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2Ernest Orlando Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA 94720, USA

3Santa Cruz Institute for Particle Physics and Department of Physics,

University of California Santa Cruz, Santa Cruz, CA 95064, USA

Abstract

We calculate the Λb → Λc`ν form factors and decay rates for all possible b → c`ν̄ four-Fermi

interactions beyond the Standard Model, including nonzero charged lepton masses and terms up

to order αs ΛQCD/mc,b and Λ2
QCD/m

2
c in the heavy quark effective theory. At this order, we obtain

model independent predictions for semileptonic Λb → Λc decays in terms of only two unknown sub-

subleading Isgur-Wise functions, which can be determined from fitting LHCb and lattice QCD data.

We thus obtain model independent results for Λb → Λc`ν̄ decays, including predictions for the ratio

R(Λc) = B(Λb → Λcτ ν̄)/B(Λb → Λcµν̄) in the presence of new physics, that are more precise than

prior results in the literature, and systematically improvable with better data on the decays with µ

(or e) in the final state. We also explore tests of factorization in Λb → Λcπ decays, and emphasize

the importance of measuring at LHCb the double differential rate d2Γ(Λb → Λc`ν̄)/(dq2 d cos θ), in

addition to the q2 spectrum.
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I. INTRODUCTION

In a recent paper [1], it was shown that LHCb data for the semileptonic Λb → Λcµν

decays [2] combined with lattice QCD calculations [3], provide sensitivity for the first time

to sub-subleading O(Λ2
QCD/m

2
c) terms in the heavy quark effective theory (HQET) expan-

sion [4, 5] of the Λb → Λc semileptonic decay form factors, independent of |Vcb|. The

O(Λ2
QCD/m

2
c) corrections were found to have their expected characteristic size, suggesting

that the expansion in ΛQCD/mc for baryon form factors is well-behaved up to Λ2
QCD/m

2
c

terms. The same framework also resulted in a new standard model (SM) prediction for the

ratio

R(Λc) =
Γ(Λb → Λcτ ν̄)

Γ(Λb → Λcµν̄)
= 0.324± 0.004 , (1)

which is significantly more precise than prior results [3, 6–11].

The ratio in Eq. (1) is of particular interest in light of the persistent hints of deviations

from the SM, in the ratios

R(D(∗)) =
Γ(B → D(∗)τ ν̄)

Γ(B → D(∗)lν̄)
, l = µ, e , (2)

at approximately the 4σ level, once the measurements for the D and D∗ final states are

combined [12]. The Λb → Λcµν̄ decays involve the same underlying b → cτν new physics

(NP) operators as B → D(∗)τ ν̄, but the HQET expansion for the ground-state baryon form

factors is simpler than for mesons. The “brown muck” surrounding the heavy quark is in a

spin and isospin zero ground state. A consequence of this is a simpler expansion of the form

factors, in which the O(ΛQCD/mc,b , αs ΛQCD/mc,b) subleading contributions are determined

by the leading order Isgur-Wise function, reducing the number of free parameters in the

form factor fits, and thereby providing sensitivity to O(Λ2
QCD/m

2
c) terms.

The spread in the uncertainties quoted for theoretical predictions for R(D∗) in the SM are

largely due to different estimates of O(Λ2
QCD/m

2
c) effects [13–15]. The very same hadronic

matrix elements are also crucial to resolve tensions between inclusive and exclusive deter-

minations of |Vcb| [13–21]. The abundant sample of Λb baryons produced at the LHC may

therefore provide a complementary and theoretically cleaner laboratory to study the behav-

ior of the heavy quark expansion, identify possible NP effects, and extract |Vcb|.
In this paper, we expand and generalize the study of Ref. [1] beyond the SM, to include all

b → cτ ν̄ four-Fermi operators, including those containing right-handed (sterile) neutrinos.
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We compute the relevant form factors including O(Λ2
QCD/m

2
c) terms, and compare the fit

results of Ref. [1] to the lattice QCD determinations of not only the three vector and three

axial vector SM form factors, but also the four NP tensor current form factors. We further

emphasize the importance of measuring at LHCb the double differential rate d2Γ(Λb →
Λc`ν̄)/(dq2 d cos θ) in addition to the q2 spectrum, and also explore tests of factorization in

Λb → Λcπ decay.

II. HQET EXPANSION OF THE FORM FACTORS

A. Form factor definitions

We are interested in the Λb → Λc matrix elements of operators with all possible Dirac

structures, for which we choose the basis

OV = c̄ γµ b , OA = c̄ γµγ5 b ,

OS = c̄ b , OP = c̄ γ5 b , OT = c̄ σµν b , (3)

with σµν = (i/2) [γµ, γν ]. As done in Refs. [22–25] for excited charm mesons, we use the

conventions Tr[γµγνγσγργ5] = −4iεµνρσ, so that σµνγ5 ≡ +(i/2)εµνρσσρσ. (This is the

opposite of the common convention in the B → D(∗)`ν̄ literature, which typically chooses

Tr[γµγνγσγργ5] = +4iεµνρσ, so that σµνγ5 ≡ −(i/2)εµνρσσρσ.)

The semileptonic Λb → Λc`ν̄ form factors in HQET are conventionally defined for the

SM currents as [26–28]

〈Λc(p
′, s′)|c̄γνb|Λb(p, s)〉 = ū(p′, s′)

[
f1γµ + f2vµ + f3v

′
µ

]
u(p, s) ,

〈Λc(p
′, s′)|c̄γνγ5b|Λb(p, s)〉 = ū(p′, s′)

[
g1γµ + g2vµ + g3v

′
µ

]
γ5 u(p, s) , (4)

where p = mΛbv, p′ = mΛcv
′, and the fi and gi are functions of w = v · v′ = (m2

Λb
+ m2

Λc
−

q2)/(2mΛbmΛc). The spinors are normalized to ū(p, s)u(p, s) = 2m. We further define the

NP form factors,

〈Λc(p
′, s′)|c̄ b|Λb(p, s)〉 = hS ū(p′, s′)u(p, s) ,

〈Λc(p
′, s′)|c̄γ5b|Λb(p, s)〉 = hP ū(p′, s′) γ5 u(p, s) ,

〈Λc(p
′, s′)|c̄ σµν b|Λb(p, s)〉 = ū(p′, s′)

[
h1 σµν + i h2(vµγν − vνγµ) + i h3(v′µγν − v′νγµ)

+ i h4(vµv
′
ν − vνv′µ)

]
u(p, s) . (5)
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In the definition of the NP tensor current, the conventions are chosen to simplify the αs

corrections when expressed in terms of the standard coefficient functions.

