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ABSTRACT OF THE THESIS

Learning to Recognise Objects and Actions for Intelligent Agents

by

Nakul Agarwal

Master of Science in Electrical Engineering and Computer Science

University of California Merced, 2019

Professor Ming-Hsuan Yang, Chair

Computer vision involves a host of tasks, such as boundary detection, semantic segmen-

tation, surface estimation, object detection, image classification, action localization, to

name a few. For a holistic understanding of a scene, which is required by a lot of real-

world applications, many of these tasks need to be combined together. For instance, an

autonomous car should not only be able to detect other cars (object) but also if a pedes-

trian is walking (action). The former requires localizing the object, which can either be

at the pixel level or bounding box level. The latter requires localizing the action, and

by extension the actor, in both space and time. These problems are best dealt with ap-

proaches involving supervised learning models which rely on large annotated datasets,

and so the problem becomes even more challenging when there is lack of labeled data.

In this thesis, we first tackle the problem of spatio-temporal action localization in

an unsupervised setting. As the name suggests, it requires modeling of both spatial and

temporal features. So, we propose an end-to-end learning framework for an adaptation

method which aligns both spatial and temporal features and conduct experiments on the

action localization task. To highlight the potential benefits for autonomous cars, we also

construct and benchmark a new dataset which contains pedestrian actions collected in

driving scenes. Then, for a holistic understanding of the scene, we shift our attention

from localizing actions to recognising objects especially in a city street scenario. We

do this by jointly dealing with the tasks of object detection and semantic segmentation.

While the former localizes the individual instances of objects at the bounding box level,

x



the latter provides pixel level distinction but at the category level. We explore a novel

observation that connects the two tasks and provide an end-to-end learning framework

to exploit this connection.
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Chapter 1

Introduction

In recent years, deep convolutional networks (ConvNets) have become the most

popular architecture for large-scale image recognition tasks. The field of computer vi-

sion has been pushed to a fast, scalable and end-to-end learning framework, which can

provide outstanding performance results on object recognition, object detection, scene

recognition, semantic segmentation, action recognition, object tracking and many other

tasks. With the explosion of computer vision research, a lot of real-world applications

are reaping its benefits. For example, Advanced Driver Assistance System (ADAS) has

become a main stream technology in the automotive industry. Autonomous vehicles,

such as Google’s self-driving cars, are evolving and becoming reality. A key compo-

nent is vision based machine intelligence that can provide information to the control

system or the driver to manoeuvre a vehicle properly based on the surrounding and road

conditions. On the other hand, surveillance systems have also started becoming auto-

mated. Surveillance is a repetitive and mundane task. This may cause performance

dips for us human beings. By letting technology do the surveillance, we could focus

on taking action if something goes amiss and the whole process could be much more

efficient. Moreover, the same technology can be used for a variety of other applications

which are, but not limited to, automated product delivery, traffic monitoring, transport

networks, traffic flow analysis, understanding of human activity, home nursing, mon-

itoring of endangered species, and observation of people and vehicles within a busy

environment along many others to prevent theft and robbery.

All the above applications rely on vision based intelligent agents for automated func-

1
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tioning. In this thesis, we focus our attention on recognising objects and actions, which

are the building blocks of these vision based systems. We first build an adaptive model

for localizing human actions in both space and time to solve the generalization issue

in supervised learning methods. Then, we move on to the task jointly detecting and

segmenting objects for a better understanding of a scene.

In Chapter 2, we present our approach for spatio-temporal action localization. Spatio-

temporal human action localization is an important problem in computer vision that in-

volves localization of actions in both space and time, and therefore requires modeling

of both spatial and temporal features. This problem is typically studied in the context of

supervised learning, where the learned classifiers operate under the assumption that both

training and test data are sampled from the same underlying distribution. However, this

assumption does not hold in situations where there is a significant domain shift, leading

to poor generalization performance on the test data. In order to address this problem,

we propose an end-to-end learning approach for unsupervised domain adaptation for

spatio-temporal action localization. We show that for adaptation to work effectively,

both spatial and temporal features must be adapted. We empirically verify the effective-

ness of the proposed method using the UCF-Sports and UCF-101 benchmark datasets.

Additionally, to highlight the potential benefits of the proposed algorithm in realistic

applications, we used the AVA dataset to evaluate the generalization performance on

a challenging Pedestrian Action Dataset (PAD) that we created in driving scenes for

development of advanced driver assistance technologies.

In Chapter 3, we focus on the task of object detection and semantic segmentation.

Object detection and semantic segmentation are two of the most fundamental problems

for scene understanding in computer vision. When addressed jointly, it can be applied

to many fields such as autonomous driving. While most of the existing works mainly

rely on sharing the deep convolutional features for jointly dealing with the two tasks, we

exploit a much deeper connection between object detection and semantic segmentation.

We observe that the feature maps used by RPN (i.e., Region Proposal Networks), a

popular module used in two stage object detectors, resemble a dense class-agnostic (i.e.,

foreground/background) segmentation map. We explore this observation to improve the

functioning of RPN as well as improve performance for semantic segmentation. We
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propose a framework called SegRPN where we endow Faster-RCNN with a semantic

segmentation branch using a shared Feature Pyramid Network (FPN) backbone. The

semantic segmentation branch is facilitated by a class agnostic segmentation module,

which serves two purposes: (i) it provides a scale specific objectness prior for semantic

segmentation and (ii) it supports the RPN in the segmentation branch which improves

the functioning of the RPN in the detection branch. Experimental results on Cityscapes

dataset demonstrate that the proposed SegRPN is able to improve both object detection

and semantic segmentation results.

At last, we conclude the thesis in Chapter 4 and discuss possible future directions.



Chapter 2

Unsupervised Domain Adaptation for

Spatio-Temporal Action Localization

2.1 Introduction

In recent years, there has been a growing interest for development of algorithms

to address the problem of spatio-temporal human action localization due to its impor-

tance and applications. With the recent availability of benchmark datasets [76, 24] and

progress in development of temporal neural network architectures [71, 6], numerous al-

gorithms for spatio-temoral action localization have been proposed. However, as com-

pared with conventional action recognition [17] and action segmentation [14], annota-

tion of spatio-temporal action localization is more complex and costly. In particular,

as observed in many crowded environments, the presence of multiple actors perform-

ing multiple concurrent actions in a single frame leads to an exhaustive labeling task.

Transferring models pre-trained on label-rich domains would appear to be an attractive

solution in such cases. However, existing supervised learning based approaches cannot

yet generalize to unseen data. To address the problem of domain shift, various meth-

ods for unsupervised domain adaptation (UDA) have been proposed. Nevertheless, a

majority of existing methods focus on images and not videos, catering to areas such as

image classification [61, 73, 46, 19], semantic segmentation [64, 84] and object detec-

tion [11, 63]. One reason is attributed to the fact that a well-organized setting to develop

4
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SOURCE

TARGET

Left:	Stand,	Watch	a	person
Right:	Stand,	Answer	phone

Centre: Stand,	Look/Text	at	phone

2,4

2,4 2,5

1,41: Stand
2: Walk
4: Answer	phone
5: Look/Text	at	phone

Figure 2.1: An illustration of an unsupervised domain adaptation task for spatio-

temporal action localization. The source and target images are from the AVA and pro-

posed PAD dataset, respectively, where each box is associated with multiple labels.

Although the datasets belong to two completely different domains, the same atomic ac-

tions are present in both datasets, but in different contexts. The goal is to transfer these

atomic actions between the two domains.

and benchmark the performance of domain adaptation algorithms for videos does not

exist.

Recent UDA methods for video activity understanding are developed for: i) whole-

clip action recognition, ii) action localization in the temporal domain, and iii) spatio-

temporal action localization. Significant progress has been made but only at the video-

clip level [32, 10]. This is primarily due to lack of data when it comes to UDA for spatial

and/or temporal action localization.

Existing datasets, e.g., CMU [36], MSR Actions [81], UCF Sports [59], and JH-

MDB [33] provide spatio-temporal annotations but only for a small number of short

video clips. Additionally, the whole video clip contains only a single person performing

a single action. The DALY [76] and UCF-101 [69] datasets have a similar characteristic.

