
UC Berkeley
UC Berkeley Previously Published Works

Title

Identifying Majorana vortex modes via nonlocal transport

Permalink

https://escholarship.org/uc/item/1640x24w

Journal

Physical Review B, 106(3)

ISSN

2469-9950

Authors

Sbierski, Björn
Geier, Max
Li, An-Ping
et al.

Publication Date

2022-07-01

DOI

10.1103/physrevb.106.035413

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1640x24w
https://escholarship.org/uc/item/1640x24w#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


Identifying Majorana vortex modes via non-local transport
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The combination of two-dimensional Dirac surface states with s-wave superconductivity is ex-
pected to generate localized topological Majorana zero modes in vortex cores. Putative experimen-
tal signatures of these modes have been reported for heterostructures of proximitized topological
insulators, iron-based superconductors or certain transition metal dichalcogenides. Despite these
efforts, the Majorana nature of the observed excitation is still under debate. We propose to identify
the presence of Majorana vortex modes using a non-local transport measurement protocol originally
employed for one-dimensional settings. In the case of an isolated subgap state, the protocol provides
a spatial map of the ratio of local charge- and probability-density which offers a clear distinction
between Majorana and ordinary fermionic modes. We show that these distinctive features survive
in the experimentally relevant case of hybridizing vortex core modes.

I. INTRODUCTION

In condensed matter physics, Majorana zero energy
modes are highly sought after subgap states localized in
topological superconductors and certain fractional quan-
tum Hall states.1,2 Whereas initial efforts were mainly
directed towards one-dimensional systems based on semi-
conductor quantum wires in proximity with conventional
superconductors (“Majorana”-wire),3 recent progress in
this direction has been slowed by the ambiguity related
to the interpretation of transport measurements4 local to
the ends of the wire. As a consequence, it has been pro-
posed that non-local transport setups can give a much
cleaner picture of the nature of subgap states5–8 with a
small number of recent experiments already available.9,10

Candidate systems for Majorana zero modes are not
limited to one spatial dimension. In a classic paper,11
Fu and Kane proposed to realize Majorana zero modes
in the center of a vortex in the superconducting or-
der parameter assuming the latter pairs a single-species
of two-dimensional Dirac quasiparticles. The resulting
zero-energy excitations are also known as Majorana vor-
tex modes (MVM). The initial proposal was framed in
the context of topological insulator surface states prox-
imitized to a superconducting layer, which was subse-
quently realized in experiment.12,13 However the unam-
biguous identification of MVM in the experimentally ob-
served local density of states (LDOS) is complicated by
the fact that the putative MVM at E0 = 0 is by far
not the only subgap state localized at the vortex po-
sition. In addition, theory predicts a whole ladder of
finite-energy Caroli-de Gennes-Matricon (CdGM) states,
with Em = m∆2

0/µ, m = 0,±1,±2, ...14–17 where ∆0
is the pairing far away from any vortices and µ is the
chemical potential. The detection of energetically iso-

Fu-Kane material

C

T

Figure 1. Schematic of the proposed non-local transport
setup for a Fu-Kane material with superconducting surface
Dirac state in the vortex phase. In addition to the standard
scanning-tunneling spectroscopy setup using grounded bulk
and tip contact (“T”), an additional contact (“C”) is required.
This contact does not need to be realized as a second tip but
can be spatially extended.

lated MVMs at E0 = 0 requires E1 = ∆2
0/µ to exceed

the experimental energy resolution.
Recently, progress in this direction was made in a va-

riety of novel “Fu-Kane” materials that combine bulk
superconductivity with two-dimensional surface Dirac
states of topological origin and feature E1 on the or-
der of a few hundred µeV . Prominent example materi-
als with claims for MVM based on LDOS measurements
are the iron-based superconductors FeTe0.55Se0.45,17–22
(Li0.84Fe0.16)OHFeSe,23,24 LiFeAs,25 CaKFe4As4

26 or
the transition metal dichalcogenide 2M−WS2.27,28 Be-
sides the agreement of the observed energy spacings with
the above theory, another point consistent with the exis-
tence of MVMs is the non-oscillatory radial profile of the
MVM-LDOS.24
On the other hand, for the same sample of

FeTe0.55Se0.45, a coexistence of topological vortices and
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trivial vortices (with CdGM spectra in accordance with
m = ± 1

2 ,±
3
2 , ...) has been reported.17 A possible ex-

planation is a high sensitivity of the surface topolog-
ical superconducting phase to the exact stoichiometric
composition and local chemical potential.20,21,29 There
are other concerns regarding the MVM interpretation of
experimental results in the putative Fu-Kane materials.
They include the possible trivial origin of a non-split zero-
energy vortex bound state,30 the sensitivity of the vor-
tex subgap state’s energy spacings to the pairing profile
∆(r) and to impurities,31 or the lack of a robustly quan-
tized conductance plateau in a strong-coupling transport
experiment.32

In this work we propose a framework to iden-
tify the presence (or absence) of MVMs in the two-
dimensional platform using ideas of non-local trans-
port first developed for one-dimensional superconduct-
ing heterostructures.6 In particular, we propose to use
a non-local transport measurement to spatially map the
ratio [q/n](r) of local charge-density (q) and probability-
density (n) of sub-gap wavefunctions at various ener-
gies. We discuss how the data reveals tell-tale signatures
of either topological MVM or ordinary CdGM states.
In contrast to a closely related pioneering experiment
on a one-dimensional quantum wire,9 the application of
the proposed technique to realistic vortex modes comes
with a number of important modifications: In the one-
dimensional wire case, the spatial resolution is usually
limited to the positions of the tunneling contacts at the
two ends of the wire as STM is not applicable. In the two-
dimensional case at least one of the two required surface
contacts can be realized as a movable STM tip (see “T”
in Fig. 1), which is sufficient to achieve a spatially re-
solved q/n. The second contact (“C”) can be another
STM tip,33–35 if available, or any other extended type of
electrical contact like a patterned metallic overlayer or a
graphene flake.