In full QCD, the form factors of the SM currents were instead traditionally defined as [27],

〈Λc(p
′, s′)|c̄γµb|Λb(p, s)〉 = ū(p′, s′)

[
F1 γµ − iF2 σµν q

ν + F3 qµ
]
u(p, s) ,

〈Λc(p
′, s′)|c̄γµγ5b|Λb(p, s)〉 = ū(p′, s′)

[
G1 γµ − iG2 σµν q

ν +G3 qµ
]
γ5 u(p, s) . (6)

Our notation for the form factors follows Ref. [28]; the notation of Ref. [27] corresponds to

an exchange of upper and lowercase symbols, Fi ↔ fi and Gi ↔ gi, in Eqs. (4) and (6). The

relations between the form factors in Eqs. (4) and (6) are given in the Appendix A.

B. Form factors in HQET

The ground state baryons are singlets of heavy quark spin symmetry, because the light

degrees of freedom, the “brown muck”, are in the spin-0 state. Hence, the baryon masses

can be written as

mΛQ = mQ + Λ̄Λ −
λΛ

1

2mQ

+ . . . , Q = b, c , (7)

where the ellipsis denote terms suppressed by more powers of ΛQCD/mQ. The parameter

Λ̄Λ is the energy of the light degrees of freedom in the mQ → ∞ limit. The λΛ
1 parameter

is related to the heavy quark kinetic energy in the Λ baryon. We use mΛb = 5.620 GeV,

mΛc = 2.286 GeV [29], and employ the 1S short distance mass scheme [30–32] to eliminate

the leading renormalon ambiguities in the definition of the quark masses and Λ̄Λ. Details

of the 1S scheme treatment can be found in Ref. [13]. In particular, we treat m1S
b =

(4.71± 0.05) GeV and δmbc = mb−mc = (3.40± 0.02) GeV as independent parameters [33].

(The latter is well constrained by B → Xc`ν̄ spectra [34, 35].) We match HQET onto QCD

at scale µ =
√
mbmc, so that αs ' 0.26. For example, using Eq. (7) for both Λb and Λc to

eliminate λΛ
1 , at O(αs) we obtain Λ̄Λ = (0.81 ± 0.05) GeV and λΛ

1 = −(0.24 ± 0.08) GeV2.

(Similar HQET-based discussions can be found for other decay modes, B → D(∗)`ν̄ [13],

B → D∗∗`ν̄ [22–25], and Λb → Λ∗c`ν̄ [36, 37].)

Making the transition to HQET [4, 5], at leading order in ΛQCD/mc,b,

〈Λc(v
′, s′)|c̄Γb |Λb(v, s)〉 = ζ(w) ū(v′, s′) Γu(v, s) , (8)
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where u(v, s) satisfies /v u(v, s) = u(v, s) and ζ(w) is the Isgur-Wise function for ground state

baryons [26], satisfying ζ(1) = 1. At leading order, one finds

f1(w) = g1(w) = hS(w) = hP (w) = h1(w) = ζ(w) ,

f2(w) = f3(w) = g2(w) = g3(w) = h2(w) = h3(w) = h4(w) = 0 . (9)

At order ΛQCD/mc,b a remarkable simplification occurs compared to meson decays.

The O(ΛQCD/mc,b) corrections from the matching of the c̄Γb heavy quark current onto

HQET [38–40] can be expressed in terms of Λ̄Λ and the leading order Isgur-Wise function

ζ(w) [41]. In addition, for Λb → Λc transitions, i.e., between the ground state baryons,

there are no O(ΛQCD/mc,b) contributions from the chromomagnetic operator. The kinetic

energy operator in the O(ΛQCD/mc,b) HQET Lagrangian gives rise to a heavy quark spin

symmetry conserving subleading term, parametrized by ζke(w), which can be absorbed into

the leading order Isgur-Wise function by redefining ζ via

ζ(w) + (εc + εb) ζke(w)→ ζ(w) , (10)

where εc,b = Λ̄Λ/(2mc,b). Luke’s theorem [42] implies ζke(1) = 0, so the normalization

ζ(1) = 1 is preserved. Thus, no additional unknown functions beyond ζ(w) are needed

to parametrize the O(ΛQCD/mc,b) corrections. Perturbative corrections to the heavy quark

currents can be computed by matching QCD onto HQET [38–40], and introduce no new

hadronic parameters. The same also holds for the order αs ΛQCD/mc,b corrections [43, 44].

The O(Λ2
QCD/m

2
c,b) corrections are parametrized by six linear combinations of sub-

subleading Isgur-Wise functions, b1, ... , 6 [27], which are functions of w. Only two of these,

b1,2(w), occur at O(Λ2
QCD/m

2
c). The redefinition in Eq. (10) introduces additional ε2c ζke(w)

terms, which can be reabsorbed into b1,2(w). We may then define

{
f̂i(w) , ĝi(w) , ĥi(w), b̂i(w)

}
=
{
fi(w) , gi(w) , hi(w) , bi(w)

}/
ζ(w) . (11)

Thus, including αs, ΛQCD/mc,b, αs ΛQCD/mc,b, and Λ2
QCD/m

2
c corrections, the SM form fac-

tors are [1]

f̂1 = 1 + α̂sCV1 + εc + εb + α̂s

[
CV1 + 2(w − 1)C ′V1

]
(εc + εb) +

b̂1 − b̂2

4m2
c

+ . . . ,

f̂2 = α̂sCV2 −
2 εc
w + 1

+ α̂s

[
CV2

3w − 1

w + 1
εb −

[
2CV1 − (w − 1)CV2 + 2CV3

] εc
w + 1

+ 2(w − 1)C ′V2(εc + εb)

]
+

b̂2

4m2
c

+ . . . ,
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f̂3 = α̂sCV3 −
2 εb
w + 1

+ α̂s

[
CV3

3w − 1

w + 1
εc −

[
2CV1 + 2CV2 − (w − 1)CV3

] εb
w + 1

+ 2(w − 1)C ′V3(εc + εb)

]
+ . . . ,

ĝ1 = 1 + α̂sCA1 + (εc + εb)
w − 1

w + 1
+ α̂s

[
CA1

w − 1

w + 1
+ 2(w − 1)C ′A1

]
(εc + εb) +

b̂1

4m2
c

+ . . . ,

ĝ2 = α̂sCA2 −
2 εc
w + 1

+ α̂s

[
CA2

3w + 1

w + 1
εb −

[
2CA1 − (w + 1)CA2 + 2CA3

] εc
w + 1

+ 2(w − 1)C ′A2
(εc + εb)

]
+

b̂2

4m2
c

+ . . . ,

ĝ3 = α̂sCA3 +
2 εb
w + 1

+ α̂s

[
CA3

3w + 1

w + 1
εc +

[
2CA1 − 2CA2 + (w + 1)CA3

] εb
w + 1

+ 2(w − 1)C ′A3
(εc + εb)

]
+ . . . , (12)

where the CΓi are functions of w, and α̂s = αs/π. (We use the notation of Ref. [28]; explicit

expressions for CΓi are in Ref. [13].) In Eq. (12), primes denote ∂/∂w and the ellipses denote

O(εcεb, ε
2
b , ε

3
c) and higher order terms in ΛQCD/mQ and/or αs. Equation (12) agrees with

Eq. (4.75) in Ref. [44] (where a redefinition different from Eq. (10) was used).