Specifically, the majority of these videos contain a single action and only a small set have

annotations with multiple persons. Furthermore, these datasets only have very few over-

lapping categories, making it difficult to evaluate domain adaptation algorithms. The
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Table 2.1: Annotation setup of PAD vs other datasets with spatio-temporal annotations.

Dataset Multi-Person Multi-Label Action Type

JHMDB No No Everyday
UCF-101 Mostly No No Sports
UCF-Sports No No Sports
DALY Mostly No No Everyday
AVA Yes Yes Everyday

PAD Yes Yes Everyday

recently proposed AVA [24] dataset addresses some of the aforementioned limitations

by providing a large-scale dataset for spatio-temporal action localization. This dataset

contains annotations of multiple persons performing multiple concurrent actions in real-

istic settings. However, a dataset with similar size, annotation setting, and overlapping

person activities has not been developed.

Motivated by these observations, we propose an end-to-end trainable unsupervised

domain adaptation method for spatio-temporal action localization. We tackle the prob-

lem from both the approach as well as the data perspective. To bridge the domain shift

gap for spatio-temporal action localization models, we align both spatial and temporal

features. To evaluate the hypothesis for spatial-temporal action localization, we conduct

different ablation studies to adapt what is learned from the UCF-Sports [60] dataset to

scenes in the UCF-101 [69] database. Note that we refer to this setting as single label

adaption (SLA), in which the actor in the frame is only performing a single action at any

given instance. Our experimental studies show that it is necessary to adapt both spatial

and temporal features for the task.

To demonstrate the effectiveness of the proposed algorithm in a real-world setting,

we devised experiments on multi-label adaptation (MLA) settings, in which the actor in

the frame performs multiple concurrent atomic actions at any given instance. However,

as previously noted, AVA is the only dataset containing annotations that meet the de-

sired experimental setting. Thus, we created a challenging pedestrian action detection

(PAD) dataset with annotations, which consists of atomic actions performed by pedestri-

ans at road intersections under different lighting conditions and visibility. A significant

amount of frames in the dataset contain multiple pedestrians where each pedestrian per-
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forms multiple concurrent atomic actions at any given instance. We show a comparison

between the annotation setup of PAD and other datasets in Table 2.1. An illustration of

the overall task with this annotation setting is shown in Figure 2.1. Experimental results

on PAD highlight the challenges of the dataset as well as the problem of transfering

models from two completely different domains.

The contributions of this work are summarized as follows. First, we present an

end-to-end learning framework for unsupervised domain adaptation for spatio-temporal

action localization. Second, we demonstrate that it is necessary to adapt both spatial

and temporal features for spatio-temporal action localization. Third, to show the effec-

tiveness of the proposed unsupervised domain adaptation approach for spatio-temporal

action localization in real-world problems, we introduce and benchmark the proposed

algorithm on a challenging dataset for pedestrian action detection in driving scenes.

2.2 Related Work

2.2.1 Spatio-temporal action localization

Spatio-temporal action localization has been an active research topic, where the goal

is to localize the action in both space and time. Existing approaches can be categorized

as either single frame or multi-frame. Most of the recent methods [24, 23, 53, 62, 68, 75]

fall in the former category. These schemes extend object detection frameworks [21, 58]

to first generate region proposals and then classify them into actions at the frame level

using a two-stream variant which processes both RGB and flow data separately. The

backbone of these networks is generally a 3D CNN (e.g., C3D [71] or I3D [6]). The

resulting per-frame detections are then linked using dynamic programming [23, 68] or

tracking [75]. Some recent approaches, however, aim to jointly estimate localization and

classification over several frames [34] or use 3D convolutions to predict short tubes [29].

In this chapter, the spatial-temporal action localization model is inspired by [24], which

uses an I3D backbone with an RPN.
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2.2.2 Domain Adaptation

Domain adaptation aims to bridge the gap between the source and target data col-

lected from different domains. Recent domain adaptation techniques under both super-

vised and unsupervised settings have been introduced for image applications [13]. Most

efforts have been dedicated to applications involving image classification [61, 73, 46,

19, 65, 49, 25], object detection [11, 63], and semantic segmentation [64, 84]. Since

the emergence of DANN [20], a common approach for domain adaptation is to utilize

adversarial learning on the intermediate feature representations in order to align the fea-

ture distribution between the two domains [2, 72, 11]. In contrast, much less attention

has been paid to adapt videos between domains, and especially for activity understand-

ing. Existing domain adaptation efforts for activity understanding are designed for: i)

whole-clip action recognition, ii) action localization in the temporal domain, and iii)

spatio-temporal action localization. Some progress has been made in this area, but only

for whole-clip action recognition [32, 10]. To the best of our knowledge, this work

is one of the first to adapt spatio-temporal action localization under the unsupervised

setting.

2.3 PAD Dataset

Although there exist several datasets [39, 55] for pedestrian behavior understanding,

the focus and setting are different, making them less applicable to the problem studied

in this work. As both the datasets contain task specific actions (pedestrian/driver be-

havior and pedestrian cross streets) which do not occur commonly across scenes, these

images cannot be easily used for spatio-temporal action localization with the unsuper-

vised domain adaption setting. On the other hand, the proposed PAD dataset consists

of pedestrians performing commonly observed atomic actions around intersections in

driving scenarios as shown in Table 2.2. These atomic actions are typically found in ev-

eryday activities other than driving scenarios, which can be used for the tasks of interest.

The data collection strategy is discussed in the following section.
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Table 2.2: The taxonomy of pedestrian action at intersection.

Primary Secondary Tertiary

pedestrian/group

pose
stand
walk
run

person-object
look/text at cell phone
answer phone
carry/hold object

person-person talk to others

2.3.1 Data Collection and Annotation Methodology

Understanding pedestrian behavior is perhaps the most important factor in realiza-

tion of safe, robust, and ubiquitous deployment of self-driving and driver assistance

technologies on urban roads. The PAD dataset was created in the San Francisco Bay

Area using an instrumented vehicle equipped with a Point Grey Grasshopper video cam-

era with a resolution of 1920 x 1200 pixels. Video was recorded at a frame rate of 30Hz

with a field of view of 80 degrees. The atomic actions were labeled using an annotation

method similar to that proposed by [24].

Three categories are defined for the pedestrian action annotations: i) primary, ii)

secondary and iii) tertiary. Under the primary category, we check whether the actor is

an individual pedestrian or part of a group of pedestrians. If it is part of a group, we do

not provide action annotations since analysis of group activity is beyond the scope of

this work. The secondary category consists of three subcategories: a) pose, b) person-

object interaction and c) person-person interaction. The tertiary category comprises of

the action itself. For pose, we consider three atomic actions, i.e., stand, walk and run.

Under person-object interaction, text/look at cell phone, answer phone and carry/hold

object are defined. Finally, person-person interaction consists of talk to others. The

overall annotation structure is shown in Table 2.2.

Each action is labeled at the frame level, i.e., for each frame in the clip. Only actions

of pedestrians with greater than 70 pixels in height were annotated. This threshold was

empirically determined by the requirement that the average confidence of joint detection

be higher than 0.4 in our pose estimation algorithm [5]. Note that the track ID of each
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1: Stand
2: Walk
4: Answer	phone
5: Look/Text	at	phone
6: Carry/Hold	object
7: Talk	to	others

2,4

2,5 1,71,7

2,6

Time	=	T

(a)

Time	=	T	+	△T

1,7 1,7 2 2

2

2

(b)

Figure 2.2: Examples from the PAD dataset. We represent the changes at a fixed inter-

section scene over time (few seconds) by showing before and after images in (a) and (b)

respectively. The track id of a person is associated with the color of the bounding box.

Each actor in the scene is cropped and enlarged for better visibility.

actor is annotated. We show this visually in Figure 2.2, where we represent the changes

at an intersection scene over time (few seconds) by showing before and after images in

Figure2.2(a) and Figure 2.2(b) respectively. Each person has a unique color bounding
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box that represents the track id. For example, the pedestrian (red box) in Figure 2.2(a)

is tracked even after he goes out of the scene and reappears at a different location after

a few seconds.

