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Abstract
Cerebral microbleeds, which are small focal hemorrhages in the brain that are prevalent in many diseases, are gaining increasing
attention due to their potential as surrogate markers of disease burden, clinical outcomes, and delayed effects of therapy. Manual
detection is laborious and automatic detection and labeling of these lesions is challenging using traditional algorithms. Inspired
by recent successes of deep convolutional neural networks in computer vision, we developed a 3D deep residual network that can
distinguish true microbleeds from false positive mimics of a previously developed technique based on traditional algorithms. A
dataset of 73 patients with radiation-induced cerebral microbleeds scanned at 7 Twith susceptibility-weighted imaging was used
to train and evaluate our model.With the resulting network, wemaintained 95% of the true microbleeds in 12 test patients and the
average number of false positives was reduced by 89%, achieving a detection precision of 71.9%, higher than existing published
methods. The likelihood score predicted by the network was also evaluated by comparing to a neuroradiologist’s rating, and good
correlation was observed.
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Introduction

Cerebral microbleeds (CMBs) are small chronic brain hemor-
rhages that are prevalent in various diseases such as cerebral
amyloid angiopathy [1], stroke [2], neurodegenerative disor-
ders [3], traumatic brain injury [4], as well as following radi-
ation therapy for brain and head and neck tumors [5]. CMBs
have been found to serve as biomarkers of complications in
these various pathologies. As understanding the role of CMBs
is critical, new methods to rapidly detect and quantify CMBs
could help shed light on their evolution and correlation with
disease status.

The most commonly used medical imaging modality to
detect CMBs is susceptibility-weighted magnetic resonance
imaging (SWI). SWI is highly sensitive to paramagnetic tis-
sues such as hemosiderin, which is abundant in most CMBs,

and therefore can provide high contrast between normal brain
parenchyma and veins or vascular injury such as CMBs [6].
To understand the impact of CMBs in various diseases, large-
scale detection, segmentation, and quantification of CMB bur-
den is necessary [7], the most challenging aspect of which is
the efficient and accurate detection of CMBs on SWI.
Typically, CMB detection requires not only intense human
labor but also domain-related expertise, making the job
time-consuming and laborious, which inevitably affects the
detection accuracy and performance. As a result, much effort
has been devoted to developing computer vision algorithms to
automatically aid in the detection of CMBs [8–11]. Although
these recent advances have improved automatic or semi-
automatic detection of CMBs, all existing methods suffer
from low specificity with a large number of false positives
(FPs) that ultimately reduces their value and widespread adop-
tion in both the clinical and research settings.

Since AlexNet [12] won the ImageNet Large Scale Visual
Recognition Challenge [13] in 2012 by achieving a 40% low-
er image classification error rate than traditional computer
vision methods, deep convolutional neural networks
(DCNNs) have demonstrated their superiority in a wide range
of computer vision tasks such as semantic segmentation, ob-
ject detection, and natural image classification. Although the
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idea of DCNNs was first proposed more than 30 years ago,
they have only recently achieved huge successes due to the
availability of parallel computing hardware such as GPUs and
large datasets. With the emergence of advanced network struc-
tures and techniques such as residual unit [14], DenseNet [15],
batch normalization [16], and dropout [12], DCNNs can reach
performance superior to humans in some tasks [13].

The goal of this study was to develop a fully automatic
pipeline for the identification and labeling of CMBs by com-
bining our previously developed base detection method [17]
that used a series of traditional computer vision algorithms
with a novel 3D deep residual neural network [14] architecture
to reduce the FPs that remain after initial CMB detection and
improve specificity. This pipeline uses 3D SWI images as the
input to the initial detection algorithm in order to identify the
position of potential CMB candidates. These candidates are
then passed to a trained 3D deep residual network to both
remove definitive CMB mimics and assign a likelihood score
for each CMB included in the final detection result. Although
this pipeline was trained on 7-T SWI images from patients
diagnosed with radiation-induced CMBs after receiving treat-
ment for glioma, our framework is flexible for other imaging
acquisitions and readily generalizable to other diseases that
result in the formation of CMBs.

