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ABSTRACT OF THE DISSERTATION 

 

Multiple stressors within and across populations: how predictable and repeatable is population 

response, evolution, and adaptation? 

 

by 

 

Eleanor Shelly Diamant 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2023 

Professor Pamela J. Yeh, Chair 

 

Anthropogenic change alters environments and introduces novel stressors to multiple species and 

communities. Understanding how populations shift and cope in response to these stressors is 

essential to test evolution in real-time and predict our impacts on natural populations. In urban 

landscapes, populations that survive undergo rapid evolutionary and behavioral changes in 

response to strong selective pressures (Chapter 1). I am interested in how these populations 

respond to multiple stressors and in the patterns and processes underlying adaptive response to 

strong anthropogenic change. I led a reanalysis of population response data to multiple stressors 

across species and habitats from the last 25 years of studies by applying a new and generalizable 

framework—Rescaled Bliss Independence (RBI)—to evaluate stressor interactions (Chapter 2). 

We found that antagonism and additivity, rather than synergy, are the most frequent interaction 
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types and that our novel method is likely to re-classify previously synergistic interactions as non-

synergistic. I applied the RBI to three stressor combinations and found that antagonism was the 

dominant net interaction type, while synergy was the dominant emergent interaction type (Chapter 

3). Next, I delved into one species to assess how populations respond to strong anthropogenic 

change in the wild. I tested four independent urban colonist populations of Dark-eyed Juncos 

(Junco hyemalis) to test if the birds have adapted morphological traits similarly in comparison to 

three non-urban populations or if similar environmental differences can result in different 

adaptations (Chapter 4). I found that there are complex patterns where some traits converge in 

some cities, while others are associated with urbanization generally. I quantified behavioral 

plasticity in response to the change in human activity due to COVID-19 restrictions (“the 

anthropause”) in one of the urban populations (Chapters 5 and 6). I found that fear response 

surprisingly decreased following campus re-opening, but didn’t change during the anthropause, 

posing new hypotheses to the development of a trait essential for urban living. I also found that 

novel urban nesting did not change during the anthropause, suggesting that novel nesting behavior 

is driven by landscape or urban predator effects, not human disturbance. This dissertation in sum 

investigates the patterns and processes underlying population response to novel stressors, with an 

emphasis on determining the predictability of how organisms respond to the growth of 

urbanization, a present threat to biodiversity. 
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Chapter One: Background and Significance 
 
Ecological communities and the populations that live within them are composed and affected by 

multiple interacting environmental drivers and stressors. Understanding how the interactions of 

multiple stressors – rather than individual drivers - affect natural populations’ fitness, survival, 

and evolution is integral in understanding the dynamics of a given system and the implications of 

stressors on the fate of populations and species (Crain et al. 2008; Darling and Cote 2008). How 

stressors interact and how predictable those interactions may be is particularly relevant as 

anthropogenic impacts across the globe alter environmental stressors and introduce multiple 

disturbances across habitats and systems (Sala et al. 2000; Didham et al. 2007). After 

understanding how populations across taxa respond to multiple stressors, we must also ask if 

populations can respond differently to similar disturbances.  

Urbanization provides a natural experiment where multiple similar interacting novel 

disturbances affect populations across the globe. Urbanization drastically changes a species’ 

natural habitat, creating novel threats and disturbances when compared with a given species’ 

evolutionary history and environmental tolerance (Bonier et al. 2007; Sol et al. 2014). Using 

populations of the same species across cities in a similar climate can help us determine if 

response within populations is predictable and repeatable. Untangling the effects of urbanization 

on biotic responses not only allows us to better predict and mitigate our effects on other species 

(Sih et al. 2011; McDonnell and Hahs 2015), but also provides an arena to study adaptation-in-

action (Diamond 1986; Yeh and Price 2004) and speciation in action (Thompson et al. 2018). 

COVID-19 lockdowns have provided a once-in-a-century opportunity to test the effects of 

human activity on animal behavior in cities and provide a natural experiment to determine how 

birds are adjusting their behaviors throughout their lifetime (“plasticity”) (Rutz et al. 2020). By 
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understanding the pattern (e.g., predictability) and process (e.g., evolutionary and non-

evolutionary, plasticity-mediated mechanisms) of response, we can determine the strength of 

urban selection pressures not only in changing organisms through plasticity and genetic 

evolution but also on how and if we can predict a population’s ability to succeed in drastically 

modified environments. Together, we can test how and if urban environments have the potential 

to foster diversity within species despite their threat to biodiversity as a whole. 
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Abstract
Understanding how stressors combine to affect population abundances and trajectories is a funda-
mental ecological problem with increasingly important implications worldwide. Generalisations
about interactions among stressors are challenging due to different categorisation methods and
how stressors vary across species and systems. Here, we propose using a newly introduced frame-
work to analyse data from the last 25 years on ecological stressor interactions, for example com-
bined effects of temperature, salinity and nutrients on population survival and growth. We
contrast our results with the most commonly used existing method – analysis of variance
(ANOVA) – and show that ANOVA assumptions are often violated and have inherent limitations
for detecting interactions. Moreover, we argue that rescaling – examining relative rather than
absolute responses – is critical for ensuring that any interaction measure is independent of the
strength of single-stressor effects. In contrast, non-rescaled measures – like ANOVA – find fewer
interactions when single-stressor effects are weak. After re-examining 840 two-stressor combina-
tions, we conclude that antagonism and additivity are the most frequent interaction types, in
strong contrast to previous reports that synergy dominates yet supportive of more recent studies
that find more antagonism. Consequently, measuring and re-assessing the frequency of stressor
interaction types is imperative for a better understanding of how stressors affect populations.