For the expansions of the form factors parametrizing the BSM currents, we obtain,

ĥS = 1 + α̂sCS + (εc + εb)
w − 1

w + 1
+ α̂s

[
CS

w − 1

w + 1
+ 2(w − 1)C ′S

]
(εc + εb) +

b̂1

4m2
c

+ . . . ,

ĥP = 1 + α̂sCP + εc + εb + α̂s

[
CP + 2(w − 1)C ′P

]
(εc + εb) +

b̂1 − b̂2

4m2
c

+ . . . ,

ĥ1 = 1 + α̂sCT1 + (εc + εb)
w − 1

w + 1
+ α̂s

[
CT1

w − 1

w + 1
+ 2(w − 1)C ′T1

]
(εc + εb) +

b̂1

4m2
c

+ . . . ,

ĥ2 = α̂sCT2 −
2 εc
w + 1

+ α̂s

[
CT2

3w + 1

w + 1
εb −

[
2CT1 − (w + 1)CT2 + 2CT3

] εc
w + 1

+ 2(w − 1)C ′T2(εc + εb)

]
+

b̂2

4m2
c

+ . . . ,

ĥ3 = α̂sCT3 +
2 εb
w + 1

+ α̂s

[
CT3

3w + 1

w + 1
εc +

[
2CT1 − 2CT2 + (w + 1)CT3

] εb
w + 1

+ 2(w − 1)C ′T3(εc + εb)

]
+ . . . ,

ĥ4 = α̂s
2

w + 1

(
CT3εc − CT2εb

)
+ . . . . (13)

Similar to f3 and g3, neither of the h3 and h4 form factors receive Λ2
QCD/m

2
c corrections.

The structure of h1,2,3 is similar to g1,2,3, while h4 is non-zero only at O(αs ΛQCD/mc,b).
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C. Differential decay rates and forward-backward asymmetry

In Appendix B, we collect explicit expressions for the Λb → Λc`ν amplitudes for all

NP operators, including contributions from massless right-handed sterile neutrinos [45, 46].

Including the charged lepton mass dependence, and defining θ as the angle between the

lepton and the Λc momentum in the dilepton rest frame,1 the SM double differential decay

rate is

d2Γ

dw d cos θ
=
G2
F m

5
Λb
|Vcb|2

48π3

(q̂2 − ρ`)2

q̂4
r3

Λ

√
w2 − 1

[(
1 +

ρ`
2q̂2

)(
H+ + 2q̂2H1

)
+

3ρ`
2q̂2
H0

− 3
√
w2 − 1

(
2f1 g1 q̂

2 − ρ`
q̂2
H+0

)
cos θ +

(
1− ρ`

q̂2

)(
q̂2H1 −H+

)3 cos2 θ − 1

2

]
,

(14)

where ρ` = m2
`/m

2
Λb

, rΛ = mΛc/mΛb , q̂
2 ≡ q2/m2

Λb
= 1− 2rΛw + r2

Λ,

H1 = (w − 1)f 2
1 + (w + 1)g2

1 , H+ = (w − 1)F2
+ + (w + 1)G2

+ ,

H0 = (w + 1)F2
0 + (w − 1)G2

0 , H+0 = F+F0 + G+G0 , (15)

and

F+ = (1 + rΛ)f1 + (w + 1)(rΛ f2 + f3) ,

G+ = (1− rΛ)g1 − (w − 1)(rΛ g2 + g3) ,

F0 = (1− rΛ)f1 − (rΛw − 1)f2 + (w − rΛ)f3 ,

G0 = (1 + rΛ)g1 + (rΛw − 1)g2 − (w − rΛ)g3 . (16)

The double differential rate in Eq. (14) can be at most a degree-two polynomial in cos θ, and

it was written in Eq. (14) in the Legendre polynomial basis, so that only the zeroth order

term in the first line contributes to the dΓ/dq2, after integration over d cos θ.

The single differential rate in the SM is correspondingly

dΓ

dw
=
G2
F m

5
Λb
|Vcb|2

24π3

(q̂2 − ρ`)2

q̂4
r3

Λ

√
w2 − 1

[(
1 +

ρ`
2q̂2

)(
H+ + 2q̂2H1

)
+

3ρ`
2q̂2
H0

]
, (17)

and the forward-backward asymmetry is given by

dAFB

dw
=

[ ∫ 1

0

−
∫ 0

−1

]
d2Γ

dw d cos θ
d cos θ

= −G
2
F m

5
Λb
|Vcb|2

16 π3

(q̂2 − ρ`)2

q̂4
r3

Λ (w2 − 1)

(
2f1 g1 q̂

2 − ρ`
q̂2
H+0

)
. (18)

1 This angle is not measurable in the τ channel by present experiments, because neither the Λb nor τ

momentum can be precisely reconstructed. In principle, if the Λb momentum was known and the τ → 3πν

decay mode was used to reconstruct the τ vertex, then θ could be reconstructed.
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Our result in Eq. (17) agrees with those in Refs. [3, 47]. Including all possible NP current

operators and a nonzero charged lepton mass, our result for dΓ/dw as derived from Ap-

pendix B agrees with the result for SM neutrinos in Eq. (2.51) of Ref. [48]. We see from

Eqs. (14) or (18) that the θ distribution in the light lepton modes gives sensitivity to the

product f1 g1, which is not present in dΓ/dw. The quadratic term in cos θ in the angu-

lar distribution provides sensitivity to the combination q̂2H1 − H+. Thus, just like in the

case of b → s`+`− [49], measuring the dependencies on all three polynomials of cos θ, gives

information on the form factors beyond measuring only dΓ/dq2 and dAFB/dq
2.

To gain more information than obtainable from Eq. (14), the distribution of the Λc

decay products would have to be studied. Such an analysis would be simplest for two-body

decays, such as Λc → Λ(pπ−)π+ [7]. This channel loses an order of magnitude in statistics

compared to the commonly used Λc → pKπ reconstruction, however, a model independent

description of this three-body decay amplitude is not currently available. With much higher

statistics and using Λc → Λπ+, the measurement of all Λb → Λc form factors would be

similar to that for Λc → Λeν [50–52], requiring measuring distributions in three angles (as

for B → (D∗ → Dπ)lν̄).