The presence of multiple pedestrians engaged in concurrent actions that are typically

atomic in nature makes the PAD dataset extremely challenging for not only labeling,

but also for action recognition. An example of concurrent actions would involve, for

instance, a pedestrian talking on the phone while walking as shown in Figure 2.2(a).

Another challenge with the dataset is attributed to the large variations of pedestrian size

(i.e. size of bounding box) across the frames. Figure 2.2 shows few such examples from

the dataset.

The actions in these scenes require discriminating fine-grained differences, such as

looking at cell phone where leveraging temporal context might also help. Discriminating

these fine-grained differences becomes even more challenging when the visibility of the

scene or pedestrian is low either due to lighting conditions or because the pedestrian

is too small to even detect, as shown in Figure 2.2. In addition, the appearance also

varies within an action class: local context for the action may change. For example, a

pedestrian may be walking on the sidewalk vs on the road.

Figure 2.3: Size of each action class in the PAD dataset, with colors indicating the action

category.
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2.3.2 Dataset Statistics

The PAD daataet contains 182 video clips (without labels) for unsupervised training

and 24 video clips (with labels) for evaluation, There are 15997 frames in the evaluation

set. Figure 2.3 shows the distribution of action annotations in the PAD evaluation set.

While the common classes such as stand and walk have reasonably high number of

instances, classes such as look/text at cellphone and answer phone have relatively fewer

instances, with run having the least amount of instances as expected.

We also show the variability in the bounding box size in Figure 2.4. As shown,

the pedestrian size is typically much smaller than the full frame height, unlike those

in the AVA dataset. The aspect ratio of these bounding boxes also hovers around 0.4,

suggesting less variation in the broad pose of the pedestrian in driving scenes. Note that

the classes defined in the PAD dataset do not incorporate such variations. This makes

discriminating between these classes even more challenging. Similar to the AVA dataset,

there are multiple labels for most of the pedestrian bounding boxes. All bounding boxes

have a pose label, 65% of bounding boxes have at least 1 person-object interaction and

23% of them at least 1 person-person interaction label.

2.3.3 Training and test sets

PAD contains 24 annotated videos for evaluation and 182 videos (without labels)

for unsupervised training. This setting is actually more in sync with the real-world

Figure 2.4: Size and aspect ratio variations of annotated bounding boxes in the PAD

dataset.
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problem of collecting large scale labeled data. Existing datasets [33, 69] that provide

annotations at the frame level typically have a faster evolution of activity over frames,

because of which every frame is used in both training and evaluation [24]. Although the

evolution of activity in the PAD is slower over consecutive frames due to the nature of

pedestrian activities in driving scenes, we use all the frames present in both the training

and evaluation set. Similar to [24], each video-clip is divided into multiple overlapping

segments where the middle frame (key frame) contains the annotation. This results in a

total of 52k segments for training and 16k segments for evaluation.

2.4 Proposed Algorithm

Most recent approaches for spatio-temporal action localization rely on an object de-

tection framework for generating actor proposals and a 3D CNN based backbone for

explicitly modeling the temporal context for action recognition. While the object detec-

tion framework focuses on learning the spatial features of an input image, the 3D CNN

models the temporal features using the input sequence of frames. To effectively adapt

the model for spatio-temporal action localization, we show that both types of features

are important and need to be adapted. The architecture of the proposed framework is

shown in Figure 2.5.

2.4.1 Action Localization Model

Similar to [24], our model is based on the Faster-RCNN [58] for end-to-end local-

ization and classification of actions [53]. To explicitly model the temporal context, I3D

architecture [6] is incorporated. Our model is different from the base architecture [24]

in several aspects. For temporal context modeling, the I3D model takes a video V of

length T frames and generates the corresponding temporal feature representation using

feature extractor TF .In this work, TF can be further decomposed into TF1 and TF2.

Here, TF1 temporally flattens the features from the fused mixed 4f layer of I3D, which

has a spatial and temporal stride of 16 pixels and 4 frames respectively. This results in a

compact representation of the entire input sequence.

For the actor proposal generation, we use a 2D ResNet-50 model as the spatial en-
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Figure 2.5: Proposed Network Architecture. The proposed algorithm aligns the distribu-

tion of both the spatial and temporal features of source and target domains for adapting

actor proposals and action classification respectively. We use a spatial domain classi-

fier network Ds to align the spatial features generated by SF. The temporal features are

adapted on the image and instance level using their respective temporal domain clas-

sifier networks, i.e., DT img and DT inst. Image level features are extracted by TF1 and

instance level features are obtained from TF2.

coder SF on the keyframe K as the input for the region proposal network (RPN). We

note K is also the middle frame of an input clip to I3D. The proposals are generated

using the conv4 block of Resnet [28]. As the spatial stride of the conv4 block is also 16

pixels, we directly use the actor RPN proposals on TF1(V ) and perform ROI Pooling

to obtain a fixed length representation of size 7x7x832. This feature representation is

then passed through TF2, which is an action classifier comprising of the remaining I3D

layers up to mixed 5c and an average pooling layer that outputs a feature vector with

size 1x1x1024. This feature is then used to learn a linear classifier for actions and a

regressor for bounding box offsets.

The loss function of the action localization model is formulated:

Lact = Lrpn + Lcls + Lreg (2.1)
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where Lrpn, Lcls, Lreg are the loss functions for the RPN, final classifier and box regres-

sor. The details regarding these individual loss functions can be found in the original

paper [58].

2.4.2 Adaption in Space and Time

The adaptation process is comprised of two components: i) Actor Proposal Adapta-

tion and ii) Action Classification Adaptation.

Actor Proposal Adaptation

We draw inspiration from recent works [11, 63] on adversarial learning for object

detection to align the distribution of source and target features for the actor proposal

network. Specifically, the spatial domain discriminator DS is designed to discriminate

whether the feature SF (K) is from the source or the target domain. Motivated by [63],

we train the domain classifier to ignore easy-to-classify examples while focusing on

hard-to-classify examples with respect to the classification of the domain with the help

of the Focal Loss [43]. This helps in preventing strong alignment between global fea-

tures, which is both difficult and not desirable when there is a considerable domain shift.

The loss is based on domain label d of the input image, where d = 0 refers toK from the

source domain and d = 1 refers to K from the target domain. The estimated probability

by DS for the class with label d = 1 is denoted by P ∈ [0, 1], where P is defined as:

P =

DS(SF (K)), if d = 1

1−DS(SF (K)), otherwise
(2.2)

We formulate the spatial discriminator loss function as:

LDS = −( 1
ns

ns∑
i=1

(1− P s
i )
γlog(P s

i ) +
1

nt

nt∑
j=1

(P t
j )
γlog(1− P t

j )) (2.3)

where ns and nt denote number of source and target samples in a minibatch respectively,

and γ controls the weight on hard to classify examples.

The Gradient Reversal Layer (GRL) [20] is placed between the spatial domain dis-

criminator DS and spatial feature extractor SF . It helps SF produce domain invariant

features SF (K) that fool the discriminator while DS tries to distinguish the domain.
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Action Classification Adaptation

We adapt the temporal features at both the image and instance level. Specifically, we

use TF1 as a feature extractor for adaptation at the image level and TF2 for adaptation

at the instance level. The temporal feature extractor TF1 takes a video clip V of length

T frames and generates a compact feature representation TF1(V ).The temporal domain

discriminator DT img takes TF1(V ) as input and outputs a 2D domain classification map

Q = DT img(TF1(V )) ∈ RH×W . The parameters H and W are determined based on

the resolution of V as the spatial strides of TF1 and DT img are fixed. We then apply

binary cross-entropy (BCE) loss on Q based on the domain label d of the input video V ,

where d = 0 if V belongs to the source distribution and d = 1 if V belongs to the target

distribution. The loss function for DT img is formulated as:

LDTimg
= −

∑
h,w

d log Q(h,w) + (1− d)log(1−Q(h,w)) (2.4)

where h and w correspond to the spatial index of an activation in Q.

