
University of California

Los Angeles

Addressing Operational Challenges in Named Data

Networking Through NDNS Distributed Database

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Alexander Afanasyev

2013

c© Copyright by

Alexander Afanasyev

2013

Abstract of the Dissertation

Addressing Operational Challenges in Named Data

Networking Through NDNS Distributed Database

by

Alexander Afanasyev

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2013

Professor Lixia Zhang, Chair

Named Data Networking (NDN) is a recently proposed Internet architecture.

NDN retains the same hourglass shape as the IP architecture, but changes the

narrow waist from delivery of IP packets to destinations to the retrieval of named

and signed data chunks. This conceptually simple change allows NDN networks

to use almost all the Internet’s well-tested engineering properties to solve not only

communication problems, but also digital distribution and control problems. The

functionality of the narrow waist in NDN is fundamentally different from that in

IP: it uses consumer-driven data delivery with a stateful data forwarding plane,

implements built-in data security, and provides support for the extensive use of in-

network storage. Preliminary experience shows that NDN bridges the gap between

applications and network transport, simultaneously simplifying the application de-

velopment process and addressing some of the Internet’s most pressing problems

in security, scalability, and sustainability. At the same time, the realization of

the NDN architecture faces a number of brand new challenges. For example, all

data packets must be signed by the original producers and verified by their con-

sumers, bringing up the need for providing secure, resilient, and scalable support

for public key distributions. Furthermore, since NDN eliminates the translation

from application names to IP addresses and routes consumer data requests using

ii

application data names directly, maintaining the scalability of the global routing

system becomes another challenge.

This dissertation addresses the above challenges in moving NDN from an ar-

chitecture blueprint to the operational reality. We designed and implemented a

prototype of NDNS, a completely distributed database system that largely mimics

the structure of the DNS system in today’s Internet but operates within the NDN

architecture. We show how NDNS can be used for cryptographic key distribu-

tion and routing scalability management. We believe that NDNS can also serve

a number of other purposes during the development and deployment of the NDN

architecture in coming years.

iii

The dissertation of Alexander Afanasyev is approved.

Christos Papadopoulos

Mario Gerla

Leonard Kleinrock

Peter Reiher

Lixia Zhang, Committee Chair

University of California, Los Angeles

2013

iv

Table of Contents

1 Introduction . 1

1.1 Operational challenges in NDN 1

1.2 NDNS . 3

1.2.1 NDNS design highlights 4

1.2.2 NDNS design benefits . 5

1.3 Common NDN simulation platform (ndnSIM) 7

1.4 Contributions of this work . 8

2 Background . 10

2.1 Named Data Networking (NDN) architecture 10

2.1.1 Repo . 12

2.2 Domain Name System (DNS) . 13

2.2.1 DNS Security Extension (DNSSEC) 16

2.2.2 Dynamic updates in DNS 18

3 NDNS: distributed database system for NDN 20

3.1 NDNS design . 21

3.1.1 Naming . 24

3.1.1.1 NDNS naming model 25

3.1.1.2 Namespace conversions 27

3.1.2 Name servers . 29

3.1.2.1 NDN data packet management 30

3.1.2.2 Zone data synchronization 30

v

3.1.3 Resolvers . 31

3.1.4 Query protocol . 33

3.1.4.1 Iterative query 34

3.1.4.2 Recursive query 40

3.1.4.3 Recursive and iterative query interaction 42

3.2 NDNS implementation and evaluation 44

3.2.1 Methodology . 46

3.2.2 Parameters . 48

3.2.3 Results . 51

4 NDN-based security of NDNS . 57

4.1 NDNS extension for key-certificate storage 59

4.2 Security policies . 60

4.3 NDNS security delegations . 64

4.4 Secure dynamic updates . 66

4.4.1 DyNDNS updates . 67

4.4.2 Delivery of DyNDNS updates to the authority name server 68

4.4.3 Replay attack prevention 71

5 NDNS use cases for NDN security 74

5.1 Namespace regulation in the global NDN routing system 75

5.2 Cryptographic key and certificate management for NDN applications 78

5.2.1 Repo-based cryptographic credential management 79

5.2.1.1 General limitation of repo 79

vi

5.2.1.2 Limitation of repo-based cryptographic credentials

management . 81

5.2.2 NDNS-based cryptographic credential management 82

5.2.2.1 Properties as a general storage 82

5.2.2.2 Key-certificate management on NDN testbed . . 84

5.2.2.3 Cryptographic credential revocation 86

6 Scaling NDN routing using NDNS 88

6.1 Map-n-encap for IP . 89

6.2 Map-n-encap for NDN . 91

6.3 Encapsulating using forwarding hint 94

6.3.1 Forwarding hint emulation using name concatenation . . . 98

6.4 Mapping using NDNS . 100

6.4.1 Security considerations . 103

6.4.2 Zone delegation discovery: special case of iterative query . 105

6.4.3 Mobile producer and forwarding hint updates 105

6.5 Discussion . 107

7 ndnSIM platform for simulation-based evaluations of NDN de-

ployment and NDN-based applications 109

7.1 Design . 111

7.1.1 Design overview . 111

7.1.2 Core NDN protocol implementation 114

7.1.3 Face abstraction . 115

7.1.4 Content Store abstraction 116

vii

7.1.5 Pending Interest table (PIT) abstraction 117

7.1.6 Forwarding information base (FIB) 119

7.1.6.1 FIB population 119

7.1.7 Forwarding strategy abstraction 121

7.1.8 Reference applications . 125

7.1.9 PyNDN compatible interface 126

7.2 Summary . 127

8 Related work . 128

8.1 DNS usage as distributed DB . 129

8.2 Securing global routing resources 130

8.3 Routing scalability . 131

8.4 NDN architecture evaluation tools 133

9 Conclusions . 136

References . 139

viii

List of Figures

2.1 DNS components overview . 13

2.2 Example of DNS queries . 15

2.3 DNSSEC delegation for “ndnsim.net” 17

3.1 NDNS system overview . 22

3.2 Example of iterative and reqursive query naming in NDNS 26

3.3 NDN to DNS name conversion (dnsification) 28

3.4 DNS to NDN name conversion (ndnification) 29

3.5 Interaction diagram between different types of resolvers in NDNS 32

3.6 Definition and example of NDNS iterative query (naming structure) 35

3.7 Flowchart of NDNS iterative query 37

3.8 Definition and example of NDNS iterative query response 39

3.9 Definition and example of NDNS recursive query (naming structure) 40

3.10 Data packet format for NDNS recursive query response 41

3.11 Example of DNS recursive and iterative query 43

3.12 Database schema for the NDNS prototype of the authoritative

name server . 45

3.13 Modified version of Rocketfuel AT&T topology with assigned classes

of nodes: clients (red), gateways (green), and backbone (blue) . . 47

3.14 The overall structure of the NDNS simulation-based evaluation . . 50

3.15 Absolute number of requests received by authoritative NDNS servers

versus cache sizes . 53

3.16 Percentage of queries from caching resolvers answered using NDN

caches . 54

ix

3.17 Example of per-node cache utilization (cache utilization concentra-

tions) for one simulation run with LRU cache 55

4.1 Similarities between security elements of DNSSEC and NDN . . . 58

4.2 Singleton NDNS iterative query response 60

4.3 An example of deterministic NDN name reductions by the applica-

tion security policy . 62

4.4 NDNS security policy definition 63

4.5 NDNS security delegation example 66

4.6 Dynamic update process in NDNS 68

4.7 Dynamic update generation procedure 69

4.8 Definition of the Interest-based (singular) DyNDNS update 70

4.9 DyNDNS replay attack prevention mechanism 72

5.1 NDNS-based routing announcement authorization 77

5.2 Proposed deployment of NDNS on NDN testbed 85

6.1 Example of FIB state in the Internet with map-n-encap 90

6.2 Example map-n-encap communication sequence in IP 90

6.3 Example of FIB state in NDN network with map-n-encap 92

6.4 Example map-n-encap communication sequence in NDN 92

6.5 Forwarding hint as an additional Interest selector 95

6.6 Interest processing . 97

6.7 Interests in concatenation approach 98

6.8 New FH resource record type to hold forwarding hint information 102

6.9 Iterative NDNS query process in map-n-encap NDN environment 104

x

7.1 Block diagram of ndnSIM components 113

7.2 Communication-layer abstraction for ndnSIM scenarios 115

7.3 Available forwarding strategies (Flooding, SmartFlooding, and Best-

Route are full realizations, which can be wrapped over PerOutFace-

Limits or PerFibLimits extensions) 123

xi

Acknowledgments

I would like to gratefully and sincerely thank my academic advisor Prof. Lixia

Zhang for providing invaluable support throughout my Ph.D. program. I also

want to thank my colleagues from UCLA’s Internet Research Laboratory Zhenkai

Zhu, Yingdi Yu, and Wentao Shang for their support and valuable discussions,

without which this work would not have existed. I am also enormously grateful

to our collaborators Prof. Van Jacobson, Prof. Beichuan Zhang (University of

Arizona), Prof. Lan Wang (University of Memphis), and many other members

of the NDN team for insightful discussions that built up my understanding of

the network architecture design in general and Named Data Network design in

particular. Also, I have a special thanks to Allison Mankin (VeriSign) for providing

many crucial insights on the current DNS protocol design, which influenced many

decision made for the NDNS system design. I am also very much obliged to Neil

Tilley and Janice Wheeler for the valuable input and suggested corrections to the

draft of my thesis.

xii

Vita

2005 B.Tech. (Computer Science), Bauman Moscow State Technical

University, Moscow, Russia.

2007 M.Tech. (Computer Science), Bauman Moscow State Technical

University, Moscow, Russia.

2011 Exemplary Reviewer IEEE Communication Letters

2012 M.S. (Computer Science), UCLA, Los Angeles, California.

2011–2012 Teaching Assistant, Computer Science Department, UCLA.

2008–2013 Graduate Research Assistant, Computer Science Department,

UCLA.

2012 Research Intern, Palo Alto Research Center (PARC), Palo Alto,

California.

2012 The IEEE Communications Society Best Tutorial Paper Award

(for the “Host-to-host congestion control for TCP” paper)

Publications

A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-host congestion

control for TCP,” IEEE Communication Surveys and Tutorials, vol. 12, no. 3,

2010.

A. Afanasyev, J. Wang, C. Peng, and L. Zhang, “Measuring redundancy level on

xiii

the Web,” in Proc. of AINTEC, 2011.

E. Kline, A. Afanasyev, and P. Reiher, “Shield: DoS filtering using traffic deflect-

ing,” in Proc. of IEEE ICNP, 2011.

V. Pournaghshband, L. Kleinrock, P. Reiher, and A. Afanasyev, “Controlling

Applications by Managing Network Characteristics,” in Proc. of IEEE ICC, 2012.

L. Wang, A. Afanasyev, R. Kuntz, R. Vuyyuru, R. Wakikawa, and L. Zhang,

“Rapid Traffic Information Dissemination Using Named Data,” in Proc. of ACM

NoM Workshop, 2012.

C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, “Adaptive Forwarding

in Named Data Networking,” ACM Computer Communication Reviews, vol. 42,

no. 3, 2012.

A. Afanasyev, I. Moiseenko, and L. Zhang, ”ndnSIM: NDN simulator for NS-3,”

Tech.Report NDN-0005, 2012

C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A Case

for Stateful Forwarding Plane,” Computer Communications, vol. 36, no. 7, 2013.

A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “Interest

Flooding Attack and Countermeasures in Named Data Networking,” in Proc. of

IFIP Networking 2013, 2013.

Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized Dataset State Syn-

chronization in Named Data Networking,” in Proc. of IEEE ICNP, 2013.

xiv

CHAPTER 1

Introduction

The recently proposed Named Data Networking (NDN) architecture [JST09, EBJ10,

SJ09] aims to replace the existing Internet infrastructure, fixing its long-standing

problems and better supporting the current communication patterns. In particu-

lar, NDN shifts primary communication orientation from point-to-point channels

(or connections) to data, which largely reflects recent changes in usage of the In-

ternet. In most cases, we are no longer using the Internet to reach a particular

host, instead we simply want to get a specific piece of data, be it today’s news

page, latest tweets on a particular topic, or a Netflix movie. Many complexities

and kludges have been introduced to mitigate this inherent misalignment between

the existing Internet architecture and its primary use today, such as DNS-based

redirection towards content delivery networks [NSS10], load balancers in front of

web servers, application-level (HTTP) caches, and many other systems. NDN

architecture aims to provide a direct network-level support for such data-oriented

application uses, providing in-network storage and caching opportunities, switch-

ing to a receiver-driven communication model, and, most importantly, incorpo-

rating a fundamental building block to improve security by requiring that all data

packets be cryptographically signed.

1.1 Operational challenges in NDN

Although NDN as an architecture inherently provides numerous communication

benefits, it is important to mention that several of these benefits come at an oper-

1

ational cost. The network is no longer completely application-agnostic, providing

just a simple channel-based packet delivery; in fact, the NDN network provides

an ecosystem for applications to function. While there is still Interest and Data

packet forwarding that is largely independent from applications, the network uses

application names directly (same as applications use network-friendly names) for

forwarding purposes, and it is vital for NDN to provide adequate namespace regu-

lation to avoid unexpected and highly undesirable namespace clashes or conflicts.

Another part of the ecosystem is cryptography support. While NDN defines

and requires that each Data packet be signed with an application-selected cryp-

tographic signature, it is still the architecture’s responsibility to ensure proper

publication, storage, and retrieval of the public keys and public key certificates,

so the Data packet recipients can verify the signature and decide whether to use

the packet or discard it.

Finally, NDN needs a scalable Interest forwarding mechanism. As NDN does

not feature a separation between an IP address space for hosts and a namespace

for domain names that are mapped to IP addresses using DNS, all communication

happens using application-level names, which can be roughly seen as forwarding

packets directly on DNS names. Given the existing problems with managing a

very limited number of IP prefixes within a global routing system, it is unfeasible

to assume that a conventional routing system would be able to handle upwards

of billions of NDN names: the current BGP global routing system is struggling

to support approximately 600,000 IP prefixes [ATL10], while there are already

two billion more of second-level domain names [Ver12]. At the same time, it is

unrealistic to assume that a routing system will not be used at all; flooding is not

an option on a global scale. Thus, there is a great operational need to have a

manageable solution for the scaling problem as NDN achieves wider adoption.1

1One completely different direction that is currently being explored inside the NDN team
and is outside the scope of the current thesis is hyperbolic routing [PKB10, BPK10, KPK10],
which is a type of a greedy routing that takes into account topology and topological properties

2

1.2 NDNS

Solutions to the operational challenges in NDN above assume the existence of

some sort of authoritative database, which allows for storing namespace delegation

information for NDN namespace regulation, cryptographic information for general

NDN-based applications (Chapter 5), and mappings between routable or non-

routable names (Chapter 6). All of these pieces of information use hierarchical

names and namespaces to provide data scoping and localization: all data belonging

to a particular user (e.g., his or her cryptographic credentials) can be stored under

a single namespace. Therefore, the assumed database has to be directly based

on names, and specifically on hierarchical names, to identify individual records

and sets of records. Also, the management of these records has to be done in a

distributed way, so each individual user or provider can independently decide how

much and what data to be stored, without requiring any additional communication

or coordination with other elements of the system. Clearly, the one system that

exactly satisfies these criteria is the Domain Name System (DNS) [Moc87b, Eas99]

infrastructure. While originally designed to provide a simple name-to-IP mapping

service, DNS is essentially a large, highly scalable, and highly distributed database

that is based on and managed using the hierarchy of names. More than 25 years

of deployment and active use proved that DNS made the right designe choices,

allowing its use in a wide variety of network and application related tasks.

The present work aims to design NDNS, a scalable and distributed database

by applying DNS design choices and concepts within the NDN architecture. The

objective of the work is not to merely port DNS to NDN, but to understand how

DNS design principles can work within a pure data-centric communication model

provided by NDN, which design choices can be borrowed directly, and what should

of Internet-like networks. The main objective of this research direction is to eliminate the need
to maintain “full” routing tables and use special coordinates to enable guessing the path on
which to forward the Interest, which is comparably good as if it was calculated based on the
knowledge of the full topology using the shortest paths algorithms.

3

be redesigned in order to fully utilize the benefits of the NDN architecture.

1.2.1 NDNS design highlights

DNS, as a protocol, relies heavily on IP-based memoryless channels for packet

exchange. For example, every time a request is sent out, it is directed to a specific

name server: the selected root server (or its anycasted copy), the selected top-

level domain (TLD) server, the selected second-level domain (SLD) server, etc.

Every time the request is sent, the requester (iterative querier) asks the selected

server the same question, while getting back potentially different answers: negative

responses, referrals, or final answers, depending on the knowledge held by the

server about the request.

Interest packets in NDN are almost equivalent to DNS queries. They both

specify the requested name, and both expect to receive one answer. However,

there are two fundamental properties of an NDN network that prevent direct

translation of DNS queries into Interest packets. First, unlike DNS queries, Inter-

est packets cannot be ambiguous: it is not possible to express exactly the same

Interest and get two completely different answers. NDN’s Interest must uniquely

identify Data; otherwise, in-network storage and caching will prevent retrieval of

more than one Data packet corresponding to the Interest.2 Second, since NDN

features destination-address-less communication, the Interest name needs to in-

clude directly or indirectly the authority in question. That is, if the query is

intended for a SLD server, the SLD server’s authority needs to be included in the

Interest, along with a potential hint on how to forward the Interest on toward this

authority (Chapter 6).

2Technically, within the current definition of NDN’s Interest, it is possible to use various
Interest selectors, including an exclude filter, to retrieve different Data packets using the same
Interest name. However, usage of the Interest selectors should be as minimum as possible,
as it most likely will result in “slow-path” processing, similar to the current processing of the
non-standard IPv6 headers by high-speed routers.

4

NDNS is making an attempt to solve this problem by modifying some of the

basic DNS elements, shifting channel-focused design to a pure data-centricity. In

particular, NDNS explicitly separates zones and zone records (labels), making it

necessary to send specific Interest packets to specific zones. This is seemingly in

contrast to the existing DNS, where a domain name does not explicitly separate

zone and labels. At the same time, the underlying iterative query process performs

such separation implicitly, relying on IP-based memoryless channels. In other

words, NDNS just brings implicit separation to the explicit plane.

The major benefit of the explicit separation is that there is no longer an ambi-

guity between different Interests. If the question is intended to be answered by a

SLD’s zone, the querier expresses the Interest for a SLD’s zone and the appropriate

label. The “location” of a specific zone can be hinted by including a forwarding

hint, as described in Chapter 6. The Interest formatted in this manner does not

really specify a specific destination, as rather an authority over who should have

an authoritative answer to the question; it is still the network’s task to get the

requested data as fast as possible using all available means.

1.2.2 NDNS design benefits

Since one of the primary tasks of the DNS/NDNS system is to maintain proper

delegations from the root zone toward any other zones and domains (Chapter 3),

these delegations can be “abused” for global NDN namespace regulation (assuming

that these delegations are properly secured, see Chapter 4). In other words,

an application (e.g., NDN web-browser or email client) can restrict the set of

acceptable NDN names and namespaces used in this application to ones that

have proper NDNS delegation. For example, such an application can consider the

Data packet “/ndn/ucla/cs/alex/cv” to be valid and present it to the user only

if it is properly signed with the key, which is authorized by one of the higher-level

NDNS zones, either by “/ndn/ucla/cs/alex”, “/ndn/ucla/cs/”, “/ndn/ucla”,

5

“/ndn”, or “/”.

NDNS can also, similar to DNS, be used as a general-purpose storage sys-

tem. The current DNS is to some extent “abused” to store various information,

including DNSSEC keys, domain-mailserver mappings, IP blocklist, various an-

notations, and many others. Since NDN heavily relies on cryptography to secure

the binding between name and data, it is crucial to provide a network-supported

infrastructure for the storage and management of the cryptographic information,

including public keys and public key certificates. While NDNS is not the only

option for such an infrastructure, and an initial attempt discussed in Chapter 5

relies on another core NDN element called repo [BZA13], NDNS can provide a

more robust, better organized, and simplified management for cryptographic data.

Finally, general-purpose NDNS-based storage can be utilized to solve the prob-

lem of scaling NDN’s name-based routing. The existing DNS provides an excellent

scalability solution using IP architecture: application/service developers use vir-

tually an infinite number of domain names, which are mapped to IP addresses and

used by clients to actually reach the application or service. While not actually

deployed for various reasons, there were several proposals many years ago to scale

IP routing based on a so-called map-n-encap approach [Dee96, MWZ07, JMY08,

ASB99, GKR11]. In short, these proposals separated the IP space into provider-

dependent and provider-independent subspaces, where only very limited subsets

of provider-dependent addresses needed to be present in the global routing table.

All other provider-independent addresses needed to be mapped to one or more

provider-dependent ones, and an additional IP-IP encapsulation/decapsulation

mechanism needs to be used for global communication. The required mapping

could have easily been implemented using a DNS infrastructure and reverse DNS

zone, and it can be naturally implemented in NDNS zones. That is, the NDNS

zone can be used not only for namespace delegation, but also to provide “for-

warding hints” on where the requested Data can be located. This hint can then

6

be used in an NDN adaptation of encapsulation, either by extending Interest se-

lectors or by prepending the hint to the Interest’s name (see Chapter 6). The

actual lookup for such hints could be performed, for example, by the end-host’s

forwarding strategy, guessing (or trying several guesses in parallel) which Interests

require additional “NDNS resolution” and which do not. While it may look this

approach goes against core NDN principles of naming data, not locations, the hint

does not really introduce anything new to the architecture; rather, it just helps

the network layer facilitate discovery of the best way to satisfy the Interest. The

Interest still has to uniquely identify the requested Data, and applications and ap-

plication developers can still be completely ignorant of the particular deployment

of the application.

1.3 Common NDN simulation platform (ndnSIM)

Understanding the pros and cons of the architectural mechanisms of NDN poses a

challenge at this time. These include Interest forwarding strategies, Data packet

caching and cache management, and a full understanding of application behavior

within the new architecture. The existing NDN testbed is an important step in

this direction. However, it may be hard or even impossible in certain cases to

utilize the testbed to fully understand possible behavior nuances of prototyped

applications: the testbed has a fixed, small-scale topology, and it could be hard

to set up individual experiments and obtain desired metrics. In particular, the

NDNS system introduced in this thesis aims to solve operational challenges, some

of which do not yet exist and are not possible to be emulated on a testbed-scale.

Chapter 7 introduces another contribution of the current work and an im-

portant component needed for the new architecture: the ndnSIM simulation

suite [AMZ12]. ndnSIM was originally designed and developed to understand just

network-layer Interest/Data forwarding characteristics (e.g., evaluate options for

7

the Interest forwarding strategies and routing protocols). Since that development,

it was significantly extended by our efforts, along with the help of the community,

and was used in many evaluations at different levels of the network architecture:

resiliency to various DDoS attacks, measuring performance of different caching

strategies, and investigations at the application level, including evaluations of the

NDNS system introduced in this thesis.

Since ndnSIM’s public release in summer of 2012, we have witnessed a rapid

growth of its user community. A number of indicators suggest that we have made

a robust start towards the initial goal of making ndnSIM a common simulation

platform for the community to investigate various NDN design choices and system

properties. The project’s mailing list was set up to facilitate exchanges among

ndnSIM users; it gathered over 150 subscribers from multiple countries and has

been generating a great amount of traffic, as can be seen from the list’s archive

(http://www.lists.cs.ucla.edu/mailman/listinfo/ndnsim). Just one year

after the ndnSIM release, there have been at least 15 published papers based on

the results from using ndnSIM (http://ndnsim.net/ndnsim-research-papers.

html); four of these 15 papers are authored by the NDN team members, the rest

contributed by others from the community. The community also started making

contributions to ndnSIM development. In addition to bug reports and feature

suggestions, there are 17 public forks on GitHub, and a number of users have

contributed code development to ndnSIM (https://github.com/NDN-Routing/

ndnSIM/blob/master/AUTHORS).

1.4 Contributions of this work

Contributions of this dissertation can be summarized as follows:

• Design, prototype implementation, and evaluation of NDNS, a distributed

database system that largely mimics the structure of the DNS system in

8

http://www.lists.cs.ucla.edu/mailman/listinfo/ndnsim
http://ndnsim.net/ndnsim-research-papers.html
http://ndnsim.net/ndnsim-research-papers.html
https://github.com/NDN-Routing/ndnSIM/blob/master/AUTHORS
https://github.com/NDN-Routing/ndnSIM/blob/master/AUTHORS

today’s Internet, but operates within the NDN architecture (Chapter 3).

• Design and prototype implementation of security policies that enable strict

control over which Data packets can be signed by which key-certificates. The

designed and implemented policies essentially provide a way to secure the

NDNS design, as well as a simple and yet secure dynamic update protocol

for NDNS (Chapter 4).

• Identification of a number of operational challenges to address in order to

move Named Data Networking from an architectural blueprint to an op-

erational reality, in addition to applying the designed NDNS database to

address these identified challenges. This includes the proposal for NDN na-

mespace regulation (authorization of NDN prefixes in the routing system)

and the design for cryptographic credential management for NDN applica-

tions, preserving application control over the published Data (Chapter 5).

• Analysis of the future challenge of scaling NDN name-based routing, and

NDNS-based design to mitigate this scaling problem in a global NDN de-

ployment (Chapter 6).

• Design and implementation of ndnSIM, a common platform for simulation-

based experimentation with NDN architecture (Chapter 7).

9

CHAPTER 2

Background

This chapter briefly introduces Named Data Networking (NDN) architecture, as

well as the Domain Name System (DNS) protocol and its security extension

(DNSSEC), which comprise the primary subject of this thesis. The following

sections present a short description of the relevant parts of the architecture and

protocols. A more detailed description can be found in specialized literature, such

as [JST09, EBJ10] for NDN and [Moc87b, Eas99] for DNS.

2.1 Named Data Networking (NDN) architecture

This section gives an overview of NDN architecture, with a focus on its state-

ful forwarding plane (refer to [JST09, EBJ10, YAM13, YAW12] for more detail).

NDN is a receiver-driven, data-centric communication architecture, where all com-

munications in NDN are performed using two distinct types of packets: Interest

and Data. Both types of packets carry a name, which uniquely identifies a piece

of content that can be carried in one Data packet. Data names in NDN are hierar-

chically structured. An example name for the first segment of an HTML page for

the “ndnsim.net” website would look like “/net/ndnsim/www/index.html/%00”.

To retrieve Data, a consumer make a request by sending an Interest packet

that carries the name of the content desired. Routers use this name to forward

the Interest toward data sources, and a Data packet whose name matches the

name in the Interest is returned to the consumer by following the reverse path of

10

the Interest. Similar to IP, Interest forwarding is based on longest name prefix

match, but unlike IP, an Interest packet and its matching Data packet always take

symmetric paths.

Each NDN router maintains three major data structures:

• A Pending Interest Table (PIT) holds all “not-yet-satisfied” Interests that

have been sent upstream towards potential data sources. Each PIT entry

contains one or multiple incoming and outgoing physical interfaces: multi-

ple incoming interfaces indicate the same Data is requested from multiple

downstream users; multiple outgoing interfaces indicate the same Interest is

forwarded along multiple paths.

• The Forwarding Interest Base (FIB) maps name prefixes to one or multi-

ple physical network interfaces, specifying directions where Interests can be

forwarded.

• A Content Store (CS) temporarily buffers Data packets that pass through

this router, allowing efficient data retrieval by different consumers.

When a router receives an Interest packet, it first checks whether there is a

matching Data in its CS. If a match is found, the Data packet is sent back to

the incoming interface of the Interest packet. If not, the Interest name is checked

against the entries in the PIT. If the name already exists in the PIT, then it can

be a duplicate Interest (identified by a random number carried by each Interest)

and should be dropped, or it can be an Interest from another consumer asking for

the same Data, which requires adding the incoming interface of this Interest to the

existing PIT entry. If the name does not exist in the PIT, the Interest is added to

the PIT and forwarded along the interface chosen by the strategy module, which

uses FIB as input for its decisions.

When a Data packet is received, its name is used to look up the PIT. If a

matching PIT entry is found, the router sends the Data packet to the interface(s)

11

from which the Interest was received, caches the data in the CS, and removes the

PIT entry. Otherwise, the Data packet is deemed unsolicited and discarded. Each

Interest also has an associated lifetime; the PIT entry is removed when the lifetime

expires. Although the maximum lifetime is specified by users, it is ultimately a

router’s decision as to how long it keeps a PIT entry.

2.1.1 Repo

repo is a new communication element essential for NDN-based communications,

providing permanent storage for any kind of NDN Data. Whenever a Data packet

is put into repo, the packet can later be used to satisfy any incoming Interests

for this Data, in exactly the same way an NDN cache would do. However, there

are two fundamental differences between repo and a cache (packet buffer). First,

repo, at least in its current definition and implementation in NDN platform code-

base [NDN13a], never deletes any element from the underlying database, so that

Data packets being put into the repo stay there virtually forever. The second

fundamental difference is the mechanics of how Data packets get into the repo:

repo expects an explicit command from the user. At the same time, repo is not

exactly an application-level database or a fully managed storage. It is designed to

store Data packets regardless of the originating application, and there is no way

to issue commands to a specific repo instance.