A second important difference pertains to the com-
plexity of the electronic system: While an ideal one-
dimensional topological superconductor harbors two Ma-
jorana zero modes at its ends, the two-dimensional sit-
uation is characterized by the fact that vortices (and
their putative MVMs) are located in a disordered lat-
tice with local but essentially random hybridizations36,37
that modify the spectrum from the case of a uniform
lattice.38,39 Although we start discussing the most simple
case of a single vortex-pair analytically, we then take into
account experimental reality with many vortices using
extensive numerical simulations based on a tight-binding
model of the Dirac Hamiltonian.

The rest of the paper is organized as follows: In
Sec. II we present the low-energy two-dimensional Fu-
Kane model and its tight-binding approximation. We
then review the description of non-local superconducting
quantum transport in Sec. III. The case of a single vortex
pair is treated in Sec. IV which is suitable to present our
protocol proposed for experiments. The applicability of
our main ideas to a realistic disordered vortex lattice is

demonstrated in Sec. V and a conclusion is contained in
Sec. VI.

II. MODEL AND VORTEX MODES

We consider a single two-dimensional Dirac surface
Hamiltonian H0 = −i~v [σx∂x + σy∂y] − µ with veloc-
ity v, chemical potential µ and the σ-Pauli matrices act-
ing in spin-space.40 The second-quantized s-wave pairing
Hamiltonian reads11,36,37

HBCS =
∫

r
ψ†rH0ψr + ∆ψ†r,↑ψ

†
r,↓ + ∆∗ψr,↓ψr,↑, (1)

where ∆ is the pairing field and the spinor of electronic
annihilation operators is given by ψr = (ψ↑,r, ψ↓,r)T. The
ansatz ψr,σ ≡

∑
n uσ,n (r) γn+v∗σ,n (r) γ†n leads to the fol-

lowing Bogoliubov-de Gennes (BdG) equations for eigen-
modes γn and -energies En,

HBdGΦ(r) = EnΦ(r) (2)
HBdG = τz(v[σxpx + σypy]− µ) + τxRe∆− τyIm∆

(3)

with ΦT(r) = (u↑, u↓, v↓,−v↑) and Pauli matrices τµ act-
ing in particle-hole space. The particle-hole symmetry is
P = σyτyK with P2 = +1 and K complex conjugation.
In the homogeneous case, the energies for momentum k
are given by Ek = ±(∆2 + (±vk − µ)2)1/2.
A magnetic field Bz applied orthogonal to the surface

creates vortices in the pairing field,41

∆(r) = ∆0
∏
j

f(|r−Rj |)
(x− xj) + i(y − yj)

|r−Rj |
(4)

with Rj = xjex + yjey the vortex positions and the
function f(r) = tanh(r/ξ) modeling the decay of the
pairing amplitude from its bulk value ∆0 towards the
vortex core within lengthscale ξ. For a single vor-
tex at the origin, Eq. (4) reduces to the simple polar-
coordinate expression ∆ (r, φ) = ∆0f(r)eiφ. The mag-
netic field can be found from the solution of the Lon-
don equation which, for the single vortex case, reads
Bz(r) = Φ0

2πλ2K0(r/λ) with corresponding vector poten-
tial A(r) = eφ Φ0

2πr
[
1− r

λK1(r/λ)
]
in the London gauge.

Here, Φ0 = π~/e is the magnetic flux quantum piercing
the vortex while the radial decay of Bz(r) is controlled
by the London penetration depth λ. The modified Bessel
function of the second kind is denoted byKl(x). The vec-
tor potential enters in the Hamiltonian via the replace-
ment p→ p− τzeA(r). The generalization to the vector
potential for multiple vortices corresponding to Eq. (4)
is straightforward, A(r)→

∑
j A(r−Rj).

For numerical simulations, we regularize the contin-
uum model on a two-dimensional square lattice. We set
the lattice constant a = 1, along with the choice v = 1,
~ = 1. The straightforward regularization H0 → H0,L =∑

k σx sin kx+σy sin ky+σz (−2 + cos kx + cos ky)−µ can
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be improved upon replacing sin(k)→ 4
3 sin(k)− 1

6 sin(2k)
and cos(k)→ 4

3 cos(k)− 1
3 cos(2k) which more faithfully

approximates the continuum model H0 around k = 0
by canceling series expansion coefficients of order k3

x and
k4
y at the cost of involving hoppings along bonds 2aex,y.