The instance level representation generated by TF2 refers to the ROI-based feature

vectors before they are fed to the final category classifiers (i.e., the ”FC” layer in Fig-

ure 2.5). The instance level temporal domain classifier DT inst takes the feature vector

TF2(TF1(V )) as input and outputs a domain classification output for the j-th region

proposal in the i-th image as Ri,j . A standard cross entropy loss is applied to generate

the final output. The corresponding loss function is formulated as:

LDTinst
= −

∑
i,j

di log Ri,j + (1− di)log(1−Ri,j) (2.5)

where d = 0 if V belongs to the source distribution and d = 1 if V belongs to the target

distribution.

2.4.3 Overall Objective

The overall objective combines losses from the action localization model and the

domain adaptation components. We denote the overall adversarial loss from domain

adaptation components as:

Ladv(SF, TF,D) = LDS + LDTimg
+ LDTinst

(2.6)
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In Section 2.5, we conduct ablation studies to demonstrate the impact of each compo-

nent.

For the adaptation task s→ t, given the source video V s and target video V t, and by

extension their corresponding key frames Ks and Kt respectively, the overall min-max

loss function of the adaptive spatio-temporal action localization model is defined as the

following:

min
SF,TF

max
D
L(V s, Ks, V t, Kt) = Lact(V s, Ks) + λLadv(SF, TF,D) (2.7)

where λ controls the trade-off between the action localization loss and adversarial train-

ing loss.

2.5 Experiments and Analysis

In this section, we evaluate the proposed approach on two settings: i) Single Label

Adaptation (SLA) and ii) Multi-Label Adaptation (MLA). Under the SLA setting, we

focus on the scenario of adapting from a smaller annotated domain to a much larger and

diverse dataset. For the MLA setting, we choose to adapt everyday actions from a large

dataset with annotations to the relatively smaller dataset depicting the real-world prob-

lem of autonomous navigation. In the following, we first describe the datasets and metric

used for evaluation and then move on to discuss experimental results of our adaptation

tasks.

2.5.1 Datasets and Metric

In addition to the proposed PAD dataset, we use the following datasets for our ex-

periments.

UCF Sports

UCF Sports [60] is one of the earliest action recognition datasets consisting of var-

ious sports actions collected from broadcast television channels including ESPN and

BBC. The dataset includes 10 actions, out of which we only use 4 for our experiments:

Diving, Golf-Swing, Horse-Riding, Skate-Boarding.
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UCF-101

UCF-101 [69] is also dedicated to action classification with more than 13000 videos

and 101 classes. However, we only use 4 classes which are common with UCF-Sports,

out of a 24-class subset with spatio-temporal annotations provided by [68]. We conduct

experiments on the official split 1 as is standard.

AVA

AVA [24] is a recently proposed large-scale dataset for human activity understanding

which consists of 80 atomic everyday actions. It contains spatio-temporal annotations

collected under a realistic setting: a majority of its frames consists of multiple actors

performing multiple concurrent actions. Due to its annotation setting, we use the dataset

under the MLA setting.

Metric

We use the standard evaluation protocol for our experiments. We report the frame-

level mean average precision (frame-mAP) using an IoU threshold of 0.5. For each

class, we compute the average precision and report the average over all classes. We also

use the video-level mean average precision (video-mAP) following the methodology

provided in [53].

2.5.2 Implementation Details

The ResNet-50 and I3D networks are initialized with ImageNet and Kinetics [35]

pre-trained models respectively. During training, we fix the input resolution to be

320×400 pixels. One key difference between the SLA and MLA setting is that the

action labels are not mutually exclusive in the latter. Therefore, different loss functions

are required for the two settings [24]. For applying the proposed adaptation method,

we first pre-train the action localization network using the source domain images, and

then fine-tune for adaptation. All feature layers are jointly updated during training using

Stochastic Gradient Descent (SGD). We use different training schedules for the SLA
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Table 2.3: Frame and Video mAP results for adaptation from UCF-Sports to UCF-101.

Average Precision (%) is evaluated on target images.

UCF-Sports→ UCF-101

Method Diving Golf-Swing Horse-Riding Skate-Boarding Frame-mAP Video-mAP

I3D+RPN (Source only) 7.7 57.2 31.5 40.7 34.3 57.1

Temporal (Image level) 12.8 65.4 40.6 42.8 40.4 61.0
Temporal (Instance level) 12.5 65.5 41.2 42.8 40.5 61.6
Spatial 14.5 65.8 52.8 52.5 46.4 68.9
Spatial + Temporal (Image + Instance) 18.4 64.1 64.5 54.7 50.4 73.6

Oracle 92.3 98.1 94.2 91.8 94.1 99.0

and MLA experiment settings. The details of the two settings can be found in the corre-

sponding experimental section. We implement the proposed method with Pytorch [51].

2.5.3 Single Label Adaptation

The SLA setting focuses on the case where the annotated person is only performing

a single action at any given instance. Most of the existing datasets fall under this setting,

which is also accompanied by a single person being annotated in the frame. We make

use of the of the UCF-Sports and UCF-101 datasets as source and target domain for this

task. Both of these datasets have 4 classes in common with spatio-temporal annotations:

Diving, Golf-Swing and Horse-Riding, Skate-Boarding. We train the base model on

source data for 60k iterations with a batch size of 2 per GPU (2 GPUs in total), mini-

batch size of 256 for actor RPN and 64 for action classifier following [24]. We warm-

start the learning rate from 0.00001 to 0.001 in 3K steps using linear annealing for

stabilizing training and then use cosine learning rate decay [47]. Batch-norm updates

are disabled for Resnet-50 but not for I3D. The adaptation network is fine-tuned for

another 5k iterations using a learning rate of .0005 for the discriminator and .0001 for

rest of the network.

We choose the pair of UCF-Sports and UCF-101 because in addition to being single-

labeled datasets, UCF-Sports is also much smaller in size and less diverse compared to

UCF-101. This helps us in examining the adaptation from a relatively smaller dataset

to a large unlabeled domain, which has its own significance in the current world. In the

modern world that we live in, with the advancement of digital cameras, collecting large
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amount of images or videos has become relatively easy. However, annotating this large

amount of data still remains a challenge, especially for video activity understanding.

With our experimental setting, we also want to show that we can harvest more from the

existing resources, or even collect data at smaller scale which is easier to annotate, and

adapt them to a larger, diverse and challenging environment.

The results are shown in Table 2.3. The baseline and oracle results show the the diffi-

culty and huge performance gap on the target dataset UCF-101. We’re able to show con-

siderable improvement over the baseline by adapting both spatial and temporal features

individually. For aligning the temporal features, both image level as well as instance

level adaptation yields a similar frame-mAP improvement of 6.1% and 6.2% respec-

tively. A similar behaviour is also reflected in the video-mAP results, with an improve-

ment of 3.9% and 4.5% for image and instance level respectively. However, aligning

the spatial features, which is responsible for adapting the actor proposals, yields 12.1%

(frame-mAP) and 11.8% (video-mAP) improvement over the baseline. This empha-

sizes the importance of localizing the action in space, which is also intuitive, because

you need to localize the action first before classifying it. We also show that the com-

bination of aligning both spatial and temporal features gives the best results, with an

improvement of 16.1% (frame-mAP) and 16.5% (video-mAP) over the baseline.

2.5.4 Multi Label Adaptation

The MLA setting on the other hand, focuses on the case where the annotated per-

son is performing multiple concurrent actions at a given instance. This setting is more

aligned with the real-world scenarios, because as humans, our actions at any instance are

built up of multiple atomic actions. Apart from the AVA [24] dataset, there does not exist

another dataset with this annotation setting. Therefore, we collect and annotate our own

small but challenging PAD dataset, for the purpose of evaluating our proposed algorithm

on the task of autonomous navigation. In addition to being multi-label, the majority of

frames in AVA and PAD also have multiple people annotated in a single frame, which

makes the task of spatio-temporal action localization even more challenging.

Since we only have labels for the evaluation set in PAD, we use AVA and PAD as

source and target domain respectively. In total these datasets have 6 classes in common:
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Method I3D+RPN (Source Only)

Stand 28.8
Walk 22.1
Answer Phone 0.5
Carry/Hold an object 7.9
Frame-mAP 14.8

Table 2.4: Frame-mAP results for generalization from AVA to PAD. Average Precision

(%) is evaluated on target images.

