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Continuous Data Assimilation with
Stochastically Noisy Data

Hakima Bessaih,∗ Eric Olson† and Edriss S. Titi‡

December 18, 2014

Dedicated to Professor Ciprian Foias on the occasion of his 80th birthday.

Abstract

We analyze the performance of a data-assimilation algorithm based
on a linear feedback control when used with observational data that
contains measurement errors. Our model problem consists of dynam-
ics governed by the two-dimension incompressible Navier–Stokes equa-
tions, observational measurements given by finite volume elements or
nodal points of the velocity field and measurement errors which are
represented by stochastic noise. Under these assumptions, the data-
assimilation algorithm consists of a system of stochastically forced
Navier–Stokes equations. The main result of this paper provides ex-
plicit conditions on the observation density (resolution) which guar-
antee explicit asymptotic bounds, as the time tends to infinity, on the
error between the approximate solution and the actual solutions which
is corresponding to these measurements, in terms of the variance of
the noise in the measurements. Specifically, such bounds are given for
the the limit supremum, as the time tends to infinity, of the expected
value of the L2-norm and of the H1 Sobolev norm of the difference be-
tween the approximating solution and the actual solution. Moreover,
results on the average time error in mean are stated.
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1 Introduction

Data assimilation is a process by which a time series of observational data
for a physical system is used along with the knowledge about the physics
which govern the dynamics to obtain an improved estimate of the current
state of the system. Applications of data assimilation arise in many fields of
geosciences, perhaps most importantly in weather forecasting and hydrology.
The classical method of continuous data assimilation, see, e.g., Daley [14], is
to insert observational measurements directly into a computer model as the
latter is being integrated in time.

A new approach, inspired by ideas from control theory [2], has been pro-
posed in [3] that consists in introducing a feedback control term that forces
the approximating solution obtained by data assimilation toward the ref-
erence solution that is corresponding to the observations (see also [18, 19]
for other applications). This approach admits a general framework of in-
terpolant operators which include operators arising from local volume aver-
ages and pointwise nodal measurements. Special attention is given to nodal
measurements because they may be likened to the data collected by an ar-
ray of weather-vane anemometers placed throughout the physical domain.
This is unlike previous rigorous work [9, 27, 28, 33, 37] where the observed
data is assumed to be the lower Fourier modes of the reference unknown
full solution. The method of data assimilation introduced in [3] extends
equally to all dissipative dynamical systems and relies on the fact that such
dynamical systems possess finite number of determining parameters, such
as determining modes, nodes and local volume averages, see, for example,
[12, 21, 22, 23, 24, 25, 29, 30, 31] and references therein.

In this paper, we extend the approach of [3] to the case where the ob-
servations are contaminated with random errors. A prototypical analysis
of nonlinear filter accuracy using a feedback observer appears in [41] where
conditions for a stochastic stability were found using Lyapunov functions for
very general dissipative systems. There is an extensive literature related to
nonlinear filtering using Kalman filters, see, for example, [32], [34] and the
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references therein. In these cases the statistics of the approximating solu-
tion are assumed to be Gaussian, which we don’t assume here. Rather, we
compute the approximating solution pathwise through the feedback control
problem. Blömker and coauthors [6] have a similar result where the inter-
polant is described in terms of Fourier modes. We treat measurement errors
for general interpolant observables and, in particular, when the measure-
ments are nodal values with random noise. In this way our analysis may also
be seen to extend the work of [6] from Fourier mode measurements to general
interpolant observables.

The method of data assimilation studied in this paper can be described
mathematically as follows. Let U(t) be a solution trajectory lying on the
global attractor of a known dissipative continuous dynamical system and let
u(t) be the approximating solution obtained from data assimilation of noisy
observational measurements of U(t). Assume that the dynamics of U are
governed by an evolution equation of the form

dU

dt
= F (U) (1)

with unknown initial condition U0 ∈ V at time t0. Here F : V → H, where
V and H are suitable function spaces.

Denote by Oh(U(t)), for t ≥ 0, the exact observational measurements
without error of the true solution U at time t. For two-dimensional physical
domains we assume Oh : V → RD to be linear operator where D is of the
order (L/h)2 and L is a typical large length scale of the physical domain of
interest and h is the observation density or resolution. Denote by Rh(U(t))
the interpolation of the observational data, namely,

Rh(U(t)) = Lh ◦Oh(U(t)),

where Lh : RD → H is linear operator. Note that Rh need not be a projection
nor does its range need be included in the domain of F . Further assumptions
on the general interpolant observable Rh are given in (6) and (7) below.

In the absence of measurement errors the data-assimilation method pro-
posed in [3] would construct the approximating solution u from the inter-
polant observables Rh(U(t)) dynamically as the solution to

du

dt
= F (u)− µ(Rh(u)−Rh(U)), (2)

with arbitrary initial condition u(0) = u0. Here µ > 0 is a relaxation pa-
rameter (nudging), whose value will be determined later, which forces the
coarse spatial scales of u, i.e., Rh(u), toward those of the observed data, i.e.,
Rh(U).
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Suppose the exact measurements Oh(U(t)) are subjected to some random
errors. Thus, the only observations available for data assimilation are the
noisy observations Õh(U(t)) given by

Õh(U(t)) = Oh(U(t)) + E(t), (3)

where E : [0,∞)→ RD represents the measurement error, for example, due to
instrumental errors. That is, in reality the actual interpolated measurements
of U(t) contain random errors and are given by

R̃h(U(t)) = Lh(Õh(U(t)))

= Lh(Oh(U(t)) + Lh(E(t)) = Rh(U(t)) + ξ(t),

where the random vector ξ(t) lies in the range of the interpolant operator
Rh.

We will assume that the components of the random errors E(t) are inde-
pendent identically distributed of Gaussian type. In particular, the random
error ξ(t) will be expressed in terms of a finite-dimensional Wiener process
W , white noise in time with an appropriate covariance operator. The precise
assumptions will be given in the following sections. We observe that these
results could be generalized to other kinds of processes such as a Levy noise.

In this paper we examine the data-assimilation method given by equa-
tion (2) when the noise-free interpolant observable Rh(U(t)) is replaced by
R̃h(U(t)). In this case, our algorithm for constructing u(t) from the observa-
tional measurements Õh(U(t)) is given by the stochastic evolution equation

du = (F (u)− µRh(u) + µRh(U)) dt+ µξdt, (4)

with arbitrary initial condition u(0) = u0.
While this algorithm makes sense for other dissipative dynamical sys-

tems, the two-dimensional incompressible Navier–Stokes equations, subject
to period boundary conditions, provide a concrete example of a dissipative
dynamical system, which we will use as a model problem for our analysis.
Note that a similar analysis of the three-dimensional Navier–Stokes equa-
tions is obstructed by the problem of global regularity, however, it should be
possible to treat three-dimensional turbulence models and other dissipative
dynamical systems that are more regular using an analysis similar to what
we present here. In this paper, we find explicit conditions on the observation
density or resolution h and relaxation parameter µ for the two-dimensional
Navier–Stokes equations which guarantees that the resulting approximate
solution u(t) converges, as t→∞, in some sense, to the exact reference solu-
tion U(t) within an error that is determined by the observation density h, the
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relaxation parameter µ and the variance of the error in the measurements. It
is worth mentioning that the application of algorithm (4) to recover solutions
to fluid flow problems provides a concrete and justifiable reason for investi-
gating stochastically forced equations such as the Navier-Stokes equations.