The command interface that is currently defined requires the user to send an In-

terest for the Data that it wants to be put into the repo, attaching a special postfix

that is recognized by the repo, configured to receive Interests for such prefixes. For

example, if one wants to put an HTML page of ndnsim.net website into the repo,

it needs to send Interest “/net/ndnsim/www/index.html/%C1.R.sw/<nonce>”

to the NDN network, expecting that it will reach at least one repo. As soon as

a configured repo receives and recognizes such an Interest, it may return a Data

packet to the user (to ensure Interest/Data flow balance), remove the command

12

ndnsim.net

postfix “/%C1.R.sw/<nonce>”, and express one or more Interests for the Data

indicated by the user, e.g., “/net/ndnsim/www/index.html/%00”. The number of

required segments is determined using the segmenting protocol, which is currently

defined to use the “LastBlockID” field in the returned Data packets, indicating

the last sequence number of the last Data packet in the sequence.

2.2 Domain Name System (DNS)

The Domain Name System (DNS) [Moc87b] is a global public database system,

providing various mapping services from hierarchical domain names. The common

usages of the DNS system include mapping DNS names to IP addresses, mapping

domains to the list of mail servers, reverse mapping from IP addresses to domain

names, mapping for blacklisting purposes, and many others.

root

.edu .net ...

ndnsim

www ...

Name servers
(authoritative)

Name servers /
caching resolvers Stub resolvers

DNS name space

docs.ndnsim.net
zone

docs Internet

Figure 2.1: DNS components overview

On a high level, DNS consists of four major components: (1) domain name

space, zones, domains and resource records (RRs), (2) the DNS protocol, (3) name

13

servers, and (4) resolvers (Figure 2.1). The domain name space and RRs basically

define the name hierarchy and associate different type data to each leaf in this

hierarchy (“A” RRs provide association to IP addresses, “MX” RRs associate

mail servers to a domain, etc.). This information can be extracted via the DNS

query protocol. Name servers are the programs that actually store parts of the

domain name space and respond to incoming queries. Depending on the function,

name servers are divided into authoritative name servers, which maintain definitive

versions of RRs in a specific zone (zone is a unit of authoritative information), and

caching name servers (also usually functioning as caching resolvers), maintaining

cached versions of the RRs from diverse parts of the DNS name space. The last

component of the DNS system—resolvers—are the programs that perform access

to the stored mapping by DNS queries; in other words, they resolve the questions

to the answers. Depending on the type of queries they generate, as well their

position in the system, resolvers are divided into two categories: caching resolvers

that perform iterative queries and stub resolvers that perform recursive querying

(Figure 2.2).

The iterative query is a basic DNS query that allows discovery of the existing

mapping (or the fact that such mapping does not exist) with minimal prior knowl-

edge about the whole DNS database; it is usually performed by caching resolvers.

In particular, the only information that is necessary to initiate an iterative query

is the IP address of at least one root server. For example, if the ultimate question

is to find the IP address of the “cs.ucla.edu” domain, the query for the “A”

RR set for the domain “cs.ucla.edu” will be initially send to one of the root

servers. The root server will simply provide a referral (names and IP addresses)

to “.edu” name servers, which should know more about the question being asked.

In this example, “.edu” name servers should deliver further referral to UCLA’s

name server(s). Each time the caching resolver receives a referral, it selects one

of the name servers from the referral [YWL12] and sends it the original query.

14

? www.ndnsim.net A

Cached records:

1
2
3

Caching
resolver

Stub
resolvers

root
NS

.net
NS

.ndnsim.net
NS

1
2

3

? www.ndnsim.net A
? www.ndnsim.net A

? www.ndnsim.net A

net. NS

ndnsim.net. NS

 ndnsim.net. A
 131.179.196.70

net. NS

ndnsim.net. NS

 ndnsim.net. A
 131.179.196.70

 ndnsim.net. A
 131.179.196.70

Figure 2.2: Example of DNS queries

Eventually, the iterative query process will be terminated, either when one of

the name servers returns the queried RR set or authoritatively indicates that the

queried RR set does not exist.

The recursive querying is performed usually by the end-host’s stub resolvers

and relies on the configured access to one or more caching resolvers, which perform

iterative queries on the stub resolver’s behalf. Each recursive query, unlike the

iterative counterpart, is expected to return either the requested RR set or an

indication that such an RR set does not exist. If the query does not return a valid

answer (e.g., returns a referral), then it is assumed there is not a valid answer and

no further operations will be performed, except possibly trying to send a recursive

query to a different caching resolver.

The key advantages and success of DNS come from its excellent scalability

properties. The zone owners can replicate authoritative name servers in different

15

parts of the world (as the case with the root zone), thus distributing the load

and providing failure resiliency. Arguably more important, DNS has extensive

caching of the query results by the caching resolvers. For instance, the caching

resolver will refrain from repeating queries to the root authoritative server if it

has a cached version of the referral from a root, TLD, or SLD name server.

2.2.1 DNS Security Extension (DNSSEC)

The original design of the DNS system contained limited measures to protect

against malicious users and intentional attacks. To address these limitations and

to provide additional assurances and resiliency against potential future attacks,

the Internet Engineering Task Fork (IETF) developed DNSSEC [Eas99], a secure

and backward compatible version of the DNS protocol. In essence, DNSSEC cryp-

tographically signs each RR set and provides a way to verify signatures following

the certification chains to the known trust anchor(s), such as the DNSSEC root

zone trust anchor [IV09]. It is worth mentioning that DNSSEC leverages DNS as

a general use database to store, manage, and retrieve all necessary cryptographic

information to facilitate verification of all signed RR sets.

The following presents a simplified illustration of basic mechanics in DNSSEC

protocol. When a DNSSEC-enabled name server replies to a query, it attaches

“RRSIG” records to each of the returned autoritative RR set answers. The

“RRSIG” records contain the actual cryptographic signature and additional iden-

tification of the key (“DNSKEY” RR set) that was used to produce this signature.

The identified “DNSKEY” RR set can then be fetched by another DNSSEC query

in exactly the same manner as any other DNS RR set, the fetched RR set having

as well its own attached “RRSIG” information for further verification purposes.

To ensure that the key used to sign the records in the zone (so-called zone

signing key, or ZSK) and the key that is used to sign other keys in the zone (key

16

signing key, or KSK) are properly authorized, DNSSEC uses Delegation Signer

(“DS”) records that are installed in the parent zone and specify a hash of the

authorized KSK for the zone (ZSK is indirectly authorized by providing a proper

signature using the directly authorized KSK). The example on Figure 2.3 shows

a DNSSEC delegation chain for a “TXT” RR set for “ndnsim.net”: the “TXT”

RR set is signed with the “ndnsim.net” ZSK, which is signed by the zone’s KSK,

which is authorized by the parent “.net” zone via a “DS” record, and so on.

This way, the zone preserves the ownership over the DNSKEY records (i.e., all

DNSKEY records are stored in the zone and only in the zone, and it is the author-

itative server’s responsibility to maintain them), while the delegation information

is stored in the parent zone. The separation between KSK and ZSK was made

in an effort to optimize operational overhead in cryptographic key maintenance.

In other words, the more exposure of the key (the more frequently it is used),

the more often the key needs to be replaced. Being the most exposed, ZSK is

designed to be relatively easy to replace without the need to make any changes in

the parent zone. KSK usually uses a stronger cryptography, has limited exposure,

and can have longer lifetime, as each change would require additional modification

of the parent zone.

DNSKEY (KSK)
(DNSSEC root)

DS

DNSKEY (ZSK)

DNSKEY (KSK)

TXT

DNSKEY (KSK)

DNSKEY (ZSK)

Root zone ".net" zone

DS

"ndnsim.net" zone

DNSKEY (ZSK)

Figure 2.3: DNSSEC delegation for “ndnsim.net”

17

2.2.2 Dynamic updates in DNS

The basic idea behind dynamic DNS updates is to use a specialized form of the

DNS message (DNS Update) containing the name of the zone to update and

prerequisite, update, and additional sections. The prerequisite section contains

the list of RR states, each indicating that a particular RR set or RR data should

exist or should not exist in the zone. The update section contains the list of RRs

(RR updates) that indicate addition or removal of the existing entries in zone,

in case the zone satisfies conditions specified in the prerequisite section (for more

detail, refer to RFC 2136 [VTR97]). The prerequisite section stems from the need

to prevent update duplication, i.e., to some degree prevent potential replay attacks

on the dynamically updated zone.

The complementary RFC 2137 specification [Eas97], in addition to the basic

protocol of the dynamic DNS update, defines the security provisions that enable

dynamic updates (secure dynamic updates) for the DNSSEC-secured zones. The

specification defines two operational modes that differ on how signatures attached

to the updates are used by the authoritative name server. In both modes, the

dynamic update generator, along with the updated (or removed) RR data, pro-

vides the corresponding “RRSIG” data, which is generated using a key that has

a corresponding legitimately delegated “DNSKEY” record in the updated zone.

The main difference between the modes is that in one mode, the updated record

is installed and later served in the same form to the incoming requests, including

the updater-generated “RRSIG” data, whereas in the other mode, the RRSIG

supplied by the updater is used only for authentication and authorization pur-

poses, and the authoritative name server uses its own zone-signing key to generate

“RRSIG” data that is later attached to the updated record, when the record is

requested.

The motivation for separating these modes is that in the first mode, the au-

18

thoritative name server does not require an online key, thus making it possible

to generate stronger signatures. At the same time, not having the online key

prevents generation of “NXT” (negative responses) records, and it may prevent

AXFR transfers from working: dynamically updated records may need to be

managed separately from static records. In the other mode, the server does not

feature these limitations, but requires an online signing process, which usually

means weaker signatures.

19

CHAPTER 3

NDNS: distributed database system for NDN

DNS is arguably one of the most successful elements in the current Internet archi-

tecture. It not only resolves application-layer domain names to network-layer host

addresses, but also is used in many other name-data mapping solutions, includ-

ing DNSSEC key management, mailserver management, and literally hundreds

of other types of mappings. Given the great success of DNS, which is basically

a highly distributed and extremely well-scaled online database system, the main

goal of this thesis is to apply principles of DNS in the NDN architecture and enable

its use to solve critical operational challenges in the NDN network, including the

need for strict namespace management, NDN routing scalability, providing core

infrastructure for cryptographic support in NDN, and potentially many others.

However, it is not mere a long history of success that drove our choice to

base NDNS design on DNS, but a history-based proof that the design choices

made by DNS are the right ones. Managing data using hierarchical namespaces

and namespace (zone) delegation provides simple and distributed management,

as well as ensures virtually unlimited database storage. Iterative query process

that “walks down” the namespace delegation hierarchy guarantees access to the

database elements with minimal a priory knowledge about DNS system (i.e.,

knowing just IP addresses of root servers is enough to access any element in the

database). Dedicated caching resolvers aggregate and cache database queries from

stub resolvers embedded in user operating systems, ensuring efficient, scalable, and

failure-resilient access to the database entries. Therefore, the preservation of these

20

elements is essential for NDNS, and our choice to follow closely DNS model is just

an attempt to minimize potential design errors. In other words, the primary ob-

jective is to build on DNS principles within a pure data-centric communication

NDN-based infrastructure, and not to port blindly DNS to the NDN architecture.

Although the primary motivational example for NDNS was to scale NDN rout-

ing (see Chapter 6), the basic concepts of the designed protocol are independent

of a specific usage. This chapter provides a detailed description of the NDNS

protocol as a generic, highly scalable, distributed database system that is built on

top of the NDN architecture, assuming that routers either contain full information

about all application-level prefixes or have some other means to discover where

to send an Interest for all application-specific prefixes (e.g., can use flooding to

forward Interests). Also, this chapter does not discuss specific usage of the NDNS

system or its place in the NDN ecosystem, deferring such discussions to the later

chapters (Chapters 5 and 6). At the same time, it is our expectation that NDNS

can be utilized as a universal database for a multitude of different network and ap-

plication needs, including many existing uses of the DNS system, such as domain

to mail server mapping, servicing as a database for various blocklists, providing

service discovery, and many others.

In the rest of this chapter we introduce all elements of NDNS system and

provide a large-scale simulation-based evaluation, showing several benefits of a

tight integration between the application and network layers.

3.1 NDNS design

Similar to the conventional DNS system, NDNS consists of four major compo-

nents: namespace, protocol, name servers, and resolvers (Figure 3.1).

The namespace used and regulated by the NDNS system is a subset of the

general NDN namespace to ensure equivalency to the DNS namespace: an NDN

21

/

/edu /net ...

/net/ndnsim

/net/ndnsim/www ...

Name servers
(authoritative)

Name servers /
caching resolvers Stub resolvers

NDNS name space

/net/ndnsim/docs
zone (authority)

/net/ndnsim/docs NDN

in-network storage
(caches)

Figure 3.1: NDNS system overview

name used in NDNS should have an equivalent DNS name (by definition, every

DNS name always has an NDN equivalent). Naming in NDN can be very flexible,

and NDN imposes no restrictions on naming and name component content, ba-

sically allowing any name component to contain any binary blob, as long as the

resulting name fits into the Interest and Data packet. However, in order to main-

tain equivalency to DNS (i.e., use DNS governance by ICANN and IANA), NDNS

requires all NDNS-managed names to contain only lower-case DNS-compatible

characters, rejecting any other names like “/EDU”, “/EdU”, and others. This re-

quirement/restriction is completely non-technical and comes from the set practice

of DNS system usage: typed names (in email addresses or in a web-browser) are

expected to be case-invariant and contain only dashes and latin characters or con-

form to the internationalized domain names format [FHC03]. While it is not a

direct goal of this thesis, such a requirement technically allows some interoper-

ability between DNS and NDNS systems, where DNS can store and serve data

stored in NDNS and vice versa.

22

The protocol part of the NDNS system contains many major changes com-

pared to its DNS counterpart. These changes are due not only to the technical

necessity to change the packet format so it conforms to the new communication ar-

chitecture, but also to the fundamental changes in the communication paradigm.

In particular, as shown in later sections, the switch from a channel-centric IP

to a completely channel-less data-centric NDN requires a significant level of re-

thinking and refactoring of the NDNS/DNS querying protocol. As pointed out in

previous chapters, NDN does not feature the concept of “channels” or destination

addresses. Instead, all data exchanges are performed via expressing Interests to

the network for a specific piece of data (using the name). The network takes full

care to satisfy these Interests with relevant Data packets using any means avail-

able, both by forwarding the Interest to the data producer and returning Data

from the nearby cache. As a result, it is largely impossible for an end-host to send

queries to a specific name server, which is an implicit requirement of the DNS

protocol.

The two other parts of DNS—name servers and resolvers—are largely imported

as is into the NDNS system design: name servers store and manage zones with

domains and resource records, while resolvers perform querying operations either

in an iterative (caching resolvers) or in a recursive (stub resolvers) style. However,

it should be noted that NDNS contains an additional player that significantly

affects the protocol: data-oriented network architecture. As pointed out later in

Section 3.1.3 and confirmed via simulation-based evaluations (Section 3.2), there

is a shifted importance (towards less significance) of the caching resolver. In

other words, while in DNS the caching resolver is a major player that facilitates

scalability—namely, prevents duplicate queries from reaching higher-level name

servers—NDNS leverages NDN’s in-network storage and caching ability for the

same purpose. In essence, NDNS uses the inter-layer shared responsibility of

caching resolvers (application layer, guaranteed cache space) and NDN caches

23

(network layer, best-effort cache space) to provide scaling. At the same time, the

recursive resolver function of the caching resolvers, for simplifying and speeding

up database queries from stub resolvers, remains as important as in DNS, or can

be considered even more important.

3.1.1 Naming

Naming is a critical a part of any data-centric NDN application. Due to the fact

that NDN operates directly on application names, i.e., it mashes the network and

application layers, application developers must design the data naming model with

care, so that it guarantees correct application functionality and leverages all the

benefits of the NDN architecture. In particular, applications should be aware that

returned Data can be cached anywhere in the network and that the subsequent

Interests for the same name (or prefix) would yield exactly the same piece of Data:

the application design should not include patterns whereby the same Interest

is expected to be satisfied with different Data packets. Moreover, application

developers should avoid a system design that mimics the IP-based practice of

channel-based communication, e.g., assigning unique/random names to each Data

packet and in this process foregoing the benefits of in-network caching. An ideal

data-centric design guarantees that each unique piece of Data is named uniquely

(retrieved using a unique name in the Interest); at the same time, Interests by

independent parties for the same unique Data use identical names.

The primary conclusion from these considerations is that the Data should

have the shortest possible (and therefore least specific) name that provides Data

uniqueness, enabling potential sharing of these Data between different users in the

NDN network. For example, a simple analysis of the iterative query protocol of

DNS (see Section 2.2) can reveal that it goes against NDN requirements: the query

does not uniquely identify the requested Data. In other words, while exactly the

same DNS query is sent out to root, TLD, and SLD servers, the resulting Data can

24

be completely different, consisting of referrals to the next level or a final (positive

or negative) answer.

NDNS design incorporates a substantially changed version of the iterative

querying protocol (see Section 3.1.4.1), which includes an explicit separation of

questions for the referrals and for the final answers from authoritative servers.

The proposed protocol contains a certain amount of guesswork by the resolver

and may result in an increased number of required iterations to get the final

answer (e.g., the authoritative server cannot give the final answer until it is asked

the final question), but the explicit requests completely solve data ambiguity and

fully leverage potential of NDN caches. In other words, even though one caching

resolver may need to spend several round-trip times to get an answer, another

resolver would be able reuse intermediate results of the NDN caches.

3.1.1.1 NDNS naming model

Since an NDN name is used both by an application and by the network, it should

contain all necessary parts for proper delivery of the Interests towards the intended

Data producers (at least the first Interest for a unique piece of Data), for proper

demultiplexing of the Interests to the right application at the producer node,

and for a proper selection of the desired application data. In short, the name

should contain a “routable” prefix, an application demultiplexer suffix, and the

application-specific ending. Figure 3.2 shows an example of names for the iterative

and recursive NDNS queries, each conforming to the general three-part naming

model.

Depending on the query type (which technically are completely different appli-

cations), NDNS uses two different application demultiplexer suffixes: “/DNS” for

iterative queries (the same as names for authoritative NDNS data) and “/DNS-R”

for recursive queries (the same as names of the caching resolver’s data). The

25

/net/ndnsim /DNS /www/TXT

/com/google /DNS-R /net/ndnsim/www/TXT

scope to
route request

caching
NDNS

resolver

TXT query about
/net/ndnsim/www domain

 / DNS-R /net/ndnsim/www/TXT

Iterative queries Recursive queries

zone to route
request

authority
NDNS app

TXT query about www
label in the zone

 / /DNS /net/NS

 /net /DNS /ndnsim/NS

 /net/ndnsim /DNS /www/NS

Figure 3.2: Example of iterative and reqursive query naming in NDNS

routable prefix in two different query types has a slightly different semantic mean-

ing. In the case of an iterative query it specifies an authoritative zone name, which

is assumed to be properly routed and/or anycasted towards one or more author-

itative name servers (see Chapter 6 for a solution that eliminates this unrealistic

assumption). In the case of a recursive query, the routable prefix is more or less

equivalent to the scope, within which it is expected to be a functional caching

resolver. In the above example (Figure 3.2), it is expected that the caching re-

solver exists in the network’s Interest multicast domain, largely eliminating the

need for additional caching resolver discovery, e.g., using a DHCP-like protocol.

(This is also similar to the existing practice of using multicast DNS or simply

mDNS [CK13] for local resource discovery.)

For better visual separation between NDNS-namespace names and supplemen-

tary information in Interests and Data packets, all such supplemental information

(e.g., application demultiplexer and resource record type) is defined to be format-

ted in upper case letters.

26

3.1.1.2 Namespace conversions

As noted earlier, NDNS operates within a subset of the NDN namespace, which

has unique bidirectional mapping to and from the DNS namespace. The following

defines guidelines for an acceptable subset of NDN names used within the NDNS

system, as well as conversion procedures to and from DNS names.

NDN to DNS conversion (dnsification) NDNS requires use of NDN names

that are convertible (“dnsifiable”) to DNS format. In order for an NDN name to

be convertible, it should adhere to the following constraints:

• Each component of the name is less than 64 bytes.

• The total length of all components plus lengths of implicit 1-byte separators

is less than 253 bytes.

• Each component contains only characters from the DNS character set [Moc87b]

and only in lower case.

• Unicode characters (if any) are explicitly mapped into the DNS character

set using the Punnycode encoding system [FHC03].

Any name satisfying the restrictions listed above can be converted to a DNS

equivalent name (“dnsified”) using a simple procedure, as outlined in Figure 3.3:

the DNS name is constructed by inverting the order of NDN name components,

separating each component with a period (“.”) for the textual representation, or

prepending a one-byte length value (or proper offset value, if a DNS compression

mechanism [Moc87b] is used) for the DNS wire format.

DNS to NDN conversion (ndnification) The procedure of converting DNS

names to NDN names (“ndnification”) is the opposite to dnsification (Figure 3.4),

27

1: function dnsify(NDN name)

2: DNS name ← empty name

3: for component in NDN name in reversed order do

4: if component valid DNS component and is in lower case then

5: append component to DNS name

6: else

7: raise an error

8: end if

9: end for

10: if DNS name valid DNS name then

11: return textual representation or DNS wire format of DNS name

12: else

13: raise an error

14: end if

15: end function

Figure 3.3: NDN to DNS name conversion (dnsification)

28

with two exceptions. First, all DNS names are convertible to NDN names, so

the conversion operation always succeeds. Second, in order to chain dnsify and

ndnify operations (the ndnified name should allow dnsification), each DNS name

component is converted to lower case.

1: function ndnify(DNS name)

2: NDN name ← empty name

3: for component in DNS name in reversed order do

4: append lowercase version of the component to NDN name

5: end for

6: return textual representation or NDN wire format of NDN name

7: end function

Figure 3.4: DNS to NDN name conversion (ndnification)

In any further description of the NDNS protocol, the NDN and DNS notation

for zones and domains is used interchangeably, as is more appropriate for the

particular context.

3.1.2 Name servers

The concept of an NDNS name server is almost entirely borrowed from the classic

DNS design. As in DNS, NDNS name servers are the programs that authorita-

tively respond to incoming queries (Interests) in the served zones. NDNS zones

can be physically hosted on one or more authoritative NDNS name servers, which

can provide efficient horizontal scalability for the NDNS service, as well as ensure

zone reliability in the face of potential software, hardware, and link failures and

malfunctions.

29

3.1.2.1 NDN data packet management

There are several notable differences regarding how NDNS zones should be man-

aged.1 NDNS extensively uses NDN Data packets, which are basically secure

bundles of named data, providing not only assurances of data validity (see Chap-

ter 4 for more detail), but potentially enabling internal data integrity maintenance

and data corruption prevention. In other words, if a Data packet for a particular

RR set is created as soon as the RR set is modified (which implies it is properly

signed), the fact of such creating “seals” the RR set, preventing many accidental

and malicious modifications.

The process of signing a Data packet is another potentially important element

in the implementation of NDNS name servers, as it always comes with a certain

cost: the stricter the signature, the more computational overhead incurred in the

signing process. As a result, the implementation of NDNS authoritative servers

should minimize the number of signing operations and do it proactively, immedi-

ately after an RR set is modified or RR set is requested to be resigned (periodically

or after the zone’s key change). This model of proactive signing has been adopted

by the implemented prototype of the NDNS name server daemon.

3.1.2.2 Zone data synchronization

One of the crucial functions of DNS/NDNS name servers is to synchronize the

zone data between primary (hidden primary) and secondary name servers. This

synchronization requires very careful attention in the implementation. While zone

data synchronization is standardized within the DNS protocol in the form of DNS

zone transfer queries (“AXFR”), this is largely an implementation issue. Many

existing DNS name server implementations, including the dynamically loadable

1As in DNS, NDNS does not specifically define the way name servers are implemented, and
it is still choice of the particular implementation on how exactly to manage the underlying
database of resource records.

30

zone (DLZ) extension of Bind name server [Sti02], require out-of-band methods

to synchronize the underlying DNS databases, consciously prohibiting potential

disproportionate protocol overhead. For example, if a zone contains billions of

records and only one record has been modified, “AXFR”-style synchronization

would needlessly require transferring all zone records individually to each sec-

ondary server.

Following the current operational trend, NDNS does not define a procedure

for how the zone data should be synchronized between primary and secondary

name servers. A direction that will be explored as part of future work is to ap-

ply the new data-centric application patterns for the zone data synchronization.

In particular, NDN enables efficient, completely data-centric and decentralized

dataset synchronization using the ChronoSync communication primitive [ZA13],

which was successfully applied in simple multi-party text conferencing scenar-

ios, as well as within more complex scenarios, such as distributed file sharing

(ChronoShare [AZZ13]). Essentially, ChronoSync provides a way for a primary

name server to notify secondaries that a new RR set has been generated, each RR

set corresponding to an individual NDN Data packet. As soon as the secondaries

receive such notification, they can immediately start the standard Interest/Data

exchange to retrieve the updated records and install them in the local databases.

This way, even if the zone has thousands of the secondaries and there are frequent

zone updates (e.g., such as in the case of the “.com” zone), the master will never

be overwhelmed with the incoming synchronization requests because of the natu-

ral multicast support by the NDN architecture, even without building additional

synchronization hierarchies.

3.1.3 Resolvers

Following the model of DNS, the design of NDNS provisions two types of the

resolvers: caching resolvers and stub resolvers (see Figure 3.5). Caching resolvers

31

are applications installed on dedicated servers inside the ISP networks that are

responsible for performing iterative queries in response to the incoming recursive

queries from the stub resolvers (see Sections 3.1.4.1 and 3.1.4.2). Stub resolvers

are simple programs usually embedded inside applications that perform NDNS

queries upon application requests.

App Stub
resolver

Remote
DNS

server

Remote
DNS

server

NDNS
name
server

AppUser app

Caching
NDNS

resolver

recursive queries
- /DNS-R/net/ndnsim/www/TXT

iterative queries
- /DNS/net/NS
- /net/DNS/ndnsim/NS
- /net/ndnsim/DNS/www/NS
- /net/ndnsim/DNS/www/TXT

NDN cache NDN cache

End-host
library
calls

Figure 3.5: Interaction diagram between different types of resolvers in NDNS

Caching resolvers play a crucial role in the DNS protocol: they enable scala-

bility and speed up query resolution. In NDN the scalability function is shared

between the application layer of the caching resolvers and the network layer of

in-network caches. This makes caching resolvers in NDNS, to some extent, less

critical than in DNS. At the same time, the caching resolver is still a necessary

component of the NDNS infrastructure, functioning to guarantee application-level

cache (NDN’s cache is best-effort and is shared between all NDN applications)

and facilitate fast resolution of names from the stub resolvers. In other words,

the data-centric iterative querying process (Section 3.1.4.1) may require more In-

terest/Data exchanges than the equivalent DNS process, because of the desire to

leverage NDN’s in-network caching and share intermediate query results. As a

result, the caching resolver can effectively lessen the overhead of NDNS lookups

and share query results between different users at the application level.

32

3.1.4 Query protocol

The initial goal in the design of NDNS is to borrow intact most of the existing DNS

design concept, unless modification is necessary or there proves to be substantial

benefits from modifying elements.

One major change necessary due to the communication paradigm shift is an

almost complete redesign of the NDNS query format, and to some extent, both

the iterative query and the recursive query protocol. In other words, because of

the data-centric nature of the NDN architecture, any request in NDNS has to be

in the form of an Interest, needs to be appropriately named, and cannot contain

any DNS-like wire format payload. The response, on the other hand, is returned

in the form of a Data packet that can contain any payload. In particular, in the

NDNS python-based prototype implementation using PyNDN [KB11], all iterative

queries yield a Data packet containing a properly formatted response message in

DNS wire format as a payload, in addition to other required fields such as name

(with version component), freshness, timestamp, and signature. The security

and integrity of the NDNS system is discussed in detail in Chapter 4, but it is

worth noting here that NDN also imposes another major change to the protocol

(compared to DNSSEC): security granularity. NDN secures the Data packet,

that is, the whole NDNS response message, not individual RR sets, as DNSSEC

does. Although this somewhat restricts flexibility of the protocol, it assures data-

centricity and all resulting benefits of the architecture (channel independence,

efficient reuse of caches, natural multicast, etc.).

The rest of this section discusses necessary changes to (or new designs of) the

iterative and recursive query protocols in detail.

33

3.1.4.1 Iterative query

Since NDN inherently does not have the concept of a destination address, there

is a need to somehow bring the implicit communication with the intermediate

name servers into the explicit plane. In other words, requests for the root zone

data should be different from requests for an SLD’s zone data. Also, keeping

the objective of leveraging NDN caches, requests from different end-hosts towards

the root server asking for a “.com” referral should always have the same name,

regardless of what the original request was.

To address these challenges, the proposed NDNS design significantly changes

how iterative queries are performed:

• Instead of asking a name server, Interests are expressed for data in a specific

zone, with the potential of requesting a hint where the authoritative name

server could be located (see Chapter 6).

• Each question to different zones is unique, even if asking about the same

domain. This way, referrals can be clearly separated from the real answer

or subsequent referrals.

• Each step of the iterative query progressively specializes the asked question:

the least specific question is towards the root zone (asking for the SLD

referral) and the most specific question is to the final zone authority. In this

way, intermediate results can be effectively cached and then reused by later

Interests from the same or other iterative resolvers.

The last change is the most intrusive and potentially most violating of basic

DNS principles: name servers no longer receive the full question that iterative

resolvers are searching for, rather a subquestion for intermediate information.

