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G E N E R A L A R T I C L E O N E
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Abstract

Integration of genome-wide association study (GWAS) signals with expression quantitative trait loci (eQTL) studies enables
identification of candidate genes. However, evaluating whether nearby signals may share causal variants, termed
colocalization, is affected by the presence of allelic heterogeneity, different variants at the same locus impacting the same
phenotype. We previously identified eQTL in subcutaneous adipose tissue from 770 participants in the Metabolic Syndrome
in Men (METSIM) study and detected 15 eQTL signals that colocalized with GWAS signals for waist–hip ratio adjusted for
body mass index (WHRadjBMI) from the Genetic Investigation of Anthropometric Traits consortium. Here, we reevaluated
evidence of colocalization using two approaches, conditional analysis and the Bayesian test COLOC, and show that
providing COLOC with approximate conditional summary statistics at multi-signal GWAS loci can reconcile disagreements
in colocalization classification between the two tests. Next, we performed conditional analysis on the METSIM

http://creativecommons.org/licenses/by/4.0/
http://www.oxfordjournals.org/


Human Molecular Genetics, 2019, Vol. 28, No. 24 4163

subcutaneous adipose tissue data to identify conditionally distinct or secondary eQTL signals. We used the two approaches
to test for colocalization with WHRadjBMI GWAS signals and evaluated the differences in colocalization classification
between the two tests. Through these analyses, we identified four GWAS signals colocalized with secondary eQTL signals
for FAM13A, SSR3, GRB14 and FMO1. Thus, at loci with multiple eQTL and/or GWAS signals, analyzing each signal
independently enabled additional candidate genes to be identified.

Introduction
Genome-wide association studies (GWAS) have discovered thou-
sands of loci associated with hundreds of complex diseases and
related traits (www.ebi.ac.uk/gwas), yet the underlying genes
that influence disease susceptibility often remain unknown.
One approach to identify causal genes is to map expression
quantitative trait loci (eQTL) that contribute to variation in gene
expression level (1–3), and then assess evidence of colocaliza-
tion between overlapping GWAS and eQTL signals—that is, we
test whether the same variant(s) is(are) likely responsible for
the signals in both studies. Several studies have interrogated
available databases/resources for eQTL, and identifying GWAS-
colocalized eQTL has enabled identification and interpretation
of likely functional genes and potential biological pathways
underlying the disease/trait associations (4–10). Previously, we
analyzed subcutaneous adipose tissue gene expression using
microarrays in 770 participants in the Metabolic Syndrome in
Men (METSIM) study and identified novel eQTL colocalized with
109 GWAS loci for cardiometabolic diseases and traits, suggest-
ing new candidate genes mediating the variant associations with
cardiometabolic disorders (11).

Allelic heterogeneity, in which more than one genetic variant
at the same locus influences the same phenotype, is a common
characteristic of complex traits (12). Fine-mapping at GWAS
loci routinely identifies many loci with multiple conditionally
distinct association signals (defined as signals that remain or
become significantly associated with the outcome after mod-
eling the effect of other nearby signals) that increase the pro-
portion of phenotypic variance explained by genetic variation
at the locus (13–16). Fine-mapping at eQTL loci also has iden-
tified eQTL with multiple conditionally distinct signals (7); (17);
(18). Identifying multi-signal loci is becoming more common as
sample sizes of eQTL studies increase (14); (19), and testing for
colocalization at each signal within a locus will help identify
additional candidate genes that contribute to a trait. For exam-
ple, two eQTL signals were identified in peripheral blood for
the gene FAM117B at the total cholesterol locus FAM117B. After
accounting for linkage disequilibrium (LD), only the secondary
eQTL signal was colocalized with the total cholesterol GWAS
signal (18), emphasizing the utility of conditional analysis.