Stand, Walk, Answer Phone, Hold/Carry an Object, Talking to others and Run. However,

we only use the first 4 classes for our experiments. This is because Talking to others

class in PAD only refers to the case when pedestrians are talking to each other, whereas

in AVA it also includes a lot of instances when a person is only talking to themselves

or someone else who is not present in the frame. Additionally, PAD does not have

enough instances of the Run class for a reliable evaluation. We train the base model for

125k iterations using a batch size of 4 per GPU (8 GPUS in total), and warm-start the

learning rate from 0.00001 to 0.001 in 5K steps using linear annealing for stabilising

training. The rest of the training settings are the same as the ones under SLA setting.

The results are shown in Table 2.4. The baseline results are quite poor on the PAD

dataset, especially for subtle classes such as Answer Phone and Hold/Carry an Object.

There are multiple reasons for this behaviour: i) The primary reason for the poor per-

formance is that AVA and PAD belong to two completely different domains, which is

why the classifier trained on AVA cannot generalise well to PAD, ii) We train on AVA

with very low resolution of 320×400 pixels, while we evaluate on the full resolution of

PAD of 1200×1920 pixels. We do this keeping in mind the resources required to train

a large-scale video dataset like AVA, iii) As shown in Figure 2.4, PAD mostly contains

very small size annotated pedestrians which are hard to even detect, let alone classify

their actions. This is the primary reason why performance is poor on subtle classes such

as Answer Phone and Hold/Carry an Object perform poorly, as these classes not only

require the person to be visible but also the object in question.
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2.6 Summary

In this chapter, we propose a novel approach for unsupervised domain adaptation

for spatio-temporal action localization. We show that in order to adaptation to work

effectively, both spatial and temporal features need to be adapted. We show promising

results using two benchmark dataset UCF-Sports and UCF-101.

In order to evaluate the proposed approach on a real-world problem of autonomous nav-

igation, we also introduce a new and very challenging dataset called Pedestrian Action

Detection (PAD) dataset. We use the recently introduced AVA dataset to evaluate the

performance on PAD, and use the results to highlight the difficulty of the PAD dataset

as well as the problem of transferring models from two completely different domains.



Chapter 3

SegRPN: Scale Aware Joint Object

Detection and Semantic Segmentation

3.1 Introduction

The task of object detection is to identify in an image all objects of predefined cat-

egories and localize them via bounding boxes. Semantic segmentation operates at a

finer scale where the goal is to assign a class label to each pixel. While there has been

significant progress in the individual tasks of object detection [58, 44, 43, 42, 56, 57]

and semantic segmentation [45, 7, 83, 9, 80], only few works have tackled them jointly.

Existing approaches could benefit from solving these tasks jointly [16, 4, 70, 38]. For

example, object detection should be easier if we know the semantics of the scene at

the class-agnostic level, i.e. which pixels belong to the objects (e.g., car, person) and

which belong to the background (e.g., sky, building). Conversely, semantic segmenta-

tion should be easier if we know where the object of interest is. In fact, it has been

shown in the past that semantic segmentation usually used as a multi-task supervision

can help object detection [48, 40, 26], and object detection used as a prior knowledge can

improve semantic segmentation [54, 26]. Therefore, these two tasks are highly related.

Joint object detection and semantic segmentation has attracted a lot of attention in

the past few years, leading to some interesting works. These works can broadly be

summarised into four categories: (i) a common encoder with parallel branches for object

23
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Figure 3.1: RPN feature maps as class-agnostic segmentation maps. Feature maps are

shown for two different backbone networks: Resnet+C4 and Resnet+FPN. In case of

FPN, maps of each level (2-6) have been visualized. The darker regions have lower

activation values while the brighter have higher activation values.

detection and semantic segmentation attached to the last layers of the encoder [3, 70],

(ii) same as (i) but with features from semantic segmentation branch refining object

detection [48, 82], (iii) encoder-decoder network where the concatenated feature map

from each layer of the decoder is used for semantic segmentation, whereas each layer

of the decoder focuses on multi-scale object detection [16] and (iv) encoder-decoder

network where each layer of the decoder is simultaneously used for object detection and

semantic segmentation [4]. Although the above methods have shown to be effective by

jointly training the two tasks, the improvement in the performance of object detection

and semantic segmentation has not been much. One possible reason is that most of the

above methods still mainly rely on simply sharing convolutional features for the two

tasks, without focusing on a particular aspect of the pipeline responsible for semantic

segmentation and object detection.

In this chapter, in addition to sharing convolutional features for the two tasks through

the common encoder-decoder architecture, we focus our attention on a much deeper con-

nection between object detection and semantic segmentation. We observe that the fea-

ture maps used by RPN resemble a dense class-agnostic (i.e., foreground/background)
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segmentation map. We observe this across different backbone networks, two of which

have been shown in Figure 3.1. We use this observation to improve the functioning

of the RPN. Now the goal of the RPN is to produce candidate regions (i.e., proposals)

which have the potential of containing an object, which forms the first part of a two

stage object detector. These proposals are filtered out from all possible proposals based

on probability score maps generated by RPN, as well as non-max suppression. These

proposals then go on for final classification and regression, which forms the second part.

Therefore, the RPN, and consequently the RPN input feature map as well as the RPN

probability map play a very crucial role in object detection. If the first stage (i.e., RPN)

itself misses out on good proposals, the second stage cannot recover them. Therefore,

we propose a framework called SegRPN where we endow Faster-RCNN with a seman-

tic segmentation branch using a shared Feature Pyramid Network (FPN) backbone. The

semantic segmentation branch is facilitated by a multi-scale class agnostic segmenta-

tion module, which has another RPN (i.e. RPNmask) attached to it. We improve the

RPN (i.e. RPNdet) in the detection branch using RPNmask in the segmentation branch

in two ways: (i) we fuse the input feature maps of the RPNmask score classifiers and

bounding box regressors at different scale levels with the corresponding feature maps

from RPNdet, (ii) we fuse the probability maps generated by RPNmask score classifier at

different scale levels with the corresponding ones in RPNdet. This helps us improve the

quality of proposals generated by RPNdet both in terms of precision and recall.

Since RPNmask is attached to a mutli-scale class-agnostic segmentation module, it

helps us learn scale specific features for class-agnostic segmentation. This means the

higher resolution feature maps in the class-agnostic segmentation module focus on seg-

menting the lower scale objects, whereas the lower resolution feature maps focus on

segmenting the higher scale objects. We then use these scale specific features to im-

prove the semantic segmentation performance, which becomes possible since the class-

agnostic segmentation module is attached to the class-specific module.

The contributions of this work are summarised as follows: First, we explore a novel

observation that the feature maps used by RPN represent a dense class agnostic seg-

mentation map, and treat it as a much deeper connection between object detection and

semantic segmentation. Second, we propose a framework called SegRPN for joint ob-
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ject detection and semantic segmentation that effectively exploits this said connection.

Third, we show why leveraging the scale of objects is an integral part of SegRPN.

3.2 Related Work

Before we introduce our approach, we review in this section techniques for object

detection, semantic segmentation and past attempts at jointly dealing with the two tasks.

3.2.1 Object Detection

The goal of object detection is to classify all objects and localize them via bounding

boxes. The methods of object detection can be broadly summarized into two categories:

one stage methods and two stage methods. Two stage method, as popularized in the

R-CNN framework [22] and its variants [21, 58], is a proposal driven mechanism where

the first stage generates a sparse set of candidate object locations and the second stage

classifies each candidate location as one of the foreground classes or as background

using a convolutional neural network. These methods have dominated the field of object

detection and are the most representative frameworks among the two stage methods.

Over the years, there have been some notable extensions to this framework, especially

the ones based on multi-scale features with strong semantics [42, 26].

One-stage methods, on the other hand, are applied over a regular, dense sampling

of object locations, scales and aspect ratios. Overfeat [66] was one of the first modern

one-stage object detector based on deep networks. It was more recently followed by

SSD [44, 18], YOLO [56, 57] and RetinaNet [43]. These detectors have been tuned for

speed and so are much faster, but their accuracy still trails that of two-stage methods.