Keywords
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INTRODUCTION

Ecological systems are comprised of many interacting species
and functional groups that span trophic levels and that are
impacted by a diverse – yet often correlated – set of environ-
mental drivers such as temperature, precipitation and nutri-
ents (Chapin et al. 2000; Halpern et al. 2008). When a system
responds to multiple stressors or environmental drivers, not
only can individual stressors affect the dynamics and outcome
of a system, but the interactions among stressors can also
strongly affect outcomes and may ultimately determine the
fate of many populations and species (Bliss 1939; Loewe 1953;
Crain et al. 2008; Darling & Côt!e 2008). Interactions are espe-
cially relevant for studies on conservation of populations that
are often under threat from multiple stressors via global
change such as temperature change, habitat loss, overexploita-
tion, harvesting, invasive species and other disturbances (Sala
et al. 2000; Didham et al. 2007).
Synergistic interactions – when the combination of stressors

produces a response greater than expected if there are no
interactions – have received more attention than antagonistic
interactions for which the combination of stressors produces a
response less than expected if there are no interactions. This is

in part due to concerns and predictions that synergy among
stressors will lead to faster and greater biodiversity loss (Sala
& Knowlton 2006) by exacerbating the effects of anthro-
pogenic disturbances (Chapin et al. 2000; Brook et al. 2008;
Halpern et al. 2008), including those resulting from climate
change (Harley et al. 2006). However, recent reviews (Côt!e
et al. 2016; Jackson et al. 2016) find that there are more
antagonisms than have been accounted for and that synergis-
tic interactions are over-emphasised in the ecological litera-
ture. This may be partially due to improper use of null
models and misconceptions about the directional effects of
individual stressors. Resolving these differences suggests a
need for a comprehensive approach to studying stressor inter-
actions (Côt!e et al. 2016; Sch€afer & Piggott 2018).
Interactions are still poorly understood, even though there

have been many empirical studies that examine the nature of
ecological interactions in the lab (Folt et al. 1999; Mora et al.
2007; Cramp et al. 2014) and in the wild (Ross et al. 2004;
Christensen et al. 2006). Both synergistic (Relyea 2003; Good-
ing et al. 2009; Shears & Ross 2010; Camarero et al. 2011;
Griffith et al. 2012; Metz et al. 2013; Carnell & Keough 2014;
D!avalos et al. 2014; Chown et al. 2015; Pringle et al. 2015)
and antagonistic interactions (Darling et al. 2010; Bansal
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et al. 2013; Annala et al. 2014; Lakeman-Fraser & Ewers
2014; O’Regan et al. 2014; Treasure & Chown 2014; Griffiths
et al. 2015) have been predicted in a wide range of organisms
and environments. Yet basic questions remain as follows: (1)
Are most interactions synergistic, antagonistic or additive (i.e.
no interaction between the stressors)? (2) How does the inter-
action classification method affect the findings? (3) Do some
systems or some stressor types lend themselves to certain types
of interactions?
Understanding interactions among multiple stressors and

combining that information to make inferences on outcomes
are often very challenging for several reasons. First, two stres-
sors may individually cause opposite organismic responses,
which complicates finding the null model (Côt!e et al. 2016).
Second, multi-stressor interaction studies have used many
interaction classification methods, but differences in these
techniques are not well-known or explicit (Côt!e et al. 2016;
Sch€afer & Piggott 2018; Thompson et al. 2018a). Typically,
interactions are defined as the deviation from the null-expecta-
tion that stressors do not interact (termed additivity). The
direction of the deviation defines the interaction type: synergy
if negative, antagonism if positive and additive if indistin-
guishable from 0. That is when the growth rate in the pres-
ence of combined stressors is less than the expectation under
no interactions, this corresponds to synergy, and when the
growth rate in the presence of combined stressors is more
than the expectation under no interactions, this corresponds
to antagonism.
Diverse examples of interaction measures built upon this

standard definition include (1) statistical measures of ANalysis
Of VAriance (ANOVA) and its extensions (such as multivari-
ate analysis of variance, MANOVA and analysis of covari-
ance, ANCOVA) for inferring the differences of means and
variances among groups (Sokol-Hessner & Schmitz 2002; Van
Son & Thiel 2006; Crain et al. 2008), and also include (2)
additive interaction models for detecting the direction of inter-
action (Soluk & Collins 1988; Sih et al. 1998), such as Bliss
Independence (BI, or epistasis independence) that is com-
monly used to infer the interactions between drugs (Bliss
1939) or genes (Segre et al. 2005).
Although ANOVA is one of the most commonly used