The primary loss is that if the name server somehow knows the answer to the

final question, it cannot return the answer, since it is being asked a completely

34

different intermediate question, requiring unnecessary iterative operations. While

it is no doubt a shortcoming, this is not a foundational problem; in practice

authoritative servers usually have very limited knowledge, therefore the process

essentially requires a complete set of iterative queries to get to the final answer.

Query structure The structure of the iterative query introduced in this section

still follows the basic principles of the DNS system. There are zones, zones can be

further delegated, resource record sets can be placed at all levels of the hierarchs,

and access to these sets is performed through a query protocol. (The process of

zone delegation itself is performed via installation of “NS” resource records in

the parent zone.) The format of an NDNS iterative query is formally defined in

Figure 3.6, with associated examples.

NDNS iterative query ::= AuthorityZone
"DNS"
RR label
RR type

AuthorityZone ::= (NDNS Name Component)*

Interest
/net/ndnsim/DNS/www/TXTName:

RR label ::= (NDNS Name Component)*
RR type ::= "NS" | "TXT" | ...

NDNS name component is an NDN name component,
conforming NDNS restrictions (lower case of DNS
character set)

Interest
/DNS/net/NSName:

Interest
/net/DNS/ndnsim/NSName:

Interest
/net/ndnsim/DNS/www/NSName:

Figure 3.6: Definition and example of NDNS iterative query (naming structure)

The following description is based on a pure data-centric communication model,

completely ignoring any location-specific semantics. In particular, even though

the zone delegation process in NDNS still uses “NS” RRs, which specify names of

NDNS name servers to which a corresponding subzone is delegated, in this chap-

ter we do not associate any location-specific information (like “A” or “AAAA”

RRs) with these names. Instead, the fact of the delegation itself is used as a piece

of information necessary to proceed with the iterative query process. While it

may seem redundant (e.g., why not simply define a new boolean-type RR indi-

cating the fact of the delegation?), this choice allows for inter-operability between

35

existing DNS and NDNS systems: when NDNS data is delivered over IP, the

DNS server would be able to include necessary “A” and/or “AAAA” type “glue”

records. More importantly, as described in Chapter 6, even within NDN, names

could be further mapped to dedicated “routable” name prefixes that can be used

as forwarding hints for NDN routers as to which direction (which face) is the best

way to find the requested Data. Note that NDN routers still retain full control on

where Interests are actually forwarded or whether or not to use in-network storage

and caches to satisfy these Interests.

Query process The iterative query process, outlined in Figure 3.7, always be-

gins with the most generic question: the initial question is always about the del-

egation of the top-level domain. For example, if the input to the iterative query

is “/net/ndnsim/www” (or its equivalent dnsified version “www.ndnsim.net”) and

the objective is to discover the “TXT” RR set, the first question/Interest will

be for “/DNS/net/NS” zone delegation Data. This question will be directed to

any NDNS root server (directed to the root zone itself), which should be al-

ways properly routed (anycasted) in the NDN routers’ FIBs. If the returned

answer is positive (as should be in our example) and contains one or more “NS”

RRs, the query process assumes that the zone (“/net” zone) has been prop-

erly delegated and all questions regarding domain names within this zone should

be addressed to it directly. In other words, the iterative query process needs

to discover whether a higher-level zone (“/net/ndnsim”) is further delegated or

not. More specifically, the second question in our example would be an Interest

for “/net/DNS/ndnsim/NS” zone delegation Data, which NDN routers will direct

towards one of the active “/net” zone authoritative name servers or to some

in-network caches.

This process of delegation discovery proceeds until it is clear that no fur-

ther delegation exists. For example, when “/net/ndnsim/DNS/www/NS” Inter-

36

NDNS iterative query

Input: NDNS name
Input: RR type

Discover zone delegation
Express interest: AuthZone + "DNS" + Label + "NS"

Check Data.Content.Type

Abort on
timeout

AuthZone = "/"
Label = "/"

Label = Label + <Next Component of NDNS name>

AuthZone = AuthZone + Label
Label = "/"

NDNS
Auth?

NDNS
Resp?

NDNS
Nack?

Make final query
Express interest: AuthZone + "DNS" + Label + RR type

Terminate

Return
Data

/DNS/net/NS
/net/DNS/ndnsim/NS
/net/ndnsim/DNS/www/NS

/net/ndnsim/DNS/www/TXT

Discover zone delegation

yes

yesyes

nonono

Abort on
timeout

Abort

/net/ndnsim/www
TXT

Figure 3.7: Flowchart of NDNS iterative query

est returns a negative autoritative NDNS response, it is an indication that the

zone is not delegated, “/net/ndnsim” is fully responsible for any RR within

the zone, and the iterative querier needs to format and express the final query

to the zone. In our case, the querier would need to express the Interest for

“/net/ndnsim/DNS/www/TXT” Data, which would be authoritatively satisfied ei-

ther with a valid record or with a negative response.

Necessary extensions As may be inferred from Figure 3.7, the process of

finding proper delegation grows more complex than the above example. If it

happens that the “/net” zone has delegated not “/net/ndnsim”, but rather the

“/net/ndnsim/www” zone (while unlikely in the case of top/second-level domains,

37

such delegation is common for third+ level domains), there is a certain ambiguity

of what the “/net” zone should return as part of a “/net/ndnsim/DNS/www/NS”

Data packet. On the one hand, the authoritative name server does not have

the exact answer to the question, and it should return some negative response,

which should not be mistaken for delegation termination. On the other hand,

the name server has a more specific answer (“/net/DNS/ndnsim/www/NS” Data),

but it cannot return this Data since it was asked a completely different question.

To resolve this problem, NDNS defines a new “NDNS authority” response type,

indicating that the zone does not have the exact match for the question, but it is

expecting to receive a more specific question.

Packet format optimization While it is possible to reuse the DNS message

packet format for NDNS responses, and it provides full DNS-inherited flexibility,

the NDN packet format itself provides a substantial level of flexibility, as well as

mandates certain fields that may duplicate functionality of a DNS message. For

example, an NDN packet must have a name which is at least the prefix of the

corresponding Interest name. (In our prototype implementation the Data name

is exactly the Interest name plus one component, indicating the “generation” or

“version” of the requested RR set.) The Interest name already fully represents

the original question: the zone, the label, and the resource record type, all of

which will have to be duplicated as part of the DNS message that is put as part

of the NDN Data packet content. Besides the name, NDN mandates other fields

that are equivalent to DNS message elements. For example, the “freshness” field

serves exactly the same purpose as TTL fields in a DNS message, but just on

the network layer instead of the application layer. Since one of the main goals of

NDNS design (at least with respect to the iterative query process) is to leverage

NDN in-network storage as much as possible, but not to break application-level

functionality, it is necessary that the freshness parameter be set to exactly the

38

same value as the TTL field for requested records (i.e., the NDN Data packet

should be cached no longer than TTL). Finally, an NDN Data packet contains

(explicitly or implicitly) a “Type” field that indicates the type of carried payload.

There is nothing to prevent using/abusing this field to indicate the type of NDNS

answer, instead of relying on inference-based distinguishing between negative and

positive responses from the DNS message [Moc87b].

NDNS iterative response ::= Name
Content
Signature

Name ::= Iterative query name + <serial>
<serial> is a "version" of a specific RR set and
could be considered as a rough equivalent of
zone's serial number, but with RR set granularity

Content ::= Type
Freshness
ContentBlob

Type ::= "NDNS Resp" |
 "NDNS Nack" |
 "NDNS Auth"

ContentBlob ::= Number of RR datas
(RR data)*

Data
/net/ndnsim/DNS/www/TXT/20130823Name:

Type: "NDN Resp"
Freshness: 3600
ContentBlob:

Content:

1
<"NS-3 based
NDN simulator">

Figure 3.8: Definition and example of NDNS iterative query response

All of the above considerations lead to the conclusion that NDNS should use

a more optimal format that not only eliminates unnecessary redundancies, but

also is more NDN-friendly. For instance, application design using NDNS could be

simplified significantly if there is no need for the application to understand wire

format and complex semantics of the DNS protocol. The proposed format for an

NDNS response message is illustrated in Figure 3.8. In essence, the content of

the NDNS Data packet returned for the iterative query Interest is just a sequence

of raw DNS-encoded RR data, while the number of items is indicated in the

first byte of the content. The newly defined NDN Data packet types “NDNS

Response,” “NDNS Nack,” and “NDNS Authority” correspond respectively to

a positive NDNS response, negative response, and a request for a more specific

question to the zone.

39

3.1.4.2 Recursive query

The primary purpose of the recursive query is to enable an optimized NDNS

database lookup process and application-level caching of the results. The recursive

query process is almost equivalent to the existing DNS protocol, with several

exceptions. First, as with the iterative query, the DNS query message is completely

replaced by the properly named Interest, indicating the scope (if any), query type,

and parameters (Figure 3.9). (It is worth repeating that although the Interest

can explicitly specify the intended scope, this scope will not necessarily result in

forwarding Interest to a specific caching resolver: the Interest can be diverted or

satisfied from caches, i.e., the scope is not the same as the destination address in

IP architecture.)

NDNS recursive query ::= Scope
"DNS-R"
NDNS Name
RR type

Scope ::= (Name Component)*
NDNS Name ::= (NDNS Name Component)*
RR type ::= "NS" | "TXT" | ...

NDNS name component is an NDN name component,
conforming NDNS restrictions (lower case of DNS
character set)

Interest
/DNS-R/net/ndnsim/www/TXTName:

Interest
/com/google/DNS-R/net/ndnsim/www/TXTName:

Figure 3.9: Definition and example of NDNS recursive query (naming structure)

The second major difference is the format of the returned Data packet. The

NDNS response to the recursive query is explicitly distinguished from the iterative

query response. In particular, the returned Data packet is not a DNS-formatted

message or the optimized NDNS packet, but rather an NDN Data packet that

encapsulates another NDN Data packet, which, as shown in Figure 3.10, is the

final answer to the original query that the caching resolver looked up in its caches

or requested from the proper authoritative name server.

For example, if one sends a recursive query with the scope “/” or “/localnet”

(equivalent to using an ISP’s caching DNS servers; for example, if the scope is

40

NDNS recursive response ::= Name
Content
Signature

Name ::= recursive query name + <id>
<id> ensues uniqueness of the
NDN Data packet name. Can be, for
example, a timestamp value.

Content ::= Type
Freshness
ContentBlob

Type ::= "NDNS Recur"
ContentBlob ::= NDNS iterative response

encapsulated Data
/net/ndnsim/DNS/www/TXT/20130823Name:

Type: "NDN Resp"
Freshness: 3600
ContentBlob:

Content:

1
<"NS-3 based
NDN simulator">

Data
/localnet/DNS-R/net/ndnsim/www/TXT/1377326330Name:

Type: "NDN Recur"
Freshness: 3600
ContentBlob:

Content:

Figure 3.10: Data packet format for NDNS recursive query response

selected/configured to be “/com/google”, then it would be equivalent to using

Google’s public caching DNS servers) with the query asking about the “TXT”

record(s) for the “/net/ndnsim/www” domain, the actual query will appear as

“/localnet/DNS-R/net/ndnsim/www/TXT”, while the returned NDN packet will

contain an internal payload with another Data packet “/net/ndnsim/DNS/www/TXT”,

which was looked up from the application cache or requested through the iterative

query process.

There are two main reasons why we chose such a composite packet format

(encapsulation) for the NDNS recursive query responses. First, the Data packet

names must exactly match Interest prefixes; i.e., the answer names must include

Interest prefixes (and since before an iterative query is performed, it is not known

which zone has authority over the requested record, the stub resolver cannot ask

the right question). Second, and maybe even more important, is the granularity

of the security in NDN/NDNS (see Chapter 4). NDN signs the whole Data packet

(= RR set); therefore, to preserve the security properties of the iterative query

result, it is necessary to keep the whole packet intact. Therefore, a composite

encapsulation-based packet format is the only option. This is conceptually differ-

ent from DNSSEC, where several independent RR sets and their signatures can

be included as part of one DNS message.

41

While the composite format results in a certain level of redundancy (e.g., the

recursive query name and the encapsulated iterative query name largely repeat

each other), in reality, the encapsulated iterative query Data packet name includes

additional information, which was unknown before and could be utilized later. In

other words, the name of the encapsulated iterative query explicitly specifies the

zone responsible for the record, which, while we are not explicitly defining it in

NDNS design, can potentially be utilized in implementations of the stub resolver;

e.g., the resolver may elect to ask an iterative query question if it knows exactly

to which zone/authority such a question should be addressed.

3.1.4.3 Recursive and iterative query interaction

Figure 3.11 illustrates an example of a recursive query, issued by the stub resolver,

and the underlying iterative query resolution, performed by the designated caching

resolver.

Note that each returned NDN Data packet contains proper security credentials,

allowing any receiver to verify the legitimacy and accuracy of the answer. At the

same time, in the case of a recursive query, the returned Data packet actually

contains two signatures, which have differing importance. The one (the outer)

signature is generated by the caching resolvers, specifically for the request (of

course, the created Data packet can be later cached and used for error recovery,

or shared between different users, if they happen to be interested in the same

Data). The other (the inner) signature is the one that the authoritative name

server has assigned to the RR set. Depending on the trust relations between the

stub and caching resolvers, the stub resolver may either trust the answer from

the caching resolver entirely (verifying only the caching resolver’s signature, as

is usually the case with local ISP caching resolvers) or trust only the original

authoritative name server signature (e.g., in the case of a public NDNS server).

Moreover, a particular implementation of the caching resolver may elect to use a

42

Cached data packets on caching
resolver and NDN caches

1
2
3

Caching
resolver

Stub
resolvers

root
NS

/net
NS

/net/ndnsim
NS

/localnet
/DNS-R
/net/ndnsim/www
/TXT

Interest

Data

/localnet
/DNS-R
/net/ndnsim/www
/TXT encapsulated Data

/net/ndnsim
/DNS
/www
/TXT

TXT RR data

4

/DNS/net/NS
/net/DNS/ndnsim/NS
/net/ndnsim/DNS/www/NS

/net/ndnsim/DNS/www/TXT

1
2
3
4

NS RR data
/DNS/net/NS

NS RR data
/net/DNS/ndnsim/NS

NS RR data
/net/ndnsim/DNS/www/NS

TXT RR data
/net/ndnsim/DNS/www/TXT

Figure 3.11: Example of DNS recursive and iterative query

very weak but fast signing algorithm (to provide basic assurance of the returned

Data packet integrity) without compromising the security of the NDNS protocol

in general, since it is always possible to double-check whether the returned answer

was indeed generated by a legitimate authoritative name server, which should be

pre-created in advance (see Section 3.1.2) and can use stronger cryptographic

signatures.

43

3.2 NDNS implementation and evaluation

We have implemented a python-based prototype of the NDNS system that is pub-

licly available at http://github.com/cawka/ndns. The implementation includes

an ndns python module, as well as a set of command-line tools that provide a

simple and user-friendly command-line interface to the module functions. In par-

ticular, we have used a PyNDN module [KB11] to provide necessary NDN support

for the module (e.g., creating NDN Data packets, expressing Interests, etc.), and

a dnspython module to provide abstractions and wire format conversion for DNS

protocol elements (DNS message, DNS name, RR data, RR set, etc.).

The iterative and recursive query process has also been implemented in JavaScript

using the ndn-js library [STC13] and been made publicly available as well [Sha13].

While our immediate plan for future work is system deployment on an NDN

testbed and enabling its use as a universal database for various application needs,

this deployment may require implementation (or reimplementation) of the NDNS

library in other languages (C, C++, Javascript, etc.) as well.

The available command-line tools in the implemented prototype can be divided

into four groups, based on their function:

1. ndns-daemon: an implementation of the authoritative NDNS name server.

2. ndns-dig: a command-line tool providing an interface to the ndns module

to execute iterative and recursive NDNS queries.

3. ndns-create-zone, ndns-destroy-zone, ndns-zone-info, ndns-show-zone,

ndns-add, ndns-rm, ndns-show, and several others: command line tools for

local management of the NDNS zone for the authoritative name server.

These tools are necessary and the NDNS zones are not simply managed using

plain-text zone files (which is a common practice in DNS), in that NDNS

stores and manages the zone as a collection of pre-created NDN packets.

44

http://github.com/cawka/ndns

Therefore, adding or removing records in the zone involves operations of

creating, modifying, and removing relevant NDN packets, while creating

and destroying the zone itself requires proper security management (see

Chapter 4).

4. dyndns-keygen, dyndns-info, dyndns-add-rrset, and dyndns-rm-rrset:

a set of command-line tools that can be used for remote and secure man-

agement of the NDNS zone records using a dynamic NDNS update protocol

(see Section 4.4 for more detail).

i d integer(10)

name blob

default_key_id integer(10)

zones

i d integer(10)

zone_id integer(10)

label text

class integer(10)

type integer(10)

ndndata blob

rrsets

i d integer(10)

rrset_id integer(10)

t t l integer(10)

rrdata blob

rrs
table keeps track of

i d integer(10)

zone_id integer(10)

name blob

rrset_id integer(10)

keys

Figure 3.12: Database schema for the NDNS prototype of the authoritative name

server

The zone management in our implementation is based on the sqlite database

with the database schema outlined in Figure 3.12. The main idea behind the

command-line tools for local zone management and the use of a sqlite database

is to provide simple access to NDNS zone abstractions (zone, RR sets, individual

records) and at the same time enable pre-creation of NDN data packets containing

RR set data, which can be immediately returned when requested. This minimizes

45

(and potentially eliminates) the need for online NDN data packet creation, which

can be prohibitively costly, e.g., when a very strong cryptographic signature algo-

rithm is used.

Also, as pointed out in Section 3.1.2, NDN data packets provide additional as-

surances that the data stored in the database have not been corrupted maliciously

or unintentionally (e.g., due to disk failure). In addition, the model used provides

a partial database backup: the database structure is a re-generateable “index” to

the stored NDN data packets with NDNS content.

3.2.1 Methodology

To perform our experimentation, we used our ndnSIM simulation platform (see

Chapter 7), which was extended to support pure application-based evaluations.2

In addition to enabling a full application API that conforms to the unified NDN

API guidelines,3 we added a PyNDN-compatible python interface to ndnSIM, al-

lowing it to run the unmodified NDNS authoritative name server prototype and

iterative query code within the simulated environment. To make sure the stan-

dard system-level python libraries, such as time and random, return simulation-

aware data, time.time() returns current simulation time, not the real time, and

random.random() returns simulation-run specific value, so that multiple runs of

the same scenario produce matching results. This approach in general is equivalent

to the NS-3 DCE effort [Lac10], but is aimed specifically for python-based appli-

cations. While the python-based application simulation is no doubt slower than

the equivalent C++ implementations, python is a great tool for fast prototyping

of applications. Evaluation of the real code in the large-scale simulated environ-

2Since the initial goal of the ndnSIM was to enable evaluation of network-layer operations of
the NDN architecture, the initial implementation contained a very limited API for applications.

3As of the time of the writing, ndnSIM has been made compatible with the initial specifi-
cation NDN API guidelines and is expected to be further modified as soon as the specification
finalizes. When completed, the new (and ported existing) NDN applications will be source-code
compatible with ndnSIM and easily run inside the simulation platform.

46

ments is not only important for understanding properties of the application and

application-network interactions, but also an important way to ensure implemen-

tation correctness, address memory problems, and identify/correct computational

bottlenecks.

To perform our evaluation we chose a modified version of a Rocketfuel-mapped

AT&T topology [SMW02], consisting of 625 nodes and 2,101 links (Figure 3.13).

Figure 3.13: Modified version of Rocketfuel AT&T topology with assigned classes

of nodes: clients (red), gateways (green), and backbone (blue)

Our modifications include removing a small number of disconnected nodes from

the original measurement-based topology and adding a few additional links to en-

sure the desired topological parameters. We applied a simple heuristic (http://

47

http://github.com/cawka/ndnSIM-sample-topologies
http://github.com/cawka/ndnSIM-sample-topologies

github.com/cawka/ndnSIM-sample-topologies) to separate the topology nodes

into three categories: clients, gateways, and backbone nodes. All nodes with de-

gree one were assigned to the client category. All nodes with degree two that are

not directly connected to other client nodes, were also assigned to the client cat-

egory (296 client nodes in total). All nodes that are directly connected to clients

were assigned to the gateway category (108 nodes), and the rest were assigned

to the backbone category (221 nodes). In order to fully emulate the concept of

the backbone (the core transport for the network), we added at random several

links to ensure that a subset of backbone nodes forms a fully connected graph.

This topological property allowed us a simple set up of Interest forwarding in the

network that follows the “valley-free” policy [GR00] of inter-domain routing on

the Internet: traffic between different ISPs (gateways) never goes through client

networks (clients), and in most cases (unless there is an explicit peer-to-peer agree-

ment) involves communication through the tier-1 network (backbone). In each run

scenario, we assigned small random weights to backbone-to-backbone links, larger

random weights for backbone-to-gateway links, even larger weights for gateway-

to-gateway links, and the largest weights for client-to-gateway connections. After

this link weight assignment, correct routing is set up through a shortest-path

calculation using the Dijkstra algorithm for each node in the topology.

In our evaluation we used the relative evaluation metric, representing a relation

of the number of Interests (iterative queries) that reach the authoritative name

server(s) versus the total number of issued queries. This metric provides a measure

of the network-level support that facilitates performance of the evaluated NDNS

protocol.

3.2.2 Parameters

The main objective of the evaluations is to understand what benefits stem from

the tight integration of an application and the NDN network architecture (i.e., a

48

http://github.com/cawka/ndnSIM-sample-topologies
http://github.com/cawka/ndnSIM-sample-topologies

better application-support within the NDN architecture), potentially making ap-

plication implementation simpler and more scalable without requiring application-

level dependencies (e.g., no need for additional load balancers). In particular, our

primary interest was to estimate how NDN in-network caches can reduce the load

on authoritative name servers, compared to the existing DNS deployment. For

this purpose, we obtained a DNS query trace from a large ISP containing about 9

million queries issued within 10 minutes in May 2010. Without loss of generality

and to simplify our experimentation setup, we removed all invalid queries and

selected queries towards the “.com” zone only, totaling about 1 million queries.

As pointed out before, the caching resolver in DNS is the only mechanism that

ensures scalability property, e.g., it aggregates the incoming recursive queries and

prevents overloading the authoritative name servers with repeated requests. At

the same time, if the users choose to use different caching resolvers, then even

if the users send exactly the same sequence of queries, the authoritative name

servers will inevitably observe repeated requests for the same records. NDNS has

quite different behavior and properties. The NDNS version of the caching resolver

shares caching responsibility with the whole NDN network, and in-network NDN

caches in particular. The iterative queries, originating from different resolvers (be

it a caching resolver or a stub resolver electing to send the iterative query), can be

effectively resolved and shared using NDN’s caching. Of course, caching capacity

of the caching resolvers can be significantly larger and entirely dedicated to the

NDNS functionality, while the NDN network shares cache space among all NDN

applications. In other words, NDNS is still an important component of the NDNS

infrastructure, but (as is our hope) a less critical component.

To understand the level of NDN in-network cache assistance, we designed the

following simulation scenario. We selected 200 client nodes (≈70% of all client

nodes in the topology) to act as caching resolvers for users, who issue a subset

of the trace-based queries. (For simplicity, we did not explicitly simulate users

49

and the recursive query process, directly feeding requests from the trace into

the caching resolver.) The trace subsets were generated by randomly slicing the

original DNS query trace, with different slicing for each individual simulation run.

The positions of caching resolvers were also randomly assigned for each run of the

simulation.

The whole NDNS infrastructure used in our simulation consists of one root zone

NDNS server and 13 “/com” zone servers, which were anycasted NDN routing.

Having multiple “/com” servers reduces the potential of cache sharing in the NDN

network, since requests from different caching resolvers may be directed to different

name servers, but we intentionally chose this setup, because it more realistically

represents the network environment. Similar to the case of the caching resolvers,

the positions of the root and the “/com” zone name servers were selected randomly

for each individual simulation run, but instead of client nodes, we used a backbone

node set, i.e., name servers belonging to the core of the network, not its edges.

Figure 3.14 outlines the overall structure of our simulation experiments.

Backbone network

200 NDNS caching resolvers,
randomly placed among 298 "client" nodes

"gateway"
nodes

Root zone name server

13 "/com" zone
"anycasted"
name server

/DNS/com/NS

/com/DNS/bing/NS
/com/DNS/twitter/NS

/com/DNS/google/NS

/DNS/com/NS
/com/DNS/google/NS

...

/com/DNS/bing/NS

/com/DNS/twitter/NS

Figure 3.14: The overall structure of the NDNS simulation-based evaluation

In our evaluations we made another simplification that has a certain im-

50

pact on the results, but still preserves their generality. Our iterative trace-based

queries were performed only partially, discovering only authority delegation for the

second-level domain name. If the trace input is, for example, “www.google.com”,

in our experiment we issue a “/DNS/com/NS” query for the root zone and a

“/com/DNS/google/NS” query for the “/com” zone. The first query actually

reaches the root server only a few times during the whole simulation, since the

returned Data packet is cached everywhere. The programmed reply for the second

query is a negative answer, after which the iterative query process terminates, as-

suming that a “/com” zone has the authority over “/com/google/www” record(s).

3.2.3 Results

To measure the benefit that NDN in-network caches can provide, we varied the

capacity of the in-network caching. In our simulation we did not have any other

traffic, so the whole in-network cache capacity was devoted entirely to NDNS.

While in real environments the cache will be shared among many different ap-

plications, if the NDNS system is widely used, NDN routes may elect to reserve

certain amounts of in-network caching resources entirely for NDNS data caching,

or employ adequate cache replacement policies that prioritize frequently accessed

NDNS data. Also, to fully understand the caching effect, we varied cache capacity

from very small (10 packets) to large (10000 packets), which allows us to see the

impact (if any) of even small caches in the NDNS protocol.

It should be noted that we also have followed a general practice for caching

resolvers in that we have not restricted the application-level capacity. In other

words, if a portion of the trace selected for a particular caching resolver contains

a duplicate query (the same second-level domain name), such a query is sent out

to the network exactly once.

Figure 3.15 summarizes the cumulative effects of NDN caching on the NDNS

51

protocol in terms of the absolute number of requests (Interests) received by the

authoritative NDNS servers for each selected in-network cache capacity. The

presented values are averages among five independent simulation runs for each

scenario, with 95% confidence intervals. Figure 3.16 gives an alternative represen-

tation of the same results, plotting the percentage of the requests that are satisfied

using NDN caches. These graphs also show results for different caching strategies

(i.e., replacement policies) that can be employed by NDN routers. The main point

of showing different caching policies is not simply to show one caching policy is

better than another, but to highlight that different cache decisions (potentially

made in a collaborative fashion) can substantially improve the performance of

frequently used NDN applications, such as we hope NDNS will be. Moreover,

these decisions are completely application-independent (since they are performed

at the network layer) and can potentially benefit any application running within

an NDN architecture.

We also plotted per-node cache utilization for one of the simulations run,

mapping the value onto the topology.4 Figure 3.17 shows the results for one of

the runs with LRU cache, but the general characteristic is common to all of the

runs.

From the obtained simulation results we conclude that NDN can indeed provide

substantial benefits for an NDNS infrastructure, even with relatively small in-

network cache capacities. This finding confirms that a lot of critical functionality

is shifted in NDN from the caching resolvers to the NDN network itself. While an

ISP must still deploy a local caching resolver to further reduce duplicate NDNS

traffic and improve the query resolution experience for users, the ISP may opt to

invest more in general NDN in-network caching and storage, deploying a relatively

low-capacity caching resolver. In turn, the deployed caching capacity will be used

4Node positions on both Figure 3.17 and Figure 3.13 were assigned using the “spring”
model [KK89] that allows observing some topological properties of the network without any
relation to the geographical coordinates of nodes in the actual AT&T network.

52

0

200,000

400,000

600,000

800,000

10 100 1000 10000 100000

Maximum cache size, packets (cache size vs. query volume, %)

N
um

be
r

of
 r

ec
ei

ve
d

qu
er

ie
s

by
 a

ut
ho

rit
at

iv
e

na
m

e
se

rv
er

s

Cache type

LRU

LFU

Random

Figure 3.15: Absolute number of requests received by authoritative NDNS servers

versus cache sizes

53

0%

20%

40%

60%

10 100 1000 10000 100000

Maximum cache size, packets

P
er

ce
nt

 o
f q

ue
rie

s
sa

tis
fie

d
by

 N
D

N
 c

ac
he

s

Cache type

LRU

LFU

Random

Figure 3.16: Percentage of queries from caching resolvers answered using NDN

caches

54

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●●●

●●

●●

●●

●● ●●

●●

●●

●●

●●
●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●●●

●●

●●
●●

●●

●●

●● ●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●
●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●

●●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

● ●

●
●
●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●●●

●●

●●

●●

●● ●●

●●

●●

●●

●●
●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●●●

●●

●●
●●

●●

●●

●● ●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●
●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●
● ●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

● ●
●

●●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●●●

●●

●●

●●

●● ●●

●●

●●

●●

●●
●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●●●

●●

●●
●●

●●

●●

●● ●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●
●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●●

●

●
● ●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

● ●
●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●●●

●●

●●

●●

●● ●●

●●

●●

●●

●●
●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●●●

●●

●●
●●

●●

●●

●● ●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●
●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●
●●

●

●●
●

●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

● ●
●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●●
●

●

●

Max cache size: 10 Max cache size: 100

Max cache size: 1000 Max cache size: 10000

Cache hits

●

●

●

●

●

0

2199

8796

19792

35186

35186

19792

8796

2199

Cache hits

Figure 3.17: Example of per-node cache utilization (cache utilization concentra-

tions) for one simulation run with LRU cache

55

not only for a particular NDNS application, but also for all other applications,

and further reduce use of the costly inter-AS links.