In the remainder of this work, the reference solution U will be determined
by the two-dimensional incompressible Navier–Stokes equations

∂U

∂t
− ν∆U + (U · ∇)U = −∇p+ f

∇ · U = 0,
(5)

which describe the motion of an incompressible fluid in R2. We assume peri-
odic boundary conditions with fundamental domain D = [0, L]2 and take the
initial condition U(0, x) = U0(x) and the body forcing f = f(x) to be an L-
periodic function with zero spatial average. The kinematic viscosity ν > 0 is
assumed to be known. The unknowns are the velocity vector U = U(t, x) and
scalar pressure p = p(t, x). We observe that (5) preserves the L-periodicity
and zero spatial average of the initial condition. Thus

∫
D U(t, x) dx = 0,

for all t ≥ 0, provided
∫
D f(x) dx =

∫
D U0(x) dx = 0, which we will assume

throughout this paper.
For notational convenience we will denote L1

per as simply L1, and similarly
L2

per by L2 and H1
per(D) by H1. For ϕ ∈ L1 we define the average

〈ϕ〉 =
1

L2

∫
D
ϕ(x) dx,

and for every Z ⊆ L1 we denote Ż = {ϕ ∈ Z : 〈ϕ〉 = 0 }.
In the absence of measurement errors the data assimilation method given

by (2) for the two-dimensional incompressible Navier-Stokes equations allows
the use of two kinds of linear interpolant observables. The first kind are
Rh : [Ḣ1]2 → [L̇2]2, which satisfy the approximating identity property

‖ϕ−Rh(ϕ)‖2
L2 ≤ c1h

2‖ϕ‖2
H1 , (6)

for every ϕ ∈ [Ḣ1]2; and the second kind of interpolant observables are
Rh : [Ḣ2]2 → [L̇2]2, which satisfy

‖ϕ−Rh(ϕ)‖2
L2 ≤ c1h

2‖ϕ‖2
H1 + c2h

4‖ϕ‖2
H2 , (7)

for every ϕ ∈ [Ḣ2]2. In the presence of measurement errors this same data
assimilation method becomes the stochastic differential equation (4) and our
analysis needs additional regularity assumptions on Rh for interpolants that
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satisfy (7). In particular, we assume the range of Rh is in [Ḣ1]2 for inter-
polants which satisfy (7). This does not result in loss of generality because
any interpolant operator whose range is in [L̇2]2 can be smoothed so its range
is in [Ḣs]2, for any s > 0.

The orthogonal projection onto the Fourier modes, with wave numbers k
such that |k| ≤ 1/h, is an example of an interpolant operator which satisfies
both approximation properties (6) and (7). A physically relevant interpolant
which satisfies (6) is given by the volume elements studied in [30] and [31],
see also [25]. Suppose the observations of volume elements Oh : [Ḣ1]2 → R2N

are given by

Oh(Φ) = (ϕ̄1, ϕ̄2, . . . , ϕ̄2N) where

[
ϕ̄2n−1

ϕ̄2n

]
=
N

L2

∫
Qn

Φ(x) dx, (8)

for n = 1, 2, . . . , N , where the domain D = [0, L]2 has been divided into
N = K2 disjoint equal squares Qn with sides h = L/K. Define Rh = Lh ◦Oh,
where Lh : R2N → [L̇2(D)]

2
with Lh(ζ) is the L-periodic function given by

Lh(ζ)(x) =
N∑
n=1

[
ζ2n−1

ζ2n

](
χQn(x)− h2

L2

)
on D. (9)

As shown in [30] the interpolantRh satisfies (6), with c1 = 1/6. Note there
are many other choices for Lh that result in interpolant observables based
on volume elements which also satisfy (6). For example, the appendix of [3],
which will be summarized in section 2.2 below, presents a smoothed choice for

Lh which results in an Rh : [Ḣ1]2 → [Ḣ2]2 which also satisfies (6). In addition,
volume elements generalize to any domain D on which the Bramble–Hilbert
inequality holds. An elementary discussion of this inequality in the context of
finite element methods appears in Brenner and Scott [7], see also [11, 29, 45].

An interpolant observable Rh : [Ḣ2]2 → [Ḣ2]2 which satisfies (7) is ob-
tained, following the ideas of [31], when the observational measurements are
given by nodal measurements of the velocity. This corresponds to the data
collected from an array of weather-vane anemometers placed throughout the
physical domain. Suppose the observations of nodes Oh : [Ḣ2]2 → R2N are
given by

Oh(Φ) = (ϕ1, ϕ2, . . . , ϕ2N) where

[
ϕ2n−1

ϕ2n

]
= Φ(xn), (10)

and xn ∈ Qn, for n = 1, 2, . . . , N . Here Qn are, as above, N = K2 disjoint
squares with sides h = L/K such that D = ∪Nn=1Qn. Setting Rh = Lh ◦Oh,
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where Lh is the smoothed version of (9) given in section 2.2, results in an
interpolant which satisfies (7).

The rest of this paper is organized as follows: section 2 describes the
functional setting for our analysis, gives the stochastic setting for our mea-
surement errors and recalls the a-priori estimates for classical solutions of
the two-dimensional incompressible Navier–Stokes equations that we shall
use to obtain our bounds. Section 3 shows the stochastic data assimilation
algorithm given by (4) is well-posed. Section 4 states and proves our main
results. We end with a few concluding remarks.

2 Preliminaries

The preliminaries have been divided into three subsections. Subsection 2.1
sets up notation and the functional setting we will use in our analysis. Sub-
section 2.2 gives the stochastic setting for our measurement errors and sum-
marizes the specific details from [3] on the general interpolant observables
needed for our analysis. Subsection 2.3 recalls the theory and a-priori esti-
mates for classical solutions of the two-dimensional incompressible Navier–
Stokes equations needed for our work.

2.1 The Functional Setting

We describe the functional setting which will be used to study the Navier-
Stokes equations. We refer to [13, 40, 42, 44] for the main results. Denote by
V all divergence-free R2 valued L-periodic trigonometric polynomials with
zero spatial averages. Let H and V be the closures of V in [L2]2 and [H1]2,
respectively. Note that H and V are separable Hilbert spaces with the inner
products and norms inherited from [L2]2 and [H1]2, respectively. In particu-
lar,

|u|2H = 〈u, u〉, where 〈u, v〉 =

∫
D

(
u(x) · v(x)

)
dx,

and, thanks to the Poincaré inequality (11),

‖u‖2
V = ((u, u)), where ((u, v)) =

∫
D

(
∇u(x) : ∇v(x)

)
dx.

Denote by H ′ and V ′ the dual spaces of H and V , respectively. If we
identify H with H ′, then we have the Gelfand triple V ⊂ H ⊂ V ′ with con-
tinuous, compact and dense injections. We denote the dual pairing between
ϕ ∈ V ′ and ψ ∈ V by 〈ϕ, ψ〉V ′,V . When ϕ ∈ H, we have 〈ϕ, ψ〉V ′,V = 〈ϕ, ψ〉.
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Let Π be the Leray–Helmholtz projector from [L̇2]2 onto H. The Stokes
operator A is given by

Au = −Π∆u for every u ∈ D(A) = [Ḣ2]2 ∩ V.

Note that A is a closed, positive, unbounded self-adjoint operator in H with
inverse A−1 which is a self-adjoint compact operator on H. By the spectral
theorem there exists a sequence {λj}∞j=1 of eigenvalues of the Stokes operator,
with 0 < λ1 ≤ λ2 ≤ · · · , with corresponding eigenvectors ej ∈ D(A) such
that the set {ej : j ∈ N} forms an orthonormal basis in H. Moreover, we
have λj ∼ λ1j, as j →∞, where λ1 = (2π/L)2 (cf. [13]).

For α > 0 we will denote the α-th power of the operator A by Aα and
its domain by D(Aα). We have ‖u‖2

D(Aα) =
∑∞

j=1 λ
2α
j |〈u, ej〉|2. Moreover,

it follows that V = D(A1/2) with ‖ϕ‖V = |A1/2ϕ|H , for every ϕ ∈ V , and
D(Aα1) is compactly embedded in D(Aα2), for α1 > α2. Finally, let D(A−α)
denote the dual of D(Aα).

We have the following Poincaré inequalities:

|u|2H ≤ λ−1
1 ‖u‖2

V for u ∈ V (11)

and
‖u‖2

V ≤ λ−1
1 |u|2D(A) for u ∈ D(A). (12)

Let b(·, ·, ·) : V × V × V → R be the continuous trilinear form defined as

b(u, v, z) =

∫
D

(
(u(x) · ∇)v(x)

)
· z(x) dx.

It is well known that there exists a continuous bilinear operator B(·, ·) : V ×
V → V ′ such that 〈B(u, v), z〉V ′,V = b(u, v, z), for all z ∈ V.