This will ultimately allow us to choose a large chemi-
cal potential (µ = 0.6) for the simulations in the lattice
model while still approximating the dispersion of the con-
tinuum model at the Fermi level to a satisfactory degree.
This in turn yields a small length scale for the Fermi
wavelength k−1

F (µ = ~vkF ) allowing for tractable over-
all system sizes. In real space, the lattice Hamiltonian
reads

H0,L =
∑

r
c†r [−2σz − µ] cr (5)

+ c†r+ex

[
4
3 ×

σz + iσx
2

]
cr

+ c†r+ey

[
4
3 ×

σz + iσy
2

]
cr

+ c†r+2ex

[
−1

6 ×
2σz + iσx

2

]
cr

+ c†r+2ey

[
−1

6 ×
2σz + iσy

2

]
cr + h.c.,

and the BdG Hamiltonian becomes

HBdG,L =
(
H0,L ∆
∆∗ −σyH∗0,Lσy

)
(6)

The inclusion of magnetic field and vortices in the lattice
model is achieved via a discretized version of Eq. (4) and
the Peierls substitution for the hopping matrix element
from r1 to r2 in H0,L,

tr2,r1 → tr2,r1 exp
(
ie

~

∫ r2

r1

dr ·A(r)
)
. (7)

In the limit λ � a, the argument of the exponent can
be approximated by i

∑
j
θj(r12)

2 [1− rj(r12)
λ K1(rj(r12)/λ)]

where rj(r12) ≡ |Rj−(r1+r2)/2| is the distance between
the vortex j and the midpoint of the bond from r1 to r2
and θj(r1,2) is the angle between the connection lines
r1,2 −Rj measured at the vortex position.41
The MVM wavefunction for a single vortex in the con-

tinuum model reads36,37

Ψ(r, φ) ∝ exp
[
−ζ−1

∫ r

0
dp f(p)

]
e−iπ/4J0 (rkF )

e+iπ/4+iφJ1 (rkF )
e−iπ/4−iφJ1 (rkF )
−e+iπ/4J0 (rkF )


(8)

where Jl(x) is the Bessel function of the first kind and
the decay in radial direction is governed by the Majorana
coherence length is ζ = ~v/∆0. Here, the effect of the
vector potential A(r) has been neglected as justified for
a single vortex if λ� ζ.

~v µ ∆0 kF = µ/~v
lat. model 1 0.6 0.2 1.66
FeTexSe1−x 25meV ·nm 5meV 1.8meV 0.2/nm

ξ ζ = ~v/∆0 λ

lat. model 2 5 30
FeTexSe1−x 4.6nm 13.9nm 500nm

Table I. Summary of parameters used for the lattice model
simulations and for the experimentally realized material
FeTexSe1−x, x ' 0.55 as compiled in Ref. 41. Here, v and
µ are the velocity and chemical potential of the Dirac sur-
face Hamiltonian, respectively. For the lattice model, we set
~v = 1 and a = 1 for the lattice constant. The surface state
pairing amplitude without vortices is given by ∆0 while ξ de-
notes the length-scale on which the pairing decays towards
vortex cores. The superconducting coherence length is ζ and
the London penetration length is denoted by λ.

We choose the lattice model parameters as µ = 0.6,
∆0 = 0.2, ξ = 2, λ = 30, the unit of energy is given
by ~v/a = 1 and the unit of length is a = 1. As sum-
marized in Tab. I, this choice of parameters is motivated
by comparison to the experimentally extracted values for
FeTexSe1−x, which are of similar relative size. Only the
London penetration length λ of the lattice model, while
still being by far the largest length scale, is chosen smaller
than what would be appropriate in FeTexSe1−x to keep
the required lattice sizes tractable. The one-dimensional
gapless Majorana mode localized at the open boundaries
of the system does not affect the results below due to suf-
ficient distance between vortices and boundary, so that
the hybridization between vortex bound states and the
edge modes is negligible compared to inter-vortex hy-
bridizations. The LDOS ρ(ω) (see Eq. (9) below for a
definition) of the finite-size lattice model without vor-
tices and averaged in the center region is shown in Fig. 2
and agrees to the expectation from the continuum model.
Further, we have checked that the wavefunction obtained
numerically for a single vortex zero-mode agrees with the
analytic prediction for the MVM in Eq. (8) and that the
first excited CdGM-state appears at an energy of order
0.09 ∼ ∆2/µ as predicted by theory.14,16

III. NON-LOCAL TRANSPORT

We now consider a transport setup and attach an STM
tip “T” as well as a ground contact, see Fig. 1 (contact
“C” is to be added at a later stage, see below). For con-
creteness and to set the stage for the lattice model sim-
ulations using the kwant software package,42 we model
the tip “T” as a one-dimensional chain of single sites with
hopping t = 1 diagonal in spin space. This choice will
provide a density of states that does not vary appreciably
over the small range of bias |ω| � 1 applied in the follow-
ing. The lead is locally coupled to the surface with hop-
ping γT which reflects the tip-sample tunneling matrix
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Figure 2. Tunneling LDOS ρ(ω) =
∫
drρ(ω, r)/

∫
dr for the

two-dimensional Fu-Kane model in the absence of magnetic
field as found from exact diagonalization of the lattice model
(6) with parameters µ = 0.6 and ∆0 = 0.2 and system size
Lx × Ly = 84 × 86. The oscillations are due to finite-size
effects which are incompletely smoothed by the intrinsic level
broadening Γ0 = 0.02∆0 = 0.004. The superconducting gap
ω = ±∆0 is indicated by grey vertical lines and the density of
states (DOS) of the normal-state Dirac Hamiltonian D(ω) =

ω
2π(~v)2 is depicted by the red dashed line.

element43 but will be chosen in an ad-hoc manner below
as we are not aiming to model a specific setup. The tip-
induced broadening of an eigenstate Φ is ΓT ≡ γ2