methods in studies of multi-stressor combinations, we and
others have identified limitations and potential problems of
ANOVA – hidden replication, parametric assumptions and so
on – in finding the interaction type and classifying the magni-
tude of interaction (See Box 1 and Fig. 1).
Indeed, ANOVA and most other approaches have rarely

quantified or established a method for cleanly determining
the magnitude of interaction, which often requires normalisa-
tion (rescaling) of the interaction measure (Sanju!an et al.
2004; Segre et al. 2005; Tekin et al. 2016). The rescaling con-
cept is similar to the use of relative response rather than
absolute response, where the absolute response is informative
only when there is some baseline or reference case to con-
sider. In relative response the baseline is typically the control
or maximum response of a given individual or genotype
(Segre et al. 2005). In interactions, the interaction measure is
rescaled with extreme synergy (lethality) or antagonism
(buffering) as a baseline (Segre et al. 2005; Yeh et al. 2006;

Tekin et al. 2016). These are chosen as the baselines because
lethality is the absolute lower bound, and buffering is a com-
monly observed case where one stressor completely buffers
(i.e. masks) the effect of the other. Buffering does not repre-
sent a hard upper bound but most antagonistic interactions
cluster around this case and it makes it straightforward to
interpret cases of suppression where two drugs have less
effect than a single drug.
The goal of rescaling is to have numerical values for inter-

actions be fairly compared, independent of whether the single
effects are strong or weak. That is whether or not there is an
interaction between two stressors should not depend on the
strengths of the single effects. A natural outcome of the
rescaling is that the distribution changes, often from unimodal
in the unrescaled space to multimodal in the rescaled space,
enabling easier identification of cut-offs for interaction types
(Segre et al. 2005; Tekin et al. 2016).
Rescaling is critical because many interactions can be

missed when using only raw interaction measures. Specifically,
even for clearly different interaction types, the values of inter-
action measures without rescaling are often the exact same.
Hence, the actual interaction type cannot be reliably cate-
gorised using the raw interaction measure, leading to incorrect
interpretations (Tekin et al. 2016).
For example if two stressors A and B change the growth

response relative to the control (no stressor) to be 0.54 and
0.91, respectively, and the combined effect of these two stres-
sors equals the stronger effect of the single stressors (i.e. 0.54),
then one unrescaled interaction measure is (effect of two stres-
sors combined) – (effect of stressor A)*(effect of stressor
B) = 0.54 – (0.54) * (0.91) = 0.05. This value is very close to 0 –
suggesting no interaction between stressors A and B. How-
ever, this scenario is clearly antagonistic because one stressor
is fully masking the effect of the other stressor. Hence, the
unrescaled value of the interaction measure of 0.05 would
seem to indicate that this combination is additive, even
though it is actually antagonistic. Conversely, it is possible to
get the same raw interaction values from very different cir-
cumstances. For instance if two single stressors each yield a
response of 0.70, and combined they yield a response of 0.54,
this again produces an interaction value of 0.05 as in the pre-
vious scenario. Thus, unrescaled values correctly capture the
direction (sign) of interactions but not their magnitudes. How-
ever, the type of interaction depends on both direction and
magnitude.
Via rescaling, the first scenario above would correctly con-

clude that there is an antagonistic interaction, whereas the
second scenario would show an additive interaction. The
advantage of rescaling is that it reveals true interaction types
in such cases by calculating the interaction effects relative to
natural interaction baselines, such as lethality (extreme syn-
ergy) or buffering (antagonism). Consequently, rescaling gives
accurate information about both the direction of interaction
(synergy or antagonism) as well as the strength (see Methods
for more details of calculations for rescaling).
These ecological disturbances and stressor interactions are

analogous to drug–drug interactions, where pathogens
encounter drugs that reduce their proliferation and survival
capacity. In some cases, clinicians use drug combinations that
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inhibit different pathways, effectively kill harmful pathogens
and combat numerous cases of drug-resistant pathogens
(Tumbarello et al. 2012). Inhibition of different pathways is
conceptually analogous to natural systems in which larger and
more complex organisms experience changes in different criti-
cal resources, such as nutrients, light, nesting sites, hiding sites
or water. These analogies suggest that we could adapt the
interaction measures used in one specific system of interac-
tions to study another system. Indeed, using toxicology mod-
els for interactions has been suggested previously (National
Academies of Sciences 2017; Sch€afer & Piggott 2018).