56

CHAPTER 4

NDN-based security of NDNS

Security is the crucial element in any public database system such as DNS or

NDNS. While in the DNS system security was not a part of the original de-

sign, the usage practices showed the need to incorporate a security extension

(DNSSEC [Eas99], Section 2.2.1) as part of the protocol, eliminating various at-

tacks on the database and database users. This experience was one of the basic

motivations of incorporating security as a mandatory building block in NDN ar-

chitecture (i.e., NDN requires each Data packet be properly cryptographically

signed), requiring that we design security into the NDNS system.

The objective of the NDNS security design is to merge the best designs and

operational practices of the established DNSSEC protocol with the security prim-

itives provided by the NDN architecture.1 This way we hope to support the same

level of security not only in the application layer, but also in the network layer.

(As noted previously, the separation between layers in NDN is relatively fuzzy, as

both the network and application layers use the same basic communication units:

the same names, Interest, and Data packets.)

Figure 4.1 lists the similarities and differences between security elements pro-

vided by the DNSSEC protocol and NDN architecture. In general, both largely

overlap: the named pieces of data (RR sets in DNSSEC, Data packets in NDN)

1 While our initial idea was to follow directly all the elements of the DNSSEC infrastructure in
addition to the security elements provided by the NDN architecture, this choice inevitably creates
an additional burden of maintaining two separate security infrastructures (already maintaining
one is a notable challenge) and does not fully utilize all the benefits of a tight application-network
integration provided by the NDN architecture.

57

DNSSEC	

–  each RRset is bundled with RRSIG	

–  RRSIG “specifies/hints” DNSKEY RR
set used to produce signature using
“Key tag”	

–  DNSKEY RRset is signed by KSK
DNSKEY	

–  KSK “belongs” to the zone and is
authorized by parent’s zone using DS
record	

•  KSK is self-signed	

NDN	

–  each Data packet is bundled with a

Signature and KeyLocator	

–  NDN’s KeyLocator refers to the unique

key-certificate name used to sign data
packet	

–  Keys-certificates are also Data packets,
thus can be further signed, e.g., using
KSK or ZSK	

–  KSK can still “belong” to the zone, but
serve authorization via a proper signing
chain	

•  KSK signed by parent zone’s key	

Figure 4.1: Similarities between security elements of DNSSEC and NDN

in both cases are signed and include signature bits along with an identifier that

specifies which key to use for the verification process (RRSIG RR data with key

ID and key label in DNSSEC, and Signature block with KeyLocator in NDN).

At the same time, there are several notable differences that have an impact on

the NDNS protocol design. First, though it is a relatively minor difference, the

DNSSEC specification does not provide a unique identity for the signing key: the

key ID and key label provided in RRSIG RR do not uniquely identify a key in

DNSKEY RR set, basically requiring verifier implementations to try keys from the

RR set sequentially in order to check the validity of the signature (the number of

keys in DNSKEY RR set is usually very small, which has little to no impact on the

performance). Second and more important is the security granularity. If DNSSEC

mandates signing of individual RR sets, which can be included together into one

DNS message and returned to the requester within one DNS query, NDN signs the

whole Data packet, which is the basic data exchange unit in NDN. Essentially, this

requires either multiple explicit queries for specific RR sets (as in the case of the

iterative NDNS queries; see Section 3.1.4.1) or double-signing and encapsulation

techniques (as in the case of the recursive NDNS queries; see Section 3.1.4.2) to

preserve the security properties assigned by the authoritative NDNS name servers.

58

Another aspect that can be considered a difference is that DNSSEC supports a

richer set of the cryptographic signature algorithms than the currently supported

initial NDN specifications and implementations. However, this is not a conceptual

difference, and as NDN gains wider adoption, additional signature algorithms will

be added to the specification and implementations, based on user and application

demand.

4.1 NDNS extension for key-certificate storage

The KeyLocator field in a given NDN Data packet must uniquely identify an-

other Data packet that contains the key-certificate needed to verify the given

Data packet. This requirement may both appear at odds with the NDNS’s way

of storing the complete RR sets in each individual Data packet (e.g., NS RR

set “/net/DNS/ndnsim/NS”) and seemingly makes the NDNS system no longer

applicable as a universal storage for the keys necessary to provide security for

itself. However, it is trivial to define a new customized RR type (“NDNCERT”)

that requires exactly one RR data be associated with the RR set (i.e., a so-called

singleton RR set), the same way the “SOA” singleton RR is defined in DNS.

As an additional design simplification and optimization, we define the content

of all singleton NDNS Data packets to include just raw content of RR data, with-

out additionally specifying the number of RR datas (as defined in Section 3.1.4.1)

and without the length of RR data, as defined by DNS wire format specifica-

tion [Moc87b]: the former can be automatically inferred from the RR type and

additionally indicated by the “Subtype” field in Data packet meta-information

section, and the latter can be directly taken from the “ContentBlob” length (see

Figure 4.2). While this optimization puts an additional burden on the name server

and general resolver (dig command) implementation, it really gives NDNS a much

greater potential. In other words, it can be used as an underlying supporting

59

database for applications without requiring any understanding of NDNS seman-

tics. The only operation needed is to define a new application-specific singleton

RR type. The example on Figure 4.2 shows how the newly defined “NDNCERT”

singleton RR is encoded into specialized version of the NDNS iterative response,

which can be easily used by security enforcement implementations (security poli-

cies, discussed in the following sections).

singleton NDNS iterative response ::= Name
Content
Signature

Name ::= Iterative query name + <serial>
Content ::= Type

Subtype
Freshness
ContentBlob

Type ::= "NDNS Resp"

ContentBlob ::= Raw RR data (without length)

Data
/net/ndnsim/DNS
/zsk-1/NDNCERT/1377494070

Name:

Type: "NDN Resp"
Subtype: "Singleton"
Freshness: 3600
ContentBlob:

Content:

<NDN
certificate
bits>Subtype ::= "Singleton"

Figure 4.2: Singleton NDNS iterative query response

Note that the specific format of the key-certificate content is outside the scope

of the present thesis, and in our prototype implementation, the content of ND-

NCERT is a simple DER-encoded RSA public key. This format is anticipated

to be replaced before the initial rollout of NDNS with an extended certificate

format [Yu13], which is currently in active development among the NDN project

team.

4.2 Security policies

The general NDN security specification [NDN13b] mandates that Data packets

be signed with a valid cryptographic signature and that the Data packet should

specify the key name2 (KeyLocator) needed to verify this Data packet. This

2The NDN key is actually a certificate, since each NDN data packet is properly signed
and includes its own KeyLocators. The key as well is an ordinary Data packet, happen to
carry cryptographic content. This applies also for self-signed keys-certificates, which include a

60

general specification provides just the basic mechanisms, which can be used to

implement any model of the security infrastructure, including but not limited to

the commonly used PKI [AL03] and DNSSEC [Eas99] security models.

The missing part, which is partially addressed in this chapter and is an active

research area for the NDN project team, is the need for a unified (or standardized)

way for the application and application developers to specify the security policies.

In other words, in addition to the basic security elements of NDN, the real security

model requires a number of additional parameters be satisfied in order to judge

that a particular Data packet is indeed valid and signed with a proper signature.

In particular, each NDN key-certificate Data packet, alongside the raw bytes of

the corresponding public key, should contain encoded validity and other meta

information, similar to how it is done in X.509-encoded certificates [CSF08]. This

validity and meta information can be used by the security policy as an additional

element to decide the validity of a particular signature.

Also, the key-certificate itself needs to be properly “authorized” to sign the

specific piece of Data. The current practice with PKI certificates is to include the

subject that the certificate is allowed to be used for as part of the meta information

(“common name” field). For example, for HTTPS certificates, the “common

name” field of the certificate issued by the certification authority includes one

or more domain names (wildcarded domain names) that are authorized to be

signed with the certified key. In other cases, the common name can include a

listing of the email address for email certificates and a company’s or developer’s

name for the code signing certificates.

In NDN, each Data packet, including the key-certificate Data packet is se-

curely named, making it possible to use these names directly for authorization

purposes, instead of extraneous fields inside the application-defined certificate for-

mat. For example, if one wanted to implement an NDN equivalent of the HTTPS

KeyLocator pointed to itself.

61

security model for the Data packet “/net/ndnsim/www/index.html”, one would

want to define a security policy that required this Data packet be signed with a

key-certificate named “/net/ndnsim/www”. (To follow this PKI security model,

“/net/ndnsim/www” would further need to be signed with the key of one of the cer-

tification authorities.) Restated another way, the function of the “common name”

field can be fully represented by the relation between names of the Data packet

itself and the key-certificate Data packet, which is identified in the KeyLocator

field.

The example mentioned above is not entirely realistic, since the actual key-

certificate Data packets, as any other NDN Data packets, need to contain addi-

tional name components to ensure that the Interests are routed to the desired

places, are demultiplexed to the desired applications, and contain enough infor-

mation to identify what data is being requested (see Section 3.1.1). However, the

described semantics can be easily captured with a slightly more complex applica-

tion security policy that not only matches Data and key-certificate names, but also

prior to the matching performs a deterministic name reductions (see Figure 4.3).

/net/ndnsim/DNS/zsk-1/NDNCERT

/net/ndnsim/DNS

Removing fixed number of trailing components
/net/DNS/zsk-X/NDNCERT

Removing specific suffix components

/net/zsk-X/NDNCERT

/net/DNS/ndnsim/ksk-1/NDNCERT
Removing specific suffix and fixed number of trailing components

/net/ndnsim

Figure 4.3: An example of deterministic NDN name reductions by the application

security policy

The concept of a security policy is not a new and is ubiquitously used (at least

in its implicit form) in all secure applications, including HTTPS, secure email com-

62

munication, and DNSSEC. For example, most browser applications are designed

to notify the user when a page is not properly encrypted, not only when there

is a cryptographic signature mistmatch, but also whenever there is mistmatch

between the requested domain name and the “common name” field, honoring

possible wildcards. In our case, we simply moved the policy definition closer to

the network layer (following a general trend in many NDN applications).

For NDNS we have defined the security policy specified in Figure 4.4, which

ensures that NDNS largely conforms to the DNSSEC security model: zone records

are signed with zone signing keys that are signed with key signing keys that are

authorized by the parent zone, down to the root zone key, which acts as a NDNS

root trust anchor. Details of the security policy and insights behind the de-

fined security delegation are explained in the next section. Also, note that the

policy is defined using NDN regular-expression language [Yu13, AZY13], which

is essentially a simplified form of general-use regular expressions, with name-

component-based rule definition and minor extensions: “<>” matches any single

NDN name component, “<>*” matches any number of NDN name components,

and “<regexp>” matches any single NDN component that matches the regular

expression “regexp”.

Trust anchors

Namespace authorization rules
Key-certificate name conversion rule Data name conversion rule

Key name NDNCERT data Authorized namespace

/ndns-root/%01 <raw NDNCERT RR> /

...

(<>*)<DNS>(<>*)<><NDNCERT> => \1\2 (<>*)<DNS>(<>*) => \1\2

...

Name conversion examples:

/net/ndnsim/DNS/zsk-1/NDNCERT
 => /net/ndnsim
/net/DNS/ndnsim/ksk-1/NDNCERT
 => /net/ndnsim
/net/DNS/zsk-X/NDNCERT
 => /net
/DNS/net/ksk-Y/NDNCERT
 => /net

Figure 4.4: NDNS security policy definition

63

4.3 NDNS security delegations

The objective of the NDNS zone delegation process is to combine the DNSSEC

delegation model with a NDNS data storage model. The NDNS security policy

should capture both the namespace structure and the zone authority of NDNS

recursive query responses.

In NDNS, security design retains the concepts of zone signing keys (ZSK)

and key signing keys (KSK), which are extensively used in DNSSEC, with sev-

eral changes in the storage and ownership semantics. In particular, to ensure

key uniqueness, each individual ZSK and KSK corresponds to a unique NDNS

namespace label (e.g., “/net/ndnsim/zsk-1” and “/net/ndnsim/ksk-1” for the

ZSK and KSK of the “/net/ndnsim” zone) and can easily be looked up through

an iterative or recursive query process. The independent key function (ZSK or

KSK) is moved into the key name, so that it can be captured by the name-based

security policy.

In addition to ensuring the key name uniqueness within the NDNS namespace,

we explicitly separate ownership over a KSK and ZSK: while the “zone” signing

key is kept under the zone’s authority (i.e., the corresponding NDNS iterative

query response for the ZSK in our example would be named “/net/ndnsim/DNS-

/zsk-1/NDNCERT”), the “key” signing key is moved under the parent’s zone au-

thority (“/net/DNS/ndnsim/ksk-1/NDNCERT” in our example). Essentially, this

change replaces the need for a specialized delegation signer (DS) record that is

used in DNSSEC, by directly storing the key signing key (not just a KSK hash,

as in the DS/DNSSEC case), without changing any operational semantics. The

zone owner keeps the same level of flexibility with the zone signing keys as in the

current DNSSEC system, easily replacing ZSKs3 without need to update records

3The exact procedure of the NDNS key replacement is outside the scope of the current
thesis, but it is expected that this procedure will follow the same general guidelines defined for
DNSSEC.

64

in the parent zone. (New ZSK records can be created and signed by the already

delegated KSK.) At the same time, replacing the KSKs would require delegation

updates in the parent zone, which in the NDNS case involves simply installing a

new (unique) KSK NDNCERT record into the parent zone, which in turn will be

signed (i.e., properly delegated) by the parent zone’s ZSK.

The security policy defined in Figure 4.4 is applied to each Data packet within

NDNS protocol and provides strict authorization as to whether a particular key-

certificate object can sign a given Data packet. This authorization process ba-

sically involves extracting of the NDNS namespaces from NDNS iterative query

response names (i.e., removing the “DNS” and RR-type components from the

Data packet name, and removing the unique key identifier component from the

NDNCERT records, when such a record is used as a key-certificate) and ap-

plying strict matching for the resulting namespaces. In other words, the key-

certificate is considered legitimately authorized only if its namespace is equal to

or shorter (per-component comparison) than the Data namespace. For example,

“/net/ndnsim/DNS/www/zsk-1/NDNCERT” is allowed to sign any records within

the “/net/ndnsim/www” namespace, but is invalid to sign anything outside it.

In addition to the namespace authorization rules, the policy also needs to

specify one or more trust anchors and their namespace validity, so the verification

process can be securely terminated, either with a positive or negative result. A

negative response is assigned whenever the trust chain does not follow the security

policy authorized path, ends with an untrusted anchor, or exceeds a pre-configured

trust chain limit (in our prototype the default limit for the trust chain depth is

set to 10). Figure 4.5 summarizes the example of NDNS delegation for a “TXT”

resource record in the “/net/ndnsim” zone (i.e., the certification chain for the

iterative query response “/net/ndnsim/DNS/TXT”). Compared to the DNSSEC

example in Figure 2.3 for the same security delegation, NDNS follows exactly the

DNSSEC model, but uses slightly different, more data-centric, means to achieve

65

Data
/net/ndnsim/DNS/TXT/20130826Name:

Signature:
Content:

KeyLocator: /net/ndnsim/DNS/zsk-1
/NDNCERT/2013

Data
/net/ndnsim/DNS/zsk-1
/NDNCERT/2013

Name:

Signature:
Content:

KeyLocator: /net/DNS/ndnsim/ksk-1
/NDNCERT/2013

"/net/ndnsim" ZSK

Data
/net/DNS/ndnsim/ksk-1
/NDNCERT/2013

Name:

Signature:
Content:

KeyLocator: /net/DNS/zsk-X
/NDNCERT/2013

"/net/ndnsim" KSK

Data
/net/DNS/zsk-X
/NDNCERT/2013

Name:

Signature:
Content:

KeyLocator: /DNS/net/ksk-Y
/NDNCERT/2013

"/net" ZSK

Data
/DNS/net/ksk-Y
/NDNCERT/2013

Name:

Signature:
Content:

KeyLocator: /DNS/zsk-Z
/NDNCERT/2013

"/net" KSK

Data
/DNS/net/ksk-Y
/NDNCERT/2013

Name:

Signature:
Content:

KeyLocator: /ndn-root/%01

"/" zone "/net" zone "/net/ndnsim" zone

Root ZSK

TXT RR set

Figure 4.5: NDNS security delegation example

the same operational goal. Note that the root key-certificate “/ndn-root/%01”

does not need to be part of the NDNS system (i.e., no need to create an NDNCERT

record and store it in the root zone, since the name and the value of it is explicitly

configured in the security policy).

4.4 Secure dynamic updates

The intended use of the NDNS system is as a general database service for NDN

applications. Therefore, to ensure that such a database service not only provides

a scalable read-only query interface, but also an interface for authorized parties

to update database entries, it is crucial to have a secure interface for dynamic

NDNS information updates. In general, this function is similar to the existing dy-

namic update functionality in DNS [VTR97, Eas97], and we have embedded such

functionality into the NDNS protocol from the beginning. The dynamic update

protocol for NDNS (DyNDNS, for short) is largely equivalent to its DNS coun-

terpart, but again with several important necessary changes due to the network’s

66

architecture switch.

4.4.1 DyNDNS updates

The design of DyNDNS tries to combine two usage modes of dynamic updates

in DNS (refer to Section 2.2.2), applying NDN and NDNS design principles.

First, the operation of creating pairs of RR sets and “RRSIG” blocks is directly

equivalent to creating and signing Data packets that contain properly format-

ted NDNS iterative query replies. Second, an NDNS implementation inherently

cannot have problems with AXFR zone transfers, since the AXFR-zone trans-

fer concept has explicitly not defined in our NDNS specification, requiring instead

out-of-band mechanisms for zone synchronizations between primary and secondary

name servers (e.g., using ChronoSync as discussed in Section 3.1.2). Therefore,

any authoritative server implementation should not have problems with installing

updater-created records directly into the zone database, without first separating

records into static and dynamic ones (all records can be considered dynamic). Fi-

nally, NDNS like a majority of other NDN applications ought to have the signing

key available at all times (e.g., a short-term zone signing key), which in NDNS is

necessary to generate negative responses. While it is not explicitly defined in the

NDNS design (Chapter 3), it is assumed that negative responses are generated on

demand using the short-term online ZSK, since it is impossible to pre-generate

all possible combinations of negative responses for non-existing records: in NDN,

the name of the response must match the name of the request.

Figure 4.6 illustrates dynamic DNS process, while Figure 4.7 formally defines

operations that need to be performed by the update generator. As in the dynamic

secure DNS update case, DyNDNS requires that the key used for the NDNS

iterative response (dynamic update) generation has a corresponding “NDNCERT”

entry in the updated NDNS zone. For clarity and to simplify zone management,

DyNDNS requires that “NDNCERT” records for key-certificates used for dynamic

67

Data
/net/ndnsim/DNS/www/TXT/01Name:

<"Updated">

Type: "NDN Resp"
Freshness: 3600
ContentBlob:

Content:

KeyLocator: /net/ndnsim/DNS
 /dzsk-1/NDNCERT

/net/ndnsim
zone

Data
/net/ndnsim/DNS
/dzsk-1/NDNCERT/21

Name:

KeyLocator: /net/ndnsim/DNS
 /zsk-XXXX/NDNCERT

Zone "authorizes" DZSK key

Remote prepares Data packet,
signing it with DZSK

Prepared Data directly installed into the zone
and served for future iterative queries

Figure 4.6: Dynamic update process in NDNS

updates contain a dzsk- prefix, distinguishing them from other types of key-

certificates installed in the zone. Note that, unlike dynamic DNS updates, the

NDNS zone owner has a much richer set of options to restrict dynamic updates to

a specific namespace or sub-namespace. For example, if an issued dynamic zone

signing key has the name “/net/ndnsim/DNS/www/dzsk-2/NDNCERT”, the NDNS

security policy, defined in Section 4.2, will effectively prevent this key from being

used for any updates, except within the “/net/ndnsim/www” NDNS namespace.

4.4.2 Delivery of DyNDNS updates to the authority name server

As mentioned previously, standard dynamic DNS updates are carried inside spe-

cial DNS update messages. These instead of the query are sent out to the authority

server. The fact that the query in NDNS is an Interest packet seems to contradict

the principles of dynamic updates: the update generator creates a fully-formatted

Data packet/NDNS iterative query response, but it can only request data (express

Interest) from the zone. However, there are several solutions to resolve this con-

tradiction, each suited for a particular usage scenario, depending on the number

and frequency of updates.

68

DyNDN generation

Input: Zone name, Zone's DZSK
Input: NDNS name
Input: RR type, RR data

UpdateName = Zone name +
 "DNS" +
 NDNS name + RR type +
 SeqNo

SeqNo should be
monotonically
increased for each new
DyNDN update, signed
with the specific zone's
DZSK.
Can be either a
sequence number of a
timestamp (used in our
prototype)

RR set
update?

RR set
remove?

Create NDNS iterative
query reply

Data
UpdateNameName:

<RR Data>

Type: "NDN Resp"
Freshness: 3600
ContentBlob:

Content:

KeyLocator: Zone's DZSK

Create NDNS iterative
query reply

with empty content

Data
UpdateNameName:

Type: "NDN Resp"
Freshness: 3600
ContentBlob:

Content:

KeyLocator: Zone's DZSK

Terminate

Deliver DyNDNS update
to NDNS authoritative

name server

Update and remove
operations performed
on a complete RR set

NoNo

Yes Yes

Abort

Figure 4.7: Dynamic update generation procedure

Singular updates First, if the number of queries is relatively small (e.g., an

infrequent singular update), it is possible to define a simple protocol mimicking

the style of DNS updates. In other words, we can define a special type of NDNS

query (an Interest that can be sent out towards the authoritative NDNS name

server), which instead of carrying the request contains a prepared Data packet of

the RR set record to be installed or a signed command to remove a specific RR

set from the zone. The formal definition of this Interest-based DyNDNS protocol

is presented in Figure 4.8. To conform to the NDN delivery paradigm (i.e., each

Interest needs to be satisfied, otherwise the forwarding strategy may infer that the

69

path is broken or there is an ongoing attack [AMM13, YAM13]), such dynamic

update Interests need to be satisfied either with an “OK” Data packet or with

a Data packet specifying a reason (optionally detailed) for the update rejection.

Note that the authoritative name server may decide not to satisfy some dynamic

update Interests, if there is an ongoing DDoS-style attack, which can be effectively

prevented using the mechanisms embedded in the NDN architecture [AMM13].

DyNDN update Data ::= Name
Content
Signature

Name ::= DyNDN update Interest name + <timestamp>
Content ::= Type

Freshness
ContentBlob

Type ::= "DyNDN OK" |
 "DyNDN Fail"

ContentBlob ::= <"OK"> | <"FAIL: …">

DyNDN update Interest name ::=
AuthorityZone
"DNS"
(NDNS iterative response)*
"DYNDNSUPDATE"

Multiple updates ca be combined together,
if they fit into one Interest packet

Interest
/net/ndnsim/DNS

/DYNDNSUPDATE

Name: Data
/net/ndnsim/DNS/www/TXT/01Name:

<"Updated">

Type: "NDN Resp"
Freshness: 3600
ContentBlob:

Content:

KeyLocator: /net/ndnsim/DNS
 /dzsk-1/NDNCERT

Data
/net/ndnsim/DNS

/DYNDNSUPDATE/1377579885

Name: Data
/net/ndnsim/DNS/www/TXT/01Name:

<"Updated">

Type: "NDN Resp"
Freshness: 3600
ContentBlob:

Content:

KeyLocator: /net/ndnsim/DNS
 /dzsk-1/NDNCERT

Type: "DyNDNS OK"
Freshness: 3600
ContentBlob:

Content:

<"OK">

Figure 4.8: Definition of the Interest-based (singular) DyNDNS update

Bulk updates In the case when the number of dynamic updates is relatively

large or they are performed frequently, there is nothing that prevents the updater

acting as a hidden secondary (or hidden master) name server, performing dynamic

zone transfers using any of the available (in the future) zone synchronization

mechanisms, such as ChronoSync [ZA13]. Although the particular implementation

of such a zone transfer mechanism is not the immediate objective of the present

work, such mechanisms need to be added either before or immediately following

the initial deployment of the NDNS system.

70

4.4.3 Replay attack prevention

The mechanisms discussed above provide simple and efficient ways to modify an

NDNS zone, requiring strict authentication and authorization for each update.

In other words, the updater is required to prepare and sign the NDNS iterative

response (Figure 3.8), which will be subjected to the NDNS security policy (Sec-

tion 4.2) before being installed into the zone and served as the query response,

effectively barring any unauthorized updates in the zone. However, one should

always consider the possibility of a replay attack. The fact that somebody in

the network can intentionally capture legitimate updates and then replay them

at a later point of time, or that the network can duplicate packets (e.g., the

NDN strategy may retransmit an Interest if the response does not come within

an expected time interval), should not cause “old” updates to be applied to the

zone or repeated application of the same update. Therefore, the authoritative

NDNS name server implementation that supports dynamic updates should have

additional mechanisms to remember previously applied updates and prevent them

being repeated.

While there could many possible solutions to the problem, we are proposing a

solution that utilizes the NDNS database itself for all necessary storage functions.

Since every dynamic update requires a proper dynamic zone key-certificate dele-

gation (i.e., there should be an “NDNCERT” record for the dzsk- key-certificate

used to sign updates), we decided to use a key-specific state as an attack pre-

vention mechanism. In particular, the information about all previous updates

made using a specific DZSK can be represented as just one value: the largest

sequence number observed in updates signed using this DZSK key-certificate (see

Figure 4.7).4 Furthermore, this per-DZSK sequence number can be stored in an

additional RR of a new “NDNCERTSEQ” type in the same zone, with the same

4This way of the dynamic updates state representation is largely inspired by the ChronoSync
design [ZA13], which represents the knowledge about the items produced by a specific producer
with a producer’s prefix and the largest sequence number of the produced item.

71

Update processing

Input: DyNDNS update

Check if the update is properly signed, the
name of the key is authorized to sign the
record, and that the key is properly
delegated in the zone (there is a valid trust
chain down to the trust anchor)

Lookup for
net/ndnsim/DNS/dzsk-1/NDNCERTSEQ
in a local database or using query
mechanism

Valid
update?

Abort

Check update agains
NDNS security policy

Lookup NDNCERTSEQ for
update's DZSK

NDNCERTSEQ <
update's SeqNo

Install update
record into the zone

Update NDNCERTSEQ
to the update's SeqNo

Terminate

No

No

Yes

Yes

Data
/net/ndnsim/DNS/www/TXT/01Name:

<"Updated">

Type: "NDN Resp"
Freshness: 3600
ContentBlob:

Content:

KeyLocator: /net/ndnsim/DNS
 /dzsk-1/NDNCERT

Figure 4.9: DyNDNS replay attack prevention mechanism

label as the “NDNCERT” record. (Since the “NDNCERT” record is defined to

be a singleton RR, we define “NDNCERTSEQ” to be a singleton RR as well.)

The procedure outlined in Figure 4.9 prevents reapplying “old” updates to the

zone by executing additional checks for each received update, after the update is

determined to conform to the NDNS security policy. Note that since the defined

attack-prevention mechanism relies on the whole NDNS system and all its power-

ful mechanisms, it is largely irrelevant which authoritative NDNS name server the

update reaches (and in which order). The decision outcome to accept or reject

the update will be the same. As any other RR, “NDNCERTSEQ” is synchronized

among the authoritative NDNS name server copies, leading to consistent security

72

decisions on each individual server.

It should be noted that it is critical to separate the state of the updates from

the updates themselves. A näıve solution for example is simply to check the

sequence number of the previous version of the updated RR set and reject any

updates with “outdated” sequence numbers. Such a solution has a major security

hole: as soon as a legitimate update carrying a “delete” message is captured by

an attacker, he or she can easily install any other previously intercepted record,

regardless of the sequence number, simply by replaying the delete-update sequence

of the dynamic updates. Therefore, the state about previously seen updates must

be preserved for as long as the other parameters of the “old” update remain valid.

In our case, “NDNCERTSEQ” records must be preserved for the lifetime of the

corresponding “NDNCERT” records. After the “NDNCERT” record is removed,

there is no need to keep the “NDNCERTSEQ” record, since the “old” update

will not be authorized anymore (i.e., there is no valid certification chain) by the

NDNS security policy.

73

CHAPTER 5

NDNS use cases for NDN security

The previous chapter describes the design and security of the NDNS database,

which preserves many properties of the existing DNS system that has made DNS

so widely used. These include equivalent or even better scaling properties and

allowing NDNS to be used in a generic way. Thus, except for certain limitations

on the NDNS namespace (lowercase names compatible with DNS character sets)

and the Data naming model (“ZoneName” + “DNS” + “Label” + “RR type”),

NDNS has a large number of various usages. In this chapter, we identify and

discuss two important use cases of NDNS that are related to the security of NDN

architecture and aim to bring many theoretically defined elements of the NDN

architecture closer to operational reality. First, we discuss how NDNS can be used

to regulate the NDN namespace and ensure that the network and applications are

working in tight collaboration with each other. Then we move to the discussion of

how NDNS can be an effective solution to store and manage generic cryptographic

credentials, crucial for all NDN-based communication. Separately in Chapter 6 we

introduce another major operational challenge for the future deployment of the

NDN architecture—scalability of name-based routing—and then show how this

challenge can be addressed using the same NDNS database.