Body fat distribution is a heritable trait related to car-
diometabolic risk (20); (21). One GWAS by the Genetic Investi-
gation of Anthropometric Traits (GIANT) consortium reported
68 conditionally distinct signals at 49 loci (49 primary signals
and 19 additional signals after accounting for primary signals)
associated with waist-to-hip ratio adjusted for body mass
index (WHRadjBMI), a measure of body fat distribution (10).
Based on available eQTL resources, the consortium reported
that the lead GWAS variants at 21 of these 49 loci were in
strong LD (r2 > 0.8) with variants associated with transcript
levels in subcutaneous adipose tissue, omental adipose tissue,
liver and/or blood (10). Using our subcutaneous adipose
eQTL data from METSIM, we reported 15 WHRadjBMI-eQTL
colocalized signals, including seven GWAS-colocalized eQTL at
six loci that had not been detected by the GIANT consortium

(11). However, both analyses were limited to primary eQTL
signals.

Here, we extended our analysis of initial, primary subcuta-
neous adipose tissue eQTL in the METSIM study to identify sec-
ondary eQTL signals. We evaluate colocalization of primary and
secondary eQTL signals with primary and secondary GWAS sig-
nals for WHRadjBMI (10). We identify colocalization by pairwise
LD and conditional analysis on the lead GWAS and lead eQTL
variants (10); (11), and compare our findings to those obtained
using COLOC, a Bayesian test of colocalization (22). The results
demonstrate the value of separating signals at eQTL and GWAS
loci to identify additional candidate cis-regulated genes that may
influence disease etiology.

Results
In the METSIM microarray study of subcutaneous adipose tissue,
we previously identified primary cis-eQTL that showed asso-
ciation between a genetic variant and expression level of at
least one gene (FDR < 1%, equivalent to P < 2.4 × 10−4 in genome-
scale eQTL mapping) (11). Here, we focused on the lead variants
for each of 68 conditionally distinct GWAS signals identified
previously at 49 WHRadjBMI loci (10). Of these 68 variants, 40
were associated with expression level of at least one gene within
1 Mb (FDR < 1%), while 28 were not associated with expression
level of any gene. Some variants were associated with expression
level of more than one gene; the 40 variants were associated with
expression level of a total of 71 genes. For each of the 71 genes,
we also identified the variant that exhibited the strongest asso-
ciation with expression level, which we denote as the lead eSNP.
We further define a ‘signal pair’ as a lead GWAS variant that is
associated with a gene’s expression level, and the lead eSNP for
that gene. Details on the 71 signal pairs are in Supplementary
Material, Table S1.

We then used two strategies to determine whether the GWAS
signals were colocalized with the primary eQTL signals for those
genes. First, we assessed colocalization through two criteria of
LD and conditional analysis (11), requiring both high pairwise
LD (r2 > 0.8) between the lead GWAS variant and the lead eSNP,
as well as attenuation of the eQTL signal in conditional analysis
(conditional P > 2.4 × 10−4, see Materials and Methods). Then, we
assessed colocalization using the Bayesian test COLOC, defining
colocalization based on a high posterior probability that a single
shared variant is responsible for both signals (PP4 > 0.8) (22).

Colocalization of primary eQTL signals with
WHRadjBMI GWAS signals
Among the 71 pairs of GWAS and primary eQTL signals, 20
were classified as colocalized by LD and conditional analysis
(Table 1). Only 15 of the 20 signal pairs were reported in our
previous study (11) due to differences in software to identify
eQTL. Similarly, based on LD and subcutaneous adipose tissue
eQTL data from other studies (10), the GIANT consortium had
described 9 of the 20 signal pairs as colocalized. New colocalized
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GWAS–eQTL signals identified here include a GWAS signal near
VEGFA colocalized with an eQTL for VEGFA, a GWAS signal at
HOXC4–HOXC6 colocalized with an eQTL for HOXC4, and a GWAS
signal near PBRM1 colocalized with eQTL for both GNL3 and NEK4
(Table 1).

Of the 20 GWAS–eQTL signal pairs classified as colocalized
by LD and conditional analysis, 15 were also classified as colo-
calized by COLOC (PP4 ≥ 0.8), but 5 were not (PP4: 0–0.76, Table 1).
COLOC did not identify any additional colocalizations that LD
and conditional analysis did not also classify as colocalizations.
Two of the five signals COLOC did not classify as colocalized
had marginal PP4 values (0.76 at the NKX3 GWAS locus for an
STC1 eQTL and 0.66 for a secondary GWAS signal at the NT5DC
locus for a C3orf78 eQTL). Since prior probabilities can play an
important role in the posterior expectations in COLOC (23) and
our priors were conservative, we carried out sensitivity analysis
to address whether altering the priors could lead to different
posterior probabilities. When we increased the prior probability
that a shared causal variant influences both WHRadjBMI and
gene expression level from 1 × 10−6 to 5 × 10−6, the PP4 pos-
terior probabilities increased from 0.66 to 0.91 for C3orf78 and
from 0.76 to 0.94 for STC1, respectively (Supplementary Material,
Table S2). As expected, the 15 colocalized signals discovered with
the conservative priors showed stronger Bayesian evidence of
colocalization as the priors became less stringent.