Here, we propose the use of a newly introduced framework
to study multiple stressor interactions that solves the problems
listed above for ANOVA and other methods. This method
has foundations in the study of drug and gene interactions,
and it has a strong correspondence to the model of interac-
tions in the study of multiple predator effects (MPE) (Sih
et al. 1998). In particular, we use the Bliss Independence
model (Bliss 1939) where the interactions are quantified
relative to an additive expectation when the presence of one
stressor does not affect the other stressor’s percent effect on
the response of the organism. We accompany the Bliss

Box 1. Limitations of ANOVA (Analysis of Variance) for Interaction Classification

ANOVA is widely used to study interactions across fields, but it has several inherent limitations in terms of detecting interac-
tions.
First, for any specific treatment – predator density, gene mutation, drug concentration – there are usually only a handful of

replicates (most of the studies analyzed here ranged from 1-6 replicates, see Table S4). This number of measurements often
gives a poor estimate of the variance in the response – such as growth rate or mortality rate – because more data are needed to
obtain an accurate estimate for successively higher-order moments (mean to variance to skewness to kurtosis). Even if a handful
of measurements are sufficient to obtain an accurate estimate of the mean (whose accuracy increases linearly with the number
of data points), it may be insufficient for estimating the variance (whose accuracy increases as the square root of the number of
data points). Because ANOVA relies on estimates of the variance, poor estimates of the variance will often lead to inaccurate
or misleading results.
Frequently, hidden replication is the remedy used to justify use of ANOVA for studies with a limited number of replicates

per treatment. Hidden replication assumes that the variance is the same across the different treatments, and therefore, that the
number of data points used to estimate the variance is not just the replicates for each specific treatment, but the total number
of measurements across the entire study. This typically corresponds to tens or hundreds of measurements and provides a much
more accurate estimate of the assumed “constant variance.”
It is this assumption and the reliance on hidden replication that we challenge when applying and interpreting ANOVA.

Indeed, this leads to our second point: Hidden replication only applies when no interaction exists (Welham et al. 2014). When
an interaction is present, the variance across different treatments should be expected to change (see example where we look at
two stressors as they vary in amount in Fig. 1). This variance invalidates the underlying assumption used to justify hidden repli-
cation and the application of ANOVA itself. That is, ANOVA is only reliably applied either when no interaction exists at all, or
when an interaction does exist but there are many replicates for each specific treatment.
Because most ecological data are challenging to obtain, they typically have only one or a few replicates, so this hidden repli-

cation assumption is commonly – though implicitly – needed. When interactions are found by ANOVA, it is likely because the
assumptions are so badly violated that any conclusion about the interaction type is difficult to trust (Pomerantz 1981; Billick &
Case 1994; Gotelli et al. 1999).
Third, it is often necessary to apply a normalization (or rescaling) method relative to natural baselines of interactions to iden-

tify interaction types. Otherwise, it is possible to get identical interaction values for distinct interaction types (see example in
Introduction). However, to the best of our knowledge, one cannot rescale when using ANOVA methods. Therefore, using
ANOVA to identify interaction types is much more challenging (Segre et al. 2005; Tekin et al. 2018).
Fourth, ANOVA tests for significance by comparing variances that assume Gaussian or parametric distributions (Winer et al.

1991). To estimate the variance under non-normal distributions would require substantial amounts of data for each response
measurement in the system – corresponding to responses of single stressors and combinations of stressors – and also a reformu-
lation of ANOVA in terms of non-parametric statistics and alternative distributions for null models.
Finally, when stressors have large effects, the underlying additive model of ANOVA may not give plausible independence

expectations to infer the interaction. For example, when isolated single predator species kill 60% and 70% of the prey popula-
tion, the additive expectation corresponds to killing 130% of the prey population – the interaction model cannot create a feasi-
ble test (Sih et al. 1998). Such situations are often overcome by logarithmically transforming the data, which essentially alters
the underlying additive model to a multiplicative model (Soluk & Collins 1988; Sih et al. 1998). Furthermore, in addition to
population responses, species interactions can also cause non-additive responses to stressors (Thompson et al. 2018b).
In summary, the use of ANOVA when studying multi-stressor interactions raises some concerns, such as the need for a large

amount of data to have confidence in the estimates of variance, the choice of data-analysis space (linear or log), and the inabil-
ity to rescale. Ted Case and colleagues noted some of these limitations of ANOVA a few decades ago (Billick & Case 1994),
but these concerns appear to have been subsequently ignored or become lost knowledge.
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Independence model with the rescaling already discussed and
first introduced by Segre and colleagues (Segre et al. 2005).
This framework provides a well-established notion of estimat-
ing significance when only small numbers of replicates are pre-
sent (e.g. Segre et al. 2005; Leh!ar et al. 2007; Schmidt et al.
2013). Moreover, the Bliss framework is easy to understand
and implement, providing straightforward generalisations
when studying higher order (three or more) stressor interac-
tions (See Supporting Information, and Tekin et al. 2018).
Using this framework, which we term the Rescaled Bliss

Independence Model (RBI), we re-examine ecological data
that we collected from literature published in the last 25 years
(Supporting Information Fig. S1 and Table S1). The popula-
tion-level responses – such as growth, survival and mortality –
in the presence of stressors are similar to those in drug inter-
action studies. Using these metadata and this interaction clas-
sification scheme, we systematically investigate two-way
interactions and compare the results of our framework with
the results obtained in these previous studies. In particular,
we ask the following questions: (1) Are our results different
from the originally reported interaction types, and if so, how?
and (2) Can we identify any patterns in these interactions? In
doing so, we highlight examples where interactions switch
direction – such as reported synergies being antagonistic or
reported antagonisms being synergistic. Finally, we explore
whether interaction findings vary substantially with the spe-
cies’ habitats – artificial laboratory-based, marine, freshwater,
estuary or terrestrial – or with the taxa, such as unicellular
versus multicellular.