74

5.1 Namespace regulation in the global NDN routing sys-

tem

With strong reliance on application-level names, the NDN architecture needs a

mechanism or several mechanisms to regulate how these names are assigned and

used. There should be a way to prevent two or more applications on the same

network (local network or the global Internet) from using the same names and

“collide” with each other. This problem can be effectively solved via a tight col-

laboration between the routing system and applications. Applications should sug-

gest to the routing system directions where an Interest for specific prefixes should

be directed (i.e., “register”/“announce” availability of Data within a specific NDN

prefix). The routing protocol such as OSPFN [WHY12] or NLSR [HAA13] should

propagate these suggestions through the NDN network, and NDN routers should

use this information to forward Interests towards the application.

Theoretically, having different NDN applications use the same names, names-

paces, and naming model is not a major problem in NDN, since the applications

can (and should) use their own security policies to ensure that the retrieved Data

packet is the expected one, re-expressing Interests for the same Data if there

is a security mismatch (e.g., using a new Interest with enabled “Exclude” fil-

ter [NDN13b]). Since NDN routers are not necessarily obeying the routing infor-

mation accumulated from application suggestions, the Interests eventually reach

the right places (the Data producer or in-network caches) and return the ex-

pected data. In other words, NDN routers have an intelligent Interest forwarding

layer [YAM13] that takes routing information as just one of the input recommen-

dations, in addition to selectors in the Interest itself, the estimated per-prefix

round-trip time for the outgoing interfaces (“faces” in NDN terms), the number

of unsatisfied interests, and other data plane performance parameters.

However, it is highly desirable to ensure that the application and the network

75

are talking in the “same language”: the network, the routing system, and the for-

warding strategy should try their best to facilitate Data delivery that will likely

satisfy the application, and limit Interest forwarding to undesired destinations. In

other words, the prefixes that the routing system is announcing should be autho-

rized by the application, and the application should be authorized to use these

prefixes in the first place. In this regard, the NDNS system can provide crucial

help. Similar to the ongoing ROVER effort [GMG12, GMO13], NDNS can be

utilized to store authorization information for each application-announced prefix.

In the context of ROVER, it is done by installing into DNS/DNSSEC the map-

pings from announced IP prefixes (using the reverse DNS zone “in-addr.arpa”)

to legitimate origin AS numbers. In the context of NDN, NDNS can store cryp-

tographic authorization information that can be used in a similar way to the

dynamic NDNS update protocol (Section 4.4).

One potential design, outlined in Figure 5.1, is to install into the destination

NDNS zone an “NDNCERT” RR for a special routing signing key (RSK). This key

then should be used to create a Data packet containing an application’s request

for prefix registration. This request/Data packet is propagated by the OSPFN,

NLSR, or similar routing protocol throughout the network, while each individual

router is able to validate the request through an NDNS query. OSPFN and

NLSR have their own mechanisms to disseminate updates through the network

and employ their own application-specific mechanisms to secure routing update

data. The signed prefix registration request from the application, authorizing

use of a prefix by a particular application, should be in addition to the security

mechanisms specific to the routing protocol.

Note that the design, similar to DyNDNS, requires that the corresponding

“NDNCERTSEQ” record, preventing “old” routing announcements from being

validated by the routers, providing efficient protection from possible replay at-

tacks. In the proposed design, the routers should invalidate any registration re-

76

Application

Data
/nlsr/…/net/ndnsim/www
/%12

Name:

Content: <routing attachment info>
KeyLocator: /net/ndnsim/DNS
 /www/rsk-1
 /NDNCERT

NDN router(s) NDNS

Update NDNCERTSEQ

Verify signature
and NLSR security
policy

Verify RSK's SeqNo

Interest
/net/ndnsim/DNS/<...set rsk-1 SeqNo %12…>/DYNDNSUPDATEName:

Register /net/ndnsim/www prefix*

Verify RSK Interest
/net/ndnsim/DNS
/www/rsk-1/NDNCERT

Name:

Interest
/net/ndnsim/DNS
/www/rsk-1/NDNCERTSEQ

Name:

* Routing protocol, such as NLSR
exchanges routing updates using its own
mechanisms with NLSR-specific security
policies. The shown registration data
packet can be, for example, carried as
part of the content in NLSR updates.

Figure 5.1: NDNS-based routing announcement authorization

quest, whose sequence number does not equal the “NDNCERTSEQ” record. This

basically means that every time an application wants to generate a new announce-

ment, it should first perform a (dynamic) update of “NDNCERTSEQ” and then

generate a request with the updated sequence number.

The above described proposal is merely a rough design sketch, highlighting

how NDNS can be utilized to secure announcement authorization in the routing

system. Essentially, this means that NDNS can be used as a core mechanism to

regulate which prefixes are getting injected into the routing system, so that the

NDN network provides the best support only for applications that properly use

delegated NDNS namespaces. As was noted earlier, other applications are still

free to choose namespaces (i.e., it is always possible to determine application-

77

correctness of the received Data). Hopwever, these applications will experience

additional operational penalties, such as potentially needing to employ multiple

routing trip rounds to fetch the desired data, since the network will be basically

working against the application.

5.2 Cryptographic key and certificate management for NDN

applications

One of the biggest hurdles on the road to the full-fledged deployment of the NDN

architecture, and specifically to writing and deploying fully secure NDN applica-

tions, is the need for a cryptographic credentials management infrastructure. In

other words, since each Data packet is required to be properly signed, there should

be a way to retrieve all necessary key-certificates that build up a trust chain for

the proper application-specific Data packet verification. Generally speaking, each

key-certificate object is an ordinary Data packet, having its own unique name,

and a standard Interest/Data exchange can be used to fetch them. However, the

biggest question is not how to fetch, but where such objects are physically stored,

who put them there, how, and what kind of control this somebody has over the

published key-certificate Data packets.

In the following sections we describe the initial attempt to provide a basic

support for key-certificate storage [BZA13], relying on permanent data storage

repo (see Section 2.1.1), another new communication primitive in the NDN ar-

chitecture. We also highlight the operational problems that have occurred even in

the present limited deployment scale of the NDN testbed and discuss how NDNS-

based storage for cryptographic credentials can be a powerful alternative for the

current approach.

78

5.2.1 Repo-based cryptographic credential management

The initial (and admittedly hacky) attempt to enable support for truly secure

communications on the NDN testbed has relied on repo as a storage, ensuring

that all used key-certificate Data packets are synchronized among and available

from each participating site on the NDN testbed [BZA13]. All key-certificate Data

packets has been assigned to the “/ndn/keys” namespace and each testbed router

mandated to run a repo instance, participating in the “/ndn/keys” slice. In this

way, we have been able to make sure that the key-certificates for each member

of the NDN team are available at all times, including all other cryptographic

credential information necessary to build and verify certification chains down to

the root of trust on the NDN testbed. However, even such an initial attempt on a

very small testbed scale has resulted in many unexpected hurdles, resulting mainly

from the limited manageability and control over the selected storage mechanism—

repo.

5.2.1.1 General limitation of repo

The specifics of the currently defined protocol to publish Data packets into repo as

described in Section 2.1.1 introduce serious limitations how repo can be actually

used. If repo happens to be installed on a local machine (or a first hub to which

a user sends all the Interests, the default router), repo will be able to observe

all commands from the user and perform all requested actions. However, even in

this basic scenario the user will not be able to publish an arbitrary Data packet

into the repo installed on the default router: the write protocol requires that repo

send explicit Interest(s) for the “written” Data, and only Interests that have user-

registered prefixes (on the current NDN testbed it is only the broadcast and local

routable prefix) can reach back to the user and retrieve Data. In a more complex

scenario, when repo is located several hops from the user, he or she has virtually

79

no control over which repo the write commands/Interests will reach: they will be

routed towards the original Data producer, and if there is no repo present on this

path (an Interest can get diverted to a place where repo may exist, but there are

no guarantees this will happen), the command will have no effect at all.

Besides the above problem with the write control, the current implementa-

tion of repo lacks support of a delete operation, which has resulted in anecdotal

repo usage patterns in NLSR [HAA13] and NDNVideo [KBZ13, KB12] applica-

tions: repo gets filled with Data for a predefined period of time, after which it

is completely destroyed and re-instantiated from scratch. In this way, NLSR and

NDNVideo applications are able to avoid overloading the permanent storage with

useless data (old and irrelevant routing updates in the NLSR case and outdated

video streams in the NDNVideo case), but require out-of-protocol interventions to

the repo (i.e., physically stop the repo application, destroy the database, restart

the repo application). This results in a loss of all Data in repo, including some

that might still be useful.

In addition to the storage and the write protocol, repo also includes a new

synchronization (“sync”) mechanism [NDN13b], allowing efficient replication of

stored Data packets in selected namespaces (“slices”) among several repos. In

other words, the repo-write protocol needs to be done only once (e.g., for the

locally-run repo), after which Data packets are automatically and efficiently prop-

agated to repos, participating in a specific slice. Although there is no doubt that

the sync protocol provides a powerful mechanism enabling new pure data-centric

application designs, the lack of the delete operation makes repo with sync an

even less attractive implementation option than repo by itself. For example, if an

undesired Data packet (intentionally or by accident) gets into repo and is synchro-

nized everywhere else, it is close to impossible to remove this Data packet from

the system. Even if one instance of repo is shut down and restarted from scratch

as described above, the undesired Data packet will get back to the clean repo the

80

moment repo joins the sync slice. Basically, to delete one small piece, the whole

repo infrastructure must be shut down and restarted from scratch at exactly the

same time.

5.2.1.2 Limitation of repo-based cryptographic credentials manage-

ment

Conceptually, the initial deployment of repo-based cryptographic credential man-

agement works quite well. The key-certificates are public, and everybody can fetch

them from any place on the testbed and use them to verify Data packets, that are

signed by these key-certificates. The problem arises when people actually start to

use the system. The specific design for the naming model of the key-certificates

has gone through several iterations, programs used for the key publishing have

bugs, and people inevitably make mistakes using programs, forget passwords to

private keys, or accidentally exposing private keys. All of these resulted in a large

amount of erroneous Data packets being published to testbed repos, which can

be deleted only if somebody coordinates an inter-site reconfiguration of all NDN

testbed repos (and even afterwards, there is no guarantee that such action will

not be required in the future).1

Also, if the private key is lost or accidentally exposed, there is no mechanism

to “revoke” the corresponding published key-certificate. Such a revocation can

be partially achieved through revocation lists, but there is no valid reason why

the “authority” should serve the key-certificate as repo does, while it is known a

priory that this certificate is invalid. Moving the revocation burden entirely to

revocation lists is conceptually flawed, since the application can simply ignore the

list, either because it cannot obtain/update it or there is a bug in the security

implementation.

1 As of August 2013, only 96 out of 1287 Data packets published in NDN testbed repos are
useful Data. The rest are there only because it is virtually impossible to remove them.

81

5.2.2 NDNS-based cryptographic credential management

The above discussion highlights the need for a better storage model to manage

cryptographic credentials for NDN application support. Such data must be avail-

able publicly and should ideally be replicated in several places to provide failure

and error resiliency. At the same time, the owner of the cryptographic credential

(either the owner of the private key or the entity that has issued the key-certificate)

should have maximum control over the published data. NDNS is exactly the sys-

tem that satisfies these requirements and can be used for cryptographic credential

management purposes.

5.2.2.1 Properties as a general storage

From a storage perspective, NDNS is similar and largely equivalent to repo. It

provides a universal storage for any kind of data, with just certain limitations on

the naming model, but these limitations can be easily adopted by the applications

by embedding a security policy or policies with the proper name reduction rules,

similarly as defined in Section 4.2. In other words, the names for the stored Data

packets need to follow an NDNS iterative response naming format, defined in

Section 3.1.4.1, but the content of the Data can be anything that the application

needs. Similar to repo with synchronized slices, NDNS provides functionality of

the secondary authoritative NDNS name servers, in which Data packets can get

synchronized using either the ChronoSync protocols [ZA13] or the same NDNx

sync [NDN13b] protocol as is used in repo.

The more fundamental differences are with data management in zones (“slices”

in terms of synchronized repos). While repo stores any Data packet under the

configured namespace to which a user sends the write request (assuming that

such write requests will actually reach repo and repo will be able to retrieve

the requested Data), repo is not the authoritative source for the Data in the

82

namespace. While holding some pieces of Data permanently, repo assumes that

this piece is just a copy of the Data and has no knowledge about any other Data in

the same namespace, unless they are also present in the repo’s database. On the

contrary, NDNS is the logical authority for the NDNS zone data. Whenever there

is a request to the zone, one of the authoritative NDNS name servers can give a

definitive reply as to whether the requested Data exist or do not exist, returning

the Data packet or one of the negative responses (refer to Section 3.1.4.1 for more

detail). Moreover, being the authority allows NDNS to implement a better version

of the write protocol—namely, secure dynamic NDNS updates. For example, with

an Interest-based dynamic update delivery method (Section 4.4.2), the Interest

containing the “command” will be directed strictly towards the closest authority

NDNS nameserver for the zone, and not to an unknown place on the path towards

the original data producer. Finally, NDNS allows deletions for any element from

the zone.

Another big difference is the Data addressing granularity. If in repo a Data

packet is identified by its full name, NDNS “uniquely” identifies elements (=

RR sets) using a name prefix, containing just a zone name, domain label, and

resource record type, while the actual Data packet representing an element/RR

set can contain additional fields, such as the serial number or a version of the

RR set. Note the word “uniquely” is in quotes for the following reason. For the

lifetime of an RR set in the zone, there could be many versions (Data packets) of

this RR set, either due to a change of the signature (e.g., when the zone changes

its ZSK) or due to an RR set content update. However, at any particular point

of time the authoritative NDNS name server will keep exactly one version of the

RR set, since it knows exactly which version is the latest, and there is no valid

reason for the authoritative server to return an old or invalid version of the RR

set. Although similarly to the existing DNS the caching NDN resolvers and in-

network NDN caches may result in multiple versions of a specific RR set available

83

in the network, this ambiguity is only transient and ceases after a record’s TTL

expiration within the caching resolvers and freshness expiration within NDN in-

network caches.2

5.2.2.2 Key-certificate management on NDN testbed

All of these provide a strong ground and motivation for using NDNS as a basis

for a key-certificate management solution. NDNS security described in Chap-

ter 4 is just one example of such management, which actually can be generalized

beyond securing just NDNS itself. For example, NDNS can be easily adopted,

and we are planning to do it in the near future, to replace the initial repo-based

solution [BZA13] with a user key-certificate management on the NDN testbed.

Each site of the NDN testbed will need to run the authoritative NDNS name

server for the zone, representing an individual site’s designated prefix, and be a

secondary server for one or more other sites’ zones (Figure 5.2). In addition to

that, the root and “/ndn” zones should be hosted and replicated at some or all

testbed sites.

Similar to the initial security management rollout, each NDN testbed user

gets assigned a part of a site-specific NDNS namespace, which the user has an

option either to further delegate to selected dedicated authoritative name servers

or to keep hosted on the site’s authoritative name server and its replicas. For

example, the author of the present thesis can be assigned the “/ndn/ucla/alex”

sub-namespace out of UCLA site “/ndn/ucla”. In either case, the user retains full

2Although a scenario when a malicious node captures an old version of the RR set and then
serves it to an incoming request is possible, it is unlikely and in most cases not detrimental. First,
the routing system, as described in Section 5.1, will be acting as a first guard preventing random
entities on the NDN network to “suck in” the Interest and respond in place of the authoritative
name servers. Second, even if the malicious node is on the routing path, the forwarding strategy
will take care of penalizing the wrongdoer, using one of the available methods of cache poisoning
attack mitigation mechanisms. The worst case, when the malicious node is on the only path
towards the authoritative server, is detrimental, but it is irrelevant to the system used, since the
node on the path has full control over what data to return or not to return for each received
Interest.

84

UCLA site
/ndn/ucla/DNS CAIDA site

/ndn/caida/DNS
/ndn/ucla/DNS

/ndn/caida/DNS

NDNS
secondary
NS

NDNS
master NS

/ndn/ucla/alex zone
Data

/ndn/ucla/DNS/alex/ksk-1
/NDNCERT/%01

Data
/ndn/ucla/DNS/alex/dzsk-1
/NDNCERT/%01

/ndn/ucla zone

delegated /ndn/ucla/alex
namespace in /ndn/ucla zone

Data
/ndn/ucla/DNS/alex
/app/app-id/APPTYPE/%05

Option 1:
Delegating
a subzone

Option 2:
Delegating
sub-
namespace
in the zone

ChronoSync'ed
NDNS zones

Data
/ndn/ucla/alex/DNS
/app/app-id/APPTYPE/%05

Data
/ndn/ucla/alex/DNS/zsk-1
/NDNCERT/%01

signs

signs

signs

signs

Figure 5.2: Proposed deployment of NDNS on NDN testbed

control over the namespace via proper NDNS and security delegation of the key

signing key (if the user manually wants to manage NDNS name servers) or just

security delegation of the dynamic zone signing key (if the user wants to keep host-

ing records in the site’s zone). The same example on Figure 5.2 shows these two

options of retaining full user-level control for using the namespace assigned to the

author. Note that by the full control we mean that the user is able to “publish”

and make publicly available any records, including “TXT”, “MX”, DANE-like

records for application-specific roots of trust [HS12], or any other application-

defined records that include the user’s NDNS namespace prefix (e.g., the na-

mespace “/ndn/ucla/alex” expressed either as “/ndn/ucla/DNS/alex/...” or

“/ndn/ucla/alex/DNS/...”).

85

5.2.2.3 Cryptographic credential revocation

As mentioned before, the ability to perform full-fledged revocation of the crypto-

graphic credential is an essential part of the security management system. While

key-certificates can be partially “revoked” with the help of revocation lists or spe-

cialized online certification validation methods (e.g., OCSP, an online certificate

status protocol [MAM99] or pure NDN-based protocols [MV13]), these methods

should be complementary to the authority’s decision to make credentials pub-

licly available, i.e., respond positively or negatively to incoming inquiries for the

credentials.

NDNS allows retaining control over the issued certificates by both the key-

certificate issuer and the certificate owner. Let us taking for example embedded

security mechanisms in NDNS itself. The zone owner can always remove or re-

place the ZSK record in the zone, automatically invalidating (after expiration of

all cached entries) any other records or delegations that were based on the trust

chain using the key. This can be done either using the local zone management

tools or using dynamic updates, if they are enabled for the zone. (While it is tech-

nically possible to revoke DZSK using a dynamic update that is signed by DZSK,

a particular implementation of the authoritative name server could prevent such

dangerous operation.) At the same time, the parent zone has full control over

the zone’s KSK, which, similar to a “DS” record, serves as a security delegation

record. Therefore, if the parent zone (essentially an issuer or authorizer for the

zone) discovers that a certain previously certified KSK (or the derivative ZSK or

DZSK) is lost or compromised, it may decide to the remove zone’s KSK record,

effectively breaking any certification chain for the zone. Of course, this opera-

tion is potentially devastating and KSK issuers, such as the NDN testbed site

and NDN root zone operators, must be very cautious and fully aware of possible

consequences. Nevertheless, the ability to revoke shows that every security en-

tity does not lose touch with previously issued security endorsements (as in the

86

case of repo-based credential management) and, if and when necessary, can act

accordingly.

Note that while this presented example talks specifically about NDNS secu-

rity, the same logic (with possible change of exact details) applies to any other

application-based security that relies on NDNS. For example, if the application

installs a DANE-like record [HS12] that specifies application’s root of trust (after

the user delegates such ability to the application, the same way as NDN sites

delegate a user’s namespace in the testbed case), the application itself can “re-

voke” the record by removing it, and the user himself can either remove/revoke

the delegation or directly remove the record from the zone.

87

CHAPTER 6

Scaling NDN routing using NDNS

As Internet applications become increasingly data-centric, a number of new net-

work architecture designs [CG00, KCC07, TAV09], including Named Data Net-

working (NDN) architecture [JST09, EBJ10]—the discussion in this thesis, have

proposed a data-centric communication paradigm, which in part requires the rout-

ing system to work directly on Data names. In an NDN context, Interest packets

carry Data names instead of host addresses, and routers forward these Interest

packets based directly on their names. By naming Data explicitly and binding

the name and Data by a cryptographic signature, NDN provides a number of

benefits including Data security, in-network caching, natural multicast support,

and in general better alignment between the desired application usages and the

underlying Data delivery model. However, one frequently raised concern for NDN

is scalability of the name-based routing scalability [BVR12, NO11]. Put simply,

provided that the number of Data names is unbounded, how does name-based

NDN routing scale?

A brief analysis of Internet history [MZF07] reveals that the scalability issue

with the name-based routing in NDN is not that new: a similar question has been

asked previously about IP. Given the finite space of IP addresses (232 for IPv4

and 2128 for IPv6), how can IP routing scale if even today’s routers cannot hold

such volumes of information? The current answer to this question employed on the

Internet is IP address aggregation. In particular, at the edge of the Internet, hosts

and small networks get addresses from their access providers; these addresses,

88

being from the same provider, can be easily aggregated into prefixes (i.e., these are

provider-aggregatable), and only aggregated prefixes need to go into routing tables

instead of individual IP addresses. At the same time, over the years there has been

an increasing demand for provider-independent addresses [RIP09], so that large

customers can avoid network renumbering after switching to different providers

and support connecting to multiple providers at the same time (multihoming). As

a result, many IP prefixes used today cannot be effectively aggregated along with

the provider’s prefixes and must be announced separately, leading to an increased

routing table size [Hus05, MZF07, ATL10]. In addition, other factors contribute to

prefix de-aggregation, including various types of network-layer traffic engineering,

load balancing [ATL10], and mechanisms to mitigate ongoing distributed denial

of service attacks and recover from prefix hijacks [Arb11].

6.1 Map-n-encap for IP

An alternative solution, proposed long ago but never actually deployed due to

difficulties in retrofitting the new solution into the operational Internet, is map-

n-encap [Dee96]. The idea behind this solution, as exemplified in Figure 6.1, is

that the global inter-AS routing system (the so-called Default-Free Zone, or DFZ)

exchanges and maintains only provider-aggregatable addresses, while the routing

protocols within each individual provider (intra-AS routing) maintain information

about all “attached” client (provider-independent) prefixes. In addition to that,

all provider-independent addresses are mapped using a dedicated mapping service,

for example using a reverse zone in DNS, to provider-aggregatable addresses. As

a result, any inter-AS communication requires contacting this mapping service to

get the “routable” address, and then use some form of tunneling, such as IP-in-IP

encapsulation [Per96], to deliver IP packets destined for a provider-independent

address using a routable, provider-aggregatable address (Figure 6.2). Note that

89

 Telia
3.0.0.0/8

CENIC
5.0.0.0/8

Customer's
network
1.0.0.0/8

UCLA
4.0.0.0/8

UCLA
CS Department

2.0.0.0/8

Default free
zone (DFZ)

1.1.1.1

2.2.2.2

FIB
1.0.0.0/8
default

FIB
1.0.0.0/8
3.0.0.0/8
4.0.0.0/8
5.0.0.0/8

FIB
2.0.0.0/8
default

FIB
3.0.0.0/8
4.0.0.0/8
5.0.0.0/8

FIB
2.0.0.0/8
4.0.0.0/8
3.0.0.0/8
5.0.0.0/8

Dual-homed www.ndnsim.net server

Figure 6.1: Example of FIB state in the Internet with map-n-encap

? www.ndnsim.net A

? 1.1.1.1.in-addr.arpa A

www.ndnsim.net A 1.1.1.1
www.ndnsim.net A 2.2.2.2

DNS

1.in-addr.arpa A 3.0.0.0
DNS

DNS lookup (name to IP)

Mapping lookup (IP to IP)

Encapsulating (IP in IP) src: 5.0.0.0
dst: 3.0.0.0
payload: src: x.x.x.x

dst: 1.1.1.1
payload: TCP data

IP packet

IP packet

1

2

3

Figure 6.2: Example map-n-encap communication sequence in IP

if the mapping system returns multiple addresses (i.e., the destination is mul-

tihomed), as in our example, the sender is free to choose any of the returned

options. The key advantage of the map-n-encap solution is that the core can

maintain only a limited number of IP prefixes and have easily managed routing

tables (e.g., limited number of routing updates, updates only about connectivity,

not all attachments as in the currently used BGP [RL06]), while ensuring the

efficient global-scale communication. This idea has led to a number of specific

designs including 8+8 [OD96], LISP [Far07], ILNP [ABH09], and APT [JMM08],

to name a few.

90

6.2 Map-n-encap for NDN

NDN is inherently a data-centric architecture, thus every application is supposed

to name its Data in a provider-independent way, relying on the network to deliver

Interests to the right places based on Data names. This naming should still provide

enough information, including a routable prefix, application de-multiplexor, and

application-specific information (see naming example for NDNS in Section 3.1.1),

to enable proper delivery of the Interest to the intended destinations and appli-

cations, and identify the requested application Data, but all these naming model

elements are independent of the specific location or the network attachment. The

applications just need to indicate to the NDN network that they are using a se-

lected application-specific “routable” prefix, for example, in a way described in

Section 5.1. Therefore, given the number of different applications and application

instances that can be run on the NDN network, it is infeasible to assume that

the conventional routing system would be able to maintain a virtually unbounded

volume of application-specific provider-independent prefixes.

In this work, we propose to apply the old map-n-encap idea in order to scale

NDN routing, which should not encounter any of IP’s retrofitting hurdles, since

the NDN architecture is just in its first steps toward global adoption. Similar

to the IP’s world with map-n-encap described above, the global inter-AS NDN

name-based routing system (DFZ) will need to maintain a limited number of NDN

provider-specific (AS-specific) name prefixes (see Figure 6.3). The number of these

prefixes, assuming that each AS on the current Internet will be injecting a few

NDN prefixes, will be, pessimistically, on the order of one million and, realistically,

no more than 100,000 (i.e., ≈ two prefixes on average for each AS on the current

Internet [ATL10, Hus05]).1

1 According to our analysis of BGP data in 2006 [MWZ07], the number of IP prefixes belonged
to ISPs was 22,000 out of a total 209,000 prefixes in the global routing table. Assuming one
name prefix for each IP prefix for ISPs, the name-based routing table would have had only tens
of thousands of entries; the vast majority of NDN names used by end-sites will not show up in

91

 Telia
/telia

CENIC
/cenic

Customer's
network

/telia/customer

UCLA
/ucla

UCLA
CS Department

/ucla/cs

Default free
zone (DFZ)

/net/ndnsim/www

/net/ndnsim/www

FIB
/net/ndnsim
default

FIB
/cenic/...
/telia
/ucla

FIB
/ucla/cs
/ucla/...
/cenic
/telia

FIB
/net/ndnsim
default

FIB
/telia/customer
/telia/...
/cenic
/ucla

Dual-homed /net/ndnsim/www server

Figure 6.3: Example of FIB state in NDN network with map-n-encap

? /net/ndnsim/www FH Mapping lookup
using NDNS

"Encapsulating" using
forwarding hint

1

2

Data

/net/ndnsim/DNS/www/FH/%01Name:
<2 RR datas>
FH /ucla
FH /telia

 Content:
NDNS query

Interest

Name: /net/ndnsim/www/index.html/%00
ForwardingHint: /ucla

"Encapsulating" using
emulated forwarding
hint with name concatenation

2'
Name: /ucla/%F0./net/ndnsim/www/index.html/%00

Interest

Figure 6.4: Example map-n-encap communication sequence in NDN

In this way, the global NDN routing system will maintain just connectivity

between providers/ASes, including all routing policy-specific information about

alternative inter-AS paths, while a separate mapping system, such as NDNS,

will store the information about current attachments of the application-specific

prefixes to the provider-specific ones. At the same time, each provider internally

should have enough resources to ensure that each “registered” application-specific

the global routing table. Another analysis of BGP data shows also that the growth rate of ISP
ASes is only 20% of total AS growth rate [ATL10, OZZ07].

92

prefix is fully routable within the provider’s network, using OSPFN [WHY12],

NSLR [HAA13], or similar intra-AS NDN routing protocols.

Similar to the inter-AS communication in map-n-encap in IP if an application

wants to request Data that is not available inside the AS,2 it needs to do a lookup

into the mapping system to find the corresponding attachment point or points, and

then express an “encapsulated” Interest for Data directed to one of the attachment

points (see example in Figure 6.4). Such “encapsulation” can be achieved by

providing additional field in the Interests, which we call a forwarding hint, that

can suggest to NDN routers the direction where the requested Data may be found

(see Section 6.3). Unlike in real IP-in-IP-style encapsulation, NDN routers are

free to ignore the hint if either they know exactly where to look for Data (e.g.,

they have a routing entry for the requested Data) or the Data is available in local

in-network storage or a packet buffer cache.

However, since the forwarding hint concept requires certain modifications of

Interest processing logic on NDN routers, it is also possible to emulate it without

resorting to any processing logic modifications. For instance, one could prepend

the forwarding hint to the original Data name and express the Interest for a

concatenated name, which will first be directed to the right provider and then

the right application inside the provider’s network. This concatenation approach,

discussed in Section 6.3.1, is simpler to implement and deploy (and in fact has

already been implemented and used in NDNS prototype and ChronoShare appli-

cations [AZZ13]). However, it has certain limitations and to some extent violates

NDN principles: the same Data could be “named” differently (encapsulated in

differently named responses) and caches may not be too effective if the Data pro-

ducer is multi-homed to many different providers. However, in this work we want

to provide all implementation alternatives that can effectively solve the scalability

2This decision can be made either within the application after a certain number of retries,
or within the local or first-hop NDN router.