Three remaining putative colocalizations (based on LD and
conditional analysis) had low PP4 values (PP4 < 0.8) even with
more lenient priors. These colocalizations were found at two
GWAS loci that each consists of more than one distinct GWAS
signal, CCDC92–ZNF664 and NFE2L3–SNX10 (Supplementary
Material, Table S3) (10); (24). Since the presence of more than
one causal signal within a GWAS locus is expected to limit
COLOC’s power to detect colocalizations (23), we used a tool
for Genome-wide Complex Trait Analysis (GCTA) conditional
analysis to estimate residual GWAS association statistics for
each signal, conditioning on the effect of the other nearby
signals (see Materials and Methods) (24). We then provided
COLOC the GCTA residual summary statistics, which should
mitigate the impact of multiple significant signals in the region.
Using GCTA’s approximate conditional summary statistics of
the GWAS data at these three loci, COLOC identified the same
three colocalizations with eQTL signals detected by conditional
analysis (Table 2). At the CCDC92–ZNF664 locus, the secondary
(rs863750) GWAS signal was colocalized with the primary eQTL
for ZNF664 (PP4 = 0.98, Table 2, Fig. 1). At the NFE2L3–SNX10
locus, the secondary (rs1534696) GWAS signal was colocalized
with the primary eQTL for both SNX10 (PP4 = 0.99) and CBX3
(PP4 = 0.99, Table 2). Overall, COLOC and conditional analysis
had high agreement in colocalization classification, with some
differences that could be due to the assigned priors in the
Bayesian test and/or thresholds to define colocalization.

Given that METSIM study participants are all men, we exam-
ined whether six colocalizations between METSIM eQTL signals
and WHRadjBMI GWAS signals that had exhibited sex hetero-
geneity can be detected in other eQTL data from men-only and
women-only analyses. We compared evidence of colocalization
of the six signals with the lead adipose eQTL signals from
men and women in the Diabetes Epidemiology: Collaborative
analysis of Diagnostic criteria in Europe (deCODE) study and
the female-only TwinsUK Multiple Tissue Human Expression
Resource (MuTHER) study (10); (25). As shown in Supplementary
Material, Table S4, four of the signal pairs colocalized with the
eQTL in women-only data [the lead eSNPs for all four are in
strong LD (r2 ≥ 0.91) with the lead GWAS variants], showing Ta
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Figure 1. Colocalization of the ZNF664 eQTL with the 2nd signal (rs863750) of the two independent GWAS signals at CCDC92–ZNF664. (A) Initial variant association with

WHRadjBMI in GIANT. Color indicates LD (r2) with GWAS variant of 1st signal (rs4765219). (B) Residual association with WHRadjBMI after accounting for the effect of

the 1st GWAS signal in GIANT; the GWAS variant rs863750 (representing the 2nd signal) was plotted as the lead variant. (C) Variant association with ZNF664 expression

levels in METSIM. The GWAS variant rs863750 representing the secondary signal was plotted as the lead variant.
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that the primary eQTL signals for TNFAIP8, ADAMTS9, SNX10
and CBX3 are not sex-specific. Our results are consistent with
existing literature: previously, WHRadjBMI signals have shown
largely similar evidence of colocalization with adipose eQTL sig-
nals from men and women, even for GWAS loci with significant
evidence of sex heterogeneity (10).

Colocalization of secondary eQTL signals with
WHRadjBMI GWAS signals
We next tested for secondary eQTL signals at the 71 genes that
were associated with WHRadjBMI GWAS signals. We performed
association analyses with gene expression level while including
the lead eSNP as a covariate in the regression model, and defined
the new variant that exhibited the strongest association in the
conditional analysis as the secondary eSNP. We restricted the
analysis to secondary signals, rather than testing for further
signals (that is, tertiary and beyond), due to limited power to
detect these smaller effects.