If NP only modifies the (axial)vector interactions (see e.g. Refs. [7, 9, 53] for other cases),

which may be the most plausible scenario, then Eqs. (14) – (18) are simply modified via the

replacements

fi → fi(1 + gL + gR) , gi → gi(1 + gL − gR) , (19)

and, in particular,
dAFB

dw
→ dAFB

dw

[
(1 + gL)2 − gR)2

]
. (20)

In the ml = 0 limit, i.e., in the Λcµν and Λceν modes, the forward-backward asymmetry only

receives further contributions from tensor–(pseudo)scalar interference, even in the presence

of arbitrary NP. The relation in Eq. (20) is then valid in the light lepton modes, as long as

NP does not simultaneously generate (pseudo)scalar and tensor operators.
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FIG. 1. Left: The data points show the LHCb measurement of the normalized dΓ(Λb → Λcµν̄)/dq2

spectrum [2]. The red band shows our fit of the HQET predictions to these data [2] and to the

LQCD form factors [3]. The blue curve shows the fit results, setting the order Λ2
QCD/m

2
c terms to

zero. The gray band shows the LQCD prediction. Right: Our prediction for dΓ(Λb → Λcτ ν̄)/dq2

normalized to R(Λc) from the same fit, with and without including the Λ2
QCD/m

2
c terms.

III. FITS TO LHCb AND LATTICE QCD DATA

A. SM form factor fits

The methods used to fit dΓ(Λb → Λcµν̄)/dq2 measured by LHCb [2] and lattice QCD

(LQCD) calculation of the (axial)vector form factors [3] were described in Ref. [1], and

are only briefly recapitulated here. LHCb measured the q2 spectrum in 7 bins, normalized

to unity [2], reducing the effective degrees of freedom in the spectrum from 7 to 6. This

measurement is shown as the data points in the left plot in Fig. 1. Our fits to the LHCb

data use the measured and predicted partial rates in each bin. This procedure differs slightly

from the fits performed by LHCb [2], which used the square root of dNcorr/dw evaluated at

the midpoint in the seven unfolded w bins. The right plot in Fig. 1 shows our prediction for

1/Γ× dΓ(Λb → Λcτ ν̄)/dq2, normalized to R(Λc).

The lattice QCD results [3] for the six (axial)vector form factors are published as fits to

the BCL parametrization [54], using either 11 or 17 parameters. We derive predictions for

f1,2,3 and g1,2,3 using the 17 parameter result at three q2 values, q2 =
{

1 GeV2, q2
max/2, q

2
max−

1 GeV2
}

for a total of eighteen form factor values, constructing a covariance matrix from their

correlation structure. The values of q2 are chosen to sample both ends and the middle of the
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FIG. 2. Fits of the HQET predictions in Eq. (12) to the LQCD results [3] for the 6 form factors

(red bands) for f1,2,3 (left column) and g1,2,3 (right column). The blue bands show the same fits,

setting the order Λ2
QCD/m

2
c terms to zero. Also shown are the LQCD predictions (gray bands and

data points); see text for details.

q2 spectrum. Adding more q2 values from the BCL fit of the LQCD result to our sampling

does not noticeably affect the fit results. The difference in the form factor values obtained

using the 17 or the 11 BCL parameter results is added as an uncorrelated uncertainty. This

slightly differs from the prescription in Ref. [3], which used the maximal differences of the

11



form factor values between the two parametrizations, and cannot preserve the correlation

structure between the form factor values. The 18 form factor values used in our fits are shown

as data points in Fig. 2. The LQCD predictions, following the prescription of Ref. [3], are

shown as gray bands. The uncertainties are in good agreement. Similarly, the gray band in

Fig. 1 (left plot) shows the LQCD prediction for the normalized spectrum, using the BCL

parametrization.

In our fits, m1S
b and δmbc are constrained using Gaussian uncertainties. The leading order

Isgur-Wise function is fitted to quadratic order in w − 1

ζ = 1 + (w − 1) ζ ′ +
1

2
(w − 1)2 ζ ′′ . (21)

Alternative expansions using the conformal parameters z or z∗ [47, 54–56] instead of w yield

nearly identical fits. Therefore, we do not explore the differences in the unitarity bounds

between meson and baryon form factors [57]. Fits with ζ linear in either w, z, or z∗ are

poor, while adding more q2 values to our sampling indicates no preference for the inclusion of

higher order terms in w−1. In the fits b̂1,2 are assumed to be constants, which is appropriate

at the current level of sensitivity. With better experimental and lattice constraints in the

future, the sensitivity to lifting these assumptions should be tested.

Fit results combining the LHCb and LQCD results are shown in Table I, and in Fig. 2

by red bands. To test the importance of the Λ2
QCD/m

2
c terms, we also perform a fit with the

order Λ2
QCD/m

2
c terms, parametrized by b̂1,2, set to zero. These fits are shown in Fig. 2 as

blue bands, and the corresponding fit values are provided in Table I. This is a much poorer

fit, changing χ2/ndf from 7.2/20 to 18.8/22.

We do not include explicitly an uncertainty for neglected higher order terms in Eqs. (12)

and (13). Four form factors, f3, g3, h3, and h4 receive no Λ2
QCD/m

2
c corrections, so the

agreement of f3 and g3 with the LQCD results in the plots in the bottom row in Fig. 2

indicates that these higher order corrections are probably small. The order εc εb corrections

to f3 and g3 are given by two new functions of w, b5 and b6 [27], while the ε3
c corrections to f3

and g3 also vanish. Thus, including such corrections, b5 and b6 would simply accommodate

the 0.5σ−1σ differences between the LQCD results and our fit for f3 and g3. The impact of

this is small, for example, setting f3 = 0 does not perceptibly change the SM prediction for

R(Λc) compared to Eq. (1), while setting g3 = 0 changes the SM prediction from R(Λc) =

0.324± 0.004 in Eq. 1 by about 1σ, to 0.320± 0.003.
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LHCb + LQCD LHCb + LQCD

ζ ′ −2.04± 0.08 −2.06± 0.08

ζ ′′ 3.16± 0.38 3.28± 0.36

b̂1/GeV2 −0.46± 0.15 0∗

b̂2/GeV2 −0.39± 0.39 0∗

m1S
b /GeV 4.72± 0.05 4.69± 0.04

δmbc/GeV 3.40± 0.02 3.40± 0.02

χ2/ndf 7.20/20 18.8/22

R(Λc) 0.3237± 0.0036 0.3252± 0.0035

TABLE I. HQET parameters extracted from the two fits discussed in the text. Predictions for

R(Λc) for each fit are shown in the last row. The b̂1,2 values marked with an asterisk were fixed to

zero in the fit; see text for details.

In Fig. 3 show our fit results for ratios of form factors (red bands) and the LQCD pre-

dictions (gray bands). The top plot shows f1/g1, which HQET predicts to be O(1), whereas

the four ratios f2/f1 and g2/g1 (second row) and f3/f1 and g3/g1 (third row) are predicted

to be O(εc,b, αs). The ratio, f1/g1 (= f⊥/g⊥), is determined by Eq. (12) as

f1(w)

g1(w)
= 1 + α̂s

(
CV1 − CA1

)
+
(
εc + εb

) 2

w + 1
+ . . . , (22)

so the enhancement of f1 relative to g1 is a model independent prediction of HQET, as seen

in the top plot in Fig. 3.