In this chapter, we adapt a two-stage method for the object detection pipeline since our

focus is not on improving speed.

3.2.2 Semantic Segmentation

Semantic segmentation aims to predict the semantic label of each pixel in an image.

It has achieved significant progress in the past few years [45, 7, 83, 9, 80]. The methods
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of semantic segmentation can also be broadly categorised into two categories: encoder-

decoder methods and spatial pyramid methods. The encoder-decoder methods contain

two subnetworks: an encoder subnetwork and a decoder subnetwork. The encoder sub-

network is usually based on the standard CNN models (e.g., VGG [67], ResNet [28],

DenseNet [30]) pre-trained on ImageNet [15]. It extracts strong semantic features and

reduces the spatial resolution of feature maps. The decoder subnetwork on the other

hand, gradually upsamples these feature maps with reduced spatial resolution. While

some methods [1, 50] directly upsample the feature maps using max-pooling indices

of the encoder subnetwork, others [52, 41, 80] extract context information by adopting

skip-layer connection between the feature maps from the encoder and decoder subnet-

works.

Spatial pyramid methods rely on exploiting multi-scale information, which is ex-

tracted from the last output feature maps using the idea adopted from spatial pyramid

pooling [27]. Specifically, this multi-scale information can also be utilised in different

ways. PSPnet [83] propose pyramid pooling module, which downsamples and upsam-

ples the feature maps in parallel. Some other prominent works [7, 8, 74, 78] propose to

use multiple convolutional layers of different atrous rates in parallel (called ASPP) to

extract multi-scale features. For our work, we opt a simple design for our semantic seg-

mentation branch, appending a set of conolvutional layers on top of the FPN backbone

in a multi-scale fashion.

3.2.3 Joint Object Detection and Semantic Segmentation

The task of jointly dealing with object detection and semantic segmentation has

attracted a lot of attention in the past few years, where the goal is to simultaneously de-

tect objects and predict pixel semantic labels by a single network. Recently, researchers

have done some attempts. A graphical model to holistic scene understanding is proposed

in [79]. [70] propose a joint object detection and semantic segmentation framework by

sharing the encoder subnetwork. A real-time approach to jointly solve this task was also

introduced in [16]. More recently, [4] propose an encoder-decoder network where each

layer of the decoder is simultaneously used for object detection and semantic segmen-

tation.
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Figure 3.2: Proposed Network Architecture. We use a Resnet+FPN backbone, which is

shared by the object detection and semantic segmentation branches.

Almost all of the above works rely on sharing convolutional features in some or the

other way, without giving a concrete explanation of why these features are connected.

Although a lot of progress has been made in this field, we argue that there is still room

for further improvement. To support this claim, in this chapter, we explore a novel

connection between the two tasks of object detection and semantic segmentation. We

subsequently provide a framework for exploiting this said connection and show some

positive experimental results.

3.3 SegRPN

Different from the existing works dealing with joint object detection and semantic

segmentation, we explore a much deeper connection between object detection and se-

mantic segmentation and build our model to exploit said connection. We observe that the

feature maps used by RPN resemble a dense class-agnostic (i.e., foreground/background)
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segmentation map. The architecture of the proposed framework is shown in Figure 3.2.

We endow the Faster-RCNN framework with a semantic segmentation branch using a

shared Feature Pyramid Network (FPN) backbone. We first discuss this observation in

detail in Section 3.3.1, and then move on to explaining the different components of the

model.

3.3.1 RPN Feature Map as Class-Agnostic Segmentation Map

The RPN is the first stage of Faster R-CNN, and it’s job is to generate regions of in-

terest (i.e., ROIs) which potentially contain the object. When used on top of FPN, each

level of the pyramid generates ROIs corresponding to a fixed anchor size. The lower

the level of the FPN, the higher the resolution and the smaller the objects it focuses

on. The RPN generates these ROIs using its own binary classifier (i.e. foreground vs

background) and box regressor, which take as input a set of feature maps. Using these

features maps, the RPN generates bounding box offsets and probability maps represent-

ing pixels whose anchors have a possibility of containing the objects. We visualize both

the input RPN feature maps as well as the generated ROI probability map for an image

from the Cityscapes dataset in Figure 3.3.

For our work, we stick with the standard FPN setting of 5 scales and 3 aspect ratios of

{32, 64, 128, 256, 512} and {.5, 1, 2} respectively. This means that there are 5 pyramid

levels (2-6), each generating a single RPN feature map and three ROI probability maps

corresponding to each of the three aspect ratios. The RPN feature map along with its

corresponding ROI probability maps are shown for each of the five pyramid levels in

Figure 3.3 (a). There are two interesting observations here; First, as you can see, the

RPN feature maps have a lower activation region around the foreground objects in the

image at all levels, where each level focuses on a certain scale of object. These maps

resemble a class-agnostic segmentation map where the foreground objects have a lower

activation, trying to almost mimic the contour of the object. This is especially visible in

the feature map of level 3, where the human and car contours are clearly visible. Second,

the generated ROI probability map behaves in a complete opposite manner to the RPN

feature map, having higher activation for the same region with lower activation in the

RPN feature map. This suggests that the RPN classifier acts as a low-pass filter, trying



30

Lvl 2 Lvl 3 Lvl 4 Lvl 5 Lvl 6

(a)

Lvl 2 - TP:	8 FP:	499	FN:	208 Lvl 3 - TP:	14 FP:	108	FN:	236 Lvl 4 - TP:	43 FP:	100	FN:	341

Before	
filtering

After	
filtering

(b)

Figure 3.3: In (a), visualization of the RPN feature maps and ROI probability maps for

an image in the Cityscapes dataset is shown. Filtering of proposals by RPN based on

ROI probability maps is shown in (b), where yellow points denote pixels with proposals

having an overlap of greater than 0.5 with the ground truth bounding box before filtering.

Red and green points are pixels denoting false positives (FPs) and true positives (TPs)

respectively, after filtering.
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to invert the activations of the RPN feature map. We also analyse the reason behind

these two interesting observations in detail.

The RPN is designed in such a way that each pixel in the RPN feature map generates

3 proposals corresponding to the three aspect ratios. This results in a lot of proposals

when combined over all the FPN levels. The RPN filters these proposals using the ROI

probability score and non-maximal suppression (NMS), to form a batch of positive and

negative proposals with a ratio of 1:3. We show that this filtering done by the RPN based

on the ROI probability score misses out on a lot of candidate regions, and we argue that

this happens because these candidate regions were not segmented in the RPN feature

map. In Figure 3.3 (b), we show the effect of the filtering done by the RPN as well

as the importance of the ROI probability map. The pixels responsible for generating

the proposals having an overlap of greater than 0.5 with the ground truth bounding box

before filtering are shown in yellow at the bottom. After filtering, we show the true

positives (TPs) and false positives (FPs) in green and red color respectively. These TPs

and FPs are directly related to regions in the ROI probability map, as shown in Figure 3.3

(b). As you can see, a lot of yellow pixels covering the object before filtering are missed

once the filtering is done, which results in very few TPs and a lot of FNs and FPs at every

level of the FPN. Note that we stick with the standard setting of using 2000 proposals

after filtering by the RPN, and we show the exact number of proposals belonging to

TPs, FPs and FNs for the three levels (2-4) individually in Figure 3.3 (b). We argue that

this happens because these yellow pixels do not have a higher activation value in the

corresponding ROI probability map, which in turn is caused by these regions not being

segmented in the RPN feature map.

3.3.2 Class-Agnostic Segmentation Branch

As mentioned in Section 3.3.1, the RPN feature maps rely on its segmentation char-

acteristic for subsequent filtering of the generated proposals. However, these maps are

not entirely accurate. So, we append a class agnostic module in parallel to our segmenta-

tion branch, which produces a binary (i.e., foreground/background) segmentation map.

The estimated probability for the binary cross entropy (BCE) loss function of this branch

for background class is denoted by p ∈ [0, 1]. This branch serves two purposes: (i) it
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Figure 3.4: Loss curves of box regressor and class classifier corresponding to RPNdet

(top) and RPNmask (bottom).

provides a scale specific objectness prior for semantic segmentation and (ii) it supports

RPNmask which improves the functioning of RPNdet in the detection branch.