MATERIALS AND METHODS

Study selection and criteria

Studies were first selected from those cited in three reviews of
stressors and stressor interactions (Crain et al. 2008; Darling
& Côt!e 2008; Ban et al. 2014). These reviews were chosen
because they are highly cited, have already provided their own
standardised methods of analysis, and contain some of the
largest collections of studies on multiple stressors.
We then selected additional studies from literature searches

using the Web of Science database [following (Darling & Côt!e
2008)]. Searches were conducted for studies published from
January 1994 to August 2019 with the topics (inclusion in the
paper keywords, title, and/or abstract): ‘multiple stressors’,
‘multiple antagonism’, ‘multiple synergy’ and ‘multiple distur-
bance’ (Fig. S1). The search results under each topic were
then further narrowed down by using the topic categories
that would more likely yield ecological studies: agriculture
dairy animal science, biodiversity conservation, biology,
biotechnology, applied microbiology, ecology, entomology,
environmental sciences, evolutionary biology, genetics hered-
ity, marine freshwater biology, mathematical computational
biology, microbiology and zoology. Duplicate studies were
removed. Only studies that investigated growth, mortality and
survival at the population-level for a given species were
included.
We then screened the remaining search results by systemati-

cally reading through the abstract and results sections of each
study to identify the presence of our selection criteria. Studies

Figure 1 HowVariance Changes with Stressor Amount Based on Loewe Interaction Type. Solid blue lines show stressor amounts needed to elicit a specific value of the
response (e.g. kill the population) for each interaction type (left panel: additivity, middle panel: synergy, right panel: antagonism). We use these schematics to explain
why variance is not constant across different treatments – thus violating the hidden replication assumptions – when interactions are present. Experimental errors in
manipulating stressor amounts, measurement errors or slight inherent variation along one axis (e.g. x-axis, denoted change by green arrows) must result in shifts up or
down the other axis (e.g. y-axis, denoted change by red arrows) in order to stay on the line and maintain the same response (e.g. kill rate or growth rate). The size of the
shift up or down the y-axis depends not just on the shift along the x-axis, but also the interaction type and the absolute amount of the stressor (low or high). If stressor X
changes by a constant amount in the left panel (additivity) – from A to B at low stressor amounts and from C to D at high stressor amounts – the difference in stressor
Y that is needed to compensate is the same, resulting on average in constant variance in the response across the line (homoskedascity). However, for synergy (middle
panel), when the change from A to B is at low stressor amounts, the difference needed in stressor Y to compensate is much larger than the difference needed to
compensate for changes from C to D at high stressor amounts, corresponding to the notable size difference in the red arrows. This yields a variance in the response that
on average would change along the line (heteroskedascity). For antagonism (right panel), variance increases in the opposite direction. Changes from A to B at low
stressor amounts require less change in stressor Y than that needed to compensate for changes from C to D at high concentration. Again, this is portrayed by the
difference in size of the red arrows. Therefore, the variance in the response is not expected to stay the same under different treatment conditions (i.e. low versus high
stressor amounts), violating the hidden-replication assumption for ANOVA (see Box 1 for details). Note these schematics correspond to definitions of interactions via
Loewe additivity (Loewe 1953), which allows for measurements of interactions across a range of stressor amounts to illustrate how the shape of the response can lead to
heteroskedasticity. This is a different interaction framework than the RBI framework we use elsewhere in this paper, which is defined for fixed stressor amounts.
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selected were those that experimentally manipulated stressors
in a factorial design and contained the presence of two stres-
sors, had quantitative response variables, and had explicitly
stated measurements for control treatments. Once studies that
passed our initial screening were identified, we reevaluated
each for eligibility in our meta-analysis. Studies found to be
missing responses for control variables or individual stressors
were excluded because they would not be viable for our data
analysis.
From the remaining articles, we then extracted data from

relevant figures and tables found in each study. The extracted
data were tabulated into spreadsheets (see Table S2) and
included stressor type, stressor units, responses for individual
stressors, responses for combinations of stressors, responses
for control variables, sample size, species of organism tested,
species natural habitat and interaction type between stressors
as concluded by the original authors (i.e. additive, synergistic
or antagonistic). To compare interaction findings across dis-
tinct habitat classes and distinct types of organism studied, we
classified species’ natural habitats into five categories: artificial
laboratory-based, marine, estuary, freshwater and terrestrial.
Number of metadata across these habitat classes are as fol-
lows: artificial laboratory-based: 2, marine: 236, estuary: 29,
freshwater: 382, terrestrial: 191 interactions. We also classified
organism types into two different categories: unicellular and
multicellular. There are 5 interactions tested in unicellular
organisms and 835 in multicellular organisms in our meta-
data. In summary, multicellular organisms with terrestrial,
estuary, marine or freshwater habitat classes cover the major-
ity (99.4%) of metadata included in our study (data in
Table S1).
Studies where no interactions were reported were further