B. Tensor form factors

LQCD results [48] for the tensor form factors are available, and may be compared to

HQET predictions from our fits to the (axial)vector form factors, via Eqs. (13).2 The

correspondence between the four form factors used in this paper for the tensor cur-

rent,
{
h1, h2, h3, h4

}
, defined in Eq. (5), and those used in the LQCD calculation [48],

{
h+, h⊥, h̃+, h̃⊥

}
, are given in Appendix A. In the former basis, only one form factor, h1,

is nonzero in the heavy quark limit, while the four form factors of the LQCD basis are equal

to one another in this limit. Note in particular that h1 = h̃+.

2 In Ref. [48] the equations of motions were used to express the scalar and pseudoscalar current matrix

elements in terms of the axial and vector currents. The resulting expressions depend on the quark masses,

mb,c. It is inconsistent beyond leading order in αs to use in such expressions the MS masses mb(mb) and

mc(mc) [48] to evaluate the decay rates. Instead, one must use mc(µ) and mb(µ) at the same µ.
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FIG. 3. Fits of the HQET predictions in Eq. (12) to the LQCD results [3], for five ratios of the

six form factors. The top row shows f1/g1, which is O(1) in HQET, whereas f2,3/f1 (left column)

and g2,3/g1 (right column) are expected to be O(αs,ΛQCD/mQ). The red bands show our nominal

fit including Λ2
QCD/m

2
c terms; the blue bands show fit results with Λ2

QCD/m
2
c terms set to zero.

The LQCD results [48] are presented using the BCL parametrization, including the corre-

lations of the parameters. These results are computed at the scale µ = mb, while in this paper

we match HQET onto QCD at µ =
√
mcmb. Since the tensor current has a nonzero anoma-
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FIG. 4. Predictions for the tensor form factors based on Eq. (13) and our fit to the LHCb data

and the LQCD calculation of the (axial)vector form factors, overlayed with the LQCD calculation

of the tensor form factors [48] (scaled to µ =
√
mbmc). The notation is the same as in Fig. 3.

lous dimension, we use the multiplicative renormalization factor
[
αs(mb)/αs(

√
mbmc)

]4/25 '
0.97 [58, 59], in order to scale the form factors to µ =

√
mbmc.

In Fig. 4 the gray bands show the LQCD results for the tensor form factors converted to

the h1,2,3,4 basis. Our prediction from the fit to the (axial)vector SM form factors and the

LHCb data are overlaid as red bands. The LQCD uncertainties are large for h2,3,4 at both

ends of the spectrum. This is an artifact of the 1/(w − 1) and 1/q2 factors in the transfor-

mation from the LQCD basis in Eq. (A7). (The same information in the
{
h+, h⊥, h̃+, h̃⊥

}

basis is shown in Fig. 7 in Appendix A. In this basis the uncertainties are not strongly q2

dependent.) Unlike the fits in Sec. III A, the LQCD results for the tensor form factors are

not an input to our fits, so there is no free parameter in these comparisons. Figure 7 shows

that the order εc terms, which are fully determined by HQET in Eq. (13), combined with the

definitions in Eq. (A6), account for the near equality of h̃⊥ and h̃+, the slight enhancement
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of h⊥, and the substantial enhancement of h+. The top left plot in Fig. 4 shows a tension

between our fit and the LQCD determination of h1 = h̃+, visible in all plots in Fig. 7. In

addition, the LQCD result for h1 prefers a slightly smaller curvature than our prediction.

This is similar to what is seen for f1 and g1 in the top row of Fig. 2: The LQCD results

prefer a smaller curvature at small q2. This is related to the observation that LQCD rate in

Fig. 1 falls more quickly at small q2 than the LHCb measurement.

C. R(Λc) predictions with new physics

LHCb expects that the precision of the measurement of R(Λc) can compete with that of

R(D(∗)) in the future [60]. For the SM prediction we obtained [1]

R(Λc) = 0.324± 0.004 . (23)

Our form factor fit, combined with the expressions for the NP rates in Appendix B and the

HQET predictions in Eqs. (13), allows for precision computation of R(Λc) for arbitrary NP

contributions (see e.g. Refs [7, 9, 53] for prior analyses). To gain a sense of the sensitivity

of R(Λc), in Fig. 5, we show the allowed regions in the R(Λc) − R(D) and R(Λc) − R(D∗)

planes, as any one of the five NP couplings in Eq. (3) are turned on. The boundary of

each region corresponds to real NP Wilson coefficients, while the interior requires a relative

phase between the SM and NP. The V − A NP interaction cannot have a physical phase

relative to the SM, and therefore spans a line in the R(Λc) − R(D(∗)) planes. Possibly by

numerical coincidence, the scalar operator exhibits a very large correlation between R(Λc)

and R(D), resulting in a very narrow R(Λc)−R(D) region for this operator. Note that the

(pseudo)scalar contributions vanish for the D (D∗) modes, respectively, and are not shown.

In Fig. 6 we compare the variation in R(Λc)/R(Λc)SM with the corresponding ratios for

D(∗), as a function of each NP coupling, assuming they are real. An error band, correspond-

ing to the uncertainties in the fit of Ref. [1], is also shown. In some cases the errors are

imperceptible. We see that the NP sensitivity of R(Λc) is typically between the R(D∗) and

R(D) variations.
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FIG. 5. R(Λc) vs. R(D) (left) and R(D∗) (right) for various NP operators, in the basis defined in

Eq. (3). The (pseudo)scalar contributions vanish for the D(D∗) modes, and are not shown.

IV. FACTORIZATION AND Λb → Λcπ

The LHCb measurement of the dΓ(Λb → Λ+
c µ
−ν̄)/dq2 spectrum [2] is normalized to unity,

and the LCQD results for the Λb → Λc form factors are also independent of |Vcb|. Thus, our

fit is sensitive to hadronic parameters, but it cannot be combined with the present LHCb data

to extract |Vcb|. One may, however, use the LHCb measurement of dΓ(Λb → Λ+
c µ
−ν̄)/dq2 to

test factorization in Λb → Λcπ, or to extract |Vcb| assuming factorization (see also Ref. [61]).

For B → D(∗)π decays, it has long been known that the ratios B(B− → D0π−)/B(B̄0 →
D+π−) ' 1.9 and B(B− → D∗0π−)/B(B̄0 → D∗+π−) ' 1.8 [29] deviate substantially from

unity, the prediction in the heavy quark limit. This implies that O(ΛQCD/mc) contributions

to the amplitudes enter at the 30% level, and deviations from factorization in the heavy

quark limit are substantial.

At leading order in the heavy quark expansion, the Λb → Λcπ matrix element factorizes

such that the nonleptonic rate is related to the semileptonic rate at q2 = m2
π via

Γ(Λb → Λcπ) = 6π2
(
C1 + C2/3

)2 |Vud|2 f 2
π

dΓ(Λb → Λceν̄)

dq2

∣∣∣∣
q2=m2

π

, (24)

where fπ = 131 MeV is the pion decay constant, and C1,2 are the usual Wilson coefficients

in the effective Hamiltonian, satisfying (C1 + C2/3) |Vud| ' 1. (Uncertainties in this linear

combination, fπ, and τΛb are neglected.) In Eq. (24), we write the Λceν̄ final state to

emphasize that the semileptonic rate has to be evaluated neglecting lepton masses. In
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FIG. 6. R(Λc)/R(Λc)SM and R(D(∗))/R(D(∗))SM predictions for real NP couplings, in the operator

basis of Eq. (3).