Semantic segmentation is class-aware, trying to discriminate between all the seman-

tic classes at once. However, it does not focus on the specific distinction between objects

and the background. Inspired by [4], we add a class agnostic module in parallel to our

semantic segmentation branch, both sharing the Resnet+FPN backbone. This module

helps the semantic segmentation by giving an objectness prior. In addition, it also serves

as a base for adding a RPN in the segmentation branch.

3.3.3 RPN in Class-Agnostic Segmentation Branch

Since the RPN feature maps resemble a class-agnostic segmentation map, a natural

question to ask is can we train RPN on top of the segmentation feature maps? We explore

this question by adding a RPN called RPNmask on top of the feature maps in the class-

agnostic segmentation branch. We show the training loss curves of the box regressor

and binary classifier corresponding to both the RPNdet and RPNmask in Figure 3.4. We

observe that we’re able to train the RPNmask as well as RPNdet, further solidifying our
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Figure 3.5: Motivation behind RPNmask. A challenging image from the Cityscapes val-

idation set is shown in (a). In (b), we visualize the outputs from different parts of our

proposed network when RPNmask is not attached. Blue and red boxes represent ground

truth and predicted bounding boxes. Green boxes represent large objects which are

missed by the object detection branch but recovered by the semantic and class-agnostic

segmentation branches.

claim that the RPN feature maps resemble a class-agnostic segmentation map.

The motivation behind adding another RPN in the class-agnostic segmentation branch

and exploiting the segmentation modality to improve object detection is shown in Fig-

ure 3.5. We show an example of a challenging image from the Cityscapes validation

set in Figure 3.5(a) and its corresponding predictions from our network in Figure 3.5(b)
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when RPNmask is not attached. As can be gleaned from the object detection ground

truth, the image contains a lot of objects, many of them being small in size. The small

objects will naturally be tough to predict, but the network is still able to predict some of

the small objects. However, it misses out on some objects which are reasonably large

in size. As shown in Figure 3.3 and discussed in Section 3.3.1, the RPN feature maps

indirectly control the proposals which are picked after filtering by the RPN, and these

filtered proposals eventually get picked as predictions. We argue here that the reason

why objects are being missed in Figure 3.5(b) is because the RPN feature maps do

not contain segmented regions corresponding to these objects. On the other hand, we

show that the class-agnostic segmentation output, which also resembles an RPN feature

maps, does a better job at segmenting these missed objects. Interestingly, the semantic

segmentation output also recovers these missed objects, further facilitating the evidence

that the segmentation modality can help the task of object detection.

Since we’re able to successfully train the RPNmask, we use the RPNmask feature maps

to modify the RPNdet feature maps. This modification is based on the intuition that

the RPNmask feature maps learn some relevant information missed out by the RPNdet

feature maps, due to RPNmask exploiting the segmentation modality. This modification

is basically an element-wise multiplication followed by an element-wise sum of the RPN

feature maps corresponding to each FPN level, as shown in Figure 3.2. We also modify

the ROI probability maps based on the same intuition, by element-wise addition of the

ROI probability maps generated by RPNmask and RPNdet for each of the three aspect

ratios, right before the sigmoid layer.

3.4 Experiments

3.4.1 Datasets and Metric

Cityscapes

The Cityscapes dataset [12] is a collection of images with city street scenarios. It

includes instance segmentation annotation which we transform into bounding boxes for

our experiments. It contains 2,975 training images and 500 validation images.
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Metric

For object detection, mean average precision (i.e., mAP) is used for performance

evaluation. The mAP is calculated under the IoU threshold of 0.5. For semantic seg-

mentation, mean intersection over union (i.e., mIoU) is used for performance evaluation.

3.4.2 Implementation Details

We use a standard FPN configuration with 256 output channels per scale. For the

(pre-FPN) backbone, we use ResNet [28] models pre-trained on ImageNet [15] using

batch norm (BN) [31]. All feature layers are jointly updated during training using

Stochastic Gradient Descent (SGD). When used in fine-tuning, we replace BN with

a fixed channel-wise affine transformation, as is typical [28]. The input images are

rescaled to the size of 512 × 1024, and the size of mini-batch is 1. The total number

of iteration in the training stage is 96k. We warm-start the learning rate from 0.0003

to 0.001 in 500 steps using linear annealing for stabilizing training, and then drop the

learning rate by a factor of 10 at 60k and 80k iterations. We use a single Nvidia Titan

XP, and implement the proposed method with Pytorch [51].

Table 3.1: Results of object detection (mAP) and semantic segmentation (mIoU) on

Cityscapes. We also show class-agnostic segmentation results (mIoU*) as well as pro-

posal average recall rate (Prop. AR) at 1000 proposals per image.

Model mIoU mIoU* mAP Prop. AR

Baseline 67.34 NA 50.38 79.58

Baseline + ROI 67.80 94.41 51.87 80.22
Baseline + ROI (w/o ROI during inference) 67.80 94.41 51.65 79.77
Baseline + RPN 67.95 94.40 51.45 80.40
Baseline + RPN (w/o RPN during inference) 67.95 94.40 50.85 79.40
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3.4.3 Results on Cityscapes

We show the results of our proposed framework in Table 3.1. We first show the

baseline results without our class-agnostic module. We note that the mIoU results are

not comparable to the current state of the art [37, 77], primarily because of the training

settings (batch size, no. of GPUs used, image resolution, batch normalization etc). But

since our focus is to explore the connection between object detection and semantic seg-

mentation, we keep our training settings simple and don’t compare with these methods.

Also, since Cityscapes is not primarily used for object detection, we cannot compare the

object detection results with other methods.

By modifying the ROI probability maps, we’re able to improve the mAP by 1.5%.

We also see an increase in the mIoU by .5%. The increase in the semantic segmentation

performance can be attributed to the class-agnostic branch, which gives an objectness

prior for semantic segmentation. Note that the mIoU* performance is extremely high

since it’s a binary classification task (i.e., foreground vs background). We also see

an increase in the proposal average recall rate, suggesting that more objects are being

covered by the RPN generated proposals. We also show the results without modifying

ROI probability maps during inference to show the effect of the modification. Similar to

the ROI probability map modification, the RPN feature map modification also improves

the mAP by 1.1%. It’s accompanied by a similar improvement in the mIoU and equally

good mIoU* performance, along with an increase in the proposal average recall rate.

3.4.4 Additional Experiments and Analysis

We also conduct ablation studies to further explore the proposed hypothesis of treat-

ing RPN feature maps as a dense class-agnostic segmentation map. Since our framework

is built on top of FPN, the scale of objects is an important aspect of the overall approach.

In the original FPN paper [42], the authors adapt a heuristic to assign an ROI of width

w and height h to a certain level Pk of the pyramid, which is given by:

k = bk0 + log2(
√
wh/224)c (3.1)

Here 224 is the canonical ImageNet pre-training size and k0 = 4, as mentioned in [42].

This heuristic essentially suggests that each level of the FPN is designed to handle a
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certain scale of objects. Specifically,

k =



5
√
wh ≥ 448

4 448 >
√
wh ≥ 224

3 224 >
√
wh ≥ 112

2 otherwise

(3.2)

In this work, since we rely on the class-agnostic segmentation modality to improve

object detection, we must divide the segmentation information based on scale in order

for it to be applied to the FPN. We specifically use the ground truth class-agnostic seg-

mentation map for this ablation study in order to verify the idea. Also, note that the

canonical pre-training size (i.e., 224) is not really applicable for different input image

sizes. So, we experiment with the above heuristic in three ways which we refer to as: i)

Case 1 ii) Case 2, and iii) Case 3. The core idea behind these heuristics is to find a scale

appropriate matching between the ground truth segmentation map and ROI assignment.

The Cityscapes dataset has instance segmentation ground truth, which we use to find

the scale of individual objects. We visualize these hueristics in Figure 3.7 and describe

them in detail below.