TnT /t
where nT ≡

∑
σ |uσ(rT )|2 + |vσ(rT )|2 is the eigenstate

intensity at the lead position.
With the exception of the strong-tunneling experiment

by Zhu et al.,32 all existing experimental or numerical
transport studies of the Fu-Kane setup were done at weak
coupling to the tip. This regime is characterized by a tip-
induced broadening ΓT which is smaller than the intrin-
sic relaxation rate Γ0 of the quasiparticles. This means
that an injected quasiparticle decays in the sample before
it can return to the lead. In the case when the intrin-
sic broadening exceeds the thermal broadening from the
leads, T . Γ0 (kB = 1), we obtain the broadened LDOS
from44

ρ (ω, r) =
∑
En>0

Γ0/π

(ω − En)2 + Γ2
0

∑
σ=↑,↓

|un,σ(r)|2 (9)

+
∑
En>0

Γ0/π

(ω + En)2 + Γ2
0

∑
σ=↑,↓

|vn,σ(r)|2 .

where we choose Γ0 = 0.02∆0 = 0.004 in Fig. 2 and
for the simulations below. The LDOS is proportional to
the differential conductance dI/dV at the bias ω = eV
relative to the ground contact, see Fig. 1. In light of
Eq. (9), the LDOS yields information about the eigenen-
ergies of the system and the spatial distribution of their
wavefunction’s electron and hole content. In particular,
it cannot distinguish a MVM at E0 = 0 from an ordinary
excitation with energy En > 0 but smaller than Γ0 or T .
The experiment of Zhu et al.32 reached the strong cou-

pling regime ΓT > Γ0 where quasiparticle transport be-

comes (approximately) coherent and can be described by
a unitary scattering matrix formalism.45 Due to the bulk
superconducting gap, the quasiparticles at subgap ener-
gies solely enter and leave through the tip. In the pres-
ence of a MVM, perfect Andreev reflection is expected
at zero bias which, according to theory,46,47 should yield
G ≡ dI/dV = 2e2/h. As this result should be indepen-
dent of details, a plateau in G as a function of tip-sample
separation is expected. It is currently an open question
why the experimental conductance plateaus32 typically
show a significantly smaller value for G that varies from
vortex to vortex.
We now describe the three-terminal transport setup

analyzed in the remainder of this work. We add a second
lead (“contact C”) at the sample surface in the vicin-
ity of the tip “T”, see Fig. 1. We keep the assump-
tion of strong coupling, ΓT,C > Γ0. At subgap ener-
gies |ω| ≤ ∆0, this opens up a multitude of quasiparticle
scattering channels where electrons and holes can enter
or leave via either lead, provided there is an eigenstate of
the isolated sample with simultaneous support at both
lead positions. The objects of interest are the (dimen-
sionless) conductances gαβ ≡ dIα/dVβ/[e2/h] where Iα
is the electrical current flowing into lead α = {C, T} and
Vβ is the bias at lead β. The scattering matrix for this
non-local setup mediated by a single eigenstate at arbi-
trary energy E0 was analyzed by Danon et al6 for the
case of spinless electrons. In Appendix A we generalize
this analytical calculation to the case with spin, but the
quantitative behavior of the conductances close to the
resonance |ω| ' E0 is not affected by this modification.
Focusing on equal bias voltage for the two leads, one can
approximate the non-local zero-temperature conductance
as6

gCT (ω ' ±E0) ' −8ξCE0

[ω2 − E2
0 ]2 + 4Γ2E2

0
(E0ξT + ωΓT ) .

(10)
Here, Γ ≡ ΓC + ΓT is the sum over the two lead-induced
level broadenings Γα ≡ γ2

αnα/t where nα ≡ uα+vα is the
total wavefunction intensity at the contact position, with
uα ≡

∑
σ |uσ(rα)|2 and vα ≡

∑
σ |vσ(rα)|2. It is assumed

that Γ � E0 for Eq. (10) to hold. The quantity ξα ≡
γ2
αqα/t is proportional to the local BCS-charge qα ≡ uα−
vα which is of central interest in the following discussion.
We emphasize that Eq. (10) describes transport mediated
by an extended state in the superconducting gap (E0 <
∆) where transport through the superconducting bulk is
suppressed.
The crucial observation in Eq. (10) is the asymmetry

of the two peak heights ω ' ±E0 due to the second term
in parenthesis which is odd in ω. We define the symmet-
ric and asymmetric part of the non-local conductance
as gsym/asym

CT (ω) ≡ 1
2 [gCT (ω)± gCT (−ω)] and observe6

from Eq. (10)

gsym
CT

gasym
CT

(ω ' E0) ' qT
nT

= |uT |
2 − |vT |2

|uT |2 + |vT |2
∈ [−1, 1]. (11)
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This relation allows for the extraction of qT /nT , the ratio
of BCS-charge and intensity of an eigenstate at energy
E0 at the tip position. The prerequisite is that a pair of
peaks at ω ' ±E0 can be identified in the gCT data.
The significance of the quantity qT /nT for detecting

Majorana zero modes lies in the fact that an isolated
Majorana zero mode fulfills qT (r) = 0 at every position
r due to the particle-hole symmetric nature of the state.
On the other hand, for an isolated Majorana zero mode
at E0 = 0, the condition Γ � E0 cannot be achieved.
Consequently, one has to rely on the hybridization be-
tween zero modes to push the energy E0 to finite values
so that qT /nT can be detected by non-local transport,
thereby compromising qT = 0 to a certain degree. In
the following, we apply these general ideas to the case of
MVMs and show that MVMs set themselves apart from
the CdGM-states at finite energy by a peculiar spatial
signature of the qT /nT map.