Lemma 2.1. (cf. [13, 40, 42, 44]) Let u, v, z ∈ V . Then

〈B(u, v), z〉V ′,V = −〈B(u, z), v〉V ′,V and 〈B(u, v), v〉V ′,V = 0. (13)

Furthermore,
|〈B(u, v), z〉V ′,V | ≤ ‖u‖L4‖v‖V ‖z‖L4 . (14)

Moreover, one can apply the two-dimensional Ladyzhenskaya interpola-
tion inequality (cf. [13])

‖u‖2
L4 ≤ CL|u|H‖u‖V , (15)

to the right-hand side of (14) to obtain

|〈B(u, v), z〉V ′,V | ≤ CL|u|1/2H ‖u‖
1/2
V ‖v‖V |z|

1/2
H ‖z‖

1/2
V , (16)
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for functions in V .
We will also make use of the Brézis–Gallouet inequality [8], which may

be stated as

‖v‖∞ ≤ CB‖v‖V
{

1 + log
|Av|2H
λ1‖v‖2

V

}
, (17)

for functions in D(A).

Lemma 2.2. (cf. [13, 43]) In the case of periodic boundary conditions the
bilinear term has the additional orthogonality property

〈B(v, v), Av〉 = 0, (18)

for every v ∈ D(A). In addition, one has

〈B(u, v), Av〉+ 〈B(v, u), Av〉 = −〈B(v, v), Au〉, (19)

for every u, v ∈ D(A).

Applying the Leray-Helmholtz projector Π to (5) one obtains the equiv-
alent functional evolution equation

dU

dt
+ νAU +B(U,U) = f, (20)

with initial condition U(0) = U0, where we assume that f ∈ H and U0 ∈ V .
Similarly the data-assimilation equation (4) becomes

du+ (νAu+B(u, u))dt =
(
f − µΠRh(u− U)

)
dt+ µdW, (21)

where dW (t) = Πξ(t)dt is the noise term.

2.2 The Noise Term

In this section we describe the error term E : [0,∞) → R2N that gives rise
to the noisy observations Õh in equation (3) in terms of a Brownian motion.
We then use the definition R̃h = Lh ◦Õh to obtain dW in (21).

Following Da Prato and Zabczyk [15], fix a filtered probability space
(Ω,F , (Ft),P) on which is defined a sequence of independent one-dimen-
sional Brownian motions bd(t), for d = 1, 2, . . . , D, relative to the filtration
(Ft) such that

E(bd(t)) = 0 and E(bd(t)
2) = tσ2/2 for t ≥ 0.
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For convenience we shall assume the filtration is complete and right contin-
uous. The measurement errors may now be described by

E(t)dt = (db1(t), db2(t), . . . , dbD(t)). (22)

Note that σ is a dimensional constant whose units of measurement must
be chosen so the units of measurement for Oh(U(t)) are the same as E . Given
a quantity z let [z] represent the units used to measure z. Then [Oh] = [E ]
implies [σ2] = [Oh]2[t]. In particular, if our observations are velocities as
in (8) or (10), we then have [Oh] = [L]/[t] so that [σ2] = [L]2/[t].

Writing the linear operator Lh : RD → [Ḣα]2, for α ≥ 0, as

Lh(ζ)(·) =
D∑
d=1

ζd`d(·), where ζ ∈ RD and `d ∈ [Ḣα]2, (23)

it follows that the noise term in (21) is the Wiener process

W (t) =
D∑
d=1

bd(t)γd, where γd = Π`d. (24)

We do not assume γd are orthogonal or even linearly independent.
When α ≥ 0 our assumptions dictate that W is a [Ḣα]2-valued Q-

Brownian motion, where E(W (t)) = 0. Following [15] pages 26–27, we have

tQ = Cov(W (t)) = E
( D∑
d,p=1

bd(t)γd ⊗ bp(t)γp
)
.

Note that Q is a nonnegative and symmetric linear operator with finite trace.
In particular, we have

Tr
[
Cov(W (t))

]
=
∞∑
j=1

〈
Cov(W (t))ej, ej

〉
=
∞∑
j=1

E

(
D∑

d,p=1

〈bd(t)γd, ej〉〈bp(t)γp, ej〉

)

=
∞∑
j=1

(
D∑

d,p=1

E (bd(t)bp(t)) 〈γd, ej〉〈γp, ej〉

)

= t
σ2

2

∞∑
j=1

D∑
d=1

|〈γd, ej〉|2 = t
σ2

2

D∑
d=1

|γd|2H .

10



Therefore,

Tr[Q] =
σ2

2

D∑
d=1

|γd|2H <∞. (25)

We next turn our attention to the specific interpolant observable based
on volume elements given by (8) and (9). In this case, setting

`2n−1(x) =

[
χQn(x)− h2/L2

0

]
and `2n−1(x) =

[
0

χQn(x)− h2/L2

]
,

(26)
yield, for n = 1, 2, . . . , N , the D = 2N functions needed in (23) and we
obtain

Proposition 2.3. Let W (t) be defined as in (24), where `d are given by
(26), for d = 1, 2, . . . , 2N . Then W is a [L̇2]2-valued Q-Brownian motion
with covariance operator Q that satisfies Tr[Q] ≤ σ2L2.

Proof. The calculation

Tr[Q] =
σ2

2

2N∑
d=1

|γd|2H ≤
σ2

2

2N∑
d=1

|`d|2L2 = σ2

N∑
n=1

∫
D

∣∣∣χQn(x)− h2

L2

∣∣∣2dx
= σ2

N∑
n=1

∫
D

{(
1− 2h2

L2

)
χQn(x) +

h4

L4

}
dx ≤ σ2(L2 − h2) ≤ σ2L2

immediately yields the result.

We now recall the construction of the smooth interpolant observables
used for nodal measurements that were constructed in the appendix of [3],
and which satisfy (7). Then we derive the estimates needed in our analysis
of (21) for the terms resulting from the Itô formula.

Let Qn, for n = 1, 2, . . . , N , be the N = K2 squares with sides h = L/K
described in the introduction such that D = ∪Ni=1Qn. In particular, we set
J = { 1, . . . , K }2 and for (i, j) ∈ J define

Qn = [(i− 1)h, ih)× [(j − 1)h, jh), (27)

where n = i+ (j − 1)K. Further define

ψn(x) =
∑
k∈Z2

χQn(x+ kL), for x ∈ R2, (28)

as the L-periodicized characteristic function of Qn. Note that ψn ∈ L2, and
moreover, that 〈ψ2

n〉 = 〈ψn〉 = h2/L2.

11



To obtain a smoother interpolant let

ψ̃n(x) = (ρh/10 ∗ ψn)(x)

be the mollified version of ψn, where ρε(x) = ε−2ρ(x/ε), and

ρ(z) =

 K0 exp
( 1

1− |z|2
)
|z| < 1

0 |z| ≥ 1

with

(K0)−1 =

∫
|z|<1

exp
( 1

1− |z|2
)
dz.

Now setting

`2n−1 =

[
ψ̃n − 〈ψ̃n〉

0

]
and `2n =

[
0

ψ̃n − 〈ψ̃n〉

]
, (29)

for n = 1, 2, . . . , N , yields the D = 2N functions needed in (23) for the defi-
nition of Lh. As shown in the appendix of [3], if the observations are given
by volume elements, then the resulting interpolant satisfies (6); if the obser-
vations are given by nodal points, then the resulting interpolant satisfies (7).

We finish this section with some explicit estimates on the trace of the
covariance operator Q, for the Wiener process W given in (24) for the choice
of `n given in (29). Before that, we state two propositions which we shall
make use of in the proof as well as in other parts of this paper. Detailed proofs
of these propositions appear in the appendix of [3], where the functions ψ̃n
have been introduced along with their associated interpolant observables.

Proposition 2.4. Let

Un = {x+ y : x ∈ Qn and |y| < ε }, for n = 1, 2, . . . N.