After adjusting for the lead eSNP, lead variants for 37 condi-
tionally distinct GWAS signals were associated with expression
level of 51 genes (FDR < 1%, P < 2.4 × 10−4) (Supplementary Mate-
rial, Table S5). Conditional analysis classified four GWAS signals
as colocalized with a secondary eQTL signal, but not the primary
eQTL signal for the following four genes: the FAM13A GWAS
signal was colocalized with the secondary eQTL for FAM13A
(r2 = 1.00, conditional P ≥ 0.37), the GRB14–COBLL1 GWAS signal
was colocalized with the secondary eQTL for GRB14 (r2 = 0.93,
conditional P ≥ 0.39), the LEKR1 GWAS signal was colocalized
with the secondary eQTL for SSR3 (r2 = 0.94, conditional P ≥ 0.43)
and the GORAB GWAS signal was colocalized with the secondary
eQTL for FMO1 (r2 = 1.00, conditional P = 1.00) (Table 3). As with
colocalization of primary eQTL signals, COLOC did not identify
additional signals as colocalized that were not also discovered
by LD and conditional analysis. COLOC did classify the first
three GWAS signals as colocalized with the secondary eQTL
(PP4 ≥ 0.92); at the GORAB locus, the PP4 value very narrowly
missed the colocalization classification threshold (PP4 = 0.79).
We next describe these four loci in further detail.

At the FAM13A WHRadjBMI locus, the lead GWAS variant
rs9991328 was associated with the expression level of FAM13A
(P = 1.0 × 10−32 in primary eQTL analysis, Table 3 and Fig. 2).
While COLOC found suggestive evidence for colocalization
between the lead GWAS variant and the lead eSNP, rs10024506
(PP4 = 0.73), the two variants were in very weak LD (r2 = 0.02).
After controlling for the effect of the FAM13A lead eSNP
(rs10024506), we identified a secondary eQTL signal represented
by rs2290782 (eQTL Puncond = 1.0 × 10−32, Pcond = 2.6 × 10−29 when
adjusting for lead eSNP rs10024506). In contrast to the primary
eSNP, the secondary eSNP was in strong LD with the lead GWAS
variant (r2 = 1.00), and both COLOC and conditional analysis
provided strong evidence of colocalization (COLOC PP4 = 1.00,
both conditional P > 0.37). Our findings suggest that FAM13A
might be a functional gene mediating the genetic influence of
this GWAS locus on body fat distribution. This conclusion is
bolstered by recent studies that linked the FAM13A and Fam13a
genes to adipose morphology and adipose tissue function in
human and mice (26).

At the GRB14–COBLL1 WHRadjBMI locus, the lead GWAS vari-
ant rs10195252 was associated with the expression level of GRB14
(P = 3.8 × 10−6 in primary eQTL analysis), but neither LD nor
COLOC supported colocalization with the primary eQTL signal
rs1474249 (PP4 = 0.25, LD r2 = 0.00) (Table 1; Supplementary Mate-
rial, Fig. S1). After controlling for the effect of the primary eSNP, Ta
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Figure 2. Colocalization of GWAS locus FAM13A with the secondary but not the primary eQTL signal for FAM13A gene. (A) Regional variant association with WHRadjBMI

in GIANT, lead GWAS variant rs9991328; (B) Initial association with expression level of FAM13A; and (C) residual eQTL association after accounting for the lead eSNP

rs10024506 in METSIM. The GWAS variant rs9991328 was plotted as the lead variant for all plots.
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we observed a secondary eQTL signal for GRB14 at rs1128249
(Pcond = 4.7 × 10−6, Table 3). The secondary eSNP was in high LD
with the lead GWAS variant (r2 = 0.93), and both COLOC and
conditional analysis provided strong evidence of colocalization
(COLOC PP4 = 0.92, conditional P = 0.72). To further explore the
relationship between GRB14 and WHRadjBMI, we tested for the
association between cardiometabolic traits and gene expression
level in METSIM. While higher expression level of GRB14 was
not significantly associated with WHRadjBMI (P = 0.07), it was
significantly associated with several related traits, including
higher fasting plasma insulin (P = 5.9 × 10−6), higher HOMA-β
(P = 1.1 × 10−5), lower Matsuda index (P = 1.4 × 10−4) and higher
fasting plasma proinsulin (P = 1.5 × 10−4) (Supplementary Mate-
rial, Table S6). These findings are consistent with previous obser-
vations of improved glucose homeostasis and enhanced insulin
signaling in Grb14-deficient mice (27), and prioritize GRB14 as a
candidate gene potentially mediating the WHRadjBMI associa-
tion at this locus.

