the datasets of the two languages may con-
found the cross-linguistic comparison of C, we applied a
without-replacement bootstrap method (see Bertail, 1997) to
address the issue. For each language, we bootstrapped 100
sub-networks from the original semantic network; each sub-
network contains 500 nodes randomly sampled from the orig-
inal network and the weighted connections between the sam-
pled nodes. Subsequential statistical comparisons were per-
formed on the bootstrapped sub-networks that had identical
sizes.

Analysis An average C was computed for each boot-
strapped sub-network by averaging the Cs of all nodes. The
difference of Cs between the two languages’ sub-networks
was then tested using an independent-sample t-test. Because
D may often confound C, we also obtained average Ds for the
sub-networks. To rule out any interference from D, residu-
alized average C (RES C) was calculated from a regression
model using average D of each sub-network as a predictor of
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(a) (b)

Figure 4: Cs (a) and RES Cs (b) of the feature networks in
each language

average C (see Garcıa et al., 2020 for the validity of residu-
alization). We also statistically compared networks’ RES Cs
between the two languages3.

Results Normality has been assumed in the data both with
and without residualization. An independent-sample t-test
showed that words in Mandarin semantic networks have
greater average C (M = 0.23,SD = 0.02) than words in En-
glish semantic networks (M = 0.17,SD = 0.01), t(196.47) =
12.79, p < .001,d = 3.30; Figure 4a). A test on RES C with
D controlled showed the same pattern (Figure 4b), t(198) =
5.23, p < .001,d = 1.35.

Embedding networks
Training data We downloaded cleaned Wikipedia dumps
of English and Mandarin (Yang et al., 2018; Yu et al., 2017)
as the training data for embeddings. Both datasets involved a
similar filtering process and were retrieved from the archive
of the same year (2017). As the two data differ greatly
in word tokens (1,615,338,431 for English as compared to
164,998,611 for Mandarin) and unique word types (3,194,435
for Mandarin as compared to 163,329 for English), the larger
data was down-sampled to match the size of the smaller
data. Because the type-token ratio is different between the
two datasets, we performed two versions of downsamples - a
matched-type version and a matched-token version. When
downsampling, we randomly sampled documents from the
larger data, scrambled the order of the documents, processed
documents one-by-one, sequentially included sentences from
a document being processed while counting the size of the
included data every time after processing a sentence, and
stopped until the total included size approximately matched
(may still differ slightly as each sentence was a processing
unit) the smaller data. This approach yielded 164,998,612
tokens in the down-sampled English data of the matched-
token version as compared to 164,998,611 for Mandarin, and

3Previous studies utilizing unweighted networks normally com-
pare the C of the network with that of a random reference network
with the same size and degree. However, for weighted networks,
constructing a corresponding random reference network involves
many other considerations. Thus, instead of constructing random
weighted networks, we controlled the node size and degree.

163,328 types in the down-sampled Mandarin data of the
matched-type version as compared to 163,329 for English.

Word frequency We used the word frequency for selecting
words of the networks. SUBTLEX was used (Brysbaert et al.,
2011; Cai and Brysbaert, 2010), a large-scale database with
word frequency information gathered from film and television
subtitles. SUBTLEX of English and Mandarin are compara-
ble in terms of data collection and processing.

Training semantic embeddings The semantic relations
between words were determined by semantic embeddings
trained on large-scale text data, which were represented
at two different levels: the word and the subword levels.
Word2vec (Mikolov et al., 2013) was used as the word-level
embedding model.

The subword-level embeddings represent fine-grained sub-
word features of words. The smallest subword unit in writ-
ten English is the letter; in written Mandarin Chinese, it is
the stroke. To capture the subword information in semantic
representations, we constructed embeddings based on a letter
n-gram fastText of English (Bojanowski et al., 2017) and a
stroke n-gram cw2vec of Chinese4 (Cao et al., 2018).

FastText (Bojanowski et al., 2017) is similar to word2vec,
except that it learns vector representations not from words,
but rather built by the sum of the letter n-grams contained in
this word. For example, the vector space of the word ”run-
ning” in a trigram fastText model will be a sum of the vec-
tors of its character trigrams ”run”, ”unn”, ”nni”, ”nin”, and
”ing”. Cw2vec of Chinese (Cao et al., 2018) is analogous
to fastText of English, except that the n-grams are based on
strokes rather than letters. For example, the vector space of
the Chinese word ”打” (hit) in a trigram cw2vec model con-
sists of the vectors of its stroke trigrams ” ”, ”

”, and ” ”. In the actual model training, the n
for the n-grams often varies within a range to better capture
different sizes of subword components; that is, morphemes in
English or, equivalently, radicals in Mandarin (Bojanowski et
al., 2017; Cao et al., 2018). With extra subword knowledge,
such as morphemes ”ing” in the English word ”running” and
radicals ” ” (i.e. ”扌”, a radical with semantic mean-
ings of hand-related actions) in the Chinese word ”打”, both
fastText of English and cw2vec of Chinese have been shown
to better capture words’ meanings relative to word2vec mod-
els (Bojanowski et al., 2017; Cao et al., 2018).