Then { ψ̃n : n = 1, 2, . . . , N } is a smooth partition of unity satisfying

(i) 0 ≤ ψ̃n(x) ≤ 1 and supp(ψ̃n) ⊆ Un +
(
LZ
)2

,

(ii) ψ̃n(x) = 1, for all x ∈
(
Cn +

(
LZ
)2)

and∑N
n=1 ψ̃n(x) = 1, for all x ∈ R2,

(iii) 〈ψ̃n〉 =
(
h/L

)2
and 4

5
h ≤

∥∥ψ̃n∥∥L2(D)
≤ 6

5
h,

(iv) supp(∇ψ̃n) ⊆
(
Un \ Cn

)
+ LZ2,
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(v) |∇ψ̃n(x)| ≤ ch−1 and |∂2ψ̃n(x)/∂xi∂xj| ≤ ch−2, for all x ∈ R2,

(vi)
∥∥∇ψ̃n∥∥L2(D)

≤ c.

Proposition 2.5. Let K = {1 − K,−1, 0, 1,−1 + K}2. The functions ψ̃n
are nearly orthogonal in the following sense: Suppose α, β ∈ J are such that
n = α1 + (α2 − 1)K and m = β1 + (β2 − 1)K. Then

(i)

∫
D
ψ̃n(x)ψ̃m(x) dx = 0, for β − α /∈ K,

(ii)

∫
D

(
∇ψ̃n(x)

)
·
(
∇ψ̃m(x)

)
dx = 0, for β − α /∈ K.

(iii)
∣∣∣ ∫
D
ψ̃n(x)ψ̃m(x) dx

∣∣∣ ≤ (h+ 2ε)2 =
36

25
h2, for β − α ∈ K.

(iv)
∣∣∣ ∫
D

(
∇ψ̃n(x)

)
·
(
∇ψ̃m(x)

)
dx
∣∣∣ ≤ c, for β − α ∈ K.

Let us emphasize that the constant c, appearing in Proposition 2.4 parts
(v) and (vi), is independent of h. We are now ready to prove the following
proposition on the trace of the covariance operator Q for Wiener process W .

Proposition 2.6. Let W (t) be defined as in (24) for the choice of `n given
by equations (29). Then W is a [Ḣ1]2-valued Q-Brownian motion with co-
variance operator Q that satisfies

Tr[Q] ≤ 36

25
σ2L2 (30)

and

Tr[A1/2QA1/2] ≤ cσ2L
2

h2
. (31)

Proof. Since ρ ∈ C∞(R2) then the range of Lh is in [Ḣα]2, for every α ≥ 0,
and in particular for α = 1. Therefore, W is an [Ḣ1]2-valued Q-Brownian
motion. From (25), Proposition 2.4 part (iii) and Proposition 2.5 part (iii)
we estimate

Tr[Q] =
σ2

2

2N∑
d=1

|γd|2H ≤
σ2

2

2N∑
d=1

‖`d‖2
L2 = σ2

N∑
n=1

‖ψ̃n − 〈ψ̃n〉‖2
L2

= σ2

N∑
n=1

L2
(
〈ψ̃2

n〉 − 〈ψ̃n〉2
)
≤ σ2NL2

( 36h2

25L2
− h4

L4

)
≤ 36

25
σ2L2.

13



Since in the periodic case we have ‖Πϕ‖V ≤ ‖∇ϕ‖L2 for every ϕ ∈ Ḣ1, then
Similarly estimate

Tr[A1/2QA1/2] =
σ2

2

2N∑
d=1

‖γd‖2
V ≤ σ2

N∑
n=1

|∇ψ̃n|2L2

≤ cσ2N = cσ2L
2

h2
,

where Proposition 2.4 part (vi) has been used in the final inequality.

2.3 The Deterministic Navier-Stokes Equations

The deterministic two-dimensional incompressible Navier-Stokes equations,
subject to periodic boundary conditions, are well-posed and possess a com-
pact finite-dimensional global attractor. Specifically, the following result can
be found in [13], [21], [40] and [42].

Theorem 2.7. Let U0 ∈ V and f ∈ H. Then (20) has a unique strong
solution that satisfies

U ∈ C([0, T ];V ) ∩ L2([0, T ];D(A)), for any T > 0.

Moreover, the solution U depends continuously on U0 in the V norm.

Let us denote by G the Grashof number

G =
|f |H
ν2λ1

, (32)

which is a dimensionless physical parameter. We now give bounds on solu-
tions U of (20) that will be used in our later analysis. With the exception
of inequality (35) these estimates appear in the references listed above. The
improved estimate in (35) is given in [20].

Theorem 2.8. Let T > 0, and let G be the Grashof number given by (32).
There exists a time t0, which depends on U0, such that for all t ≥ t0 we have

|U(t)|2H ≤ 2ν2G2 and

∫ t+T

t

‖U(τ)‖2
V dτ ≤ 2(1 + Tνλ1)νG2. (33)

Furthermore, we also have

‖U(t)‖2
V ≤ 2ν2λ1G

2 and

∫ t+T

t

|AU(τ)|2Hdτ ≤ 2(1 + Tνλ1)νλ1G
2. (34)

Moreover,
|AU(t)|2H ≤ cν2λ2

1(1 +G)4. (35)
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3 The Data Assimilation Algorithm

Let U be the strong solution of (20) given by Theorem 2.7, and let Rh

be an interpolation operator satisfying either (6) or (7). Suppose the only
knowledge we have about U is from the noisy observational measurements
Rh(U(t)) + ξ(t), that have been continuously recorded for times t ∈ [0, T ].
Our goal in this section is to show that the data assimilation algorithm given
by equations (21) for computing the approximating solution u are well posed.

The proof combines the well-posedness results for the noise-free data as-
similation equations (2), appearing in [3], with techniques from [17]. Similar
results can be found in [15] for stochastically forced partial differential equa-
tions. Namely, we have the following two theorems.

Theorem 3.1. Suppose U is the strong solution of (20) given by Theo-
rem 2.7, where U0 ∈ V and f ∈ H. Moreover, assume Rh : [Ḣ1]2 → [L̇2]2

satisfies (6) and that 2µc1h
2 ≤ ν. Then for any u0 ∈ H and T > 0, there

exists a unique stochastic process solution u of equation (21) in the following
sense: P-a.s.

u ∈ C([0, T ];H) ∩ L2([0, T ];V )

and

〈u(t), ϕ〉+

∫ t

0

〈u(τ), Aϕ〉dτ −
∫ t

0

〈B(u(τ), ϕ), u(τ)〉dτ = 〈u0, ϕ〉

+

∫ t

0

〈f(τ), ϕ〉dτ − µ
∫ t

0

〈Rh(u(τ)− U(τ)), ϕ〉dτ + 〈W (t), ϕ〉 (36)

for all t ∈ [0, T ] and for all ϕ ∈ D(A). Moreover,

E
(

sup
0≤t≤T

|u(t)|2H + ν

∫ T

0

‖u(t)‖2
V dt

)
<∞. (37)

Theorem 3.2. Suppose U is the strong solution of (20) given by Theo-
rem 2.7, where U0 ∈ V and f ∈ H. Moreover, assume Rh : [Ḣ2]2 → [Ḣ1]2

satisfies (7) and that 2µh2 max(c1,
√
c2) ≤ ν. Then for any u0 ∈ V and

T > 0, the stochastic process solution of equation (21), given in the previous
theorem is such that P-a.s.

u ∈ C([0, T ];V ) ∩ L2([0, T ];D(A))

and

E
(

sup
0≤t≤T

‖u(t)‖2
V + ν

∫ T

0

|Au(t)|2Hdt
)
<∞. (38)
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Proof of Theorem 3.1. The proof of this theorem is based on a pathwise ar-
gument. We proceed along the lines of [17] in which a similar proof appears
except without the function U and the additional linear term. Consider the
auxiliary process z which satisfies

dz + νAzdt = µdW, z(0) = 0. (39)

It is known, see [15], that

z(t) = µ

∫ t

0

e−νA(t−τ)dW (τ)

is a stationary D(A1/2)-valued ergodic solution to (39) with continuous tra-
jectories. In particular, we have

E ‖z(t)‖2
D(A1/2) ≤

µ2σ2

2ν
Tr[Q].

This estimate may be obtained by writing

z =
∞∑
j=1

zjej and W =
∞∑
j=1

Wjej =
∞∑
j=1

( D∑
d=1

γd,jbd

)
ej

where zj(t) = 〈z(t), ej〉 and γd,j = 〈γd, ej〉.
Then,

zj(t) = µ

∫ t

0

e−νλj(t−τ)dWj(τ) = µ
D∑
d=1

γd,j

∫ t

0

e−νλj(t−τ)dbd(τ).