Case 1

For this case, we use the same heuristic for ROI assignment as used in [42]. For

dividing the ground truth segmentation map, we follow a different strategy. Each level

of the FPN is designed to handle a certain scale of object, which is specified by the fixed

anchor size used in the RPN. So we use these anchor sizes as a heuristic for dividing

the segmentation map based on object/instance sizes. Specifically, let the FPN level to
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Table 3.2: Results of additional experiments on Cityscapes. We refer to the three

cases by their corresponding subscript. We show object detection (mAP) and semantic

segmentation (mIoU) results as well as proposal average recall rate (Prop. AR) at 1000

proposals per image.

Model mIoU mAP Prop. AR

Baseline 67.34 50.38 79.58

Baseline + ROI1 67.89 51.42 80.56
Baseline + ROI1 (w/o ROI1 during inference) 67.89 51.25 79.95
Baseline + RPN1 68.52 51.57 82.59
Baseline + RPN1 (w/o RPN1 during inference ) 67.95 50.84 78.86
Baseline + ROI1 + RPN1 68.18 51.40 83.34
Baseline + ROI1 + RPN1 (w/o ROI1 and w/o RPN1) 68.18 49.93 79.02
Baseline + ROI1 + RPN1 (w/o ROI1) 68.18 51.20 82.72
Baseline + ROI1 + RPN1 (w/o RPN1) 68.18 50.30 79.90

Baseline + ROI2 68.33 51.50 80.70
Baseline + ROI2 (w/o ROI2 during inference) 68.33 51.28 79.84
Baseline + RPN2 68.23 51.71 82.54
Baseline + RPN2 (w/o RPN2 during inference ) 68.23 50.17 79.84

Baseline + ROI3 68.24 51.21 80.55
Baseline + ROI3 (w/o ROI3 during inference) 68.24 51.13 80.29
Baseline + RPN3 68.43 51.56 82.84
Baseline + RPN3 (w/o RPN3 during inference ) 68.43 50.43 79.64

which the segmentation map will be divided and assigned to be represented by L. Then,

L =



6
√
a ≥ 256

5 256 >
√
a ≥ 128

4 128 >
√
a ≥ 64

3 64 >
√
a ≥ 32

2 otherwise

(3.3)

where a is the area of the bounding box of an object. Note that a is calculated keeping

in mind the spatial stride of the network. The above heuristic essentially maps an object

in the ground truth segmentation map to a level in the FPN. We visualize this heuristic

in Figure 3.7a.
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Case 2

In the previous case, there was a difference in the heuristic used for ROI assign-

ment [42] and the one we used for dividing the ground truth segmentation map. In order

for them to be in sync, we keep the original heuristic for ROI assignment, but change

our heuristic used for dividing the segmentation map. Specifically,

L =



6, 5
√
a ≥ 448

4 448 >
√
a ≥ 224

3 224 >
√
a ≥ 112

2 otherwise

(3.4)

We visualize this heuristic in Figure 3.7b.

Case 3

As mentioned earlier, the canonical pre-training size (i.e., 224) used in [42] is not re-

ally applicable for different input image size. This is because the canonical pre-training

size affects the ROI assignment to the FPN levels, and the ROI sizes will be different

for different input image size. Since we use an input size of 512x1024, we empirically

change the canonical pre-training size to 128 so that each level of the FPN gets some

objects to handle. This can be visually seen in Figure 3.7c. Specifically,

L =



6
√
a ≥ 384

5 384 >
√
a ≥ 192

4 192 >
√
a ≥ 96

3 96 >
√
a ≥ 48

2 otherwise

(3.5)

Results

We show the results of the additional experiments in Table 3.2. We also show effect

of the modifications on the foreground ROIs generated by RPN after filtering by NMS
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Figure 3.6: Plot of Foreground ROIs per 2000 after filtering by NMS for all three heuris-

tic cases over no. of iterations

in Figure 3.6. For Case 1, we observe that by modifying the ROI probability maps,

we’re able to improve the mAP by 1.1%. We also see an improvement in the semantic

segmentation performance by .5%, which can be attributed to the improvement in the

common FPN backbone features shared by the object detection and semantic segmen-

tation branch. The improvement is also reflected in the proposal average recall rate,

which suggests more objects being covered by the RPN after modification. We see a

similar trend when modifying the RPN feature maps, with an improvement of 1.2% for

both mIoU and mAP. We also see an improvement in the proposal average recall rate by

3%. This improvement in the proposal average recall rate is also reflected in Figure 3.6

(right), where the FG ROIs generated are higher after modification when compared with

baseline. This however, is not very clearly reflected for the case of ROI modifications.

In addition, we also provide results without incorporating the modifications at test time,

to show the effect of the proposed method.

For Case 2 and Case 3, we observe a similar trend as the previous case. By modify-

ing the ROI probability maps, we’re able to improve the mAP and and also the mIoU,

which can again be attributed to the improvement in the common FPN backbone features

shared by the object detection and semantic segmentation branch. The improvement is

also reflected in the proposal average recall rate, which suggests more objects being cov-

ered by the RPN after modification. Figure 3.6 also shows the increasing trend in the
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FG ROIs for subsequent cases, which is also reflected in the higher values of proposal

average recall rate. We see a similar trend when modifying the RPN feature maps, with

an improvement for both mIoU and mAP. In addition, we also provide results without

incorporating Z at test time, to show the effect of the proposed method.

3.5 Summary

In this chapter, we propose an end-to-end learning framework called SegRPN for

joint object detection and semantic segmentation. Our framework is based on the novel

observation that the RPN feature maps in Faster-RCNN resemble a dense class-agnostic

segmentation map. We treat this observation as a deeper connection between the tasks

of object detection and semantic segmentation, and build a framework to exploit this

observation. Experimental results on Cityscapes show the effectiveness of the proposed

method. We also provide additional experiments and analysis to further explore this

observation.
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Figure 3.7: Visualization of the heuristic cases. In (a) we show an example image (left)

from Cityscapes validation set its class-agnostic segmentation ground truth (right). We

visualize the segmentation map division for all 5 FPN levels (2-6) in (b) corresponding

to heuristic 1 (top), heuristic 2 (middle) and heuristic 3 (bottom) for both ROI and RPN

modifications.



Chapter 4

Conclusion and Future Work

In this thesis, we focus on the recognition of objects and actions, which are the build-

ing blocks of any vision based machine intelligence. Firstly in Chapter 2, we propose

an end-to-end learning adaptive framework for spatio-temporal action localization. We

show that in order to effectively adapt the model, both spatial and temporal features need

to be adapted. Our experimental results show the effectiveness of the proposed approach

and the effect of adapting different components of the framework. In order to show po-

tential benefits of the proposed approach for autonomous cars, we also introduce and

benchmark a new dataset we collected of pedestrian actions in driving scenes.

Next in Chapter 3, we focus on the task of joint object detection and semantic

segmentation. We explore a novel observation that the RPN feature maps in Faster-

RCNN resemble a dense class-agnostic segmentation map. We treat this observation as

a deeper connection between the two tasks. We propose an end-to-end learning frame-

work which, in addition to sharing backbone convolutional features, also exploits this

said connection. Our experimental results show that the proposed approach is able to

improve both object detection and semantic segmentation performance. We also provide

additional experiments and analysis to support our claimed observation.

In the end, we conclude by discussing the potential directions for future research. As

pointed out earlier, objects and actions are the building blocks of any vision based intel-

ligent system. In order for this intelligent system to be truly effective, it should be able

to reason about both objects and actions simultaneously. For example, an autonomous

car should be able to holistically reason about a given scene. This holistic understanding

43
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should include detecting and segmenting other cars and pedestrians down to the individ-

ual pixel level, which would constitute as instance segmentation. This can be done by

extending the framework in Chapter 3. The system should also be able to simultane-

ously classify the actions of these cars and pedestrians in order for effective automated

navigation. One possible way to achieve this is to merge the frameworks proposed in

Chapters 2 and 3, which can be done as both frameworks are based on the Faster R-CNN

algorithm. In order to evaluate such a framework, an annotated dataset would also be

required. This dataset would require pixel level as well as spatio-temporal action anno-

tations. This can be achieved by extending the dataset we introduced in Chapter 2 to

contain pixel level annotations as well as actions of other cars, which although helpful,

would require additonal resources such as time and money.
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