The third and fourth examples of WHRadjBMI GWAS signals
that colocalized with secondary eQTL signals identified different
genes than those that colocalized with primary eQTL signals.
The GWAS signal at LEKR1 (lead variant rs17451107) colocalized
with the primary eQTL signal for TIPARP (Table 1; Supplementary
Material, Fig. S2), as well as the secondary eQTL signal for SSR3,
located ∼500 kb away (PP4 = 0.94; LD r2 = 0.98; Table 3; Supple-
mentary Material, Fig. S2). Similarly, the GWAS signal at GORAB
(lead variant rs10919388) colocalized with a primary eQTL at
PRRX1 (Table 1; Supplementary Material, Fig. S3) and with the
secondary eQTL for FMO1 (PP4 = 0.79; LD r2 = 1.00; Table 3; Sup-
plementary Material, Fig. S3). These results suggest that these
GWAS loci may be mediated through altered expression levels
of either or both genes.

Discussion
We show examples of how colocalization between GWAS and
eQTL signals can be influenced by the presence of multiple
GWAS signals at a locus or multiple eQTL signals for the same
gene. In our study of 49 GWAS loci for WHRadjBMI and primary
eQTL from subcutaneous adipose tissue from the METSIM study,
we describe 20 colocalized signal pairs. At two loci with multiple
GWAS signals, COLOC initially was unable to identify signal pairs
as colocalized, despite complete LD between the secondary lead
GWAS variant and lead eSNP (r2 = 1.00). Because the presence
of multiple signals violates COLOC’s assumptions and likely
reduces power to detect a true colocalization, we provided the
program with estimated residual GWAS association summary
statistics, conditioning on the neighboring signal. Using approx-
imate conditional summary statistics of the GWAS data, COLOC
identified the signal pairs as colocalized. In addition, analyses
of secondary eQTL signals in the METSIM study identified four
colocalized eQTL that were not detected in analyses of primary
eQTL signals. At loci with multiple eQTL and/or GWAS signals,
comparing the signals separately after conditional analysis led
to more robust evidence of colocalization. Dissecting the allelic
heterogeneity provided insight into how GWAS loci might influ-
ence WHRadjBMI through gene expression.

At least three of the genes detected using secondary eQTL sig-
nals, FAM13A, GRB14 and FMO1, have other evidence suggesting
that they may influence WHRadjBMI. FAM13A expression level
increases during adipocyte differentiation and is associated with
adipocyte hyperplasia, consistent with alleles associated with
both higher WHRadjBMI and higher FAM13A (26). Grb14-deficient
mice showed improved glucose homeostasis and enhanced

insulin signaling (27), and Fmo1-deficient mice were leaner
and stored fewer triglycerides in white adipose tissue than
wild-type mice (28), both consistent with our observations that
alleles associated with higher expression level are associated
with higher WHRadjBMI (Table 3). The secondary eQTL signal
for FMO1 is colocalized with the same GWAS signal as a
primary eQTL signal for PRRX1, which has been shown to
inhibit adipogenesis (29), suggesting that the GWAS signal may
act through both genes to influence WHRadjBMI. The allele
associated with higher WHRadjBMI was associated with lower
PRRX1, corresponding to more adipogenesis and higher FMO1,
corresponding to more storage of triglyceride in adipose (28),
(29). The fourth gene detected using a secondary eQTL signal,
SSR3, contributes to the formation of a vascular network in
murine placenta (30), and may reflect the blood component
of adipose tissue; this GWAS signal colocalized with a primary
eQTL for TIPARP, which positively regulates liver X receptor,
which can impair adipose expansion (31). While colocalized
GWAS and eQTL signals do not provide causal mechanisms,
they can suggest candidate genes for further investigation.