Using the independence of the bd’s and the Itô isometry, it follows that

E |zj(t)|2 = µ2

D∑
d=1

γ2
d,j E

∣∣∣∣ ∫ t

0

e−νλj(t−τ)dbd(τ)

∣∣∣∣2
=
µ2σ2

2

D∑
d=1

γ2
d,j

∫ t

0

e−2νλj(t−τ)dτ ≤ µ2σ2

4νλj

D∑
d=1

γ2
d,j.

Therefore, provided 2α ≤ 1 we have

E ‖z‖2
D(Aα) =

∞∑
j=1

λ2α
j E |zk|2

≤ µ2σ2

4ν

D∑
d=1

∞∑
j=1

1

λ1−2α
j

γ2
d,j ≤

µ2

2νλ1−2α
1

Tr[Q].
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Now, using the change of variable ũ = u− z, we find that ũ is solution of
the (random) differential equation

d

dt
ũ+ νAũ+B(ũ+ z, ũ+ z) + µΠRh(ũ+ z) = f̃ , (40)

where f̃ = f + µΠRh(U) and ũ(0) = ũ0 = u0.
Theorem 2.7 implies that U ∈ C([0, T ];V ). Hence, using (6) and the

Poincaré inequality

|ΠRh(U)|H ≤ ‖U −Rh(U)‖L2 + |U |H ≤
(√

c1h+ λ
−1/2
1

)
‖U‖V

which implies that ΠRh(U) ∈ C([0, T ];H). Therefore f̃ ∈ C([0, T ];H).
For every ω ∈ Ω, there exists a unique weak solution ũ of equation (40)

and it depends continuously, in C([0, T ];H) ∩ L2(0, T ;V ) norms, for any
given T > 0, on the initial condition ũ0 = u0 in H. A full rigorous proof of
this statement is very long, but at the same time it is very classical. Similar
proofs are detailed, for instance in [17] for the stochastically forced Navier–
Stokes equations and in [13] or [44] in the case of the classical Navier-Stokes
equations (i.e., when z = 0). The rigorous proof is based on the Galerkin
approximation procedure and then passing to the limit using the appropriate
compactness theorems. We state the necessary a-priori estimates here.

Take the inner product of equation (40) by ũ〈dũ
dt
, ũ
〉

+ ν〈Aũ, ũ〉 = −〈B(ũ+ z, ũ+ z), ũ〉 − µ〈ΠRh(ũ+ z), ũ〉+ 〈f̃ , ũ〉.

Using Lemma 2.2 and Young’s inequality, we get that

|〈B(ũ+ z, ũ+ z), ũ〉| = |〈B(ũ, ũ), z〉+ 〈B(z, ũ), z〉|
≤ CL

(
‖ũ‖2

L4‖z‖V + ‖ũ‖V ‖z‖2
L4

)
≤ ν

2
‖ũ‖2

V +
C2

L

ν

(
|ũ|2H‖z‖2

V + |z|2H‖z‖2
V

)
. (41)

For the other term we apply the Cauchy-Schwarz, Young’s and Poincaré
inequalities along with the approximation property (6) to obtain

−µ〈ΠRh(ũ+ z), ũ〉 = −µ〈Rh(z), ũ〉 − µ〈Rh(ũ), ũ〉
≤ µ|z −Rh(z)|H |ũ|H + µ|z|H |ũ|H

+ µ〈ũ− Rh(ũ), ũ〉 − µ|ũ|2H
≤ µ

2
|ũ|2H +

µ

2

(
|z|2H + |z −Rh(z)|2H

)
+
µ

2
|ũ− Rh(ũ)|2H +

µ

2
|ũ|2H − µ|ũ|2H

≤ µ

2

(
λ−1

1 + c1h
2
)
‖z‖2

V +
c1h

2µ

2
‖ũ‖2

V .
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Also,

〈f̃ , ũ〉 ≤ |f̃ |H |ũ|H ≤ λ
−1/2
1 |f̃ |H‖ũ‖V ≤

1

νλ1

|f̃ |2H +
ν

4
‖ũ‖2

V .

Hence, since we chose h and µ such that ν ≥ 2c1h
2µ, we get that

1

2

d

dt
|ũ|2H +

ν

2
‖ũ‖2

V ≤
µ

2

(
λ−1

1 + c1h
2
)
‖z‖2

V

+
C2

L

ν

(
|ũ|2H‖z‖2

V + |z|2H‖z‖2
V

)
+

1

νλ1

|f̃ |2H .

From the above we have

d

dt
|ũ|2H + ν‖ũ‖2

V ≤ µ
(
λ−1

1 + c1h
2
)
‖z‖2

V +
2

νλ1

|f̃ |2H

+
2C2

L

ν
‖z‖2

V |ũ|2H +
2C2

L

ν
|z|2H‖z‖2

V .

Since f̃ and z are in C([0, T ];V ), then by Gronwall’s Lemma and the previous
estimates on z and f̃ to get that

sup
t∈[0,T ]

|ũ(t)|2H ≤ C, and

∫ T

0

‖ũ(τ)‖2
V dτ ≤ C.

Since, u = ũ+ z, we deduce from the properties of z that P-a.s.

u ∈ C([0, T ];H)
⋂

L2([0, T ];V ).

The rigorous justification to the fact that the process u is adapted follows
from the limiting procedure of adapted processes (via the Galerkin approxi-
mation).

Let us sketch the proof of (37). As usual, these calculations are performed
in a first step on the Galerkin approximation and then in a second step the
estimates for the solution u are obtained by a limiting procedure. But for
simplicity, we only sketch them for u. For similar estimates, see [5, 10]

Using Itô formula to |u(t)|2H , where u(t) is solution of (21), we get that

d|u(t)|2H = 2〈u(t), du(t)〉+ µ2 Tr[Q].

Then, using assumption (13) and integrating over (0, t), we get

sup
0≤t≤T

|u(t)|2H + 2ν

∫ T

0

‖u(τ)‖2
V dτ = |u0|2H +

∫ T

0

〈f, u(τ)〉dτ

− 2µ

∫ T

0

〈Rh(u(τ)− U(τ)), u(τ)〉dτ

+ 2µ sup
0≤t≤T

∫ t

0

〈u(τ), dW (τ)〉+ µ2T Tr[Q]. (42)
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Using the Burkholder-Gundy-Davis inequality (cf. [15]) on the martingale
term in the right-hand side of (42)

2µE
(

sup
0≤t≤T

∫ t

0

〈u(τ), dW (τ)〉
)
≤ 2µ

√
Tr[Q]E

√∫ t

0

|u(τ)|2Hdτ

≤ 2µE sup
0≤t≤T

|u(t)|H
√
T Tr[Q]

≤ 1

2
E sup

0≤t≤T
|u(t)|2H + 2µ2T Tr[Q].

On the other hand, using the approximation (6) and the Poincaré in-
equality, we get that

−2µ〈Rh(u− U), u〉
≤ 2µ|u−Rh(u)|L2|u|H − 2µ|u|2H + 2µ|Rh(U)|L2 |u|H
≤ 2µ|u−Rh(u)|2L2 − µ|u|2H + 2µ|Rh(U)|2L2

≤ 2µc1h
2‖u‖2

V − µ|u|2H + 2µ
(
|U −Rh(U)|2L2 + |U |2H

)
≤ 2µc1h

2‖u‖2 − µ|u|2H + 2µ(c2h
2 + λ−1

1 )‖U‖2
V .

Since 2µc1h
2 ≤ ν, combining the previous estimates with the Gronwall lemma

one obtains

E
(

sup
0≤t≤T

|u(t)|2H
)
≤ C (|u0|H , T, µ, ν, h, λ1,Tr[Q], ‖U‖V ) .

Using again this estimate in (42) finishes the proof.

Proof of Theorem 3.2. Similar arguments as used in Theorem 3.1 may be
used to prove this theorem.