Based on the above discussion and Eq. (10) we dis-
cuss the requirements for the second contact “C”. While
the achievable spatial resolution of qT /nT hinges on the
sharpness and movability offered by the STM-tip “T”,
the contact “C” can be stationary. In particular, if no
multiple-tip STM instrument is available,33 the contact
can even be spatially extended. In light of Eq. (10), such
an extended contact will reduce the risk of hitting a con-
tact position where ξC ∼ qC ' 0 which would cause a
vanishing non-local transport signal. On the other hand,
as we require Γ = ΓT + ΓC � E0 for Eq. (10) to hold in
the first place, we must limit the contact-induced level
broadening which grows with contact area and density of
states. It might thus be beneficial to choose a contact
material with a low density of states, like a graphene
flake, or limit the size of the contact using nanofabrica-
tion techniques. For example, local gold nanocontacts
can be made at selective surface sites using STM via a
field-induced atomic emission process in situ.48,49 A dis-
cussion on the role of the contact-tip distance is post-
poned to the end of Sec. V.

We now turn to the leading effect of temperature on
the quasiparticle structure, assuming that the tempera-
ture remains low enough that the superconducting prop-
erties and vortex locations are unmodified. First, the
sample temperature Ts needs to be small enough so that
the temperature dependent intrinsic quasiparticle decay
Γ0 can be neglected against ΓT,C for our coherent non-
local transport theory to apply. We next consider the
effective electron temperature Teff,α in lead α which usu-
ally exceeds the sample temperature (Ref. 50 determined
85mK for the former and about 40mK for the latter in
the case of an STM tip). Theoretically, Teff,α is taken into
account by a convolution of gαβ(ω) with the derivative of
the Fermi function −df(ω,Teff,β)

dω = 1
4Teff,β cosh−2

(
ω

2Teff,β

)
.

Since the Vβ-dependence of Iα is assumed to only enter
via the distribution functions of the leads,6 the broaden-
ing procedure of gCT in Eq. (10) is to be applied with
the effective electron temperature of the tip “T”, Teff,T .

The latter will be abbreviated simply as “temperature”
T in the following.
At zero temperature, the peaks of Eq. (10) which oc-

cur at ω = ±E0 have the same width 2Γ. Hence their
temperature broadened amplitudes are diminished simul-
taneously for both signs of ω. If temperature reaches the
scale E0, the broadening symmetrizes the overall trace
gCT (ω) leading to a underestimation of |gasym

CT | as com-
pared to its T = 0 value. As a consequence, the quantity
|gsym
CT /g

asym
CT (ω ' E0)| can then exceed unity in magni-

tude which should be taken as a warning that the right-
hand side of Eq. (11) no longer applies.
In the following we theoretically implement the above

protocol. We assume that Γ0 is sufficiently small so that
the scattering matrix approach is justified. However,
we take into account a finite temperature in the leads.
While the case with two vortices studied in the subse-
quent Sec. IV is still analytically tractable, our numer-
ical approach is particularly useful for the realistic case
of a distorted vortex lattice. Here the above assumption
of a single spectrally isolated subgap state at energy E0
drastically fails as every pair of MVMs contributes one
fermionic state that cluster in a MVM- or CdGM-band.
However, our exact numerics still shows that the pecu-
liar signatures found for the vortex-pair still survive in
the vortex-lattice gsym

CT /g
asym
CT map.

IV. VORTEX PAIR

We now investigate the case of a single pair of vortices
where for the hybridized MVMs, we can find [q/n](r)
analytically from the single MVM wavefunction, Eq. (8).
We place the vortices at positions R1,2 = R0 ± R/2ex
and use two sets of polar coordinates rj = |r −Rj | and
φj = arg (r−Rj) for j = 1, 2. The hybridized MVM
states37 can be approximated by Ψs=± = (Ψ1+siΨ2)/

√
2

where the phase of the pairing field ∆ just left to each
vortex is Ω1 = 0 and Ω2 = π, which is taken into account
by a relative prefactor eiτzΩj/2 between Ψj and Eq. (8).
Dropping the wavefunction normalization, we obtain for
the profile of the intensity and charge density

ns(r) ∝ e−2r1/ζ
[
J2

0 (r1kF ) + J2
1 (r1kF )

]
+ r1→r2,(12)

qs(r) ∝ −2se−(r1+r2)/ζ{J0(r2kF )J0(r1kF ) (13)
+ cos(φ1 − φ2)J1(r1kF )J1(r2kF )}.

Note that ns(r) is proportional to sum of the two individ-
ual MVM’s intensities, qualitatively similar to the LDOS
ρ(ω, r), see Fig. 3(a,b), for the corresponding plots based
on exact diagonalization (ED) of the lattice model. In
contrast, the spatial structure of qs(r) is dominated by
the exponential prefactor which gives rise to an ellip-
soidal structure with the two vortices in the focal points
and oscillations caused by the remaining terms.
We expand the Bessel functions at a sufficient distance

from the vortices r1,2kF � 1. We further restrict to
a point rc on the connecting line between the vortices,
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Figure 3. Numerical lattice-model results from exact diagonalization for a pair of vortices located at a distance R = 13 as
indicated by the black crosses. The parameters are µ = 0.6, ∆0 = 0.2, ξ = 2 and λ = 30 and the overall system size is
Lx × Ly = 60 × 58. The top row shows the LDOS ρ [Eq. (9) with Γ0 = 0.004, ω = E0] in panel (a), intensity n in panel (b),
charge q in panel (c) and the ratio q/n in panel (d) for the hybridized MVM state at energy E0 = 0.0045, the bottom row with
panels (e-h) reports the same quantities for the lower one of the two hybridized CdGM-state energies, E1 = 0.09.