93

problem. Additionally, in practice, consumer networks are connected to a limited

number of providers (unless this consumer is a giant such as Google or Twitter

that are most likely going to be a part of the global routing system and will not

require forwarding hints at all), and cache efficiency will largely be unaffected

even with concatenation implementation of the forwarding hint concept.

The resulting overall picture is that (a) the prefix aggregation happens at the

edge of the Internet, where application Data names are getting collapsed into the

provider’s prefixes, and (b) forwarding-hint (“encapsulation”) provides a way to

direct Interests for application Data toward the right provider. This architecture

essentially moves the scalability issue from the routing to the mapping system:

if the mapping from application names to forwarding hints can scale, then the

routing task is trivial. As the mapping happens at the edge of the network, it

will have no impact on the network core. The NDNS database system introduced

in this thesis, having scalability properties as good as or better than the existing

DNS system, is one of the best candidates for such a mapping system.

The following sections in this chapter discuss specific design decisions for the

forwarding hint concept implementation, as well as details how NDNS can be

coupled with forwarding hints, in other words, which changes in the NDNS query

process are needed and which resource records should be used.

6.3 Encapsulating using forwarding hint

In addition to the application name, NDN allows Interests to include so called

Interest selectors, which can be used by applications to request NDN routers and

Data producers to return a specific version of the Data packet, provided that there

are multiple versions of the Data packet available and the Interest name does not

uniquely identify one (e.g., when an Interest specifies only a prefix of the Data

name). The selectors currently defined and implemented in the NDN platform

94

codebase include “MinSuffixComponents” and “MaxSuffixComponents” to spec-

ify how many additional name components the acceptable Data packet should

have, “Exclude” to specify what additional name components should not be

present in the retrieved Data name, and several others [NDN13b]. In order to

achieve application correctness, all these selectors need to be processed by each

router supporting in-network transient (packet buffer cache) and permanent (repo)

storage, as well by each Data producer that is receiving the specified Interest.

Therefore, it is possible to add a new forwarding hint selector (see example in

Figure 6.5), which would serve a similar but slightly different purpose. Instead of

selecting which exact Data can satisfy the Interest, it would “select” (suggest or

hint) the path, through which the requested Data packet (conforming to all other

selectors) can be found.

Interest
/net/ndnsim/www/index.html/%00Name:

ForwardingHint: /ucla
… other Interest selectors ...

Interest
/net/ndnsim/www/index.html/%00Name:

ForwardingHint: /telia
… other Interest selectors ...

Data
/net/ndnsim/www/index.html/%00Name:

<ndnSIM homepage>Content:

Figure 6.5: Forwarding hint as an additional Interest selector

In our example map-n-encap NDN environment in Figure 6.3, to retrieve the

application Data “/net/ndnsim/www/index.html” from, for example, CENIC

network, the Interest needs to include either a “/telia” or “/ucla” forward-

ing hint selector. When NDN routers in the CENIC network receive such an

Interest, they may have no idea how to process it using just the Data name, since

the specified name in the Interest or any prefix of this name is not part of DFZ’s

routing tables. At the same time, the included forwarding hint selector will con-

tain a prefix that is guaranteed to be present in the router’s FIB, thus simplifying

the Interest forwarding decision for the router. In one sense, the forwarding se-

95

lector represents a “locator” of the Data, with the exception that NDN routers

do not have to strictly follow this “locator” if they know how to forward the In-

terest toward the actual Data name (e.g., within Telia and UCLA networks) or if

they have a pre-cached version of the Data to satisfy the Interest. Note that this

forwarding hint selector can be provided either by the end-host (the requesting

application, such as NDN-based WEB browser) or any other router on the path

(e.g., home router), provided that it has enough memory and processing power to

do the lookup.

The only “drawback” from the new forwarding hint Interest selector is that

the processing logic on NDN routers, even for ones that do not feature in-network

storage and caches, needs to be slightly amended. Instead of doing just one FIB

lookup after the optional step of checking the cache and applying Interest selectors,

the router needs to do an additional FIB lookup using the forwarding hint selector,

if it is present in the Interest packet. Figure 6.6 summarizes the amended Interest

processing logic for NDN routers, highlighting the necessary additions:

1. Look up the application name in: cache, pending interest table (PIT), and

routing table (FIB).

2. If any lookup of step (1) returns a positive result, proceed with the standard

Interest processing. In other words, the Interest will either be satisfied

with previously cached Data, be recorded in the existing PIT entry, or be

forwarded according to the forwarding strategy.

3. If none of the lookups of step (1) returns a positive result, look up the hint

in the routing table.

4. If the lookup of step (3) returns a positive match, forward the Interest ac-

cordingly.

Note that the specified addition will have no effect on Interests for Data that

96

1: function Process(Interest)

2: if Data ← Cache.Find(Interest.Name, Interest.Selectors.*) then

3: Return(Data)

4: else if PitEntry ← PIT.Find(Interest.Name) then

5: Record(PitEntry, Interest)

6: else if FibEntry ← FIB.Find(Interest.Name) then

7: Forward(FibEntry, Interest)

8: else if FibEntry ← FIB.Find(Interest.ForwardingHint) then

9: Forward(FibEntry, Interest)

10: else

11: Drop Interest (Interest cannot be satisfied)

12: end if

13: end function

Figure 6.6: Interest processing

NDN routers know how to retrieve: either there is a FIB entry for the specified

Data name (as in the case inside Telia and UCLA networks) or there is a cached

version of the Data. Depending on cache implementation, this could be referring

either to just the packet-buffer cache that is inherent for each NDN routers or to

a bigger, possible collaborative [WBW13], dedicated in-network cache inside the

network.

Depending on the specific implementation, and subject to the further research

that is outside the scope of the current thesis, Interests for the same Data name,

but specifying different forwarding hint selectors may be either collapsed into one

PIT entry or treated completely separately, when such Interests arrive to the NDN

router at about the same time. In the first case, the router will simply ignore the

suggesting specified in the Interest that arrived later, while in the latter case both

suggestions could be followed, potentially opening more possibilities to retrieve

97

Data from many alternative sources, as well as to abuse or to create denial of

service attacks.

6.3.1 Forwarding hint emulation using name concatenation

If or when modification of Interest processing logic on NDN routers is not ac-

ceptable, it is still possible to use the concept of the forwarding hint. However,

instead of adding it as a separate element to the Interest, the “hinted” provider-

specific prefix can be prepended to (concatenated with) the original Data name of

interest (Figure 6.7). To avoid potential ambiguities for the Data naming (e.g., in

“/ucla/some/app”, does “/ucla” refer to the forwarding hint directing interest

towards “/some/app” inside the UCLA network, or is it an actual application in

UCLA directly using “routable” names?), we separate concatenated parts of the

name with an arbitrary-selected name component “%F0.”3

Interest
/ucla/%F0./net/ndnsim/www/index.html/%00Name:

… Interest selectors ...

Interest
/telia/%F0./net/ndnsim/www/index.html/%00Name:

… Interest selectors ...

Data
/ucla/%F0./net/ndnsim/www/index.html/%00Name:

Content: Data
/net/ndnsim/www/index.html/%00Name:

<ndnSIM homepage>Content:

No signature or trivial signature

Data
/telia/%F0./net/ndnsim/www/index.html/%00Name:

Content: Data
/net/ndnsim/www/index.html/%00Name:

<ndnSIM homepage>Content:

No signature or trivial signature

Data
/net/ndnsim/www/index.html/%00Name:

<ndnSIM homepage>Content:

Figure 6.7: Interests in concatenation approach

3Because the concatenated forwarding hint is irrelevant for NDN routers, a particular choice
for this delimiter is arbitrary. Our choice is motivated by the fact that “%F0.” is likely to be
unique, is short, and to some extent represents the first two letters in the “FOrwarding hint”
term.

98

With this forwarding hint emulation approach, NDN routers do not need to

alter any existing logic and will perform exactly one FIB lookup if the Data is not

found in caches and there is not an active PIT entry for the requested Data. At

the same time, this approach requires additional processing to be performed by

the original Data producer or its delegate (e.g., local NDN daemon or NDN dae-

mon on the home router, if configured to do so): when an encapsulated Interest

is received, one needs to strip off the hint part, perform the application-specific

Data lookup, and then encapsulate the retrieved Data, so it can be returned

to the requester. In other words, since Data packets always follow the “bread-

crumb” path set up by the forwarded Interests, the returned Data packets have

to contain, at least as prefixes, full names of the incoming Interests, including

the forwarding hint, if present. Because each individual Data packet is a secure

bundle of the name and content, to preserve validity, authenticity, and provenance

properties, the original Data packet needs to be included in another forwarding-

hint-specific Data packet (see Figure 6.7) that optionally has its own signature

and provides additional network-level validity, authenticity, and provenance for

the encapsulated bundle. For example, the border router at UCLA’s network

may need encapsulate the retrieved Data of “/net/ndnsim/www/...” under the

name “/ucla/%F0./net/ndnsim/www/...”, optionally sign it with UCLA’s key,

and forward encapsulated Data packets back to the requesters.

Note that the outer Data packet does not really need to be additionally se-

cured, since all the application-level security can be deduced and inferred from

the retrieved encapsulated Data. However, the Data producers or their designated

agents may still employ a lightweight signature generation to ensure network-level

integrity and validity checks, e.g., in the case routers on the return path elect to

check if the packet has been generated by a legitimate source.

Although the forwarding hint emulation using name concatenation achieves

the goal of forwarding packets in the map-n-encap’ed network environment, it

99

fundamentally changes the names used for fetching data, and this change leads to

a number of undesirable problems. First, there could be extra signing overhead

because the original content is signed over twice, i.e., first by the producer’s key

(inner packet) and then by the ISP’s key (outer packet). Such extra signing, if

selected, can lead to serious scalability issues, since routers would need to sign

packets at line-speed.

Second, and probably more critical, is that the name concatenation breaks

Data uniqueness: the same piece of Data can become available via a different

topology-specific name, reducing the level NDN-provided scalability and data

availability benefits that rely on efficient in-network caching and Interest aggrega-

tion. For example, Interests directed to one ISP (e.g., “/ucla/%F0./net/ndnsim/www”)

cannot be satisfied by the router’s cache, if the previously cached Data is origi-

nally requested using another ISP prefix (e.g., “/telia/%F0./net/ndnsim/www”).

However, in practice most consumers have very limited scale of multi-homing

(usually two, one primary and the other providing a back-up channel), effectively

alleviating the caching efficiency and data availability problems.

6.4 Mapping using NDNS

As pointed out earlier, map-n-encap “outsources” the scalability problem from

the routing system to a mapping system. In the IP Internet, DNS has become the

de facto best, most widely used, highly scalable, reliable, secure (with DNSSEC

extension), and easy-to-use general-use mapping system. NDNS is specifically

designed to retain most of these DNS properties and aims to serve a similar

universal database purpose in the NDN world. Therefore, NDNS is the ideal

candidate for the mapping service for the map-n-encap approach to scale the name-

based routing system in NDN, allowing NDN to become a practically deployable

and usable system on the scale of the current Internet or larger.

100

The concept of the routing hint, which becomes an essential part of the NDN

environment with an enabled map-n-encap scalability solution, fundamentally

changes some communication patterns in NDN, including ones used and relied

upon in NDNS iterative query implementation. The assumption which we used

in Chapter 3 that all prefixes used by NDNS zones are directly routable does not

hold anymore. The only element in the map-n-encap NDN world that can be

assumed about the routing tables is that prefixes for the DNS root (“/DNS”) and

some dedicated top-level domain names (e.g., “/ndn” for NDN testbed, “/com”,

“/net”, and some others for the Internet-scale NDN deployment) will be present

in DFZ FIB. Any other communication will require (in general, since some Data

can be fetched directly from NDN in-network caches) the presence of the forward-

ing hint, either using a new Interest selector or the concatenation approaches,

described in Section 6.3. Therefore, there is a need to do certain amendments to

NDNS, ensuring the tight integration and coupling of the NDNS iterative queries

and forwarding hints.

The iterative NDNS queries as defined in Chapter 3 aim to discover the proper

authority of the input NDNS namespace. However, a map-n-encap NDN environ-

ment requires, in addition to this discovery (i.e., discovery of the fact that there

is an “NS” record for a label in NDNS zone), the name of the NDNS name server

returned by the “NS” record that needs to be further mapped to a forwarding

hint, which may need to be used to actually fetch the desired Data. This process

to some extent should be equivalent to mapping the name server names in the

DNS protocol to IPv4 and IPv6 addresses using “A” and “AAAA” records. Thus,

we define a new resource record type using an “FH” mnemonic (Figure 6.8), which

holds the NDN name of the desired forwarding hint, with an additional “priority”

parameter. This additional parameter can be used by Data producers to express

the local (routing) policies and define the recommended order of the forwarding

hints to try: the lower priority record should be tried first.

101

priority

Forwarding Hint (NDN Name)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Figure 6.8: New FH resource record type to hold forwarding hint information

The current DNS/DNSSEC specification defines that the response for an “NS”-

type query, including referral “NS” responses, should include “glue” records as

part of the additional section in a DNS message [Moc87b]. These “glue” records

include known “A” and “AAAA” records for the returned name server names,

whereas in-zone records are configured during the delegation, and out-zone records

can be maintained in name server cache. For example, when delegating “ndnsim.net”

using the “ns1.ndnsim.net” name server name, the IP address for “ns1.ndnsim.net”

should be explicitly configured in the “.net” zone. With the help of glue records,

DNS avoids potential loops and reduces the number of round-trips to get to the

final answer. At the same time, the glue records are not secured using DNSSEC

(i.e., the additional section of the DNS reply does not contain corresponding

“RRSIG” records), and a separate DNS query will be necessary to ensure validity

of the delegation.

Although a similar process of bundling “glue” records with “NS” responses is

possible in NDNS, we consider it as just an optimization technique that can be

implemented in the future.4 In the initial design we follow a pure data-centric

model, requiring each individual piece of iterative NDNS information to be ex-

plicitly requested using a uniquely-named Interest. The querier first discovers

the zone delegation information (“NS” RR set), after which it sends one or more

queries for “FH” records to the same zone using if needed the same forward-

4Such an implementation can track changes in in-zone and out-zone FH records, recreat-
ing and re-signing an NS bundle, containing an “NS” RR set and relevant “FH” information.
Although such an implementation could be relatively simple, there could be unexpected per-
formance drawbacks when one of the domain records is “unstable”: if even one “FH” record
changes, the whole “NS” RR needs to be recreated, limiting in-network cache efficiency and
creating an additional burden on the zone synchronization protocol.

102

ing hint as before or invoking a separate iterative query if the “FH” record is

out of the zone. In a similar example, when “/net/ndnsim” is delegated us-

ing “ns1.ndnsim.net” (a.k.a. “/net/ndnsim/ns1”), the querier first sends a

“/net/DNS/ndnsim/NS” query, and after discovering the name server’s name it

sends another “/net/DNS/ndnsim/ns1/FH” query to the “/net” zone. We argue

that while this way may require additional round-trips to discover the final answer,

it does not create a new circular dependency problem (impossible with in-zone

delegation, possible the same way as in the existing DNS with out-of-zone dele-

gations), provides a clean and pure data-centric data retrieval process that can

extensively benefit from NDN’s in-network storage and caches (potentially miti-

gating additional round trips), and guarantees integrity and provenance of Data

at each step of iterative process. The resulting iterative NDNS querying process

coupled with the forwarding hint concept is defined in Figure 6.9. Note that the

definition assumes use of new forwarding hint selectors in Interest packets, but it

can be applied (and is actually implemented this way in our NDNS system proto-

type) to the forwarding hint emulation using the name concatenation approach.

6.4.1 Security considerations

It should also be noted that the map-n-encap version of NDNS requires additional

considerations related to the security. The NDNS security protocol defined in

Chapter 4 uses a “KeyLocator” to identify necessary key-certificate object to

verify response’s signature. However, this “KeyLocator” is specified as a fully-

formed NDNS iterative query (e.g., “/net/ndnsim/DNS/zsk-1/NDNCERT”), which

may not be directly possible to express, since the specified zone in the query may

not be directly routable through DFZ. At the same, the “KeyLocators” actually

specify either the same zone, if the record being verified is signed by ZSK or

DZSK, or a parent zone, in case the record is “NDNCERT” and it was signed

by KSK. Therefore, there is no additional communication overhead to fetch the

103

NDNS iterative query
(with map-n-encap)

Input: NDNS name
Input: RR type

Discover zone delegation
Express interest: AuthZone + "DNS" + Label + "NS"

with current ForwardingHint

Check Data.Content.Type

Abort on
timeout

AuthZone = "/"
Label = "/"
ForwardingHint = "/"

Label = Label + <Next Component of NDNS name>

ForwardingHint = as discovered
AuthZone = AuthZone + Label
Label = "/"

NDNS
Auth?

NDNS
Resp?

NDNS
Nack?

Make final query
Express interest: AuthZone + "DNS" + Label + RR type

Terminate

Return
Data

Name: /DNS/net/NS;
ForwardingHint: /

/net/DNS/ndnsim/NS;
ForwardingHint: /

/net/ndnsim/DNS/www/NS;
ForwardingHint: /telia

/net/ndnsim/DNS/www/TXT
ForwardingHint: /telia

yes

yes

nono

Discover forwarding hint for NS server
Express interest: AuthZone + "DNS" + NsLabel + "NS"

with current ForwardingHint

Select NS record
(NsName) from RR set

In zone?
New iterative query

NDNS name: NsName
RR type: FH

Extract in-zone label for NsName
NsLabel = ndnify(NsName) - AuthZone

Random or based in
observer NS performance

no

yes

no

yes

Abort on
timeout

/net/ndnsim/www
TXT

map-n-encap modification

Abort

Figure 6.9: Iterative NDNS query process in map-n-encap NDN environment

104

required “NDNCERT” records, since the querier performing the NDNS iterative

query process will have enough information at each step of the process to format

the proper Interest, if necessary with a forwarding hint, which can be successfully

routed through DFZ.5

6.4.2 Zone delegation discovery: special case of iterative query

Since one of the primary aims of NDNS to be a general-use universal database,

applications may directly use NDNS iterative query format (see Section 3.1.4.1)

to name their Data, explicitly separating zone, label, and record type. Although

these Data names can be directly used in an Interest, assuming the zone’s prefix

is directly routable everywhere, map-n-encap environment requires an additional

piece of information, the forwarding hint, to be attached to such Interests. This by

and large highlights the need for a special iterative query type: a zone’s forwarding

hint discovery. We define this query as an abridged version of the general-purpose

NDNS iterative query, shown in Figure 6.9, with the removed final part—there

is no question for the final answer. This final question will in fact be replaced

by the application’s Interest. Both NDNS and the application will perform a full

iterative query process, except that NDNS discovers delegation and forwarding

hint information about the zone’s delegation, and the application asks for the

record in the zone.

6.4.3 Mobile producer and forwarding hint updates

NDNS defines a simple, secure, and easy-to-use dynamic update mechanism (Sec-

tion 4.4), which can be employed to update “FH” records when a mobile producer

5There are two options for the NDNS iterative query verification: (1) verification of each
response and (2) verification of only the final answer. The second approach is close to the
existing DNSSEC definition and may result in fewer verification steps. At the same time, the
first approach is more NDN-centric and guarantees correctness at each step of the iterative
query process, i.e., incorrect or corrupted delegation will be ignored. Our prototype NDNS
implementation supports both verification options, using the second approach by default.

105

moves from one network to another. Indeed, one currently deployed mobility so-

lution is to rely on DNS as the mapping service to keep up-to-date information

about a mobile’s latest location [ZWC11, Zhu13]. In the context of a mobile pro-

ducer we are taking more than a reasonable assumption that authoritative NDNS

name servers that are responsible for maintaining “FH” records for mobile pro-

ducers have a stable location. In other words, while the producer may change

location relatively quickly, the place (essentially a form of a rendezvous point)

which stores a producer’s attachment information is fixed. In this way, both a

mobile producer and a producer’s client can send NDNS queries to the zone, the

former to perform Interest-based dynamic updates and the latter to discover the

latest information about the producer.

Similar to DNS, NDNS relies on caching to enable scalability, which means

that records should not change too fast. At the same time, a particular mobile

producer and its designated NDNS authority server are free to choose lifetimes for

NDNS iterative responses (Freshness in terms of NDN Data packets), essentially

controlling the time granularity for possible forwarding hint changes.

Finally, a potentially slow pace of forwarding hint updates does not preclude

successful operation of the highly mobile Data producers. Remember that the

forwarding hint is devoted entirely to directing the Interest packets through the

DFZ and does not (in general) represent location inside the destination network.

Such a location can be tracked inside the network using any existing mobile node

tracking mechanisms, and the network can implement proper handover and redi-

rection mechanisms to deliver an Interest to constantly moving producers, e.g., in

the same way it is done in cellular networks.

106

6.5 Discussion

There is a well known Rekhter’s law that relates routing scalability to the con-

gruency between addressing and topology: “Addressing can follow topology or

topology can follow addressing. Choose one.” [MZF07] In other words, no mat-

ter how a routing system is designed, it can scale only if either (1) the address

structure reflects the topology, or (2) the topology is built based on the addresses.

A number of proposed routing protocols, including ROFL [CCK06] and VRR

[CCN06], fall into the second category. These designs perform routing operations

over virtual (overlay) topologies, which are built based on node IDs (e.g., hashes of

node names). As a result, their routing table size can scale on the order of logN ,

where N is the maximum number of node IDs. However, because the topology is

virtual, the actual forwarding paths selected by these routing protocols may have

a significant stretch. From a network operators’ perspective, the resulting virtual

topology does not obey administrative boundaries nor allow traffic engineering.

Routing schemes from the first category, such as Compact routing [TZ01],

Landmark routing [Tsu88], and many others, including the existing Internet rout-

ing system, are more operator-friendly and easier to implement. In these systems

the routing table size scales by letting nodes use topology-dependent addresses

(names). Map-n-encap is a simple and effective way to obtain topology-dependent

names. For example, a recent work [GKR11] argued that one could successfully

scale routing with flat data names if one just concatenates the (also flat) names of

aggregation entities in front of data names, as another example of the map-n-encap

idea [Dee96].

We believe that routing in NDN should be performed on the physical topology.

Based on Rekhter’s law, our only option is to scale routing by topology-dependent

names. While users and applications need topology-independent names, this con-

flict can be solved by employing the well known map-n-encap approach, introduced

107

almost twenty years ago.

Although the forwarding hint represents some form of a location related to the

Data producer, we do not consider it to be a step back from data-centricity of

NDN. This hint is nothing more than a suggestion of where the requested content

may reside. For example, if the client expresses an Interest for a Data packet that

is available locally (e.g., the producer resides inside the same provider and there

are corresponding FIB entries on provider’s routers), then this Interest will be

forwarded to the local producer, independent of whether it carries a forwarding

hint or not. Also, Interests will pull Data back from the very first router that

cached the desired Data, independent of how many providers the data producer

may connect to.

The binding between the application name and the hint is not signed. The

forwarding hint can be easily modified in transit, seamlessly redirecting Interests

out of the requested way. This can be used for good as well as for bad. For

example, routers may modify aliases to enforce traffic engineering agreements

or to select better paths to producers. At the same time, a misconfigured or

compromised router can request all passing-through Interests go to unintended

destinations, in an attempt to black-hole or eavesdrop traffic, or to DDoS another

ISP’s network. However, given NDN Interest packets are not signed in general,

routers can already modify data names without being detected and perform the

same “evil” activities. In short, introducing the forwarding hint does not introduce

any new vulnerabilities into the system.

The forwarding hint approach is an effective mechanism to deliver packets un-

der map-n-encap without impacting the major advantages of NDN communication

paradigm, including in-network caching. We believe that, for the time being, for-

warding hint represents the best tradeoffs among the options to scale an unlimited

application name space of NDN with the use of conventional routing.

108

CHAPTER 7

ndnSIM platform for simulation-based

evaluations of NDN deployment and NDN-based

applications

The fundamental changes introduced by the NDN architecture to the Internet

communication paradigm call for extensive and multidimensional evaluations of

various aspects of the NDN design. While the existing implementation of NDN

(NDN platform code base [NDN13a]) along with the testbed deployment give

invaluable opportunities to evaluate both the NDN infrastructure design as well

as its applications in a real-world environment, it is both difficult to experiment

with different design options and impossible to evaluate the design choices in large

scale deployment. To meet such needs and provide the community at large with a

common experiment platform, we have developed an open source NDN simulator,

ndnSIM, based on NS-3 network simulator framework [ns 11].

The design of ndnSIM has the following goals in mind:

• Being an open source package to enable the research community to run

experimentations on a common simulation platform.

• Being able to faithfully simulate all the basic NDN protocol operations.

• Maintaining optional packet-level interoperability with NDNx codebase im-

plementation [NDN13a], to allow sharing of traffic measurement and packet

analysis tools between NDNx and ndnSIM, as well as direct use of real NDNx

109

traffic traces to drive ndnSIM simulation experiments.

• Being able to to support large-scale simulation experiments.

• Facilitating network-layer experiments with routing, data caching, packet

forwarding, and congestion management.

• Providing a simple way to evaluate the performance of NDN-based applica-

tions, such as NDNS, in large-scale environments.

Following the NDN architecture, ndnSIM is implemented as a new network-

layer protocol model, which can run atop any available link-layer (point-to-point,

CSMA, wireless, etc.), network-layer (IPv4, IPv6), and transport-layer (TCP,

UDP) protocol models. This flexibility allows ndnSIM to simulate various homo-

geneous and heterogeneous deployment scenarios (e.g., NDN-only, NDN-over-IP,

etc.).

The simulator is implemented in a modular fashion, using separate C++

classes/interfaces to model and abstract behavior of each network-layer entity in

NDN: pending Interest table (PIT), forwarding information base (FIB), content

store, network and application interfaces, Interest forwarding strategies, etc. This

modular structure allows any component to be modified or replaced easily with

little or no impact on other components. In addition, the simulator provides an

extensive collection of interfaces and helpers to perform detailed tracing behavior

of every component and NDN traffic flow.

The ndnSIM implementation effort started in the fall of 2011. Since then the

initial implementation has been used both by ourselves for various NDN design

and evaluation tasks and by external alpha testers. The first release of ndnSIM as

an open-source package has been available since June of 2012, and we still continue

active development, adding new features that extend functionality of the simulator

and address needs of the community. For example, in the summer of 2013, we have

110

released an updated version of ndnSIM (version 0.5), featuring replaceable NDN

wire format, exclude filter support, and extended support for application-level

simulations (i.e., a full-featured API for simulated applications). More detailed

information about the release, code download, basic examples, and additional

documentation is available on the ndnSIM website http://ndnsim.net/.

7.1 Design

The desire to create an open source NDN simulation package largely dictated

our selection of the NS-3 network simulator [ns 11] as the base framework for

ndnSIM. Although NS-3 is relatively new and does not have everything that the

commercially available Qualnet or legacy ns-2 simulator has (e.g., NS-3 does not

have native support for simulating conventional dynamic IP routing protocols1),

it offers a clean, consistent design, extensive documentation, and implementation

flexibility.

In this section we provide insights about main components of ndnSIM design,

including a description of protocol implementation components.

7.1.1 Design overview

The design of ndnSIM follows the philosophy of network simulations in NS-3,

which devises maximum abstraction for all modeled components. Similar to ex-

isting IPv4 and IPv6 stacks, we designed ndnSIM as an independent protocol

stack that can be installed on a simulated network node. In addition to the core

protocol stack, ndnSIM includes a number of basic traffic generator applications

and helper classes to simplify creation of simulation scenarios (e.g., helper to in-

stalling the NDN stack and applications on nodes) and tools to gather simulation

statistics for measurement purposes.

1http://www.nsnam.org/docs/release/3.18/models/html/routing-overview.html

111

http://ndnsim.net/
http://www.nsnam.org/docs/release/3.18/models/html/routing-overview.html

The following list summarizes the component-level abstractions that have been

implemented in ndnSIM. Figure 7.1 visualizes the basic interactions between them:

• ndn::L3Protocol: implementation of the core NDN protocol interactions:

receiving Interest and Data packets from upper and lower layers through

Faces;

• ndn::Face: abstraction to enable uniform communications with applica-

tions (ndn::AppFace) and other simulated nodes (ndn::NetDeviceFace);

• ndn::ContentStore: abstraction for in-network storage for Data packets

(e.g., short-term transient, long-term transient, long-term permanent);

• ndn::Pit: abstraction for the pending Interest table (PIT) that keeps track

(per-prefix) of Faces on which Interests were received, Faces to which Inter-

ests were forwarded, as well as previously seen Interest nonces;

• ndn::Fib: abstraction for the forwarding information base (FIB), which can

be used to guide Interest forwarding by the forwarding strategy;

• ndn::ForwardingStrategy: abstraction and core implementation for In-

terest and Data forwarding. Each step of the forwarding process in ndn::For-

wardingStrategy—including lookups to ContentStore, PIT, FIB, and for-

warding Data packets according to PIT entries—is represented as virtual

function calls, which can be overridden in particular forwarding strategy

implementation classes (see Section 7.1.7);

• reference NDN applications, including simple traffic generators and sinks.