Embeddings were trained on each language’s matched-
type/token versions of the Wikipedia dump. During the train-
ing, we included parameter settings set by previous studies
(Bojanowski et al., 2017; Cao et al., 2018; Mikolov et al.,
2013). The dimensionality was 300, the window size was 5,
and the n-gram size ranged between 3 and 6 for all of the

4The reason for not including a fastText of Chinese is because
the fastText of Chinese takes character n-gram and is fundamentally
different from that of English. A preliminary analysis shows that
the network built on the Chinese fastText also reveals higher Cs of
words than the English network, which is consistent with the results
reported below.
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embedding models.
Network construction For each language, we constructed
semantic networks using the top 5,000 most frequent words as
the nodes and their semantic relations as connections. There-
fore, all embedding networks are equal in size. Connections
were weighted using the respective embedding model’s co-
sine similarity, a measurement of the cosine of the angle be-
tween two vectors. The metric has been widely used in the
literature to compute semantic similarities (Bojanowski et al.,
2017; Cao et al., 2018; Mikolov et al., 2013).
Analysis As the sizes of the embedding networks are iden-
tical between the two languages, here we analyzed the whole
embedding network rather than bootstrapped sub-networks.
For each network, the C of individual words was calculated.
The cross-linguistic comparison of C was then made through
a mixed-model ANOVA, with language (English vs. Man-
darin) as a between-subject independent variable and repre-
sentation level (word vs. subword) as a within-subject inde-
pendent variable. We also tested C with D controlled through
residualization (i.e., RES C). We tested the matched-type and
the matched-token versions separately.
Results Because our data did not meet the normality of
residuals assumption, we used robust statistical methods
(Mair and Wilcox, 2020) which are shown to be robust to
violations of assumptions of statistical tests such as ANOVA
and t-test.

Matched token. Figure 5 illustrated the results. Ro-
bust ANOVA showed a significant interaction effect between
language and representation level on C, F(1,3121.64) =
69585.8, p < .001. For the word-level embedding net-
work, Chinese words (M = 0.18,SD = 0.02) had signifi-
cantly higher C than English words (M = 0.14,SD = 0.02),
t(4752.84) = 100.38, p < .001,d = 2.25. Differences in
Cs between Chinese words and English words were magni-
fied in the subword-level network, t(3869.39) = 288.93, p <
.001,d = 6.45, suggesting the effect of subword information
when evaluating differences in C across languages.

Figure 5: Cs and RES Cs of the embedding networks in each
language and representation level. To present the data clearly,
the range of the y-axis in the word-level RES C is smaller than
in the subword-level RES C graph.

Similarly, analyzing RES C (Figure 5) showed a) a signifi-

cant interaction effect between language and representation
level, F(1,4587.61) = 16413.09, p < .001, b) significantly
higher RES Cs of Mandarin words than those of English
words in the word-level networks, t(4263.17) = 134.38,d =
2.10, and c) larger difference in the subword-level net-
works of RES C between the two languages, t(4620.2) =
138.83, p < .001,d = 3.01.

Matched type. The results of the matched-type embed-
ding networks are consistent with the matched-token net-
works. Both C and RES C of words in the Mandarin net-
works were significantly higher than in English in the word-
level networks (t(4752.84) = 146.24, p < .001,d = 2.32 for
C; t(4263.17) = 87.64, p< .001,d = 1.85 for RES C) and the
subword-level networks (t(3869.39) = 174.36, p < .001,d =
4.35 for C; t(4620.2) = 122.14, p < .001,d = 2.01).

Semantic Consistency of Subword Components
and Network Structure

Measuring semantic consistency SemC calculation has
been introduced above (Figure 3). To determine the semantic
similarity, we used cosine similarities obtained from the fea-
ture norms (Deng et al., 2021; Devereux et al., 2014) and the
subword-level embeddings (fastText for English Bojanowski
et al., 2017 and cw2vec for Mandarin Cao et al., 2018). Anal-
yses will be cross-validated with those two separate cosines
to ensure that any observed relation between SemC and net-
works’ C is not due to an artifact that the same cosines were
used for constructing networks and calculating SemC.

Analysis In each network, we computed a word2vec-based
SemC-word and a feature-based SemC-word for each word.
Next, we used linear regression models with SemC-word as
a predictor and the word’s C of a semantic network as the
outcome. Word frequency5(Brysbaert et al., 2011; Cai and
Brysbaert, 2010), one most commonly studied lexical prop-
erty, was also included as a covariate. As some words solely
appear in feature or embedding networks, when using SemC
estimated from one source to analyze networks from the other
source, only common words of the two networks were in-
cluded in regressions. Table 1 listed the number of words
being analyzed on different conditions.