4 Main Results

Our goal is to prove that u, the solution of (21), approximates the true
solution U of (20), when t → ∞, to within some tolerance depending on
the error in the observations. Upon setting v = U − u this is equivalent to
showing that v is small. Note that from (20) and (21) the evolution of v is
governed by the equation

dv +
[
νAv +B(U, v) +B(v, U)−B(v, v)

]
dt

= −µΠRh(v)dt+ µΠ dW,
(43)
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with v0 ∈ V is chosen arbitrary. We now look for conditions on h and µ
such that the feedback term, Rh, on the right-hand side of this equation,
which is stabilizing the coarse scales, together with the viscous term, which
is stabilizing the fine scales, controls the growth of v, which is due to the
unstable nature of this kind of nonlinear dynamical system.

Section 4.1 studies interpolant observables which satisfy (6) and, in partic-
ular, those come from finite volume elements. Section 4.2 studies interpolant
observables which satisfy (7) and, in particular, those which come from nodal
observations.

4.1 Observations of Volume Elements

This section first proves a general theorem on interpolant observables that
satisfy (6). This result is then applied to obtain explicit estimates when
the observational measurements arise, for example, from volume elements.
The same result holds for other kinds of observables that satisfy (6), such as
Fourier modes and the interpolants investigated in [29].

Theorem 4.1. Assume that U is a strong solution of (20), that Rh satisfies
assumption (6) and that W is a [L̇2]2-valued Q-Brownian motion. Assume
that µ is large enough, and h is small enough such that

1

h2
≥ 2c1µ

ν
≥ 8c1C

2
Lλ1G

2.

where c1, CL are respectively given in (6) and (15). Then the solution u of
(21) given by Theorem 3.1 satisfies

lim sup
t→∞

E(|u(t)− U(t)|2H) ≤ µTr[Q].

Moreover,

lim sup
t→∞

ν

T

∫ t+T

t
E(‖u(τ)− U(t)‖2

V )dτ ≤
( 1

T
+ µ
)
µTr[Q]. (44)

Proof. In this proof we focus on the time interval [t0,∞), where t0 is given
in Theorem 2.8. Using the Itô formula on |v(t)|2H we obtain

d|v|2H = 2〈v, dv〉+ µ2 Tr[Q] dt.

Substituting for dv and applying the orthogonality property (13) yields

d|v|2H + 2ν‖v‖2
V dt =− 2〈v,B(v, U)〉dt− 2µ〈v,Rhv〉dt

+ 2µ〈v, dW 〉+ µ2 Tr[Q] dt.
(45)
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Estimate the first two terms of the right-hand side as follows: using inequal-
ity (16) and Young’s inequality

−2〈v,B(v, U)〉 ≤ ν‖v‖2
V +

C2
L

ν
|v|2H‖U‖2

V . (46)

Using Young’s inequality, the interpolation inequality (6) and the assumption
that 2c1µh

2 ≤ ν we obtain

−2µ〈v,Rhv〉 = 2µ〈v, v −Rh(v)〉 − 2µ|v|2H

≤ 2µ|v −Rh(v)|2L2 −
3µ

2
|v|2H ≤ ν‖v‖2

V −
3µ

2
|v|2H .

(47)

Therefore,

d|v|2H +
(3µ

2
− C2

L

ν
‖U‖2

V

)
|v|2H dt ≤ 2µ〈v, dW 〉+ µ2 Tr[Q] dt.

Since t ≥ t0 then inequality (34) and the hypothesis 2C2
Lνλ1G

2 ≤ µ/2 yield

C2
L

ν
‖U(t)‖2

V ≤ 2C2
Lνλ1G

2 ≤ µ

2
,

which implies

d|v|2H + µ|v|2H dt ≤ 2µ〈v, dW 〉+ µ2 Tr[Q] dt, (48)

for all t ≥ t0. Now integrating over (t0, t), then taking the expected value
and using Gronwall’s lemma, we obtain

E(|v(t)|2H) ≤ E(|v(t0)|2H)e−µ(t−t0) + µTr[Q], for all t ≥ t0.

Thus, it follows that

lim sup
t→∞

E(|v(t)|2H) ≤ µTr[Q].

To obtain (44), we estimate the terms in (46) and (47) using Young’s
inequality in a slightly different way. In particular,

−2〈v,B(u, U)〉 ≤ ν

2
‖v‖2

V +
2C2

L

ν
|v|2H‖U‖2

V

and
−2µ〈v,Rhv〉 ≤

ν

2
‖v‖2

V − µ|v|2H .
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Therefore,
d|v|2H + ν‖v‖2

V dt ≤ 2µ〈v, dW 〉+ µ2 Tr[Q]dt.

Taking expected values and integrating from t to t+ T yields

E(|v(t+ T )|2H) + ν

∫ t+T

t
E(‖v(τ)‖2

V )dτ ≤ E(|v(t)|2H) + µ2T Tr[Q].

Therefore

lim sup
t→∞

ν

∫ t+T

t
E(‖v(τ)‖2

V )dτ ≤ µTr[Q] + µ2T Tr[Q],

from which (44) immediately follows.

Theorem 4.1 applies to observations of the volume elements given by (8).
We now state and prove a corollary on finite volume elements that gives
explicit estimates on the how well u approximates U over time.

Corollary 4.2. Suppose that the observational measurements are given by
finite volume elements (8) plus a noise term of the form (22), where each
bd is an independent one-dimensional Brownian motion with variance σ2/2.
Interpolate these noisy observations using (23) where `d are given by (26).
Let µ = 4C2

Lνλ1G
2 and choose N = K2 large enough such that

h = L/K ≤
√
ν/(2c1µ).

Then the solution u to (21) satisfies

lim sup
t→∞

E(|u(t)− U(t)|2H) ≤ κ1νG
2σ2

and

lim sup
t→∞

ν

T

∫ t+T

t
E(‖u(τ)− U(τ)‖2

V )dτ ≤
( 1

T
+
κ1νG

2

L2

)
κ1νG

2σ2

where κ1 = 16π2C2
L is an absolute constant.

Proof. By Proposition 2.3 we obtain

µTr[Q] ≤ µσ2L2 ≤ 4C2
Lνλ1G

2σ2L2 = κ1νG
2σ2.

where κ1 = 16π2C2
L. Similarly(µ
T

+ µ2
)

Tr[Q] ≤
(κ1νG

2

T
+
κ2

1ν
2G4

L2

)
σ2.

Since the choices of µ and h given in the corollary satisfy the hypothesis of
Theorem 4.1, the corollary is thus proved.
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We remark that the upper bound on the error in the approximating solu-
tion given by Corollary 4.2 is independent of h. In particular, as we take the
observation density finer and finer there is no improvement in the quality of
our approximation. This is not surprising, since increasing the resolution of
the observations did not lead to any decrease in the size of the measurement
errors present in the interpolant observables R̃h given by (23). We remedy
this defect with

Corollary 4.3. Suppose that the observational measurements are given by
finite volume elements (8) plus a noise term of the form (22) where each
bd is an independent one-dimensional Brownian motion with variance σ2/2.
Let µ be as in Corollary 4.2 and ε ∈ (0, 1). Then, there exists an interpolant
observable based on volume elements with observation density h such that

κ2G
2

L2
≤ ε

h2
≤ max(ε, 16κ2G

2)

L2
(49)

where κ2 = 32π2c1C
2
L is an absolute constant and for which

lim sup
t→∞

E(|u(t)− U(t)|2H) ≤ µσ2L2ε

and

lim sup
t→∞

ν

T

∫ t+T

t
E(‖u(τ)− U(τ)‖2

V )dτ ≤
( 1

T
+ µ
)
µσ2L2ε. (50)

Proof. If
√
ν/(2c1µ) ≥ L then we may take h = L in Theorem 4.1. In this

case U is a steady state, and consequently no observational data is needed
to accurately recover U . Otherwise, let M = K2

2 where K2 ≥ 2 is the unique
integer such that

h′ = L/K2 ≤
√
ν/(2c1µ) < L/(K2 − 1).