categorised by whether the authors looked for an interaction
or not. Quantitative responses that we recorded were mean
values that were averaged from raw values by the original
authors or estimated from their figures. For responses that
were presented in a time series format, we recorded the
response at the latest time point.
To assess the variability in data measurements, which

mainly rely on the mean response values due to limited data
reports, we used a nonparametric bootstrapping technique
across different studies in our meta-analysis. In doing so, we
sampled studies with replacement and calculated the fre-
quency of different interaction types under these samples (see
sections below for details).
We focused on the response variables of survival, mortality

and growth measurements, and we classified interactions using
the methods described in the next section. Finally, calculating
relative response values from the filtered data as described in
the section ‘Conversion of System Responses to Relative
Response Values’, we further confined the data set to include
relative response measurements in the range of [0, 1.5]. The
majority of the stressors we examined decreased responses,
which would have given a relative response maximum of 1.
But we also used studies with relative responses of up to 1.5
to be more inclusive. Those that resulted in relative responses
larger than 1 meant that the population did better with the
‘stressor’ present than in no-stressor environments (see Fig. S2
for the distribution of relative response values). This final

restriction on the response range led to an exclusion of only
six papers from our meta-analysis. All studies included in our
meta-analysis are given in Table S1 and summarised in
Table 1 by reported and re-classified interaction type. We only
analysed 2-stressor interactions because data for 3 + stressor
interactions are limited (Table S3).

Conversion of system responses to relative response values

We calculated the relative responses (wX) for survival and
growth response types by dividing the absolute stressor
response measurements (WX) by the response of the control
measurement (W0), such that wX = WX/W0. For response
variables as mortality percentages, we first converted the data
to survival percentages as (100 – mortality percentage) and
calculated the relative response as described for survival
response type. The last response variable included in our
meta-analysis is the mortality rates over time. Because control
represents the case with the lowest mortality rate over time,
we calculated the relative response as the control response
measurement over the response measurement of the stressor
treatment. Note that we excluded the data when at least one
of the measurements across the control, single stressors or the
pairwise stressor was equal to 0 as it would yield infinite rela-
tive response values.

Classification of interactions

In studying the effects of single or multiple stressors, system
responses – such as growth, survival or mortality rates – to
stressors are frequently referred to as ‘response variables’. The
effect of a single stressor (X) is typically characterised by how
much it alters the response measurement relative to the
response in the absence of any stressor, that is the control
treatment. We denoted this relative response measurement in
the presence of the stressor X by wX. Similarly, when there
are multiple stressors (say X, Y) in the environment, the rela-
tive response in the presence of the combined stressors is
denoted by wXY, where the ordering of the indices is symmet-
ric with respect to each other, that is wXY ¼ wYX. When
choosing a response variable that decreases with a stressor,
the relative response of a control as represented by w0 is equal
to 1 by definition, and an extreme lethal stressor produces a
response of 0. Therefore, for a typical stressor experiment, the
relative response (w) would be in a range between 0 and 1.
Therefore, interactions among stressors are characterised by a
systematic investigation of how much response measurements
in the presence of both stressors (wXY) differ from a quantita-
tive expectation based on responses in the presence of single
stressors (wX and wY) and no interaction between stressors.
When the effect on the response of the combined stressors is
greater or weaker than the null-hypothesis of no-interaction
(i.e. additive) effect, the interaction is classified as synergistic
or antagonistic respectively. Here, we followed the RBI model
to characterise interactions, in which the no-interaction expec-
tation – sometimes termed additive (with respect to selection
coefficients) and sometimes termed multiplicative (with respect
to measured responses) – is that the product of single-stressor
relative responses is equal to the combined stressor effect, that
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is wXY ¼ wXwY. A flowchart of the classification of interac-
tions is presented in Fig. 2 and a worked example is given in
Box S1.
In many ecological studies, the response of the stressor treat-

ment is measured as a mortality rate, denoted by m. The interac-
tion measure is given by the same equation as for Multiple
Predator Effects (MPE) and is calculated in terms of survivor-
ship as 1"mXY ¼ 1"mXð Þð1"mY) representing additivity, or
equivalently, no interaction, where mXY is the mortality rate
under the presence of two predators X and Y, mX is the mortal-
ity in the presence of just predator X and mY is the mortality

in the presence of just predator Y (Sih et al. 1998). We intro-
duce the BI model to assess the effects of drug combinations,
and in so doing we show the BI model for drugs is exactly
equivalent to MPE. Because these mortality rates directly
relate to survival (or population growth) rates, we follow the
drug literature and use the relative growth response (w) –
which measures growth rate in the presence of stressor A
compared to the growth rate in an environment with no stres-
sors – to classify interactions. As such, we use a measure for
net interactions used by the BI model that is called Deviation
from Additivity (DA):

Table 1 Comparison counts for interaction type according to previously published results and our re-analysis using Rescaled Bliss Independence (RBI).
‘Inconclusive’ cases under RBI correspond to cases for which the outcome is not obvious due to response values being indistinguishable, whereas ‘Inconclu-
sive’ cases under previously published results correspond to cases for which no explicit interaction type is reported. The table is summarised in Figure 4.