Results Table 1 reported the results. For all the Mandarin
networks, SemC-word was a significant, positive predictor
of the C of words and is independent of and stronger than
the prediction of word frequency. For example, embedding-
based SemC-word was a significant, positive predictor of
words’ C in the Mandarin feature network, t = 12.15, p <
.001. Including SemC-word and frequency as predictors
significantly improved the model fit (R2 = 0.14) as com-
pared to a model with word frequency only (R2 = 0.03),
Fchange(1,1100) = 147.72, p < .001. SemC-word explained

5Other lexical properties such as concreteness may also affect
semantic organizations of the lexicon (Fliessbach et al., 2006). How-
ever, there are no adequate norms available currently in Mandarin.
Therefore, we leave other covariates for future explorations
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Table 1: Prediction of SemC-word of the C of words in linear regressions. Word frequency was controlled. ”Words” represent
the number of words included in the regression. b is the unstandardized coefficient. R2

change indicates the additional variation
in C explained by adding SemC-word as a predictor as compared to a model where word frequency was the only predictor.
Embedding networks here are the matched-token version, but the matched-type version revealed consistent results. ***p <
.001; **p < .01.

Language Network SemC source Words b R2
change

English Feature network Feature norms 420 0.07** 0.03**
Embedding 348 0.06 0.00

Word-level embedding network Feature norms 216 0.00 0.00
Embedding 5000 -0.00 0.00

Subword-level embedding network Feature norms 216 -0.01 0.02
Embedding 5000 0.02*** 0.01***

Mandarin Feature network Feature norms 1195 0.29*** 0.12***
Embedding 1102 0.28*** 0.11***

Word-level embedding network Feature norms 185 0.07*** 0.07***
Embedding 5000 0.08** 0.03**

Subword-level embedding network Feature norms 185 0.29*** 0.09***
Embedding 5000 0.22*** 0.08***

an additional 11% of variation in words’ C. In contrast, the
prediction of SemC-word of words’ C in the English semantic
networks was either insignificant or weak.

Discussion
The present study involves a systematic comparison between
Chinese and English semantic structures and reveals higher-
order differences between the two languages. By examin-
ing semantic networks based on empirically-derived feature
production and computationally-derived text data, our work
consistently revealed that words in Mandarin semantic net-
works have higher C than words in English semantic net-
works. By manipulating representation level (e.g., word vs.
subword levels) in the embedding models, we found that
models representing subword components showed a greater
cross-linguistic difference in C. These findings may indicate
that semantic representations of words in Mandarin Chinese
are more interconnected than the semantic representations of
words in English at a large-scale structural level.

By quantifying semantic transparency with our SemC mea-
surement, we found that SemC significantly predicted C
in Mandarin, independent of and stronger than word fre-
quency. In English, SemC’s prediction of C was either weak
or insignificant. These results highlight the unique role of
Mandarin-specific subword components in shaping semantic
structure, suggesting language-specific processes in organiz-
ing semantic lexicons. Since semantic subword components
facilitate lexical-semantic processing (Ding et al., 2004; Feld-
man and Siok, 1999, and are more prevalent in Mandarin
(Shen and Ke, 2007), it is likely that such components estab-
lish semantic connections between words in a more clustered
manner.

With the network science approach, our work character-
izes human semantic representation from a large-scale and

global perspective. While few previous studies have con-
sidered different characteristics between different languages
when studying lexical-semantic representation, our work un-
derscores the impact of the diversity of language properties
on human language processing. As studies have highlighted
relations between semantic network properties and lexical
properties (De Deyne et al., 2013; Peters and Borovsky,
2019) as well as semantic network structure and language
processing Balota et al., 2004; Goñi et al., 2011; Mirman and
Magnuson, 2008; Xu et al., 2021, our work may also pro-
vide insights into other aspects of human language process-
ing, such as concepts, categorization and semantic memory
of different populations. For example, as C of the lexicon
has been shown to affect word production (Siew et al., 2019;
Vitevitch and Luce, 2016; Xu et al., 2021) such that words
with higher Cs might be harder to retrieve, there could be
cross-linguistic differences in lexical retrieval due to differ-
ent lexical-semantic structures.

Corpus analysis and cross-linguistic comparisons offer nat-
uralistic and large-scale insights, but also introduce noise.
While controlling for linguistic and other confounds, our
study demonstrates correlational, not causal relationships be-
tween examined variables. Despite using text from compa-
rable sources, content differences between languages could
still exist and confound the connection between language and
lexico-semantic structure. Future research could employ ex-
perimental methods to test language-specific properties’ ef-
fects on language processing. Further development of cross-
linguistic resources, such as psycholinguistic norms (Brys-
baert et al., 2014) and word association norms (De Deyne et
al., 2019; Nelson et al., 2004), would be valuable. Including
more languages through such resources could provide better
insights into the diversity of human language processing.
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