Methods

Subjects and Image Acquisition

Seventy-three patients with gliomas were recruited for the
study. All patients had previously undergone radiation therapy
with a maximum dose ranging from 50 to 60 Gy and had
confirmed radiation-induced CMBs. Thirty-one patients were
scanned with a 4-echo 3D TOF-SWI sequence (TE = 2.4/12/
14.3/20.3 ms, TR = 40ms, FA = 25°, image resolution = 0.5 ×
0.5x1mm, axial plane matrix size = 512 × 512) [18], while 49
patients were scanned with a standard SWI sequence (3D-
SPGR sequence with flow compensation along the readout
direction, TE/TR = 16/50 ms, FA = 20°, image resolution =
0.5 × 0.5 × 2 mm, axial matrix size = 512 × 512). Serial imag-
ing was performed on 12 patients, resulting in a total of 91
scans. Patients were scanned using either an 8- or 32-channel
phased-array coil on a 7-T scanner (GE Healthcare
Technologies, Milwaukee, WI, USA). A GRAPPA-based par-
allel image acquisition was implemented with an acceleration
factor of 3 and 16 auto-calibration lines [19].

SWI Processing

The raw k-space data were transferred to a Linux workstation
and all image processing was performed using in-house soft-
ware developed using Matlab 2015b (MathWorks Inc.,

Natick, MA, USA). The following steps were performed to
obtain SWI images from the multi-echo sequence. (1) Auto-
calibrating Reconstruction for Cartesian sampling (ARC) al-
gorithm was applied to restore the missing k-space lines of
each channel [19]. (2) Magnitude images from each individual
channel were combined using the root sum of squares and the
skull was stripped using FMRIB Software Library (FSL)
Brain Extraction Tool (BET) [20]. (3) The complex data of
each coil of echoes 2–4 were homodyne filtered with Hanning
filter sizes of 72, 88, and 104 for the 2nd, 3rd, and 4th echoes
respectively [18]. (4) The resulting high-pass filtered phase
images from echoes 2–4 were averaged to produce a mean
phase image and used to construct a negative phase mask by
scaling the phase values to between 0 and 1. (5) The final
composite SWI imagewas calculated bymultiplying themean
magnitude image of three echoes with the phase mask four
times. SWI images were reconstructed from the single-echo
scans using the same pipeline but without the multi-echo av-
eraging and the filter size of 96 was selected empirically [5].

Identification of Candidate CMBs and Labeling
of False Positives

An example of multiple CMBs is shown in Fig. 1. A
computer-aided detection method based on traditional image
processing techniques previously developed in our group [17]
was adopted to propose candidates for the following neural
networks. The method first performs a 2D fast radial symme-
try transform on the entire input SWI image volume slice by
slice. Candidate voxels will then go through a series of pro-
cessing and filtering such as vessel mask screening, 3D region
growing, and 2D geometric feature extraction (area, circular-
ity, number of spanned slices, centroid shift distance). The

Fig. 1 a An example SWI slice showing multiple cerebral microbleeds
(red arrows). b Serial slices in the axial direction demonstrating the
difference in 3D structure between a CMB (green box) and a vertical
vein (red box) with CMB-like appearance on one slice (color figure
online)
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output is a set of voxels that satisfy the predetermined thresh-
olds as CMB candidates. Although this initial algorithm has
been shown to detect 86% of all CMBs, many structural
mimics or FPs are also incorrectly identified as CMBs. In
order to achieve a higher sensitivity, we reduced the number
of missing CMBs by lowering the threshold in this algorithm
and subsequently applied an interactive graphical user inter-
face (GUI) where the user was asked a series of questions
surrounding potential CMBs in order to individually label all
FPs identified by the original automated approach. The coor-
dinates of the candidates were then used to extract 3D patches
of size 16 × 16 × 8 to use as the input of the deep neural net-
works. An experienced research scientist with several years of
experience in identifying microbleeds was asked to use this
system to examine all candidates and generate labels used as
ground truth after prior guidance by a neuroradiologist. The
entire dataset contained 19,762 candidates, 2835 of which
were true CMBs, as detailed in Table 1.