Rescaled Bliss Independence (RBI)

Synergy Additive Antagonism Inconclusive

Previously Published Results Synergy 72 90 41 45
Additive 10 23 11 9
Antagonism 2 10 26 14
Inconclusive 47 163 200 77

Figure 2 Overview of Classification of Interactions. Interaction classifications are done via the flow chart in the figure, where we start with the unscaled
interaction metric (Deviation from Additivity) and apply the rescaling method to calculate interaction values and determine the interaction type. The
construction of a rescaled measure with respect to the natural baselines – such as wXY ¼ 0 (lethal synergy), additive (no interaction) or wXY ¼ 1 (buffering)
– yields a map of the interaction measure to distinct values ("1, 0, 1, 2 respectively). This together with the resulting distribution of interaction calculations
over the entire data (Figure 3b) sharply delineates the boundaries across distinct interaction classes.
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DA ¼ wXY " wXwY

Notably, additive models used in stressor interactions are
often conducted by logarithmically transforming data, which
transforms the additive null model into one version of a mul-
tiplicative null model (Tekin et al. 2018). Accordingly, devia-
tions from the additive scenario of the Bliss Independence
model measure the presence of interaction and the direction
of the deviation defines the type of interaction. In this respect,
sufficiently large negative and positive values of deviations
suggest synergistic and antagonistic interactions.

Normalisation (Rescaling) method to enhance classification of
interactions
To properly distinguish the interaction types and to interpret
the magnitude of interactions, we applied a rescaling (normal-
isation) method that reliably identifies the interaction type
and is proven to enhance the identification of interactions in
drug (Yeh et al. 2006) and gene interaction (Sanju!an et al.
2004; Segre et al. 2005) studies. This is accomplished by quan-
tifying the interaction strength relative to natural baselines of
synergistic and antagonistic interactions.
As introduced by Segre and colleagues (Segre et al. 2005)

and Yeh and colleagues (Yeh et al. 2006), the interaction mea-
sure is calculated by the following formulas:

gDA ¼ DA

~wXY " wXwYj j
¼ wXY " wXwY

~wXY " wXwYj j

where ~wXY ¼ 0 when wXY #wXwY and ~wXY ¼ min wX;wYð Þ
when wXY [wXwY. Here, ~wXY represents a baseline of a speci-
fic response of stressor combinations, where ~wXY ¼ 0 corre-
sponds to extreme synergy (i.e. lethality), whereas
~wXY ¼ min wX;wYð Þ indicates that one stressor completely
masks/buffers the effect of another stressor and represents
extreme antagonism. To account for these baseline cases
where multiple stressors produce extreme effects, the following
rescaling is used when wXY [ min wX;wYð Þ:

gDA ¼ 1þ wXY"min wX;wYð Þ
1"min wX;wYð Þ

Using this rescaling, extremely synergistic interactions –
lethal or nearly lethal – would yield values close to "1.
Antagonistic buffering interactions – where there is not much
of a difference between operating with the strongest single
stressor or with all of the multiple stressors present – would
yield values close to 1. And extremely antagonistic interac-
tions – the complete recovery of the response to the response
level of the control – would equal 2 (Tekin et al. 2016).
Additionally, it has been repeatedly shown that rescaling

yields a multimodal distribution with clearly delineated
boundaries between interaction classes (Segre et al. 2005; Yeh
et al. 2006; Tekin et al. 2017). In comparison, unscaled inter-
action calculations result in a unimodal distribution that is
centred around additivity. This unimodal distribution does
not provide a practical way to determine the interaction type
based on the interaction measure or the distribution (refer to
Results and Fig. 3 for more details). Finally, we note that we
identified interactions as ‘inconclusive’ when the normalisation

factor ~wXY " wXwYj j was equal to zero, consistent with previ-
ous studies (e.g. Beppler et al. 2017).

Thresholds (cut-off values) to determine interaction type

Based on the cut-off values defined in other studies (Segre
et al. 2005; Yeh et al. 2006; Tekin et al. 2016), expectations of
interaction types (see above), and the resulting distribution of
interaction calculations, we classified the interaction as syner-
gistic when the rescaled DA measure was less than "0.5,
antagonistic when it was greater than 0.5, and additive other-
wise. Moreover, when the rescaled interaction measure
exceeded 1.3, we identified the interaction as an extreme form
of antagonism, typically referred to as suppression (Segre
et al. 2005; Yeh et al. 2006; Tekin et al. 2016).

Uncertainty in the frequency of interaction

Because many studies did not give replicate measurements of
stressor data, we relied mainly on the mean response values
and thus estimated the uncertainty in the measurements by
sampling across the studies in our meta-analysis. More pre-
cisely, we simulated the potential for variability by sampling
across studies to estimate the uncertainty in the frequency of
interactions. To do this, we used a nonparametric bootstrap-
ping technique. We sampled the studies with replacement
10000 times and calculated the 95% confidence intervals from
the resulting distributions.