Figure 4. One-dimensional cut through the data depicted in
Fig. 3(d,h) along the brown line connecting the two vortices.
The vertical lines denote the vortex positions. The low energy
MVM data from Fig. 3(d) is shown in the left panel, the right
panel displays the hybridized finite energy CdGM-state from
Fig. 3(h).

where φ1 = π, φ2 = 0, r1 + r2 = R and obtain

qs
ns

(rc) =
−2se−R/ζ 1√

r1r2
sin(kFR)

1
r1

exp (−2r1/ζ) + 1
r2

exp (−2r2/ζ)
(14)

which is peaked at the mid-point r̄c = (R1 +
R2)/2. The peak value is qs/ns(r̄c) = −s sin(kFR)
which oscillates like the MVM hybridization37 E0 ∼
cos
[
kFR+ 1

2 tan−1(ζkF )
]
with a relative phase shift de-

pending on the value of ζkF and valid for R � ξ, 1/kF .
Note that for the theoretically interesting case of µ = 0,
which is unrealistic in current materials, chiral sym-
metry prevents hybridization (E0 = 0) for vortices of
the same vorticity.37 For the lattice model with vortex
distance R = 13 and µ = 0.6, we present qs(r) and
[qs/ns](r) of the hybridized MVM state with E0 = 0.0045
in Fig. 3(c,d). The data for qs/ns on the cut between

the two vortices is depicted in Fig. 4 (left) and shows
good qualitative agreement with the analytical prediction
above. A quantitative comparison is complicated due to
an inaccuracy of the ansatz Ψs=± = (Ψ1 + siΨ2)/

√
2 as

documented by a slight renormalization of the wavefunc-
tion peak-intensity separation beyond the vortex distance
R (data not shown). We remark that in one-dimensional
proximitized semiconductor quantum wires a pair of hy-
bridized Majorana bound states is expected to cause a
qualitatively similar form for the fraction qs

ns
(x).6,51

We now discuss the numerical lattice-model ED re-
sults for ρ, n, q and q/n as obtained for one of the two
hybridized first excited states of each vortex which are
split around E ' 0.1, see Fig. 3(e-h) and Fig. 4 (right).
While the spatial structure of ρ and n are qualitatively
indistinguishable from the MVM case, q(r) shows local
maxima around the two vortex positions with radially
oscillating signs. This resembles the sum of q(r) of the
solutions individual to each vortex. Note that the struc-
tures of q/n at larger distances from the vortices shown
in Fig. 3(d,h) emerge from the ratio of two numbers very
small in magnitude and are likely unobservable in a non-
local transport experiment due to insufficient peak visi-
bility and intrinsic broadening, c.f. Eq. (10).
In summary, based on the elementary case of a vortex

pair, we propose to identify hybridized states of MVMs
by their non-local spatial distribution of q/n which at-
tains values close to zero at the vortex positions and
magnitudes attaining their maxima in between. In con-
trast, ordinary CdGM-states show peaks of |q/n| at the
vortex positions. The positions of the vortices can be
experimentally obtained from the LDOS ρ(ω, r) map as
usual,19 while the information on q/n can be obtained ex-
perimentally from the non-local transport measurement
via gsym

CT /g
asym
CT at an energy ω = E0 where gCT peaks.
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While this relation could be shown analytically for the
case of a single energetically well-separated subgap state
(i.e. the vortex-pair case), it remains valid qualitatively
for the case of a band of subgap states as in the case of
a distorted vortex lattice as we show below.

In the remainder of this paper, we will demonstrate
the above assertion using a numerical implementation of
the non-local transport measurement on a faithful lattice
model with finite-temperature leads attached. We start
with the vortex pair, see Fig. 5. The contact “C” is placed
at the top boundary of the field of view, in the vicinity
of the vortices (green patch). In panel (d) we show the
resulting gCT (ω,R1) at the position of the right vortex,
panel (a) zooms into small energies. The non-local con-
ductance shows temperature broadened peaks and dips
at |ω| = E0 = 0.0045 and |ω| = E1 = 0.09 indicating
the energies of the hybridized MVM- and CdGM-states
in agreement with the ED results [see dashed vertical
lines in panels (a) and (d)]. Panels (b) and (e) show a
spatial map of gCT (ω = E0,1, r), respectively. The ratio
gsym
CT /g

asym
CT (ω = E0,1) for both peak positions is shown

in Fig. 5 panels (c) and (f), respectively. The agreement
with the ED results in Fig. 3 is excellent in almost the
entire field of view, confirming the practical applicability
of Eq. (11).