Although the results of COLOC and the LD and conditional
analysis approach were largely concordant, conditional analysis
did identify five GWAS/eQTL pairs as colocalized that COLOC
initially did not (Table 1). Two GWAS/eQTL variant pairs that
were classified as colocalized only by conditional analysis
had marginal COLOC PP4 probabilities (PP4 0.66 for C3orf78
and 0.76 for STC1). However, we expect that the priors we
selected for COLOC will be conservative; when we increased
the prior probability that a variant is causal to both GWAS and
eQTL to COLOC’s default, PP4 posterior probabilities increased
sufficiently for COLOC to also classify the pairs as colocalized
(PP4 0.95 and 0.97, respectively). The remaining three pairs of
GWAS/eQTL signals with inconsistent results between COLOC
and conditional analysis were secondary GWAS signals at multi-
signal loci. Since COLOC assumes that the trait is associated with
at most one causal variant per locus (22); (23), the presence of
multiple association signals could lead to missed colocalized
signals. After accounting for multiple signals by using GCTA,
COLOC also classified the three GWAS/eQTL variant pairs as
colocalized. While COLOC’s conclusions in this study ultimately
align with LD and conditional analysis, our findings do highlight
the care needed to properly implement COLOC such that
important colocalizations are not missed. Overall, COLOC and
conditional analysis had high agreement in colocalization
classification; differences can be attributed to be unaccounted
for multiple signals per locus or can be reconciled through
changes to assigned priors.

Our ability to colocalize signals might have been affected by
the limitations of this study. First, the GWAS loci were identi-
fied by GIANT based on HapMap-imputed genotypes (10). If the
METSIM lead eSNP or its LD proxies imputed from the higher
density Haplotype Reference Consortium (HRC) reference panel
better represented an underlying signal, we might fail to capture
the colocalized signals. Compared to the HapMap Project, more
recent studies have expanded the coverage of human genetic
variation (32) and enhanced the ability of GWAS to fine-map
complex traits (33). Second, we expect to have missed some
colocalized signals due to the statistical power of our eQTL anal-
ysis. Although the METSIM eQTL study (n = 770) had a reasonable
sample size to identify initial eQTL signals (11), larger studies
will better differentiate between variants in moderate LD with
each other (34) and better detect allelic heterogeneity at eQTL.
With the increasing availability of eQTL studies, the integration
of GWAS data with eQTL results from larger studies or meta-
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analyses of multiple eQTL datasets (35); (36) will increase the
opportunity to detect additional GWAS-relevant eQTL. Third, we
were unable to assess potential sexual dimorphism on gene
expression level and could have missed some colocalizations
because all samples analyzed in METSIM were from men. While
the GIANT data demonstrated that 19 of the 49 WHRadjBMI
loci had stronger genetic effects in women, 5 of these 19 loci
showed evidence of colocalized eQTL in men in METSIM, and
none of the remaining loci exhibited evidence of cis-eQTL in the
MuTHER eQTL study of women (36), suggesting that these loci
do not display strong sex-specific effects on gene expression
levels. The credibility of the colocalizations reported at these 5
GWAS loci is bolstered by the observation that many variants
which exhibit sex heterogeneity in WHRadjBMI, including effects
observed exclusively in women, have a similar effect on body fat
percentage in men as well as women (37). Fourth, the effect of an
eQTL can vary across tissue and time (35); (38). Identification of
colocalizing signals may be dependent on measuring expression
at the appropriate time and in a trait-relevant tissue. Fifth, signal
colocalization is dependent on haplotype structure. Haplotypes
can differ by ancestry, even between individuals of broad Euro-
pean descent and specifically from Finland, and may result in
false negative and false positive colocalizations.

Identifying additional signals in eQTL data has the potential
to reveal previously undiscovered colocalizations with GWAS
loci. However, as we demonstrated, care must be taken when
either the GWAS or the eQTL study have multiple signals within
a locus. Conditional analyses appear to separate multi-signal loci
well, although additional assessments using simulated data are
warranted. Other analytic methods, such as COLOC, might fail
to detect a colocalization when more than one signal is present
in the region. However, providing COLOC with residual statistics
that account for the effects of other signals within a locus might
be a solution. As eQTL studies grow in size, the ability to detect
allelic heterogeneity will increase, thus complicating tests of
colocalization. Testing for colocalization at every distinct signal,
and selection of colocalization analytic pipelines that are robust
to the presence of multiple signals can reveal colocalizations we
otherwise would miss.