Each component with the exception of the core ndn::L3Protocol has a num-

ber of alternative implementations that can be arbitrarily chosen by the simu-

lation scenario using helper classes (see ndnSIM online documentation http://

112

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_app_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_net_device_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_content_store.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_pit.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_fib.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_forwarding_strategy.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html
http://ndnsim.net/helpers.html
http://ndnsim.net/helpers.html

Core%NDN%Protocol%
(ndn::L3Protocol)

ndn::
ContentStore

ndn::Fibndn::Pit

Applica7ons
(ndn::App,2PyNDN.ns3)

Face
(ndn::AppFace,2
ndn::ApiFace)

Face
(NetDeviceFace)

Connec7on%to%other%nodes
(NetDevice,2p2p,2wifi,2etc.)

ndn::Forwarding
Strategy

LRU, LFU,
Random, with or
without evicting
stale data, and

others

Unbounded, bounded,
"Persistent",

"Random" retention
policies for PIT entries

BestRoute, Flooding,
SmartFlooding,

PerOutFaceLimits,
PerFibLimits, and others

Figure 7.1: Block diagram of ndnSIM components

ndnsim.net/helpers.html). For example, ndnSIM currently provides implemen-

tations for ContentStore abstraction with Least-Recently-Used (LRU), First-In-

First-Out (FIFO), and random replacement policies for cached Data, unbounded

and bounded implementations of PIT abstraction with persistent and random

PIT entry retention policies, and a number of forwarding strategy options listed

in Figure 7.1.

By default, in order to optimize simulation run-time, ndnSIM uses a simplified

version of the wire format for Interest and Data packets. However, it allows

switching to the wire format of the current NDN implementation in the NDN

platform codebase (NDNx Binary XML Encoding2) either statically inside the

simulation scenario or dynamically for each simulation run. This option allows

reusing the existing traffic analysis tools (ndndump,3 wireshark NDNx plugin4),

2http://named-data.net/doc/0.1/technical/BinaryEncoding.html
3https://github.com/named-data/ndndump/
4https://github.com/named-data/ndnx/tree/master/apps/wireshark

113

http://ndnsim.net/helpers.html
http://ndnsim.net/helpers.html
http://named-data.net/doc/0.1/technical/BinaryEncoding.html
https://github.com/named-data/ndndump/
https://github.com/named-data/ndnx/tree/master/apps/wireshark

as well as drive simulations using real NDNx traffic traces. The implemented

abstractions allow for addition of new packet formats in the future, e.g., if one

wants to simulate NDN behavior with alternative packet formats or if there is a

change in the default packet format of the NDN platform.

Design of ndnSIM contains a number of optional modules, including (1) a

place-holder for data security (the current code allows attaching of a user-specified

“signature” to Data packets), (2) an experimental support of negative acknowledg-

ments (Interest NACK) to provide fast feedback about any data plane problem,

(3) a pluggable Interest rate limit and interface availability component in the

form of specialized versions of the NDN forwarding strategies, and (4) an extensi-

ble statistics module. Interested readers may refer to [YAM13, YAW12] for more

detail on Interest NACKs and the Interest rate limit.

7.1.2 Core NDN protocol implementation

ndn::L3Protocol in ndnSIM is a central architectural entity and stands in the same

line of class hierarchy as the corresponding Ipv4L3Protocol and Ipv6L3Protocol

classes of the NS-3 framework that implement IPv4 and IPv6 network-layer pro-

tocols. ndn::L3Protocol is a logical component aggregator for all available com-

munication channels with both applications and other nodes (Face abstraction,

see Section 7.1.3), and it performs basic handling of incoming packets from Faces

to a forwarding strategy.

The ndn::L3Protocol class defines the API to manipulate the following aspects

of the NDN stack implementation:

• AddFace/RemoveFace: to register a new Face realization to NDN proto-

col or remove an existing Face;

114

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html

ndn::App

ns3::Application PyNDN.ns3

Python application

ndn::AppFace ndn::ApiFace

ndn::L3Protocol + ndn::ForwardingStrategy + ndn::Fib +
ndn::Pit + ndn::ContentStore

ndn::UdpFacendn::TcpFace

ndn::NetDeviceFace TCP stack UDP stack

IPv4 stack

Link layer (PPP, WiFi, etc.)

Simple NDN API for
network-layer (strategy,
cache, etc.) evaluations

ConsumerCbr,
ConsumerWindow,
ConsumerZipfMandelbrot
Producer

Python-based
simulation of "real"
NDN applications

Rich (full) NDN API
for application level

evaluations

Overlay-based
simulations

...

Figure 7.2: Communication-layer abstraction for ndnSIM scenarios

7.1.3 Face abstraction

To achieve our goal of providing maximum flexibility and extensibility, we make

the ndnSIM design independent from the underlying transports through abstract-

ing the inter-layer interactions. All communication between the core protocol im-

plementation (ndn::L3Protocol), network, and applications is accomplished through

a Face abstraction (ndn::Face), which can be realized in various forms (see Fig-

ure 7.2): a link-layer face (ndn::NetDeviceFace) for inter-node communication di-

rectly over the link layer, a network-layer face (ndn::Ipv4Face and ndn::Ipv6Face)

and a transport-layer face (ndn::TcpFace and ndn::UdpFace) for inter-node over-

lay communication, and application-layer faces (ndn::AppFace and (ndn::ApiFace)

for intra-node (application-to-local-NDN stack) communications. The difference

between the last two faces lies in the amount and richness of the supported NDN

API. The AppFace interface is designed and primarily targeted for network-layer

simulations, where the only requirement for applications is to ensure flow of In-

terest and Data packets with predetermined parameters (e.g., a fixed rate). The

ApiFace is a recent addition that provides a rich NDN API that allows writ-

ing/porting and simulating behavior of full-featured NDN applications.

115

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_net_device_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_app_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_api_face.html

The Face abstraction defines the following API:

• SendInterest (realization-specific): to pass an Interest packet from NDN

stacks to the underlying layer (network or application).

• SendData (realization-specific): to pass a Data packet from NDN stacks

to the underlying layer (network or application).

• ReceiveInterest (realization-specific): to pass an Interest packet from the

underlying layer (network or application) towards the NDN stack.

• ReceiveData (realization-specific): to pass a Data packet from the under-

lying layer (network or application) towards the NDN stack.

• RegisterProtocolHandlers/UnRegisterProtocolHandlers (realization-

specific): to enable forwarding of packets from the underlying layer (network

or application) to the NDN stack.

• SetMetric/GetMetric: to assign and get Face metrics that can be used,

for example, in routing calculations.

• IsUp/SetUp: to check if Face is enabled and to enable/disable Face.

• GetFlags: to get flags associated with the Face. Currently face flags can

be used to determine whether the Face is for intra-node communication or

inter-node communication.

7.1.4 Content Store abstraction

The Content Store at each NDN router enables in-network storage, providing ef-

ficient error recovery and asynchronous multicast data delivery. ndnSIM provides

an interface to plug in different implementations of Content Store that can imple-

ment different indexing and item look up designs, different size limiting features,

and different cache replacement policies.

116

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_content_store.html

The current version of ndnSIM contains three realizations of the Content

Store abstraction with Least-Recently-Used (ndn::cs::Lru), First-In-First-Out

(ndn::cs::Fifo), and Random replacement policies (ndn::cs::Random). Each

of these realizations is based on a dynamic trie-based container with an (optional)

upper bound on its size, and hash-based indexing on Data names (per-component

lookup on a trie). Other Content Store modules are expected to be implemented

either by ourselves or with the help of the community as the need arises.

The Content Store abstraction provides the following operations:

• Add (realization specific): caching a new or promoting an existing Data

packet in cache.

• Lookup (realization specific): performing a lookup for previously cached

Data.

The Content Store abstraction does not provide an explicit data removal op-

eration. Lifetime of the Content Store entries depends on traffic patterns, as well

as on the Data packet freshness parameter supplied by data producers.

7.1.5 Pending Interest table (PIT) abstraction

PIT (ndn::Pit) maintains state for each forwarded Interest packet in order to pro-

vide directions for Data packet forwarding. Each PIT entry contains the following

information:

• the name associated with the entry;

• a list of incoming Faces, from which the Interest packets for that name have

been received, with associated information (e.g., arrival time of the Interests

on this Face);

117

http://ndnsim.net/doxygen/content-store-impl_8cc_source.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1ndn_s_i_m_1_1trie__with__policy.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_content_store.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_pit.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1pit_1_1_entry.html

• a list of outgoing Faces to which the Interest packets have been forwarded

with associated information (e.g., time when the Interest was sent on this

Face, number of retransmission of the Interests on this face, etc.);

• time when the entry should expire (the maximum lifetime among all the

received Interests for the same name); and

• any other forwarding strategy specific information in the form of forwarding

strategy tags (any class derived from ndn::fw::Tag).

The current version of ndnSIM provides a templated realization of PIT ab-

straction, allowing optional bounding of the number of PIT entries and different

replacement policies, including

• persistent (ndn::pit::Persistent)—new entries will be rejected if the PIT

size reaches its limit;

• random (ndn::pit::Random)—when the PIT reaches its limit, random en-

try (could be the newly created one) is removed from PIT;

• least-recently-used (ndn::pit::Lru)—the least recently used entry (the old-

est entry with the minimum number of incoming faces) will be removed

when the PIT size reaches its limit.

All current PIT realizations are organized in a trie-based data structure with

hash-based indexing on Data names (per-component lookup on a trie) and ad-

ditional time index (by expiration time) that optimizes removal of timed out

Interests from the PIT.

A new PIT entry is created for every Interest with a unique name. When

an Interest is received with a name that has been seen previously, the “incoming

Faces” list of the existing PIT entry is updated accordingly, effectively aggregating

(suppressing) similar Interests.

118

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_tag.html
http://ndnsim.net/doxygen/ndn-pit-impl_8cc_source.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1ndn_s_i_m_1_1trie__with__policy.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1pit_1_1_entry.html

The PIT abstraction provides the following realization-specific operations:

• Lookup: find a corresponding PIT entry for the given content name of an

Interest or Data packet;

• Create: create a new PIT entry for the given interest;

• MarkErased: Remove or mark a PIT entry for removal;

• GetSize, Begin, End, Next: get the number of entries in the PIT and

iterate through the entries.

7.1.6 Forwarding information base (FIB)

An NDN router’s FIB is roughly similar to the FIB in an IP router except that

it contains name prefixes instead of IP address prefixes, and it (generally) shows

multiple interfaces for each name prefix. It is used by the forwarding strategies

to make Interest forwarding decisions.

The current realization of FIB (ndn::fib:FibImpl) is organized in a trie-based

data structure with hash-based indexing on Data names (per-component lookup

on a trie), where each entry contains a prefix and an ordered list of (outgoing)

Faces, through which the prefix is reachable. The order of Faces is defined as

a composite index, combining the routing metric for the Face and data plane

feedback. Lookup for a match is performed on variable-length prefixes in a longest-

prefix match fashion, honoring any exclude filter [NDN13b] if it is specified in the

Interest.

7.1.6.1 FIB population

Currently, ndnSIM provides several methods to populate entries in the FIB. A

first is to use a simulation script to configure FIBs manually for every node in a

simulation setting. This method gives the user full control over what entries are

119

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_pit.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_fib.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fib_1_1_fib_impl.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1ndn_s_i_m_1_1trie__with__policy.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1ndn_s_i_m_1_1trie__with__policy.html

present in which FIB, and it works well for small-scale simulations. However, it

may become infeasible for simulations with large topologies.

The second method is to use a central global NDN routing controller to auto-

matically populate all routers’ FIBs. When requested (either before a simulation

run starts, or at any time during the simulation), the global routing controller

obtains information about all the existing nodes with the NDN stack installed

and about all exported prefixes. The controller uses this information to calculate

shortest paths between every node pair and updates all the FIBs. Boost.Graph li-

brary (http://www.boost.org/doc/libs/release/libs/graph/) is used in this

calculation.

In the current version, the global routing controller uses Dijkstra’s short-

est path algorithm (using Face metric) and installs only a single outgoing in-

terface for each name prefix. To experiment with multipath Interest forward-

ing scenarios, the global routing controller needs to be extended to populate

each prefix with multiple entries. However, it is up to the particular simula-

tion to define the exact basis for multiple entries, e.g., whether entries should

represent paths without common links. We welcome suggestions and/or global

routing controller extensions, which can be submitted on the GitHub website

(https://github.com/NDN-Routing/ndnSIM).

Finally, a simple method to populate the FIB is to install a default route (route

to “/”), which includes all available Faces of the NDN stack. For example, this

method can be useful for simulations that explore how well an Interest forwarding

strategy can find and maintain paths to prefixes without any guidance from the

routing plane.

120

http://www.boost.org/doc/libs/release/libs/graph/
https://github.com/NDN-Routing/ndnSIM

7.1.7 Forwarding strategy abstraction

Our design enables experimentation with various types of forwarding strategies,

without any need to modify the core components. This goal is achieved by intro-

ducing the forwarding strategy abstraction (ndn::ForwardingStrategy) that im-

plements core handling of Interest and Data packets in an event-like fashion. In

other words, every step of handling an Interest or Data packet, including Content

Store, the PIT, the FIB lookups, is represented as a virtual function that can be

overridden in particular forwarding strategy implementation classes.

More specifically, the forwarding strategy abstraction provides the following

set of overrideable actions:

• OnInterest: called by ndn::L3Protocol for every incoming Interest packet;

• OnData: called by ndn::L3Protocol for every incoming Data packet;

• WillErasePendingInterest: fired just before a PIT entry is removed;

• RemoveFace: called to remove references to a Face (if any used by a

forwarding strategy realization);

• DidReceiveDuplicateInterest: fired after detection reception of a dupli-

cate Interest;

• DidExhaustForwardingOptions: fired when the forwarding strategy ex-

hausts all forwarding options to forward an Interest;

• FailedToCreatePitEntry: fired when an attempt to create a PIT entry

fails;

• DidCreatePitEntry: fired after a successful attempt to create a PIT entry;

• DetectRetransmittedInterest: fired after detection of a retransmitted

Interest. This event is optional and is fired only when the “DetectRetrans-

121

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_forwarding_strategy.html

missions” option is enabled in the scenario. Detection of a retransmitted

Interest is based on observing that a new Interest matching an existing PIT

entry arrives on a Face that is recorded in the incoming list of the entry.

Refer to the source code for more details.

• WillSatisfyPendingInterest: fired just before a pending Interest is satis-

fied with Data;

• SatisfyPendingInterest: actual procedure to satisfy a pending Interest;

• DidSendOutData: fired every time a Data packet is successfully sent out

on a Face (can fail during congestion or if the rate limiting module is en-

abled);

• DidReceiveUnsolicitedData: fired every time a Data packet arrives,

while there is no corresponding pending Interest for the Data’s name. If

the “CacheUnsolicitedData” option is enabled, then such Data packets will

be cached by the default processing implementation.

• TrySendOutInterest: fired before actually sending out an Interest on a

Face;

• DidSendOutInterest: fired after successfully sending out an Interest on a

Face;

• PropagateInterest: basic Interest propagation logic;

We anticipate that in future releases more events will be added to the for-

warding strategy abstraction. At the same time, additional events can be created

in an object-oriented fashion through class inheritance. For example, an Inter-

est NACK extension (see [YAM13, YAW12] for more detail) is implemented as a

partial specialization of the forwarding strategy abstraction.

122

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_nacks.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_nacks.html

Figure 7.3 shows a partial hierarchy of the currently available forwarding strat-

egy extensions (Nacks, GreenYellowRed) and full forwarding strategy implemen-

tations (Flooding, SmartFlooding, and BestRoute) that can be used in simula-

tion scenarios. While all current realizations are inherited from a Nack extension

that implements additional processing and events to detect and handle Interest

NACKs [YAM13, YAW12], NACK processing is disabled by default and can be

enabled using “EnableNACKs” option.

ndn::ForwardingStrategy

ndn::fw::Nack

ndn::fw::GreenYellowRed

ndn::fw::BestRoute ndn::fw::SmartFloodingndn::fw::Flooding

PerOutFaceLimits PerFibLimits

ndn::fw::Flooding::PerOutFaceLimits
ndn::fw::BestRoute::PerOutFaceLimits

ndn::fw::SmartFlooding::PerOutFaceLimits

ndn::fw::Flooding::PerFibLimits
ndn::fw::BestRoute::PerFibLimits
ndn::fw::SmartFlooding::PerFibLimits

Figure 7.3: Available forwarding strategies (Flooding, SmartFlooding, and Best-

Route are full realizations, which can be wrapped over PerOutFaceLimits or Per-

FibLimits extensions)

SmartFlooding and BestRoute realizations rely on color-coding for the status

of each Face, based on observed data plane feedback [YAM13, YAW12].

• GREEN: the Face works correctly (e.g., if an Interest is sent to this Face,

a Data is returned);

• YELLOW: the status of Face is unknown (e.g. it may have been added

recently or has not been used in a while);

123

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_nacks.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_green_yellow_red.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_flooding.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_smart_flooding.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_best_route.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_nacks.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_smart_flooding.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_best_route.html

• RED: the Face is not working and should not be used for Interest forward-

ing.

The status information is attached to each Face in a FIB entry and initialized

to a YELLOW status. Every time a Data packet is returned as a response to

a previous Interest, the corresponding Face in the FIB entry is set to GREEN.

Every time an error occurs (a PIT entry timeout or, if enabled, a NACK-Interest

is received), the Face is turned back to YELLOW status. If a Face has not been

used for long enough, it also is turned back to YELLOW status. RED state is

assigned to the Face when the lower layer notifies the NDN stack of a problem

(link failure, connection error, etc.).

The following list summarizes the processing logic in the currently available

full forwarding strategy implementations:

• Flooding strategy (ndn::fw::Flooding): an Interest packet is forwarded to

all Faces that are available in the FIB entry for the Interest’s prefix, except

for the incoming Face of that Interest.

• Smart flooding strategy (ndn::fw:SmartFlooding): if a FIB entry con-

tains at least one GREEN Face, an Interest is forwarded only to the highest-

ranked GREEN Face. Otherwise, all YELLOW Faces will be used to forward

the Interest. RED Faces are not used for Interest forwarding.

This strategy mode can be used in simulations without routing input, and

the data plane can use Interest packets to discover and maintain working

paths.

• Best-Route strategy (ndn::fw::BestRoute) forwards Interest packets to

the highest-ranked GREEN (if available) or YELLOW face. RED Faces

are not used for Interest forwarding.

124

http://ndnsim.net/doxygen/flooding_8cc_source.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_smart_flooding.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_best_route.html

There are additionally two experimental forwarding strategy extensions, Per-

OutFaceLimits and PerFibLimits, that can be wrapped over existing or new for-

warding strategy realizations. These extensions attempt to avoid congestion in the

network and maximize network utilization by taking into account the Interest rate

limits [YAM13, YAW12] in the Face selection process at different granularities:

either individually for each outgoing face (PerOutFaceLimits) or individually per

each outgoing face in each FIB entry (PerFibLimits). For example, if the highest-

ranked Face has reached its capacity—more specifically, the number of pending

Interests for this Face has reached a set maximum limit—the strategy selects the

next Face in rank order that is under the limit.

7.1.8 Reference applications

Applications interact with the core of the system using the ndn::AppFace real-

ization of the Face abstraction. To simplify implementation of a specific NDN

application, ndnSIM provides a base ndn::App class that takes care of creating

ndn::AppFace and registering it inside the NDN protocol stack. It also provides

default processing for incoming Interest and Data packets.

Listed below is the set of reference applications that are currently available in

ndnSIM:

• ndn::ConsumerCbr: an application that generates Interest traffic with

a predefined frequency (constant rate, constant average rate with inter-

Interest gap distributed uniformly at random, exponentially at random,

etc.). Names of generated Interests contain a configurable prefix and a se-

quence number. When a particular Interest is not satisfied within an RTT-

based timeout period (same as TCP RTO), this Interest is re-expressed.

• ndn::ConsumerBatches: an on-off-style application generating a speci-

fied number of Interests at specified points of a simulation. Names and

125

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_app_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_app.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_app_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_consumer_cbr.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_consumer_batches.html

retransmission logic is similar to the ndn::ConsumerCbr application.

• ndn::Producer a simple Interest-sink application that replies to every in-

coming Interest with a Data packet of a specified size and name matching

the Interest.

7.1.9 PyNDN compatible interface

ndnSIM and NS-3 in general provide the opportunity to run NS-3 simulations us-

ing python bindings. Generally, this applies just to writing the scenarios, defining

scenario parameters, and requesting specific C++-implemented applications run

at selected simulation times. ndnSIM provides a way not only to start C++ code

from python, but also to use python as a driving force for the simulation, i.e., it

is possible to simulate python-based applications directly.

In particular, we have implemented an interface that emulates the functionality

of PyNDN, python bindings for NDN [KB11]. Using this interface, it is possible

to run the real code that has been written against PyNDN directly, but run it in

a virtual simulated network environment. Of course, it is still not possible to run

any arbitrary application, since a simulation applies certain limitations such as

restrictions on using synchronous network operations. In a sense, the implemented

interface follows the idea used in the DCE module for NS-3 [Lac10], but applies

this idea to Python applications instead of compiled versions of C/C++ code.

Of course, the run-time performance of such simulations will not be perfect,

since there are multiple redirections from python and C++ code, that have dif-

ferent calling conventions and memory management. At the same time, PyNDN

ndnSIM interfaces can be invaluable for fast prototyping and evaluating proto-

types of NDN applications. In fact, as described in Chapter 3, we have success-

fully used this extension to evaluate our python-based prototype implementation

of the NDNS system within a large-scale network.

126

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_consumer_cbr.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_producer.html

7.2 Summary

ndnSIM is designed as a set of loosely bound components that give a researcher

an opportunity to modify or replace any component, with no or little impact on

the other parts of ndnSIM. Our simulator provides a set of reference application

and helper classes, allowing evaluation of various aspects of NDN protocol under

many different scenarios. The first version of ndnSIM has been publicly released

since June of 2012. More detailed information about the release and additional

documentation is available on the ndnSIM website http://irl.cs.ucla.edu/

ndnSIM/.

127

http://irl.cs.ucla.edu/ndnSIM/
http://irl.cs.ucla.edu/ndnSIM/

CHAPTER 8

Related work

The core of the present thesis is based on the concepts and design choices of

the Domain Name System (DNS) [Moc87a, Moc87b], applying them in the con-

text of a pure data-centric Named Data Networking architecture [JST09, EBJ10].

Therefore, the first major related work is DNS itself and its usages by the Inter-

net community as a universal database, addressing a large number of operational

needs, discussed in Section 8.1.

The second part of the thesis applies NDNS to address the problem of routing

resource authorization, which is an ongoing problem even in the context of the IP

Internet. Some existing proposals to provide such authorization for IP prefixes

are listed and briefly discussed in Section 8.2.

In the third part, the thesis addresses the growing problem of global routing

scalability. While in our work we explicitly focus on scaling name-based NDN

routing, the proposed solutions borrow many ideas from the existing body of

work, summarized in Section 8.3.

Finally, Section 8.4 shows a number of alternative attempts that have been

made to allow flexible experimentation with the Named Data Networking archi-

tecture. All these attempts are largely complementary to each other and to the

ndnSIM platform presented in the last part of the current thesis, providing essen-

tial paths for building a better understanding of different parts of the architecture

(applications, forwarding strategy, cache) and at different levels (micro-, macro-

scopic).

128

8.1 DNS usage as distributed DB

While the original motivation and driving force to design and implement DNS

was to address the need to simplify and optimize mapping between host names

and network addresses (the way of keeping track of all host name and address

mapping in “hosts.txt” was no longer adequate [Moc87a]), DNS was recognized

from its initial design as a much more powerful system. DNS can not only provide

a solution for name-address mapping, but also be used as a highly-scalable general-

use database system for various network and application-level purposes. In fact,

there are more than 80 officially IANA-registered resource record types [IAN13] to

store various types of information, which can be used for a huge range of different

application and services. For example, a simple “TXT” resource record can map

a domain name to an opaque text string, which can be used from a simple domain

annotation to domain-owner authorization purposes (e.g., to authorize usage of

Google Webmaster tools [Goo13]).

There is also an application security-related use of DNS/DNSSEC known as

DANE [HS12], which is currently getting more and more attention, because of oc-

currence of numerous accidents with the commonly-used PKI-based Certification

Authorities (CA) certifications, including a recent semi-successful attack on the

Comodo registration authority [Rob11] that resulted in issuance of several phony

certificates. DANE defines another new “TLSA” resource record, which can be

used by the service owners to define specific or set restrictions on which CA (and

which specific CA’s key) is authorized to issue certificates for the service.

There is also a variation of the DNS protocol, multicast DNS (or mDNS

in short) [CK13], for resource discovery services within local environments. In

mDNS, requests/queries are sent out in a multicast fashion and each device receiv-

ing and understanding the request can send a proper mDNS response, announcing

its presence and the requested services. There is actually an ongoing effort based

129

on community demand to enable mDNS services on a larger DNS-like scale, since

it became popular and extremely useful service nowadays.

All of these highlight the universality of the DNS protocol, which we hope

is fully captured and extended in a pure data-oriented manner within the NDN

architecture by an NDNS system designed in this thesis.

8.2 Securing global routing resources

Routing security is one of the hottest areas in network research [NM09]. The

closely related routing area for which NDNS, designed in the present thesis, pro-

vides a solution is authorization of routing resources, such as name prefixes in NDN

and IP prefixes on the existing Internet. While several global routing security pro-

posals, such as Secure BGP (S-BGP) [KLS00, KLM00], provide a comprehensive

security solution for the global routing system, these solutions are too hard to

deploy and use in practice.

There are also several alternative efforts to provide less comprehensive secu-

rity solutions, providing ways to ensure that prefixes are announced only by the

legitimate entities. These solutions can be easily deployed within the current In-

ternet infrastructure and provide a reasonable protection against current security

threats and misconfigurations. One such effort, known as Resource Public Key

Infrastructure (RPKI) [MVK12], is supported by the Regional Internet Registries

(RIRs) to provide strict certification for AS numbers and IP prefixes. RPKI uses

the standard X.509 Public Key Infrastructure (PKI) trust model [AL03, CSF08]

and allows flexible delegation and re-delegation of resources. The usual oper-

ational concern about the RPKI way of authorizing resources is related to the

storage of the actual resource certificates, called route origination authorizations.

This storage is based on a hierarchy of dedicated RPKI repositories, which means

that networks need to maintain a dedicated storage infrastructure, if they want

130

to sub-delegate RIR-assigned resources, while the original certifications are stored

in RIR-provided repositories [ARI13].

A separate effort that motivates by and large the inspiration for the proposal of

the present thesis is the ROVER project [GMG12, GMO13], which enables routing

resource certification similar to RPKI, but leverages the existing DNS/DNSSEC

infrastructure. In short, ROVER defines a way for network providers to designate

which prefixes (sub-prefixes) can be present in the global routing system and

which ASes are allowed to announce these prefixes. This information is recorded

in the already delegated reverse DNS zone “in-addr.arpa” in the form of several

new resource record types (“SRO” and “RLOCK”). While the ROVER effort can

be considered complimentary to RPKI, it better fits the existing infrastructure,

including the existing DNS/DNSSEC deployment and trust model.

8.3 Routing scalability

Routing scalability has long been a recognized problem of the present Inter-

net [ATL10]. A number of currently enforced regulations reduce the problem

(e.g., limiting the maximum prefix size in the global routing table), but unfor-

tunately cannot completely eliminate it. A common approach for solving this

problem is through address aggregation, which requires address allocation to re-

flect the network topology, either directly or indirectly. Existing solutions can be

categorized into two groups: namespace elimination and namespace separation.

Identifier-Locator Network Protocol (ILNP) [AB12] is a global routing scala-

bility solution most closely related to the proposal in this thesis. ILNP is a new

network protocol that switches from an IP communication model, where IP ad-

dresses (both in IPv4 and IPv6) are overloaded with the functionality of network

locators and host identifiers, leading to many existing problems with application

session maintenance as the network topology changes. In some sense, ILNP ex-

131

plicitly “untangles” usages of IP addresses at different layers by mandating the

use of separate network locators for packet forwarding, host identifiers for trans-

port sessions, and DNS names within applications (e.g., not possible to use IP

address in a WEB browser, instead of the domain name). Similar to our proposal,

ILNP relies on the existing DNS/DNSSEC deployment to map from application-

level domain names to node identifiers, which are then mapped to the network

locators.

Although in our proposal we have a similar separation that uses application-

specific names to uniquely identify pieces of the requested data and forwarding

hints to suggest locations where the Data can be, there are several notable dif-

ferences. First, the suggested location by the forwarding hint is not mandatory

(e.g., not needed for the local data retrieval, either when Data producer is local

or Data was previously cache) and can be completely ignored by NDN routers.

Second, in NDN generally, the same names are used throughout the application,

transport, and network layers. As a result, the application names can be directly

mapped using NDNS to the forwarding hints, instead of requiring an additional

name to host identifier mappings.

The scalability problem in conventional routing can be solved only through

efficient aggregation. Over the last two decades, the research community has

introduced a number of approaches to enable efficient aggregation, which can be

divided into two big categories. First, there are proposals that call for clear separa-

tion between addresses that appear in the global routing table and those addresses

(or names) that are used by end-hosts [Dee96, MWZ07, JMY08, ASB99, GKR11],

while some additional service (e.g., DNS) is used to map end-host addresses to (a

set of) routable addresses. A second category contains proposals that call for an

extended use of multiple provider-dependent addresses, while upper layers (trans-

port layers [Tsu91, HWB08] or a shim layer between IP and TCP [NB07]) need to

take care of managing multiple addresses within a single connection. When estab-

132

lishing connection, upper layers may either obtain multiple addresses through DNS

by mapping an application-requested domain name to a set of resource records, or

negotiate during the connection handshake (Shim6). In both cases, addresses that

appear in the global routing table are only addresses of ISPs, which are limited

in number and easy to aggregate.