V. DISTORTED VORTEX LATTICE

We now turn to the experimentally realistic case of a
distorted vortex lattice. Owing to the presence of a finite
density of states both in the MVM- and CdGM-band, the
analytical treatment from Sec. III building on the pres-
ence of a single spectrally isolated eigenstate a priori does
not apply any longer and we resort to numerical simula-
tions. We use a large sample Lx×Ly = 160×162 with an
average vortex distance R ∼ 13 similar to the separation
of the vortex pair studied above. To avoid edge effects,
we focus on the central region of the sample. In Fig. 6,
the vortex positions in the central region (which could
be found experimentally via the LDOS ρ) are denoted by
crosses. The contact (green patch) is placed on the bot-
tom right relative to the scanning-tip field of view which
includes thirteen vortices (colored crosses). The data for
gCT (ω,Rj) at these vortex positions are shown in panel
(d) and panel (a) shows a zoom-in about low energies
where the hybridized MVMs occur. We observe a peak
structure at |ω| ' E0 = 0.0055 for the outer ten out of
the thirteen vortex positions and at |ω| ' E1 = 0.105 for
all vortex positions in the field of view. Panels (b) and
(e) show the spatially resolved gCT (ω, r) for ω = E0,1, re-
spectively. Our main result is shown in panels (c) and (f).
Here we report gsym

CT /g
asym
CT (ω = E0,1) which qualitatively

resembles the observations made for the vortex pair: For

the MVM band around ω = E0, the data in panel (c)
vanishes at and around the ten outer vortex positions
and shows extended non-local features in between vor-
tices. We disregard the region around the three central
vortices for which no sizable peak structure was observed
in the first place. Presumably, the reason for the local
absence of sizable peaks is that the MVM-band does not
contain a state simultaneously supported in the region of
the central three vortices and at the contact “C”.
The signatures of gsym

CT /g
asym
CT (ω = E1) at the CdGM-

state energy shown in panel (f) are radially symmetric
local maxima at all vortex positions with an oscillating
behavior in between vortices.
For an experimental realization, the question about

the maximally feasible distance between the tip “T” and
contact “C” is highly relevant. At this point, the local
nature of the intrinsic broadening Γ0 neglected beyond
Eq. (9) will come into play. It violates the assumption of
a perfectly coherent subgap state and we expect it to add
to the lead-induced broadening Γ in the denominator of
the non-local conductance gCT of Eq. (10) and cause a
damping of the non-local conductance peaks. A detailed
numerical modeling of the associated crossover to purely
local conductance in Eq. (9) would require the addition of
a spatially distributed self-energy term in the simulation
which is beyond the scope of this paper (and the state-
of-the-art). However, we anticipate that the modification
of the gCT signal should not compromise the peak-height
ratios and the assessment of q/n until the effective broad-
ening reaches the scale E0, compare to the discussion of
temperature effects in the leads at the end of Sec. III.
Another aspect is possible (single-particle) Ander-

son localization52 in the band of MVM states, which
would limit the tip-contact separation to the localiza-
tion length. However, the two-dimensional Majorana-
only model (symmetry class D) is known to feature weak-
antilocalization and thus hosts both a localized Ander-
son insulating phase and a delocalized “thermal” metal
phase, with a phase diagram that is largely unknown.
What has been studied is the transition from a regu-
lar triangular Majorana lattice with uniform π/2 flux
through each triangular plaquette (a topological band in-
sulator) to the thermal metal phase which occurs when
a randomly chosen minority of ∼ 15% of hopping terms
have their signs flipped.53 Since the signs of the mutual
MVM hopping terms are known to oscillate37 with k−1

F
which is on the order of the spread in the intervortex dis-
tances, we believe that the realistic systems are well in
the thermal metal phase. However, more detailed stud-
ies, preferably performed in a Majorana-only effective
model54 are desirable.

VI. CONCLUSION

We proposed to apply a non-local quantum transport
measurement to identify the presence (or absence) of hy-
bridized Majorana zero modes in the vortex cores in Fu-
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Figure 5. Non-local transport simulation for a lattice model including a vortex pair. We model the tip “T” as a single-atomic
lead with t = 1 and γT = 0.4 and the extended contact “C” as a AC = 4×4 patch of the same single-atomic leads with γC = 0.1
(green). For a local intensity nC on the order of 0.01 (c.f. Fig. 3) this results in a broadening ΓC = nCACγ

2
C/t ' 0.002 which

is smaller than the MVM hybridization energy (we neglect the intrinsic broadening Γ0 in order to obtain a unitary scattering
matrix). For the temperature of the leads, we take T = 0.002. The model parameters (see Tab. I) are the same as in Fig. 3.
The left column with panels (a,d) shows the bias-dependent non-local conductance gCT (ω,R1) with the tip positioned at the
right vortex. A low-energy peak structure highlighted by the vertical dashed lines appears at |ω| = E0 = 0.0045, see panel (a),
and |ω| = E1 = 0.09, see panel (d). In panels (b) and (e), we depict gCT (ω = E0,1, r). The right panels (c) and (f) depict
gsym
CT /g

asym
CT (ω = E0,1) which quantitatively agree to the q/n maps of Fig. 3(d,h).

Kane materials, like the surface of iron-based supercon-
ductors. In contrast to recent applications of this method
to one-dimensional “Majorana”-wires,6,9 the spatial res-
olution inherent in the putative two-dimensional Majo-
rana platforms allows to extract tell-tale spatial signa-
tures of MVM- or CdGM-states from the symmetry prop-
erties of the peaks in the non-local conductance trace,
see Eq. (11). We first treated the case of a vortex pair
analytically and confirmed our findings using transport
simulations based on a lattice model. Finally, we showed
that the proposed signatures persist in the experimen-
tally relevant case of a distorted lattice model.