Materials and Methods
GIANT consortium data for WHRadjBMI

We obtained GIANT consortium 2015 GWAS results for WHRad-
jBMI (10) from www.broadinstitute.org/collaboration/giant/index.
php/GIANT_consortium_data_files. The downloaded files
included dbSNP name, effect/non-effect alleles (an effect allele is
the WHRadjBMI-increasing allele in the sex-combined analysis),
effect allele frequency, beta, standard error, P-value and sample
size for each variant. At the 29 loci with no evidence of sexual
dimorphism, we used GIANT association statistics from the sex-
combined meta-analysis. For the locus GDF5, which showed
a male-specific effect on WHRadjBMI, we used the male-only
GWAS results. At the WHRadjBMI loci (PLXND1, NMU, FAM13A,
MAP3K1, HMGA1, NKX2–6, SFXN2, MACROD1–VEGFB, CMIP, BCL2,
SNX10, LYPLAL1, GRB14–COBLL1, PPARG, ADAMTS9, TNFAIP8,
VEGFA and RSPO3) with significantly larger genetic estimated
effects on trait variation in women than men, we used the
association results from the female-only meta-analysis. We
used the results from the European-ancestry meta-analysis for
all loci except the locus SNX10, for which the all-ancestry meta-
analysis data were used because SNX10 achieved genome-wide
significance only in the all-ancestry analysis, with no evidence
of heterogeneity across ancestries (10).

METSIM subcutaneous adipose eQTL data

In Civelek et al. (11), we described in detail the subcutaneous
adipose eQTL data from the METSIM study. Briefly, METSIM
is a population-based study of 10 197 men, aged from 45 to
73 years at time of enrollment, randomly selected from the
population register of Kuopio, Eastern Finland, and examined in
2005–2010 (39). The University of Kuopio and Kuopio University
Hospital ethics committee approved the study, and all study
participants provided informed consent. We used the Illumina
HumanOmniExpress BeadChip and the Illumina HumanCore-
Exome array to obtain genotypes, and imputed based on hap-
lotypes from the HRC (version 1) (www.haplotype-reference-
consortium.org/) (40) by using Minimac3 on the Michigan Impu-
tation Server (imputationserver.sph.umich.edu/index.html). A
total of 7.8 million imputed variants passed the eQTL mapping
inclusion criteria of MAF ≥ 0.01 and imputation quality r2 > 0.3.

As previously described, we isolated total ribonucleic acid
(RNA) from subcutaneous adipose tissue from 770 METSIM
participants, and used a Robust Multi-Array Average (RMA)
approach to normalize expression data measured using the
Affymetrix Human Genome U219 Array for 43 145 probesets
corresponding to 18 250 unique genes (11). We applied proba-
bilistic estimation of expression residuals (PEER) (41) to account
for complex non-genetic factors influencing gene expression
levels. Based on METSIM adipose eQTL PEER factor observations
described previously (11), and to better match the previous
results, we adjusted for 35 PEER-inferred confounding factors.
We then inverse normal transformed the PEER-processed
residuals.

We define a cis-eQTL as an eQTL located within 1 Mb of
a gene transcript. Association tests for cis-eQTL were carried
out for variant–probeset pairs with a distance between the
variant and the closer boundary of the gene <1 Mb using
EPACTS-multi, in which EMMAX accounted for family related-
ness (genome.sph.umich.edu/wiki/EPACTS) (42). We selected
an FDR < 0.01 (equivalent P < 2.4 × 10−4) as the significance
threshold for a cis-eQTL and defined the lead eSNP as the variant
for which the association with gene expression level resulted in
the smallest P-value for that gene.

Conditional analyses on GWAS and eQTL data

For METSIM adipose eQTL data, we carried out conditional anal-
yses by including the lead eSNP in the linear regression model
then testing for evidence that other variants are associated with
that gene’s expression level.