Λb → Λcµν̄ decay, measured by LHCb, the impact of mµ 6= 0 is substantial at q2 = m2
π.

Combining the factorization relation in Eq. (24), our fit for the form factors, and |Vcb| =
(
4.22± 0.08

)
× 10−2 [29] predicts B(Λb → Λcπ) = (3.6± 0.3)× 10−3, where this uncertainty

is from the fit and |Vcb|. By comparison, the measured nonleptonic branching ratio [29] is3

B(Λb → Λcπ) = (4.9± 0.5)× 10−3 . (25)

Conversely, assuming factorization, one could use Eqs. (25) in Eq. (24) to extract |Vcb| =

(4.9± 0.3)× 10−2, where this uncertainty is only from our form factor fit and the measured

branching fraction, without an uncertainty assigned to the factorization relation itself. Thus

3 This PDG average for B(Λb → Λcπ) includes an uncertainty scale factor of 1.5 [29], and is based on two

LHCb [62, 63] and one CDF [64] measurements. Reproducing this is not easy, as it involves rescaling

the CDF result from B(Λc → pK−π+) = (5.0 ± 1.3)% to the latest values: B(Λc → pK−π+) = (6.84 ±
0.24+0.21

−0.27)% [65] and B(Λc → pK−π+) = (5.87 ± 0.27 ± 0.23)% [66]. The LHCb measurements also

preceded Ref. [66], and lifetime and other data also changed.
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we observe an O(15–20%) deviation from the factorization relation in Eq. (24), consistent

with this deviation arising from a ΛQCD/mc suppressed correction [67]. 4

V. CONCLUSIONS

Fitting the LHCb measurement of the normalized q2 spectrum for Λb → Λcµν decay [2],

and the six (axial)vector form factors calculated in lattice QCD [3], one can test HQET

relations and the applicability of power counting. In Ref. [1] we found that the Λ2
QCD/m

2
c

corrections were constrained by the fit to be of the expected magnitude, without any signs of

enhancements or breakdown of the power counting at the mc scale, as is sometimes claimed

in the literature. Compared to the lattice QCD only determination of the SM prediction of

R(Λc), by fitting the LHCb measurement as well, we further found that the uncertainty of

the SM prediction may be substantially reduced, generating the most precise SM prediction

for R(Λc) to date, R(Λc) = 0.324± 0.004.

We expanded and generalized the results of Ref. [1] in several ways. First, we calcu-

lated Λb → Λc semileptonic form factors for all four-Fermi NP operators, including the

O(Λ2
QCD/m

2
c) corrections (as well as the corresponding helicity amplitudes for use in the

Hammer library [71]). Using our fit of the LHCb measurement and the LQCD prediction for

the six (axial)vector SM form factors, we obtained parameter-free predictions for the four

tensor form factors at O(Λ2
QCD/m

2
c). We observed some tension between our results based

on HQET and those in Ref. [48], at a magnitude greater than the Λ2
QCD/m

2
c corrections (see

the top left figure for the h1 = h̃+ form factor in Fig. 4).

The small uncertainties in our fit to the (axial)vector form factors, combined with HQET

predictions for the form factors at O(Λ2
QCD/m

2
c) allowed us to derive precise predictions for

R(Λc) for arbitrary NP. We studied the NP impacts on R(Λc), including their correlations

with R(D(∗)). The NP sensitivity of R(Λc) typically falls between those of R(D∗) and

R(D). We also explored tests of factorization in Λb → Λcπ decay. Factorization in the

heavy quark limit, combined with |Vcb| measurements and our fit to the semileptonic form

factors, implies a mildly lower nonleptonic rate than is measured, consistent with corrections

to the factorization relations arising at O(ΛQCD/mc).

4 Regarding the behavior of the heavy quark expansion, the decay constants also satisfy the HQET scaling

better than was thought in the 1990s. The Nf = 2 + 1 + 1 FLAG [68] averages, fB = (186 ± 4) MeV

and fD = (212 ± 1.5) MeV, yield fB/fD ' 0.88, which is not inconsistent with the leading order HQET

relation [69, 70]
√
mD/mB [αs(mb)/αs(mc)]

−6/25 ' 0.68, plus ΛQCD/mc,b corrections.
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LHCb measurements of the double differential rate d2Γ(Λb → Λc`ν̄)/(dq2 d cos θ), in ad-

dition to the q2 spectrum, will provide the most differential information measurable in the

massless lepton channels (µ and e), if the details of the Λc decay are ignored. Besides the

q2 spectrum and the (q2 dependent) forward-backward asymmetry, this double differential

distribution involves a third function of q2, which can help constrain form factors and test

heavy quark symmetry. If the absolute normalization and the double differential rate of

semileptonic Λb → Λc decays can be measured, it will provide a fully complementary path

to extract |Vcb|, explore the b → cτν anomalies, and test HQET. We look forward to these

developments.
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Appendix A: Form factor definitions, conversions, relations

The form factors in Eqs. (6) and (4) are related via [27]

F1 = f1 + (mΛb +mΛc)

(
f2

2mΛb

+
f3

2mΛc

)
, F2 = − f2

2mΛb

− f3

2mΛc

, F3 =
f2

2mΛb

− f3

2mΛc

,

G1 = g1 − (mΛb −mΛc)

(
g2

2mΛb

+
g3

2mΛc

)
, G2 = − g2

2mΛb

− g3

2mΛc

, G3 =
g2

2mΛb

− g3

2mΛc

,

(A1)

or in the opposite direction,

f1 = F1 + F2 (mΛb +mΛc) , f2 = (F3 − F2)mΛb , f3 = −(F3 + F2)mΛc ,

g1 = G1 −G2(mΛb −mΛc) , g2 = (G3 −G2)mΛb , g3 = −(G3 +G2)mΛc . (A2)

The form factors used in the lattice QCD calculation [3] and in the LHCb analysis [2]
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follow the definitions in Ref. [72],

〈Λc(p
′, s′)|q̄ γµ b|Λb(p, s)〉 = ū(p′, s′)

[
f0
mΛb −mΛc

q2
qµ

+ f+
mΛb +mΛc

s+

(
pµ + p′µ −

m2
Λb
−m2

Λc

q2
qµ

)

+ f⊥

(
γµ −

2mΛc

s+

pµ −
2mΛb

s+

p′µ

)]
u(p, s) ,

〈Λc(p
′, s′)|q̄ γµγ5 b|Λb(p, s)〉 = −ū(p′, s′) γ5

[
g0
mΛb +mΛc

q2
qµ

+ g+
mΛb −mΛc

s−

(
pµ + p′µ −

m2
Λb
−m2

Λc

q2
qµ

)