We emphasize that the presented features in the ratio
q/n are generic. The only requirement is a sufficiently
large hybridization E0, a value that oscillates with sepa-
ration R in the two-vortex case. If E0 approaches zero as
a matter of fine-tuning, the non-local conductance peaks
move towards zero-bias and will not be observable such
that the experimental protocol cannot be implemented
for that particular state. This suggests that there is no
danger in a false-positive identification of MVM. Further
evidence for this also comes from the vortex-lattice case
in Fig. 6(c), where, despite the random (and certainly not
fine-tuned) placement of more than ten vortices, the fea-
tures in question remain clearly distinct. For other per-

turbations beyond our model (e.g. disorder potentials),
the stability of the proposed signatures remains to be
explored.
We expect our results to be relevant for all existing

platforms of candidate Fu-Kane materials showing signa-
tures of putative MVMs, see Sec. I. Moreover, our pro-
posal should be applicable to recently suggested alterna-
tive realizations of MVMs, like giant topological vortices
trapped in an ordinary superconductors with a disloca-
tion line.55 For future work, it would be interesting to
extend our non-local transport proposal to spin-polarized
or superconducting leads56 or to consider the case of a
non-negligible intrinsic level broadening.57
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Appendix A: Spinful scattering matrix for two normal leads coupled to a subgap state at energy E0

We start from the general expression of the scattering matrix58

S(ω) = 1− 2i
t
HLS

1
ω −HS + i

tHSLHLS

HSL (A1)

which assumes normal (non-superconducting) leads with hopping t. It can be derived from the Fisher-Lee relation
which is more complicated due to one additional matrix inversion. Here, HS is the Hamiltonian of scattering region
to which the leads are coupled with HLS = H†SL.

We now focus on a superconducting system in BdG-formulation and limit ourselves to a single particle-hole sym-
metric pair of eigenstates, HSΦ = E0Φ and HS(PΦ) = −E0(PΦ). We insert into Eq. (A1) and find

S(ω) = 1− 2i
t
W †

1(
ω − E0 0

0 ω + E0

)
+ i

tWW †

W, (A2)

W ≡

(
Φ†

(PΦ)†

)
HSL. (A3)
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|uα|2 ≡
∑

σ
|uα,σ|2 nα ≡ |uα|2 + |vα|2 Γα ≡ γ2

α
t
nα Γ ≡ ΓL + ΓR

|vα|2 ≡
∑

σ
|vα,σ|2 qα ≡ |uα|2 − |vα|2 ξα ≡ γ2

α
t
qα ξ2 ≡ ξ2

L + ξ2
R

[uv]α ≡
∑

σ
uσαvσα Ξα ≡ γ4

α

∣∣[uv]α
∣∣2 4|uα|2|vα|2 = n2

α − q2
α ξ2

LR = 1
t2 γ

2
Lγ

2
R

(
[uv]R

)? [uv]L
a ≡ 2γ2

L [uv]L + 2γ2
R [uv]R |a|

2 = 8Reξ2
LR + 4ΞL + 4ΞR b± ≡ ω ± E0 + iΓ c ≡ ω2 − Γ2 − E2

0 + |a|2

Table II. Summary of abbreviations used in the analytical calculation in App. A

We further assume a set of leads such that HSL is diagonal in the lead index α. For lead α, we have in the BdG-
formulation Hα

SL = γατz with γα ∈ R a spin-independent hopping.
For the spinless case, we can chose Φ = (u?, v)T and with P = τxK we find

Wα = γα

(
uα −v?α
vα −u?α

)
(A4)

where uα = u(rα) is the electron part of the BdG-wavefunction at the position of lead α and similar for the hole-part
vα. For the spinless case and in the presence of two leads α = {L,R}, Ref.6 derived an explicit expression for the
scattering matrix and conductances.

We now generalize the calculation for the spinful case where Φ = (u↑, u↓, v↓,−v↑) and P = σyτyK. In this case, we
obtain

Wα = γα

(
u?↑,α u?↓,α −v?↓,α v?↑,α
v↑,α v↓,α −u↓,α u↑,α

)
. (A5)

We set t ≡ 1 in the following and use the definitions and relations in Table II some of which already appeared in the
main text. We find

iWW † = i

(
Γ a?

a Γ

)
(A6)

and insert this in Eq. (A2) where α, β = {L,R}.

Sαβ(ω) = δαβ −
2iγαγβ
c+ 2iΓω


u↑,α v?↑,α
u↓,α v?↓,α
−v↓,α −u?↓,α
v↑,α u?↑,α


(

b+ −ia?

−ia b−

)(
u?↑,β u?↓,β −v?↓,β v?↑,β
v↑,β v↓,β −u↓,β u↑,β

)
. (A7)

We now extract the sub-matrices required for computing the local- and non-local conductance, gLL and gLR.

gLL = NL − tr
[
s†ee,LLsee,LL

]
+ tr

[
s†he,LLshe,LL

]
(A8)

gLR = −tr
[
s†ee,LRsee,LR

]
+ tr

[
s†he,LRshe,LR

]
(A9)

After straightforward but lengthy algebra, we obtain

gLL(ω) = 4
|c+ 2iΓω|2

[
4c
(
ΞL + Re

[
ξ2
LR

])
+
(
ΓΓL − ξ2

L

) (
2ω2 − c

)
+ ωξL

{
2ΓRE0 − 8Im

[
ξ2
LR

]}]
, (A10)

gLR(ω) = 4ξL
|c− 2iΓω|2

{
ξR
(
c− 2ω2)− ω (2ΓRE0 − 8Imξ2

LR

)}
. (A11)

In the main text, we are only interested in gLR(ω). We obtain Eq. (10) for |ω| ' E0 assuming that E0 is much larger
than all other scales appearing in Eq. (A11).
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