Let Q′m be squares with sides of length h′ where m = 1, 2, . . . ,M defined in a
similar way as (27). Choose h = h′/q where q is the unique integer satisfying

q2 ≥ ε−1 > (q − 1)2. (51)

With these choices of K2 and q we have√
2c1µ/ν ≤ 1/h′ = K2/L ≤ 2(K2 − 1)/L < 2

√
2c1µ/ν

and
ε−1/2 ≤ q = (q − 1) + 1 ≤ ε−1/2 + 1 ≤ 2ε−1/2.
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Therefore √
νε/(32c1µ) ≤ h = h′/q ≤

√
νε/(2c1µ)

from which (49) follows.
Let Qn be the squares with sides of length h where n = 1, 2, . . . , N and

N = L2/h2 = q2M . The smaller squares Qn fit inside the larger squares Q′m
and each larger square is the union over q2 of the smaller squares.

Define the averaging operator A : R2N → R2M by[A(ϕ)2m−1

A(ϕ)2m

]
=

1

q2

∑
Qn⊆Q′

m

[
ϕ2n−1

ϕ2n

]
,

for m = 1, 2, . . . ,M . We note that Oh′ = A◦Oh, where Oh are the noise-free
observations of volume elements given in (8), for the Qn and Oh′ are the
analogous observations for Q′m.

Let Õh(U(t)) be the noisy observations defined by (3), where E(t) is given
by (22). It follows that A ◦ Õh(U(t)) = Oh′(U(t)) + F(t), where

F(t)dt = (dβ1(t), dβ2(t), . . . , dβ2M(t))

and βk are one-dimensional independent Brownian motions such that

E(βk(t)) = 0 and E(βk(t)
2) = t

σ2

2q2
,

for k = 1, 2, . . . , 2M . Therefore, by taking averages of volume elements, also
called spatial oversampling, we have reduced the variance in the noise term of
the measurements. In particular, from (51) the noise term is now equivalent
to a [L̇2]2-valued Q′-Brownian motion with Tr[Q′] ≤ σ2L2/q2 ≤ σ2L2ε. We
now define the interpolant observable

Rh′ = Lh′ ◦A ◦ Oh.

Since Rh′ satisfies (6) with the same constants as before, then applying The-
orem 4.1 now completes the proof.

4.2 Observations of Nodal Values

This section first proves a general theorem on interpolant observables which
satisfy (7). This result is then applied to obtain explicit estimates when the
observational measurements arise from nodal measurements.

Our proof follows the general strategy of the non-stochastic case treated
in [37] with modifications as was done in the proof of Theorem 4.1 above to
account for the stochastic terms which arise from the stochastic errors. In
particular, we shall make use of the following inequality which can be found
in [37].
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Lemma 4.4. Let ϕ(r) = r − η(1 + log r) where η > 0. Then

min{ϕ(r) : r ≥ 1} ≥ −η log η.

We commence with the proof of

Theorem 4.5. Assume that U is a strong solution of (20), that Rh satisfies
assumption (7) and that W is a [Ḣ1]2-valued Q-Brownian motion. Assume
that µ is large enough and that h is small enough such that

µ ≥ 2νλ1GJ, and ν ≥ 2c3h
2µ

where c3 = max(c1,
√
c2) and J = 2CB(2+log 2CBc

1/2)(1+log(1+G)). Then

lim sup
t→∞

E(‖u− U‖2
V ) ≤ 4µ exp(νλ1G

2J2/µ) Tr[A1/2QA1/2]

and

lim sup
t→∞

ν

T

∫ t+T

t
E(|Au(τ)− AU(τ)|2H)dτ

≤
{

8 exp(νλ1G
2J2/µ)

{µ
T

+ 4J2
( 1

T
+ νλ1

)
νλ1G

2
}

+ µ2

}
× 2 Tr[A1/2QA1/2].

Proof. We focus on the interval [t0,∞), where t0 is given in Theorem 2.8.
Using the Itô formula on ‖v(t)‖V we obtain

d‖v‖2
V = 2((v, dv)) + µ2 Tr[A1/2QA1/2]dt.

For notational convenience we shall write Σ = Tr[A1/2QA1/2] throughout the
rest of this proof. Substituting for dv and applying (18) and (19) yields

d‖v‖2
V + 2ν|Av|2Hdt =2〈AU,B(v, v)〉dt− 2µ〈Av,Rh(v)〉dt

+ 2µ〈Av, dW 〉+ µ2Σdt.

The Brézis–Gallouet inequality (17) implies

|〈AU,B(v, v)〉| ≤ ‖v‖∞‖v‖V |AU |H

≤ CB‖v‖2
V

{
1 + log

|Av|2H
λ1‖v‖2

V

}
|AU |H

and the assumption 2µmax(c1,
√
c2)h2 ≤ ν along with (7) and Young’s in-

equality implies

−2µ〈Av,Rh(v)〉 = 2µ〈Av, v −Rh(v)〉 − 2µ‖v‖2
V

≤ 2µ2

ν
|v −Rh(v)|2L2 +

ν

2
|Av|2H − 2µ‖v‖2

V

≤ ν|Av|2H − µ‖v‖2
V .
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Therefore

d‖v‖2
V +

(
νλ1
|Av|2H
λ1‖v‖2

V

− 2CB|AU |H
{

1 + log
|Av|2H
λ1‖v‖2

V

}
+ µ

)
‖v‖2

V dt

≤ 2µ〈Av, dW 〉+ µ2Σdt.

Now setting

η =
2CB|AU |H

νλ1

and r =
|Av|2H
λ1‖v‖2

V

in Lemma 4.4, and noting that r ≥ 1, we obtain that

d‖v‖2
V +

(
µ− 2CB|AU |H log

2CB|AU |H
νλ1

)
‖v‖2

V dt

≤ 2µ〈Av, dW 〉+ µ2Σdt.

Since t ≥ t0, then by (35) we estimate

2CB log
2CB|AU |H

νλ1

≤ 2CB log 2CBc
1/2(1 +G)2 ≤ J.

Consequently,

d‖v‖2
V +

{
µ− J |AU |H

}
‖v‖2

V dt ≤ 2µ〈Av, dW 〉+ µ2Σdt.

Applying Young’s inequality we get

d‖v‖2
V +

1

2

{
µ− J2

µ
|AU |2H

}
‖v‖2

V dt ≤ 2µ〈Av, dW 〉+ µ2Σdt.

Take t0 as in Theorem 2.8 and define

α(t) =
1

2

{
µ− J2

µ
|AU(t)|2H

}
and Ψ(t) =

∫ t

t0

α(s)ds.

Now, integrating and taking expected value yields

E(‖v(t)‖2
V ) ≤ E(‖v(t0)‖2

V )e−Ψ(t) + µ2Σ

∫ t

t0

e−Ψ(t)+Ψ(τ)dτ.

Since µ > 2νλ1GJ then by the estimate (34) we obtain

−Ψ(t) + Ψ(τ) ≤ −µ
2

(t− τ) +
J2

µ
(1 + (t− τ)νλ1)νλ1G

2

≤ −µ
4

(t− τ) +
νλ1

µ
G2J2.
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Therefore −Ψ(t)→ −∞ and∫ t

t0

e−Ψ(t)+Ψ(τ)dτ ≤ c4

µ

(
1− e−µ(t−t0)/4

)
→ c4

µ
, as t→∞,

where c4 = 4 exp(νλ1G
2J2/µ). It follows that

lim sup
t→∞

E(‖v(t)‖2
V ) ≤ c4µΣ = 4µ exp(νλ1G

2J2/µ) Tr[A1/2QA1/2],

which is the first inequality.
To obtain the second inequality, we use

η =
4CB|AU |H

νλ1

and r =
|Av|2H
λ1‖v‖2

V

in Lemma 4.4 to obtain

d‖v‖2
V +

ν

2
|Av|2Hdt+

1

2

{
µ− J̃2

µ
|AU |2H

}
‖v‖2

V dt

≤ 2µ〈Av, dW 〉dt+ µ2Σdt

(52)

where
J̃ = 4CB log 4CBc

1/2(1 +G)2 ≤ 2J.

Let t1 ≥ t0 be large enough such that

E(‖v(t)‖2
V ) ≤ 2c4µΣ for t ≥ t1.

After integrating inequality (52) and taking expected values, we obtain for
times t > t1 that

ν

2

∫ t+T

t
E |Av(τ)|2Hdτ ≤ 2c4µΣ + c4J̃

2Σ

∫ t+T

t

|AU(τ)|2Hdτ + µ2TΣ

≤ 2c4µΣ + 8c4J
2Σ(1 + Tνλ1)νλ1G

2 + µ2TΣ.