+ g⊥

(
γµ +

2mΛc

s−
pµ −

2mΛb

s−
p′µ

)]
u(p, s) , (A3)

where q = p− p′, and s± = (mΛb ±mΛc)
2 − q2 = 2mΛbmΛc(w ± 1). These form factors are

related to the HQET form factors defined in Eq. (4) via

f1 = f⊥, f2 =
f+ − f⊥
w + 1

− (f+ − f0)
1− rΛ

q̂2
,

f3 =
f+ − f⊥
w + 1

+ (f+ − f0)
rΛ(1− rΛ)

q̂2
,

g1 = g⊥, g2 =
g+ − g⊥
w − 1

+ (g+ − g0)
1 + rΛ

q̂2
,

g3 =
g+ − g⊥
w − 1

− (g+ − g0)
rΛ(1 + rΛ)

q̂2
. (A4)

At w = 1, corresponding to q2
max, the form factors satisfy g+(q2

max) = g⊥(q2
max).

In the heavy quark limit, f0 = f+ = f⊥ = g0 = g+ = g⊥ = ζ + O(αs, ΛQCD/mc,b). The

lattice QCD results in Fig. 12 in Ref. [3] show that f0 , f+ , g0 , g+ , g⊥ differ from one

another by less than O(10%), however, f⊥ is substantially enhanced, consistent with the

HQET prediction in Eq. (22).

The form factors in Eq. (A3), expressed in terms of the HQET definitions in Eq. (4), are

f⊥ = f1 , f0 = f1 +
f2(1− w rΛ) + f3(w − rΛ)

1− rΛ

,

f+ = f1 + (w + 1)
f2 rΛ + f3

1 + rΛ

,

g⊥ = g1 , g0 = g1 −
g2(1− w rΛ) + g3(w − rΛ)

1 + rΛ

,

g+ = g1 − (w − 1)
g2 rΛ + g3

1− rΛ

. (A5)
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FIG. 7. Predictions for the tensor form factors in the basis used in the LQCD calculation [48]

(scaled to µ =
√
mbmc), compared with our predictions based on Eq. (13) and the fit to the LHCb

data and the LQCD (axial)vector form factors. The notation is the same as in Fig. 4.

Finally, the translation between the h1,2,3,4 tensor form factors used in this paper, defined

in Eq. (5), and those defined in Eq. (2.14) in Ref. [48] are

h+ = h1 − h2 + h3 − h4 (w + 1) ,

h⊥ = h1 − h2
1− w rΛ

1 + rΛ

− h3
w − rΛ

1 + rΛ

,

h̃+ = h1 ,

h̃⊥ = h1 −
h2 rΛ + h3

1− rΛ

(w − 1) , (A6)
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and in the opposite direction,

h1 = h̃+ ,

h2 =
h̃⊥ − h̃+

w − 1
+
(
h̃⊥ − h⊥

)1 + rΛ

q̂2
,

h3 =
h̃+ − h̃⊥
w − 1

+
(
h⊥ − h̃⊥

)rΛ(1 + rΛ)

q̂2
,

h4 =
h̃+ − h̃⊥
w − 1

+
h⊥ − h+

w + 1
+ 2
(
h⊥ − h̃⊥

)rΛ

q̂2
. (A7)

In the heavy quark limit, the tensor form factors calculated in LQCD and shown in Fig. 2

of Ref. [48] satisfy h+ = h⊥ = h̃+ = h̃⊥ = ζ +O(αs, ΛQCD/mc,b).

Appendix B: Amplitudes

In this appendix we collect explicit expressions for the Λb → Λc`ν amplitudes, including

mass terms and right-handed sterile neutrino contributions. These amplitudes correspond

to those used in the Hammer code [71].

As in Ref. [73], we write explicit expressions for the b̄→ c̄ amplitudes rather than b→ c,

defining the basis of NP operators to be

SM: i2
√

2V ∗cbGF

[
b̄γµPLc

][
ν̄γµPL`

]
, (B1a)

Vector: i2
√

2V ∗cbGF

[
b̄
(
αVLγ

µPL + αVRγ
µPR

)
c
][
ν̄
(
βVL γµPL + βVRγµPR

)
`
]
, (B1b)

Scalar: − i2
√

2V ∗cbGF

[
b̄
(
αSLPL + αSRPR

)
c
][
ν̄
(
βSLPR + βSRPL

)
`
]
, (B1c)

Tensor: − i2
√

2V ∗cbGF

[(
b̄αTRσ

µνPRc
)(
ν̄βTLσµνPR`

)
+
(
b̄αTLσ

µνPLc
)(
ν̄βTRσµνPL`

)]
. (B1d)

The lower index of β denotes the ν chirality and the lower index if α is that of the c

quark. Operators for the CP conjugate b → c processes follow by Hermitian conjugation.

(The correspondence between the α, β coefficients and the basis typically chosen for b→ c

operators can be found in Ref. [25].) The Λb → Λc`ν process has four external spins:

sb = ±, sc = 1, 2, s` = 1, 2 and sν = ±. (We label the Λc and ` spin by 1 and 2, to match

the conventions of Ref. [73] for massive spinors on internal lines.)

Helicity angles and momenta are similarly defined with respect to the b̄ → c̄ process.

Definitions for the conjugate process follow by replacing all particles with their antiparticles.

The single physical polar helicity angle, θ`, defines the orientation of the lepton momenta in
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their center of mass reference frame, with respect to −pΛb , as shown in Fig. 4 of Ref. [25].

Note that θ` = π − θ, for θ defined in Eq. (14).

If subsequent Λc → ΛY decays are included coherently, one further defines φ` and φΛ as

twist angles of the `–ν and Λ–Y decay planes, with the combination φ` − φΛ becoming a

physical phase. Our phase conventions match the spinor conventions of Ref. [73] for not only

τ but also Λc decay amplitudes. This amounts to requiring the inclusion in the τ and/or Λc

decay amplitudes of an additional spinor phase function, hs`(sν) and hsc(sb), defined with

respect to sν and sb, such that h1(−) = 1 = h2(+), h1(+) = eiφ` and h2(−) = e−iφ` . Under

these conventions, the Λb → Λc`ν amplitudes themselves are independent of φ` − φΛ.