3D Deep Residual Network

The network we proposed to refine the detection result is the
patch-based 3D deep residual network described in Fig. 2. The
network takes a three-dimensional patch of the SWI image
centered at the coordinate of the candidate discovered by the
CMB candidate identification step as input and outputs a like-
lihood score of the candidate being real CMBs. The network
contains a total of 12 3D residual blocks [14] at three different
resolution levels connected by 2 × 2 × 2 max pooling layers.
After the residual blocks, a global average pooling layer was
used to integrate the global information of each channel and
the output was fed to a series of fully connected layers for
binary classification. ReLU [21] was used as an activation
function for all layers except for the last one, where a sigmoid
was used to generate a likelihood score that ranged from 0 to
1. Binary cross entropy was selected as loss function of the
network. For final classification of candidate patches, we se-
lected a relatively low threshold of 0.1 for CMB/FP decision
as a tradeoff for high detection sensitivity. The total number of
parameters of the network is about 244,000. Figure 2 shows
the data pipeline of the CMB candidate labeler and the de-
tailed architecture of the 3D deep residual network.

Implementation

Our CNN was implemented using Keras 2.1 [22] with
Tensorflow 1.3 [23] backend. The computation was acceler-
ated using an Nvidia Titan Xp GPU with 12 GBmemory. The
BAdam^ algorithm [24] with a learning rate of 1e−4, beta1 =
0.9, and beta2 = 0.999 was used for parameter updating. The
network was trained for 200,000 iterations with a batch size of
16. Among the 49 patients with a single-echo acquisition, 7
were randomly selected as a validation set, 12 as a test set,
while the remaining were used for training. The multi-echo
scans were all included in the training set to enlarge the
dataset. In the validation and test sets, only the most recent
scan was used if the patient had multiple scans. Because our
dataset was relatively small compared to modern deep learn-
ing tasks, we improved the generalizability of the network by
implementing the following data augmentation techniques
during training: (A) rotating the input patch around the axial
axis by a random degree, (B) shifting the input patch by 1
voxel in the axial plane, and (C) flipping the patch. This great-
ly extended the capacity of the training set. Imbalance be-
tween classes during training was accounted for by weighting
the network loss by the proportion of CMBs to FPs. The
model with lowest validation loss was selected as the model
for testing.

Results

The benefits of using a 3D patch-based deep residual network
with data augmentation over a simple CNN for our application
are shown in Fig. 3a, b. The performance of the network as
characterized by the AUC score of the validation set improved
with each of the three proposed data augmentation strategies.
Although random rotation of patches had the most significant
effect the combination all augmentation techniques signifi-
cantly outperformed applying each separately. The addition
of Gaussian noise or random constant patches as forms of data
augmentation did not affect the network performance.

In the 12 test patients, the 3D deep residual network suc-
cessfully classified 90.1% of the candidate patches. Three
hundred fifty-seven out of 377 candidate patches or 94.7%
of true CMBs were correctly identified by the network, while
the number of FPs were reduced by 89.1% (1096 out of 1235)
compared to prior studies. The average precision of the net-
work on test patients was 72%, substantially higher than all
previously published methods. Table 2 shows the confusion
matrix of the classification by the network. On average, the
number of FPs per patient were reduced significantly from
103 to only 11.6, and only 1.7 true CMBs per patient were
missed by the network. The entire detection pipeline success-
fully detected 90% of CMBs with only an average of 11.6
remaining FPs per scan with in 2 min (Intel i7-6700K CPU

Table 1 Number of patches used in all dataset splits. Numbers in
parentheses are the number of subjects in each dataset

CMB FP Total

Train (54) 2243 14,669 16,912

Validation (7) 215 1023 1238

Test (12) 377 1235 1612

Total 2835 16,927 19,762
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with 16GB RAM and 12 GB GPU installed), providing a
practical automatic detection algorithm for clinical and re-
search applications.