For GIANT WHRadjBMI loci identified as containing more
than one association signal by the GCTA joint model (10); (24),
we used GCTA to run approximate conditional analyses on the
GIANT GWAS summary statistics, using LD data from HapMap-
imputed METSIM genotype data on 10 070 Finnish men (24);
(43). This method estimates residual association statistics after
conditioning on the lead GWAS variant in the region, allowing
for identification and effect size estimation of secondary signals.
Approximate analysis based on summary statistics was required
because individual-level data were not available.

Colocalization of GWAS and eQTL signals

First, we assessed the relationship between gene expression
level and the lead GWAS variants associated with WHRadjBMI
provided by the GIANT consortium (10). Next, for GWAS variants

imputationserver.sph.umich.edu/index.html


Human Molecular Genetics, 2019, Vol. 28, No. 24 4171

that were associated with gene expression level (at FDR < 1%,
P < 2.4 × 10−4), we tested whether the GWAS variant was
colocalized with the lead eSNP. To do so, we extracted the sum-
mary statistics for variants located within 1 Mb of the lead GWAS
variants from the GIANT 2015 GWAS results for WHRadjBMI and
the METSIM subcutaneous adipose eQTL dataset.

We first tested for colocalization using a conditional analy-
sis approach similar to that implemented in Civelek et al. (11)
Specifically, we calculated pairwise LD r2 between the lead GWAS
and the lead eSNP that had the strongest evidence of association
with the corresponding probesets. LD estimates were calculated
from the HRC-imputed genotypes of the 770 METSIM individuals.
For variant pairs with LD r2 > 0.8, we examined the changes of
the eQTL association for the lead eSNP when conditioned on
the lead GWAS variant. Following Civelek et al. (11), we applied
two criteria and defined GWAS-colocalized eQTL by requiring
lead variant pairwise r2 > 0.8 and change in the eSNP P-value to
be no longer significant after conditional analysis (P > 2.4 × 10−4

corresponding to FDR > 0.01) for the lead eSNP. Of note, the LD
criterion helps prevent signals from being erroneously defined
as colocalized based on small variation around the threshold.

We compared results to those obtained using a Bayesian test
for colocalization, COLOC (22); (23). We applied COLOC using the
Approximate Bayes Factor computations on the intersection of
variants available in both the GIANT WHRadjBMI and METSIM
eQTL datasets. We used default priors that a random variant in
the region is associated with either GWAS or eQTL individually
(prior probabilities = 1 × 10−4), and set the prior probability that
the random variant is causal to both GWAS and eQTL (prior
probability = 1 × 10−6). We selected a more conservative prior
probability than COLOC’s default for this last scenario (default
prior = 1 × 10−5) because we treat COLOC as a confirmatory test of
results discovered by conditional analysis. However, in sensitiv-
ity analyses, we raised the prior probability that a random vari-
ant is causal to both GWAS and eQTL from 1 × 10−6 to 5 × 10−6

and 1 × 10−5. As recommended by the authors of the method, we
defined the variants as colocalized when the posterior probabil-
ity of a colocalized signal (PP4) was >0.8. Bayesian colocalization
analyses were conducted by using the R package ‘coloc’ (cran.r-
project.org/web/packages/coloc) (22).

Association of expression level with cardiometabolic
traits

We conducted regression analyses to evaluate the association
for gene expression level with 16 cardiometabolic traits as fol-
lows: waist–hip ratio, Matsuda index, insulin, BMI, HOMA-β,
proinsulin, triglycerides, total fatty acids, waist circumference,
fat-free mass, free fatty acids, total cholesterol, glucose, LDL-
C, HDL-C and adiponectin in up to 770 METSIM participants.
Of the 770 participants, 27 had type 2 diabetes at their base-
line visit; diabetics were included in all regression analyses.
The RMA-normalized expression levels were inverse normal
transformed after accounting for 35 PEER-inferred factors. All
cardiometabolic-related traits were adjusted for age and BMI
before inverse normal transformation except BMI, which was
only adjusted for age. Traits were adjusted for BMI to be com-
parable to recent GWAS analyses of cardiometabolic traits (10);
(44)–(46).

Supplementary Material. Supplementary Material is available at
HMG online.
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