
UCLA
UCLA Previously Published Works

Title
Technical Perspective: Toward reliable programming for unreliable hardware

Permalink
https://escholarship.org/uc/item/1606m207

Journal
Communications of the ACM, 59(8)

ISSN
0001-0782

Author
Millstein, Todd

Publication Date
2016-07-22

DOI
10.1145/2961890

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1606m207
https://escholarship.org
http://www.cdlib.org/

82 COMMUNICATIONS OF THE ACM | AUGUST 2016 | VOL. 59 | NO. 8

provides specific probabilities of soft
errors for different operations (for
example, reading from memory, per-
forming an addition). Therefore the
approach is oblivious to the particular
details of the hardware architecture
and the causes of its soft errors.

These choices not only make the
approach more general; they also en-
able the authors to recast the prob-
lem in a manner that is surprisingly
amenable to traditional program veri-
fication techniques. Their analysis
validates reliability specifications by
determining the probability that each
variable’s computation incurs no soft
errors, since that is a lower bound on
the variable’s probability of being reli-
able. By abstracting away the specific
reliability probabilities of function
inputs as well as of individual op-
erations, the problem essentially be-
comes one of counting the number of
operations that can incur soft errors
and that can affect a variable’s value,
a task that is well suited to automated
program analysis.

This work is part of an exciting
stream of recent research that adapts
and extends traditional program veri-
fication techniques to reason about
probabilistic properties, which are
abundant in modern software sys-
tems. I am hopeful this research agen-
da will lead to general ways of build-
ing robust systems out of potentially
unreliable parts, where the notion of
unreliability is broadly construed—
not only soft errors, but also faulty
sensor and other environmental in-
puts, untrusted libraries, and approx-
imate computations themselves. The
more tools we have to reason about
unreliability, the more bugs we can
turn into features.

Todd Millstein is a professor of computer science at
UCLA, Los Angeles, CA.

Copyright held by author.

“ I T ’ S N O T A bug; it’s a feature!” Though
this sentence is often meant as a joke,
sometimes a bug really is a feature—
when the benefits of tolerating the
bug outweigh its negative impact on
applications.

Designers of emerging hardware ar-
chitectures are taking this point of view
in order to increase energy efficiency,
which is a critical concern across the
computing landscape, from tiny em-
bedded devices to enormous datacen-
ters. Techniques such as a low-voltage
mode for data-processing components
and a low refresh rate for memory com-
ponents can significantly decrease
energy consumption. But they also
increase the likelihood of soft errors,
which are transient hardware faults
that can cause an erroneous value to be
computed or retrieved from memory.

Ultimately, whether these tech-
niques should be considered bugs or
features rests on the ability of software
systems, and their developers, to tol-
erate the increase in soft errors. For-
tunately, a large class of applications
known as approximate computations
is naturally error-tolerant. A book rec-
ommendation system approximates
an unknown “ideal” recommendation
function, for example, by clustering us-
ers with similar tastes. With enough us-
ers and data about these users, sporad-
ic errors in the clustering computation
are unlikely to cause noticeably worse
recommendations. Similarly, an audio
encoder can likely tolerate sporadic
errors that introduce additional noise
without affecting the user experience.

Even so, no application can toler-
ate an unbounded number of errors.
At some point the book recommenda-
tions will be random and the music
will be unlistenable. How can the im-
plementers of these applications gain
assurance that the quality of service
will be acceptable despite the potential
for soft errors?

The computing industry and re-
search community have developed
many tools and techniques for find-
ing bugs and validating properties of
programs. However, for the most part
those approaches do not help to an-
swer the question here. The issue in
this setting is not whether a bug ex-
ists, but how likely the bug is to occur
and how it will affect the application’s
behavior. Further, the bug is not in the
application but rather in the underly-
ing hardware platform. Finally, it’s
not even clear how to specify a desired
quality-of-service level; traditional
program logics based on a binary no-
tion of truth and falsehood are not up
to the task.

The following paper by Carbin et
al. addresses these challenges in the
context of an important subproblem.
The authors introduce the notion of a
quantitative reliability specification for a
variable, which specifies a minimal ac-
ceptable probability that the variable’s
computed value will be correct despite
the potential for soft errors. For exam-
ple, a developer may desire a particular
variable’s value to be correct 99% of the
time. The authors introduce a language
for providing such specifications as well
as an automated code analysis to verify
them. Separately, the authors and other
researchers have tackled complemen-
tary problems, such as how to bound
the maximum effect that soft errors can
have on a variable’s value.

The power of the authors’ approach
comes from its generality. Despite my
example here, reliability specifications
are relative rather than absolute. For
example, the reliability specification
for a function’s return value is defined
in terms of the reliability probabili-
ties of the function’s arguments and
so must hold for all possible values of
those probabilities. Further, the ap-
proach is parameterized by a separate
hardware reliability specification that

Technical Perspective
Toward Reliable Programming
for Unreliable Hardware
By Todd Millstein

research highlights

DOI:10.1145/2961890

To view the accompanying paper,
visit doi.acm.org/10.1145/2958738 rh