Since we used a sigmoid function in the last fully connect-
ed layer in the network as the activation function, the predic-
tion of the network for each candidate CMB is a number
between 0 and 1 and can be regarded as the likelihood of the
candidate being a true CMB. Figure 4 shows likelihood values
for representative true CMBs (Fig. 4a) and the difference be-
tween a true and FP CMB (Fig. 4b), overlaid on the corre-
sponding SWI images. In this example, the FP CMBwas mis-
classified as a true CMB due to its likelihood score of 0.4 even
though it is a FP. This is because we set our classification
threshold to be .1 in order to maximize sensitivity. If the clas-
sification threshold was set to 0.5 as in common classification
tasks, it would have been correctly classified; however, the
overall sensitivity of our network would have been reduced.
The advantage of this approach over binary classification is
that it could be used as a soft detection algorithm that guides
the users to quickly locate the potential CMBs in patients and
distinct thresholds can easily be applied for different popula-
tions and applications.

Figure 5 demonstrates the network classification results on
some representative CMB candidates from the test patients.
The missing CMBs (false negatives of the network) were less
clear visually than the correctly identified ones and had more
complex structure that likely interfered with the classification.
In general, the false negatives tended to be located on the
upper or lower edges of the entire image volume (examples 4,
5 and 8 in Fig. 5 BFailed-CMB^), resulting in incomplete
patches that likely negatively affect the decision process. We
also observed that the remaining FPs (BFailed FP^ set: nos. 1,
4, and 8 in Fig. 5) might actually be CMBs but were mistak-
enly labeled as FPs by the human rater, and the network cor-
rectly labels them as CMBs. To further verify this hypothesis,
we compared the likelihood scores predicted by the network
with a neuroradiologist’s (J.E.V.) scoring of the candidates
from two randomly chosen patients. Figure 6 shows the scatter
plot of likelihood scores vs. neuroradiologist’s ratings (nor-
malized to 0~1 range) for the two patients, with higher scores
representing a higher likelihood of the candidate being a true
CMB. For both patients, the neuroradiologist score was sig-
nificantly correlated with the network likelihood score
(r = .85,.84 for patient 1,2; p < 0.0001). These results

Fig. 3 a AUC scores of a simple
CNN model compared to our
proposed 3D deep residual model,
both trained with the same
configuration and data
augmentations. b AUC scores of
the 3D deep residual model
trained with different data
augmentation schemes.
Combining all augmentation
schemes provided the best
performance

Fig. 2 Data pipeline and
architecture of the 3D deep
residual convolutional neural
network. Human labeling of
CMB candidates was performed
during the training phase to obtain
the input and output pairs for this
supervised network. During the
test phase, all candidates were fed
into the network for false positive
reduction
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demonstrate the potential of our network to correct minor
errors in the dataset labeled by raters.

Discussion

We have demonstrated the capability of using a deep residual
CNN architecture for the detection and classification of
CMBs, small chronic brain hemorrhages, from their mimics
on SWI images. The network was designed to both remove
FPs and refine CMB detection by adopting several modern
features of CNNs in addition to special designs in order to
achieve significantly improved performance. The 3D patch
input facilitated the learning of 3D features necessary to clas-
sify CMBs and structural mimics as demonstrated in Fig. 1b,
where 2D information from a single slice was not enough to
distinguish true CMB and veins vertical to the image plane. A
deep residual network architecture was selected for this task
because of its superior performance in classification, detection
tasks, and patch-based image segmentation by enabling train-
ing of deeper architectures where the layers learn residual
functions with reference to the layer inputs rather than learn-
ing unreferenced functions. This framework eases the training
of CNNs by simplifying a network’s optimization while

Fig. 4 Likelihood scores of representative candidates from the test set
overlaid on SWI slices. a shows the three correctly identified CMBs by
the network with high likelihood scores close to one, while b
demonstrates two remaining FPs with lower likelihood scores. Since the

classification threshold was empirically selected to be 0.1 instead of 0.5 as
in most tasks to maintain high sensitivity, the candidate with likelihood
score of 0.4, which would have been correctly classified if we use the
usual 0.5 threshold, was mistakenly classified as CMB by the network

Table 2 Confusionmatrix of the classification results of the test set. The
network removed over 88% of FPs and only missed 5% of CMBs. The
numbers in parentheses refer to the average number of candidates per test
subject

Predicted CMB Predicted FP

Actual CMB TP = 357 (29.8) FN = 20 (1.7)