For compact expression of the amplitudes, it is convenient to define

w± = w ±
√
w2 − 1 , q̂2 = q2/m2

Λb
= 1− 2rΛw + r2

Λ , r` = m`/mΛb , (B2)

along with

Σ+ =
√
w+ +

√
w− , Σ− =

√
w+ −

√
w− ,

R+± = (1 + rΛ)± (1− rΛ) cos θ` , R−± = (1− rΛ)± (1 + rΛ) cos θ` ,

Ω+ = r − w +
√
w2 − 1 cos θ` , Ω× = rw − 1 + r

√
w2 − 1 cos θ` . (B3)

The Λb → Λc`ν amplitudes obey the conjugation relation

As̄bs̄cs`sν
(
w,
√
w2 − 1, θ`, φ`

)
= Asbscs`sν

(
w,−
√
w2 − 1, π − θ`,−φ`

)
, (B4)

in which the exchange
√
w2 − 1 → −

√
w2 − 1 implies also w− ↔ w+. One then need only

write the sb = − amplitudes, with the sb = + amplitudes following via Eq. (B4). Further

writing A = 2
√

2GFm
2
Λb

√
rΛ(q̂2 − ρ`)× A, the explicit amplitudes are

A−11− =

{
− 1

2
hS(αSL + αSR)βSLΣ+ +

1

2
hP (αSL − αSR)βSLΣ−

+
f1(1 + (αVR + αVL )βVL )r`

(√
w−R−+ +

√
w+R−−

)

2q̂2

− f3(1 + (αVR + αVL )βVL )r`Σ+Ω+

2q̂2
− f2(1 + (αVR + αVL )βVL )r`Σ+Ω×

2q̂2

+
g1(1 + (αVL − αVR)βVL )r`

(√
w−R++ −√w+R+−

)

2q̂2

− g3(1 + (αVL − αVR)βVL )r`Σ−Ω+

2q̂2
− g2(1 + (αVL − αVR)βVL )r`Σ−Ω×

2q̂2
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+ 4h1α
T
Rβ

T
L

√
w+ cos θ` − 2h2α

T
Rβ

T
LΣ− cos θ`

+ 2h3α
T
Rβ

T
LΣ− cos θ` − 2h4α

T
Rβ

T
L (w + 1)Σ− cos θ`

}
(B5a)

A−11+ = sin θ`

{
(1 + rΛ)f1(αVL + αVR)βVRΣ−

2
√
q̂2

+
rΛf2(αVL + αVR)βVR (w + 1)Σ−

2
√
q̂2

+
f3(αVL + αVR)βVR (w + 1)Σ−

2
√
q̂2

+
(rΛ − 1)g1(αVL − αVR)βVRΣ+

2
√
q̂2

+
rΛg2(αVL − αVR)βVR (w − 1)Σ+

2
√
q̂2

+
g3(αVL − αVR)βVR (w − 1)Σ+

2
√
q̂2

+ 4h1α
T
Lβ

T
Rr`

√
w−
q̂2

+
2h2α

T
Lβ

T
Rr`Σ−√
q̂2

− 2h3α
T
Lβ

T
Rr`Σ−√
q̂2

+
2h4α

T
Lβ

T
Rr`(w + 1)Σ−√

q̂2

}
(B5b)

A−12− = sin θ`

{
(1 + rΛ)f1(1 + (αVR + αVL )βVL )Σ−

2
√
q̂2

+
rΛf2(1 + (αVR + αVL )βVL )(w + 1)Σ−

2
√
q̂2

+
f3(1 + (αVR + αVL )βVL )(w + 1)Σ−

2
√
q̂2

+
(rΛ − 1)g1(1 + (αVL − αVR)βVL )Σ+

2
√
q̂2

+
rΛg2(1 + (αVL − αVR)βVL )(w − 1)Σ+

2
√
q̂2

+
g3(1 + (αVL − αVR)βVL )(w − 1)Σ+

2
√
q̂2

− 4h1α
T
Rβ

T
Lr`

√
w+

q̂2
+

2h2α
T
Rβ

T
Lr`Σ−√
q̂2

− 2h3α
T
Rβ

T
Lr`Σ−√
q̂2

+
2h4α

T
Rβ

T
Lr`(w + 1)Σ−√

q̂2

}
(B5c)

A−12+ =

{
1

2
hS(αSL + αSR)βSRΣ+ −

1

2
hP (αSL − αSR)βSRΣ−

− f1(αVL + αVR)βVR r`
(√

w−R−+ +
√
w+R−−

)

2q̂2

+
f3(αVL + αVR)βVR r`Σ+Ω+

2q̂2
+
f2(αVL + αVR)βVR r`Σ+Ω×

2q̂2

− g1(αVL − αVR)βVR r`
(√

w−R++ −√w+R+−
)

2q̂2

+
g3(αVL − αVR)βVR r`Σ−Ω+

2q̂2
+
g2(αVL − αVR)βVR r`Σ−Ω×

2q̂2
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+ 4h1α
T
Lβ

T
R

√
w− cos θ` + 2h2α

T
Lβ

T
RΣ− cos θ`

− 2h3α
T
Lβ

T
RΣ− cos θ` + 2h4α

T
Lβ

T
R(w + 1)Σ− cos θ`

}
(B5d)

A−21− = sin θ`

{
f1(1 + (αVR + αVL )βVL )r`Σ−

2
√
q̂2

+
g1(1 + (αVL − αVR)βVL )r`Σ+

2
√
q̂2

+
4h1α

T
Rβ

T
L (w− − rΛ)√
q̂2w−

− 2h2α
T
Rβ

T
L (rΛw+ − 1)Σ−√

q̂2

− 2h3α
T
Rβ

T
L (rΛ − w−)Σ−√

q̂2

}
(B5e)

A−21+ = sin2 θ`
2

{
− f1(αVL + αVR)βVRΣ−

+ g1(−αVL + αVR)βVRΣ+

− 8h1α
T
Lβ

T
Rr`
√
w+(rΛw− − 1)

q̂2
+

4h2α
T
Lβ

T
Rr`(rΛw− − 1)Σ−

q̂2

− 4h3α
T
Lβ

T
Rr`(w+ − rΛ)Σ−

q̂2

}
(B5f)

A−22− = cos2 θ`
2

{
f1(1 + (αVR + αVL )βVL )Σ−

+ g1(1 + (αVL − αVR)βVL )Σ+

− 8h1α
T
Rβ

T
Lr`(rΛw+ − 1)

√
w−

q̂2
− 4h2α

T
Rβ

T
Lr`(rΛw+ − 1)Σ−

q̂2

− 4h3α
T
Rβ

T
Lr`(rΛ − w−)Σ−

q̂2

}
(B5g)

A−22+ = sin θ`

{
− f1(αVL + αVR)βVR r`Σ−

2
√
q̂2

+
g1(−αVL + αVR)βVR r`Σ+

2
√
q̂2

+
4h1α

T
Lβ

T
R(w+ − rΛ)√
q̂2w+

+
2h2α

T
Lβ

T
R(rΛw− − 1)Σ−√

q̂2

− 2h3α
T
Lβ

T
R(w+ − rΛ)Σ−√

q̂2

}
. (B5h)

The total differential rate for Λb → Λc`ν is obtained from these expressions via

dΓ =
G2
Fm

5
Λb
r3

Λ|Vcb|2
32π3

√
w2 − 1

(q̂2 − ρ`)2

q̂2

∑

sb,sc,s`,sν

|Asb,sc,s`,sν |2dw sin θ`dθ` . (B6)
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