Our proposal belongs to the first category and is in the same spirit as the

map-n-encap approach [Dee96] for scaling the IP routing system. However, our

work ensures that the design is consistent with NDN’s name-based data retrieval

model: (1) Interests are sent by data consumers towards data producers, leaving

a trail for returning Data packets; and (2) an Interest can retrieve data as long as

the names match, even if the Interest does not reach the producer.

An alternative way to solve the routing scalability problem is to replace the

conventional routing system with, as an example, Hyperbolic routing [PKB10,

BPK10, KPK10]. While this method does not require a global routing table, it

still requires an additional mapping service to map names to coordinates. In this

regard, the solutions are conceptually similar, but there is still a question about

how well Hyperbolic routing can work and how can it handle existing complex

routing policies between ISPs.

8.4 NDN architecture evaluation tools

Over the last few years several efforts have been devoted to the development of

evaluation infrastructure for NDN architecture research.

One effort by the NDN project team is support of NDN within the Open

Network Lab (ONL) [ZEB11]. ONL currently contains 14 programmable routers

and over 100 client nodes, connected by links and switches of various capability.

Every node and router runs an NDNx implementation from the NDN platform

code base. Users have full access to the hardware and software state of any node

133

of ONL. It is also possible to run and evaluate NDNx implementation on nodes

of DeterLab testbed [DET00]. Having a programmable non-virtualized testbed

is a valuable option, though its capability is limited to evaluate relatively small-

size networks. For larger-scale experiments, researchers may need to resort to

simulations.

Rossi and Rossini [RR11] developed ccnSim to evaluate the caching perfor-

mance of NDN. ccnSim is a scalable chunk-level simulator of NDN that is written

in C++ under the Omnet++ framework, which allows assessing NDN perfor-

mance in large-scale scenarios (up to 106 chunks) on a standard consumer-grade

computer hardware. ccnSim was designed and implemented with the main goal

of running experimentations of different cache replacement policies for the NDN

routers content store. Therefore, it is not a fully featured implementation of the

existing NDN protocol. In the current version of ccnSim, PIT and FIB compo-

nents are implemented in the simplest possible way, thus it is unable to evaluate

different data forwarding strategies, different routing policies, or different conges-

tion control schemes.

Another NDN simulator has been written at Orange Labs by Muscariello

and Gallo [MG11]. Their Content Centric Networking Packet Level Simulator

(CCNPL-Sim) is based on SSim that is a utility library which implements a simple

discrete-event simulator. Combined Broadcast and Content-Based routing scheme

(CBCB) [CRW04] must run as an interlayer between SSim and CCNPL-Sim to

enable name-based routing and forwarding over generic point-to-point networks.

Though a canonical NDN model was completely reimplemented in CCNPL-Sim in

C++, this solution has the drawback of using a custom discrete-event simulator

that is unfamiliar to most researchers. Additionally, an obligatory usage of CBCB

narrows the possible experimentation area, making it impossible to evaluate other

routing protocols, such as OSPF-N (OSPF extension for NDN) or routing on Hy-

perbolic Metric Space [PKB10, BPK10, KPK10].

134

A completely different approach has been taken by Urbani et al. [ns 13]. They

provide support of Direct Code Execution (DCE) for NDNx implementation in-

side the NS-3 simulator. The general goal of DCE NS-3 module is to provide

facilities to execute existing implementations of user-space and kernel-space net-

work protocols within the NS-3 simulated environment. The main advantage of

this approach is that simulations can use the existing unmodified NDNx code di-

rectly, thus providing maximum realism and requiring no code maintenance (as

new versions are supposed to run in DCE NS-3 without much effort). However,

this approach also raises a few concerns. First, the real implementation, includ-

ing NDNx code, is rather complex, difficult to modify to explore different design

approaches, and contains a great deal of code that is irrelevant for simulation

evaluations. Second, there is a known scaling problem, because each simulated

node has to run a heavy DCE layer and a full-sized real NDNx implementation.

135

CHAPTER 9

Conclusions

The recently proposed Named Data Networking (NDN) architecture can arguable

bring a number of advantages in support of the current communication patterns,

compared to the existing Internet infrastructure. At the same time, moving from

the blueprint of the proposed architecture to the actually deployed system faces a

number of operational hurdles, some of which are addressed in this thesis by the

use of NDNS, the scalable general-use database system.

The developed NDNS database system applies the best principles of the ex-

isting Domain Name System (DNS) protocol to a pure data-centric communi-

cation model within NDN architecture. Although DNS by itself seems to be

data-centric and implementing DNS within NDN looks trivial on the surface, the

presented analysis reveals that many elements of the DNS design rely heavily on

the connection-oriented nature of the current communication model of the Inter-

net. For instance, DNS caching resolvers rely on point-to-point connectivity to the

authoritative name servers to ask the same question about the resolved domain

and receive different answers, such as referrals to next-level authoritative name

servers, rejections, and final answers. While such an operation can be emulated

in NDN as well, it would inevitably violate principles of data centricity and not

be able to leverage benefits of in-network caching and storage provided by NDN.

The designed NDNS protocol solves this problem by requiring the caching NDNS

resolvers to issue specific questions to the network, iteratively and progressively

inferring which NDNS zone is authoritative to the resolved question. While this

136

change increases the complexity of the caching resolver logic and potentially in-

creases the number of iterative queries necessary to resolve the question, NDNS

is able to effectively utilize all the benefits of the NDN, ensuring that NDNS is

scalable on the same level or even better than the existing DNS.

We anticipate that the designed NDNS will become not just a big, secure

database, but also a new ecosystem for the NDN network itself and many NDN-

based applications. With the help of NDNS it is possible to address many of the

existing and future operational challenges, including routing resource authoriza-

tion, providing the core for security credential management, and providing the

base for scaling name-based routing in NDN through application of the map-n-

encap concept.

In addition to that, the present work is one of the first attempts to apply suc-

cessful design principles of a protocol, designed for the existing channel-based net-

work architecture, within a pure data-centric NDN-based network environment.

While it is possible to apply the existing IP-based designs in NDN by emulat-

ing a concept of the channel-based communication (e.g., by including “source”

name as part of the Interest name and ensuring uniqueness of each Interest via

a sequence number), such designs will not be able to take full advantage of the

NDN-provided benefits. An efficient data-centric application or protocol must

follow a very carefully crafted naming model for Interests and Data, ensuring

that NDN’s build-in multicast, in-network caching, and other benefits are fully

utilized. This observation highlights the enormous power of names within NDN

architecture. In the designed NDNS system, the naming model (see Chapter 3)

provides enough information to guide Interests towards the appropriate network

locations, to dispatch Interests to the appropriate applications, and to identify

specific pieces of application-specific information requested by the Interests. At

the same time, the designed naming ensures that each piece of NDNS Data has

unique (stable) name, and any parties requesting the same Data (“NS” referrals

137

or final answers) use the same names. Essentially, this guarantees that if there

are multiple Interests for the same Data, only one of them will actually reach the

authoritative name server.

Another high-level result from the present work is a case-based proof that

build-in security of NDN architecture can unify and simplify design of applica-

tion, such as NDNS. In particular, by the means of cryptography and name-based

security policies NDNS effectively implement DNSSEC-like security model within

the network architecture, without requiring any additional protocol-specific mech-

anisms.

138

References

[AB12] RJ Atkinson and SN Bhatti. “Identifier-Locator Network Protocol
(ILNP) Architectural Description.” RFC 6740, 2012.

[ABH09] Randall Atkinson, Saleem Bhatti, and Stephen Hailes. “ILNP: mobil-
ity, multi-homing, localised addressing and security through naming.”
Telecommunication Systems, 42(3), 2009.

[AL03] Carlisle Adams and Steve Lloyd. Understanding PKI: concepts, stan-
dards, and deployment considerations. Addison-Wesley Professional,
2003.

[AMM13] Alexander Afanasyev, Priya Mahadevan, Ilya Moiseenko, Ersin Uzun,
and Lixia Zhang. “Interest Flooding Attack and Countermeasures in
Named Data Networking.” In Proceedings of IFIP Networking, May
2013.

[AMZ12] Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. “ndnSIM:
NDN simulator for NS-3.” Technical Report NDN-0005, NDN, Octo-
ber 2012.

[Arb11] Arbor networks. “Worldwide Infrastructure Security Re-
port.” Volume VII, http://www.arbornetworks.com/research/

infrastructure-security-report, 2011.

[ARI13] ARIN. “RPKI frequently asked questions.” https://www.arin.net/

resources/rpki/faq.html, 2013. Accessed on September 6, 2013.

[ASB99] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. “The
design and implementation of an intentional naming system.” In
SIGOPS Operating Systems Review, volume 33, 1999.

[ATL10] Alexander Afanasyev, Neil Tilley, Brent Longstaff, and Lixia Zhang.
“BGP Routing Table: Trends and Challenges.” In Proceedings of the
12th Youth Technological Conference “High Technologies and Intellec-
tual Systems”, 2010.

[AZY13] Alexander Afanasyev, Zhenkai Zhu, and Yingdi Yu. “NDN.cxx: C++
NDN API.” https://github.com/named-data/ndn.cxx/, 2013.

[AZZ13] Alexander Afanasyev, Zhenkai Zhu, and Lixia Zhang. “The story of
ChronoShare, or how NDN brought distributed file sharing back.” Un-
der submission, 2013.

139

http://www.arbornetworks.com/research/infrastructure-security-report
http://www.arbornetworks.com/research/infrastructure-security-report
https://www.arin.net/resources/rpki/faq.html
https://www.arin.net/resources/rpki/faq.html
https://github.com/named-data/ndn.cxx/

[BPK10] Mariana Boguna, Fragkiskos Papadopoulos, and Dmitri Krioukov.
“Sustaining the Internet with hyperbolic mapping.” Nature Commu-
nications, 1(62), 2010.

[BVR12] Akash Baid, Tam Vu, and Dipankar Raychaudhuri. “Comparing Al-
ternative Approaches for Networking of Named Objects in the Future
Internet.” In Proceedings of NOMEN Workshop, 2012.

[BZA13] Chaoyi Bian, Zhenkai Zhu, Alexander Afanasyev, Ersin Uzun, and
Lixia Zhang. “Deploying Key Management on NDN Testbed.” Tech-
nical Report NDN-0009, Revision 2, NDN, 2013.

[CCK06] Matthew Caesar, Tyson Condie, Jayanthkumar Kannan, Karthik Lak-
shminarayanan, and Ion Stoica. “ROFL: routing on flat labels.” In
Proceedings of SIGCOMM, 2006.

[CCN06] Matthew Caesar, Miguel Castro, Edmund B. Nightingale, Greg
O’Shea, and Antony Rowstron. “Virtual ring routing: network routing
inspired by DHTs.” In Proceedings of SIGCOMM, 2006.

[CG00] David R. Cheriton and Mark Gritter. “TRIAD: A new next-generation
Internet architecture.” Technical report, TRIAD project, 2000.

[CK13] S. Cheshire and M. Krochmal. “Multicast DNS.” RFC 6762, 2013.

[CRW04] Antonio Carzaniga, Matthew J. Rutherford, and Alexander L. Wolf.
“A Routing Scheme for Content-Based Networking.” In Proceedings
of IEEE INFOCOM, 2004.

[CSF08] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk. “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile.” RFC 5280, 2008.

[Dee96] Steve Deering. “The Map & Encap Scheme for scalable IPv4 routing
with portable site prefixes.” Presentation Xerox PARC, 1996.

[DET00] DETER project. “DeterLab: Cyber-Security Experimentation and
Testing Facility.” http://www.isi.deterlab.net, 2000.

[Eas97] D. Eastlake. “Secure Domain Name System Dynamic Update.” RFC
2137, 1997.

[Eas99] D. Eastlake. “Domain Name System Security Extensions.” RFC 2535,
March 1999.

[EBJ10] Lixia Zhang Deborah Estrin, Jeffrey Burke, Van Jacobson, James D.
Thornton, Diana K. Smetters, Beichuan Zhang, Gene Tsudik, kc claffy,

140

http://www.isi.deterlab.net

Dmitri Krioukov, Dan Massey, Christos Papadopoulos, Tarek Abdelza-
her, Lan Wang, Patrick Crowley, and Edmund Yeh. “Named Data
Networking (NDN) Project.” Tech.Report NDN-0001, PARC, Octo-
ber 2010.

[Far07] D. Farinacci. “Locator/ID separation protocol (LISP).” Internet draft
(draft-farinacci-lisp-00), 2007.

[FHC03] P. Faltstrom, P. Hoffman, and A. Costello. “Internationalizing Domain
Names in Applications (IDNA).” rfc3490, 2003.

[GKR11] Ali Ghodsi, Teemu Koponen, Jarno Rajahalme, Pasi Sarolahti, and
Scott Shenker. “Naming in content-oriented architectures.” In Pro-
ceedings of SIGCOMM Workshop on ICN, 2011.

[GMG12] Joseph Gersch, Dan Massey, Michael Glenn, and Christopher Garner.
“ROVER BGP Route Origin Verification via DNS.” NANOG55, 2012.

[GMO13] J. Gersch, D. Massey, C. Olschanowsky, and L. Zhang. “DNS Resource
Records for Authorized Routing Information.” Internet draft (draft-
gersch-grow-revdns-bgp-02), 2013.

[Goo13] Google. “Webmaster Tools. Verification: Domain name provider.”
https://support.google.com/webmasters/answer/176792?hl=en,
2013. Accessed on September 6, 2013.

[GR00] Lixin Gao and Jennifer Rexford. “Stable Internet routing without
global coordination.” SIGMETRICS Perform. Eval. Rev., 28(1):307–
317, June 2000.

[HAA13] AKM Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and
L. Wang. “Named-data Link State Routing Protocol.” In Proceed-
ings of the ACM SIGCOMM ICN Workshop, 2013.

[HS12] P. Hoffman and J. Schlyter. “The DNS-Based Authentication of
Named Entities (DANE) Transport Layer Security (TLS) Protocol:
TLSA.” RFC 6698, 2012.

[Hus05] Geoff Huston. “Growth of the BGP table, 1994 to present.” http:

//bgp.potaroo.net, 2005. Accessed on August 30, 2013.

[HWB08] Mark Handley, Damon Wischik, and Marcelo Bagnulo Braun. “Mul-
tipath Transport, Resource Pooling, and implications for Routing.”
Presentation at IETF-71, July 2008.

[IAN13] IANA. “Domain Name System (DNS) Parameters.” http://www.

iana.org/assignments/dns-parameters/dns-parameters.xhtml,
2013.

141

https://support.google.com/webmasters/answer/176792?hl=en
http://bgp.potaroo.net
http://bgp.potaroo.net
http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml
http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml

[IV09] ICANA and Verisign Inc. “Root DNSSEC: Information about
DNSSEC for the Root Zone.” http://www.root-dnssec.org/, 2009.
Accessed on August 30, 2013.

[JMM08] Dan Jen, Michael Meisel, Daniel Massey, Lan Wang, Beichuan Zhang,
and Lixia Zhang. “APT: A Practical Tunneling Architecture for Rout-
ing Scalability.” Technical Report 080004, UCLA Computer Science
Department, 2008.

[JMY08] Dan Jen, Michael Meisel, He Yan, Dan Massey, Lan Wang, Beichuan
Zhang, and Lixia Zhang. “Towards a New Internet Routing Architec-
ture: Arguments for Separating Edges from Transit Core.” In Pro-
ceedings of HotNets, 2008.

[JST09] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F.
Plass, Nicholas H. Briggs, and Rebecca L. Braynard. “Networking
Named Content.” In Proceedings of CoNEXT, 2009.

[KB11] Derek Kulinski and Jeff Burke. “Python wrapper for NDNx.” https:

//github.com/named-data/PyNDN, 2011.

[KB12] Derek Kulinski and Jeff Burke. “NDNVideo: Random-access Live and
Pre-recorded Streaming using NDN.” Technical Report NDN-0007,
NDN, 2012.

[KBZ13] Derek Kulinski, Jeff Burke, and Lixia Zhang. “Video Streaming over
Named Data Networking.” IEEE COMSOC MMTC E-Letter, 8(4),
July 2013.

[KCC07] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolin-
skiy, Kye Hyun Kim, Scott Shenker, and Ion Stoica. “A Data-Oriented
(and Beyond) Network Architecture.” In Proceedings of SIGCOMM,
2007.

[KK89] Tomihisa Kamada and Satoru Kawai. “An algorithm for drawing gen-
eral undirected graphs.” Information processing letters, 31(1):7–15,
1989.

[KLM00] S. Kent, C. Lynn, J. Mikkelson, and K. Seo. “Secure Border Gateway
Protocol (S-BGP)—Real World Performance and Deployment Issues.”
In Proceedings of the Network and Distributed System Security Sym-
posium (NDSS 2000), 2000.

[KLS00] S. Kent, C. Lynn, and K. Seo. “Secure Border Gateway Proto-
col (S-BGP).” IEEE Journal on Selected Areas in Communications,
18(4):582–592, 2000.

142

http://www.root-dnssec.org/
https://github.com/named-data/PyNDN
https://github.com/named-data/PyNDN

[KPK10] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin
Vahdat, and Mariana Boguna. “Hyperbolic geometry of complex net-
works.” Physical Review E, 82, 2010.

[Lac10] Mathieu Lacage. Experimentation tools for networking research. Ph.d.
thesis, Ecole doctorale Stic, Université de Nice Sophia Antipolis, 2010.

[MAM99] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams.
“X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol—OCSP.” RFC 2560, 1999.

[MG11] Luca Muscariello and Massimo Gallo. “Content Centric Networking
Packet Level Simulator.” https://code.google.com/p/ccnpl-sim/,
2011.

[Moc87a] P. Mockapetris. “Domain names—concepts and facilities.” RFC 1034,
1987.

[Moc87b] Paul Mockapetris. “Domain names—implementation and specifica-
tion.” RFC 1035, 1987.

[MV13] Giulia Mauri and Giacomo Verticale. “Distributing Key Revocation
Status in Named Data Networking.” In Advances in Communication
Networking, pp. 310–313. Springer, 2013.

[MVK12] T. Manderson, L. Vegoda, and S. Kent. “Resource Public Key Infras-
tructure (RPKI) Objects Issued by IANA.” RFC 6491, 2012.

[MWZ07] Daniel Massey, Lan Wang, Beichuan Zhang, and Lixia Zhang. “A
Scalable Routing System Design for Future Internet.” In Proceedings
of SIGCOMM IPv6 and the Future of the Internet workshop, 2007.

[MZF07] D. Meyer, L. Zhang, and K. Fall. “Report from the IAB Workshop on
Routing and Addressing.” RFC 4984, 2007.

[NB07] E. Nordmark and M. Bagnulo. “Shim6: Level 3 Multihoming Shim
Protocol for IPv6.” Internet draft (draft-ietf-shim6-proto-09), 2007.

[NDN13a] NDN Project. “NDN Platform.” http://named-data.net/

codebase/platform/, 2013.

[NDN13b] NDN Project. “NDNx Technical Documentation.” http://

named-data.net/doc/0.1/technical/, 2013.

[NM09] M. Nicholes and B. Mukherjee. “A survey of security techniques for
the border gateway protocol (BGP).” IEEE Communications Surveys
and Tutorials, 11(1):52–65, 2009.

143

https://code.google.com/p/ccnpl-sim/
http://named-data.net/codebase/platform/
http://named-data.net/codebase/platform/
http://named-data.net/doc/0.1/technical/
http://named-data.net/doc/0.1/technical/

[NO11] Ashok Narayanan and David Oran. “NDN and IP routing: Can it
scale?” Proposed Information-Centric Networking Research Group
(ICNRG), Side meeting at IETF-82, November 2011.

[ns 11] ns-3. “Discrete-event network simulator for Internet systems.” http:

//www.nsnam.org/, 2011.

[ns 13] ns-3. “NS3 DCE CCNx Quick Start.” http://www.nsnam.org/

overview/projects/direct-code-execution/, 2013.

[NSS10] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. “The Akamai
network: a platform for high-performance internet applications.” ACM
SIGOPS Operating Systems Review, 44(3), 2010.

[OD96] Mike O’Dell. “8+8—An alternate addressing architecture for IPv6.”
Internet draft (draft-odell-8+8-00), 1996.

[OZZ07] Ricardo Oliveira, Beichuan Zhang, and Lixia Zhang. “Observing the
Evolution of Internet AS Topology.” In Proceedings of SIGCOMM,
2007.

[Per96] C. Perkins. “IP Encapsulation within IP.” RFC 2003, 1996.

[PKB10] Fragkiskos Papadopoulos, Dmitri Krioukov, Mariana Boguna, and
Amin Vahdat. “Greedy Forwarding in Dynamic Scale-Free Networks
Embedded in Hyperbolic Metric Spaces.” In Proceedings of IEEE IN-
FOCOM, 2010.

[RIP09] RIPE NCC. “IPv6 Address Allocation and Assignment Policy.” http:

//www.ripe.net/ripe/docs/ripe-481#_8._IPv6_Provider, 2009.

[RL06] Y. Rekhter, T. Li, , and S. Hares. “A Border Gateway Protocol 4
(BGP-4).” RFC 4271, 2006.

[Rob11] Paul Roberts. “Phony SSL Certificates issued for
Google, Yahoo, Skype, Others.” http://threatpost.com/

phony-ssl-certificates-issued-google-yahoo-skype-others-032311/

75061, March 2011.

[RR11] Dario Rossi and Giuseppe Rossini. “Caching performance of content
centric networksunder multi-path routing (and more).” Technical re-
port, Telecom ParisTech, 2011.

[Sha13] Wentao Shang. “JavaScript version of NDNS query API.” http:

//github.com/wentaoshang/ndns-client-js, 2013.

[SJ09] Diana K. Smetters and Van Jacobson. “Securing Network Content.”
Technical report, PARC, 2009.

144

http://www.nsnam.org/
http://www.nsnam.org/
http://www.nsnam.org/overview/projects/direct-code-execution/
http://www.nsnam.org/overview/projects/direct-code-execution/
http://www.ripe.net/ripe/docs/ripe-481#_8._IPv6_Provider
http://www.ripe.net/ripe/docs/ripe-481#_8._IPv6_Provider
http://threatpost.com/phony-ssl-certificates-issued-google-yahoo-skype-others-032311/75061
http://threatpost.com/phony-ssl-certificates-issued-google-yahoo-skype-others-032311/75061
http://threatpost.com/phony-ssl-certificates-issued-google-yahoo-skype-others-032311/75061
http://github.com/wentaoshang/ndns-client-js
http://github.com/wentaoshang/ndns-client-js

[SMW02] Neil Spring, Ratul Mahajan, and David Wetherall. “Measuring ISP
topologies with Rocketfuel.” In Proceedings of SIGCOMM, 2002.

[STC13] Wentao Shang, Jeff Thompson, Meki Cherkaoui, Jeff Burke, and Lixia
Zhang. “NDN.JS: A JavaScript Client Library for Named Data Net-
working.” In Proceedings of IEEE INFOCOMM 2013 NOMEN Work-
shop, April 2013.

[Sti02] Stichting NLnet. “Bind DLZ: Dynamically Loadable Zones.” http:

//bind-dlz.sourceforge.net/, 2002.

[TAV09] Sasu Tarkoma, Mark Ain, and Kari Visala. “The Publish/Subscribe
Internet Routing Paradigm (PSIRP): Designing the Future Internet
Architecture.” Towards the Future Internet, 2009.

[Tsu88] Paul F. Tsuchiya. “The landmark hierarchy: a new hierarchy for rout-
ing in very large networks.” In Proceedings of SIGCOMM, 1988.

[Tsu91] Paul F. Tsuchiya. “Efficient and robust policy routing using multiple
hierarchical addresses.” In Proceedings of SIGCOMM, 1991.

[TZ01] Mikkel Thorup and Uri Zwick. “Compact routing schemes.” In Pro-
ceedings of the 13th annual ACM symposium on Parallel algorithms
and architectures (SPAA), 2001.

[Ver12] Verisign Inc. “The VeriSign domain report.” The do-
main name industry brief, http://www.verisigninc.com/assets/

domain-name-brief-dec2012.pdf, 2012.

[VTR97] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. “Dynamic Updates
in the Domain Name System (DNS UPDATE).” RFC 2136, 1997.

[WBW13] Sen Wang, Jun Bi, and Jianping Wu. “Collaborative Caching Based
on Hash-Routing for Information-Centric Networking.” SIGCOMM
Poster, 2013.

[WHY12] Lan Wang, A K M Mahmudul Hoque, Cheng Yi, Adam Alyyan, and
Beichuan Zhang. “OSPFN: An OSPF Based Routing Protocol for
Named Data Networking.” Technical Report NDN-0003, NDN, 2012.

[YAM13] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan
Zhang, and Lixia Zhang. “A Case for Stateful Forwarding Plane.”
Computer Communications, 36(7):779–791, 2013.

[YAW12] Cheng Yi, Alexander Afanasyev, Lan Wang, Beichuan Zhang, and
Lixia Zhang. “Adaptive Forwarding in Named Data Networking.”
ACM Computer Communication Reviews, 42(3):62–67, July 2012.

145

http://bind-dlz.sourceforge.net/
http://bind-dlz.sourceforge.net/
http://www.verisigninc.com/assets/domain-name-brief-dec2012.pdf
http://www.verisigninc.com/assets/domain-name-brief-dec2012.pdf

[Yu13] Yingdi Yu. “NDN Security Library.” http://irl.cs.ucla.edu/

~yingdi/web/pub/Trust-Management-Library-v4.pdf, 2013.

[YWL12] Yingdi Yu, Duane Wessels, Matt Larson, and Lixia Zhang. “Author-
ity Server Selection of DNS Caching Resolvers.” ACM SIGCOMM
Computer Communication Reviews, April 2012.

[ZA13] Zhenkai Zhu and Alexander Afanasyev. “Let’s ChronoSync: Decen-
tralized Dataset State Synchronization in Named Data Networking.”
In Proceedings of the 21st IEEE International Conference on Network
Protocols (ICNP 2013), 2013.

[ZEB11] Lixia Zhang, Deborah Estrin, Jeffrey Burke, Van Jacobson, James D.
Thornton, Ersin Uzun, Beichuan Zhang, Gene Tsudik, kc claffy, Dmitri
Krioukov, Dan Massey, Christos Papadopoulos, Tarek Abdelzaher,
Lan Wang, Patrick Crowley, and Edmund Yeh. “Named Data Net-
working (NDN) Project 2010 - 2011 Progress Summary.” Technical
report, PARC, http://www.named-data.net/ndn-ar2011.html, Novem-
ber 2011.

[Zhu13] Zhenkai Zhu. Support Mobile and Distributed Applications with Named
Data Networking. PhD thesis, UCLA, June 2013.

[ZWC11] Zhenkai Zhu, Ryuji Wakikawa, Stuart Cheshire, and Lixia Zhang.
“Home as you go: an engineering approach to mobility-capable ex-
tended home networking.” In Proceedings of Asian Internet Engineer-
ing Conference (AINTEC), 2011.

146

http://irl.cs.ucla.edu/~yingdi/web/pub/Trust-Management-Library-v4.pdf
http://irl.cs.ucla.edu/~yingdi/web/pub/Trust-Management-Library-v4.pdf

	Introduction
	Operational challenges in NDN
	NDNS
	NDNS design highlights
	NDNS design benefits

	Common NDN simulation platform (ndnSIM)
	Contributions of this work

	Background
	Named Data Networking (NDN) architecture
	Repo

	Domain Name System (DNS)
	DNS Security Extension (DNSSEC)
	Dynamic updates in DNS

	NDNS: distributed database system for NDN
	NDNS design
	Naming
	NDNS naming model
	Namespace conversions

	Name servers
	NDN data packet management
	Zone data synchronization

	Resolvers
	Query protocol
	Iterative query
	Recursive query
	Recursive and iterative query interaction

	NDNS implementation and evaluation
	Methodology
	Parameters
	Results

	NDN-based security of NDNS
	NDNS extension for key-certificate storage
	Security policies
	NDNS security delegations
	Secure dynamic updates
	DyNDNS updates
	Delivery of DyNDNS updates to the authority name server
	Replay attack prevention

	NDNS use cases for NDN security
	Namespace regulation in the global NDN routing system
	Cryptographic key and certificate management for NDN applications
	Repo-based cryptographic credential management
	General limitation of repo
	Limitation of repo-based cryptographic credentials management

	NDNS-based cryptographic credential management
	Properties as a general storage
	Key-certificate management on NDN testbed
	Cryptographic credential revocation

	Scaling NDN routing using NDNS
	Map-n-encap for IP
	Map-n-encap for NDN
	Encapsulating using forwarding hint
	Forwarding hint emulation using name concatenation

	Mapping using NDNS
	Security considerations
	Zone delegation discovery: special case of iterative query
	Mobile producer and forwarding hint updates

	Discussion

	ndnSIM platform for simulation-based evaluations of NDN deployment and NDN-based applications
	Design
	Design overview
	Core NDN protocol implementation
	Face abstraction
	Content Store abstraction
	Pending Interest table (PIT) abstraction
	Forwarding information base (FIB)
	FIB population

	Forwarding strategy abstraction
	Reference applications
	PyNDN compatible interface

	Summary

	Related work
	DNS usage as distributed DB
	Securing global routing resources
	Routing scalability
	NDN architecture evaluation tools

	Conclusions
	References