Actual FP FP = 139 (11.6) TN = 1096 (91.3)

Fig. 5 Classification results for representative CMBs in the test subjects.
Each small square shows a slice of a patch centered on a candidate CMB,
and each row contains eight consecutive slices in the z-direction for a
given 3D patch. Red rectangles highlighted the centered candidates of
each patch. (a) Examples that were correctly classified as CMBs and false
positives. (b) Examples illustrating errors made by the network. ‘Failed-
CMBs’ are true CMBs classified as FPs, while ‘Failed-FP’ are false
positives that were incorrectly identified as CMBs by the network
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requiring a similar number of parameters or weights. By build-
ing a deeper network with the help of residual connections, we
were able to observe significant improvements in classifica-
tion performance. To demonstrate the strength of incorporat-
ing residual units in our network, the 3D patch classification
network used in Dou et al. [11] was also implemented for
comparison. Both networks were trained using the same
dataset and configuration. Figure 3a demonstrates that in the
validation dataset, we observed a 0.029 increase in AUC score
with our 3D residual network. In order to balance the size of
the dataset with the task complexity, we limited the capacity of
our network to 244,000 trainable parameters to avoid
overfitting. Although this number is considered small in com-
parison to modern architectures based on large-scale image
datasets such as VGG16 [25], Inception [26], and
ResNet101 [14], we believed that it is sufficient for the task
of distinguishing true CMBs and FPs because good conver-
gence on training set was observed.

Although the proposed 3D residual DCNN model has the
potential to largely refine the detection of CMBs, approxi-
mately 10 FPs still remained for each patient. While this num-
ber is well within the range of human counting error and less
relevant clinically for patients with over 100 CMBs, patients
with only a handful of CMBs would still require manual re-
moval of FPs, though at a considerable time savings.
Although adding Gaussian noise as a form of data augmenta-
tion during training did not help improve the performance of
our network, one approach to further reduce the number of
FPs would be to apply a denoising filter or other image pre-
processing steps to improve SWI image quality before input-
ting these images into the network.While the individual layers
of our network were carefully optimized, new CNN model
architectures that have since come to fruition might be able
to further reduce the remaining FPs. Our current network was

constructed based on data from 73 patients with radiation-
induced CMBs that resulted in less than 20,000 candidate
patches. Compared to other modern deep learning-based com-
puter vision tasks, the size of our dataset is still relatively
small. Including additional patients with more CMBs that
are caused by other diseases might also facilitate the learning
of additional features that the network can use to distinguish
CMBs and FPs, as well as improve its generalizability.

Although the goal of this study was to use DCNNs to focus
on the most challenging part of CMB detection and segmen-
tation, ultimately, we want to implement an end-to-end
learning-based approach for complete detection and segmen-
tation that do not rely on a base detection algorithm whose
parameters were empirically defined or further image process-
ing for automatic segmentation once the CMB centers are
identified by our network. Incorporating these more advanced
approaches [27] that have recently achieved success in other
applications into our pipeline holds promise for full automa-
tion of the entire detection and segmentation process. As in
many applications of DCNNs, our 3D deep residual network
approach can accurately detect CMBs, but the network itself
lacks transparency. In order for DCNNs to be routinely
adopted by clinicians, future exploration of their interpretation
is necessary in order to provide a more concrete explanation
for the rationale behind different network design strategies
and increase confidence in their results.

Conclusions

In conclusion, we have successfully implemented a 3D patch-
based deep residual network that was specifically tailored to
differentiate true CMBs from their mimics on 7-T SWI im-
ages. The 3D residual network was able to achieve 90%

Fig. 6 The likelihood score predicted by the network compared to a neuroradiologist’s scoring of all candidates. Two panels show all of the candidate
CMBs from two randomly selected patients with > 20 and < 60 CMBs

J Digit Imaging (2019) 32:766–772 771
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sensitivity overall on the 12 patients and reduced the number
of FPs to only 11.6 per scan, suggesting that this new ap-
proach could greatly facilitate research of various diseases that
present with CMBs and potentially increase the benefit of
their evaluation in the clinic.
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