This finishes the proof.

The bounds on h−2 are proportional to G(1+ log(1+G)) which is similar
to the deterministic case. However, the bounds on the expected value of
‖u− U‖2

V depend exponentially on G. Therefore, unless the variance in the
stochastic error represented by Tr[A1/2QA1/2] is very small, this bound will
be very large. However, this exponential dependence on G may be removed
by taking µ = νλ1G

2J2 and h−2 correspondingly larger. This yields
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Corollary 4.6. Suppose µ = c5νλ1G
2(1+log(1+G))2 and h is small enough

such that
ν ≥ 2c3µh

2,

where c3 is defined as in Theorem 4.5 and c5 = 4C2
B(2 + log 2CBc

1/2)2. Then

lim sup
t→∞

E(‖u− U‖2
V ) ≤ 4eµTr[A1/2QA1/2]

and

lim sup
t→∞

ν

T

∫ t+T

t
E(|Au(τ)− AU(τ)|2H)dτ

≤
{20

T
+ 16νλ1 +

µ

2e

}
4eµTr[A1/2QA1/2].

We apply Corollary 4.6 to nodal observations described by (10) to obtain

Corollary 4.7. Suppose that the observational measurements are given by
nodal observations (10) plus a noise term of the form (22), where each bd is
an independent one-dimensional Brownian motion with variance σ2/2. Inter-
polate the noisy observations using (23) where `d are given by (29). Suppose
that

√
ν/(2c3µ) < L where µ = c5νλ1G

2(1+log(1+G))2 and choose N = K2

such that
h = L/K ≤

√
ν/(2c3µ) < L/(K − 1).

Then the solution U to (21) satisfies

lim sup
t→∞

E(‖u(t)− U(t)‖2
V ) ≤ κ3νλ1G

4(1 + log(1 +G))4σ2

and

lim sup
t→∞

ν

T

∫ t+T

t
E(|Au(τ)− AU(τ)|2H)dτ

≤
{20

T
+ 16νλ1 +

c5νλ1

2e
G2(1 + log(1 +G))2

}
× κ3νλ1G

4(1 + log(1 +G))4σ2

where κ3 = 128π2ecc3c
2
5 is an absolute constant.

Proof. By Proposition 2.6 equation (31), we obtain

Tr[A1/2QA1/2] ≤ cσ2L
2

h2
≤ cσ2K2 ≤ 4cσ2(K − 1)2

< 32π2cc3c5G
2(1 + log(1 +G))2σ2.

Since µ and h satisfy the hypothesis of Corollary 4.6, then

lim sup
t→∞

E(‖u− U‖2
V ) ≤ 128π2ecc3c

2
5νλ1G

4(1 + log(1 +G))4σ2

and the second inequality follows similarly.
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We end by noting that the oversampling argument used to reduce the
error in Corollary 4.3 can also be used with nodal measurements. Along
these lines we obtain

Corollary 4.8. Suppose that the observational measurements are given by
nodal observations (10) plus a noise term of the form (22) where each bd is
an independent one-dimensional Brownian motion with variance σ2/2. Let
µ be as in Corollary 4.6 and ε ∈ (0, 1). Then, there exists an interpolant
observable based on nodal measurements with observation density h such that

κ4G
2(1 + log(1 +G))2

L2
≤ ε

h2
≤ max(ε, 16κ4G

2(1 + log(1 +G))2)

L2

where κ4 = 32π2c3C
2
B(2 + log 2CBc

1/2)2 is an absolute constant and for which

lim sup
t→∞

E(‖u(t)− U(t)‖2
V ) ≤ 32ecc3µ

2ν−1σ2L2ε

and

lim sup
t→∞

ν

T

∫ t+T

t
E |Au(τ)− AU(τ)|2Hdτ

≤
{20

T
+ 16νλ1 +

µ

2e

}
32ecc3µ

2ν−1σ2L2ε.

Proof. Define h′, K2, M , N , q, Qn and Q′m as in the proof of Corollary 4.3
where we have taken c3 in place of c1. Let xn ∈ Qn for n = 1, 2, . . . , N . Since
the Qn are disjoint then the xn are distinct. Inside each large square Q′m fit
q2 smaller squares Qn and therefore q2 points xn. Denote

{xn : xn ∈ Qm } = {x′m,j : j = 1, 2, . . . , q2 }.

Since x′m,j ∈ Qm for each j = 1, . . . , q2, we may view Oh as a family of q2

observations of nodes Ojh′ : [Ḣ2]2 → R2M given by

Ojh′(Φ) = (ϕ1,j, . . . , ϕ2M,j) where

[
ϕ2m−1,j

ϕ2m,j

]
= Φ(x′m,j)

and m = 1, 2, . . . ,M . This leads to a family of q2 independent noisy obser-
vations Õjh′(U(t)). It follows that the average of the noisy observations

Õh′(U(t)) =
1

q2

q2∑
j=1

Õjh′(U(t)) =
1

q2

q2∑
j=1

Ojh′(U(t)) + F(t)

where
F(t)dt = (dβ1(t), dβ2(t), . . . , dβ2M)
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and the βk are one-dimensional independent Brownian motions such that

E(βk(t)) = 0 and E(βk(t)
2) = tσ2/(2q2) for k = 1, 2, . . . , 2M . Therefore, just

as in the case with finite volume elements, we have reduced the variance in
the noise term by averaging. In particular, the noise term is now equivalent
to an [Ḣ1]2-valued Q′-Brownian motion with

Tr[A1/2Q′A1/2] ≤ cσ2
(L
h′

)2 1

q2
≤ 8cc3µν

−1σ2L2ε.

We now define the interpolant observable

Rh′ =
1

q2

q2∑
j=1

Lh′ ◦Ojh′(U(t)).

SinceRh′ satisfies (7) with the same constants as before, then applying Corol-
lary 4.6 now completes the proof.

5 Conclusions

We have shown the continuous data assimilation algorithm proposed in [3]
continues to be well posed when the observational measurements contain
errors represented by stochastic noise. Provided the resolution of the obser-
vational data is fine enough, we have shown that the expected value of the
difference between the approximate solution, recovered by this data assimi-
lation algorithm, and the exact solution is bounded by a factor depending on
the Grashof number times the variance of the noise, asymptotically in time.
This occurs for general interpolant operator observables satisfying either one
of the approximate identity properties (6) or (7), and, in particular, for in-
terpolant observables based on volume elements and nodal measurements.

In the case of Theorem 4.5 the resolution of the observational data needed
for the algorithm to work for noisy measurements is roughly the same as with-
out noise; however, to remove the exponential dependency on the Grashof
number in the error bounds, Corollary 4.6, requires increasing the resolution
by its square. Once the resolution needed to remove the exponential term
is achieved, no further benefits are obtained by increasing the resolution.
To benefit from additional resolution in the observational measurements, we
note that oversampling an already very high resolution observation, and then
by locally averaging the oversampled observation, can produce a observation
that still has sufficient resolution but with reduced variance in the noise. In
our case, we assumed the random errors were independent; however, this
may not be the case in practical problems. For example, Budd, Freitag
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and Nichols [4] obtain great benefits by using adaptive filters based on as-
sumptions about the independence of the measurements errors in real-world
weather forecasting applications. The effect oversampling has on reducing
the errors in our theoretical bounds is consistent with the observed effects of
filtering in applications.

Computer simulations done by Gesho [26] have shown that in the absence
of measurements errors the algorithm studied in this paper performs much
better than analytical estimates would suggest. In the case of nodal mea-
surements, the actual resolution requirements for the observation density is
orders of magnitude less than the upper bounds given by the analysis. This
phenomenon, that the numerics perform much better than the analysis, was
also noted for a different data assimilation algorithm in [37] and [38]. It is
plausible that in the presence of stochastic noise the data algorithm studied
here will also perform numerically much better than our analytic bounds.
Work is underway to study the numerical performance of this data assimila-
tion algorithm when the observation density is much less than our analytic
bounds and to understand how the variance in the stochastic noise numeri-
cally affects the convergence of the approximating solution to the reference
solution over time.
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