RESULTS

In our study we obtained data from multi-stressor studies
with quantitative response variables and assessed interaction
types and interaction strengths of multi-stressor combinations
using the RBI model. We further compared our findings with
the conclusions reported in the original studies. We find that
the unscaled measure of interactions yields a unimodal distri-
bution around additivity (i.e. the peak is attained at Deviation
from Additivity (DA) = 0), making it difficult to separate dif-
ferent interaction classes (Fig. 3a, see ‘Normalisation (Rescal-
ing) Method to Enhance Classification of Interactions’). In
contrast, rescaling the interaction calculations resulted in a
multimodal distribution with peaks occurring at the baselines
of synergistic and antagonistic interactions (Fig. 3b) that are
in exact agreement with expectations: peaks at " 1 (lethal
synergy), 0 (additivity), 1 (antagonistic buffering) and 2 (ex-
treme antagonism) (see ‘Classification of Interactions’). This
resulting distribution clearly delineates boundaries between
distinct interaction classes, facilitating the classification of syn-
ergistic, additive and antagonistic cases. When rescaling is not
applied to the interaction calculations, boundaries between
these cases are ambiguous, demonstrating the significance of
normalisation (rescaling) in the categorisation of interactions.
The interaction types across our metadata, excluding the find-
ings of inconclusive interaction type (see Materials and Meth-
ods), are distributed as follows: 19% synergy, 41% additivity
and 40% antagonism.
We find that antagonism and additivity are the most observed

interaction types using the Rescaled Bliss Independence
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framework, in strong contrast with many studies that find syn-
ergy is the most reported interaction type (Fig. 4a). Given the
large discrepancies between the interaction findings in our
study and the interaction findings reported by papers included
in our meta-analysis, we also investigate the frequency of
interaction types by RBI when the interaction is classified as
synergistic, additive, antagonistic or inconclusive by studies
examined in our paper (Fig. 4b). We see that only 29% of
synergistic interactions from the original studies are confirmed
as synergy in our analysis, and also that 17% of reported syn-
ergistic interactions are classified as antagonism, and 36% are
classified as additive. Our RBI framework classifies 43% of
additive (no-interaction) reports as additive, whereas the
remaining ones are roughly evenly distributed across synergy,
antagonism or inconclusive (17–21%). On the other hand, we
find that when the interaction type is reported as antagonism,
it is extremely unlikely to be classified as synergy within our
RBI framework (4%), and that 50% of reported antagonism
is classified as antagonistic by RBI (Fig. 4c).
Moreover, 62% of antagonism findings by RBI, spanning

170 of 840 data points (20% of data), are categorised as an
extreme form of antagonism that is commonly referred to as
suppression. Suppression represents the case where one stres-
sor does not just mask the effect of the other, but actually
reverses the effect of another stressor. We also observe that
interaction types of 58% (487 out of 840) of the metadata are
not reported, as represented by the ‘inconclusive’ bar in Fig. 4
(either interactions were not the particular focus of the study
or no interaction type was reported or explicitly stated
although authors looked for an interaction, see Fig. S3 for
the number of data corresponding to each category).
Methods that do not rescale are more likely to miss antago-

nistic interactions that are smaller in magnitude. To check
that this is consistent with our findings, we divided our antag-
onistic identification into subgroups from weak to strong (fol-
lowing Tekin et al. 2016). Specifically, strongly antagonistic
interactions are > 1.3 by RBI, moderately antagonistic inter-
actions are 1–1.3 by RBI, and weakly antagonistic interactions
are 0.5–1 by RBI. Strongly antagonistic interactions match
much better with the original studies than do weakly and

moderately antagonistic interactions, consistent with expected
failures of methods that lack rescaling. We found 23 interac-
tions matching out of 170 total strongly antagonistic interac-
tions (14%). The matching frequency was 2 of 80 (2.5%) for
moderately antagonistic interactions and 1 of 28 (3.6%) for
weakly antagonistic interactions. Synergistic interactions by
RBI have an overall higher matching frequency in comparison
to antagonistic interactions. Across all the different magni-
tudes of synergism (weak: !0.5 to !0.7 by RBI; moderate:
!0.7 to !0.85; strong: !0.85 to !1), the matching frequency
was fairly even: 19 of 36 weakly synergistic interactions match
(53%), 11 of 21 moderately synergistic interactions match
(52%) and 42 of 74 strongly synergistic interactions match
(57%).
Finally, to see the effect of habitat classes on interaction

types, we also separated the frequency bar charts by the three
most common habitat classes: marine, freshwater and terres-
trial, which comprise 96% of the metadata (Fig. 5). We did
not find noteworthy differences in the prevalence of interac-
tion types obtained by RBI between marine and freshwater
habitats (Fig. 5). On the contrary, we observe that antago-
nism is slightly less prevalent in terrestrial habitats compared
to marine and freshwater habitats (Fig. 5), though instances
of each interaction type in terrestrial habitats are roughly sim-
ilar (Fig. 5c).

DISCUSSION

We evaluated population-level response data for stressor inter-
actions compiled from the literature over the last 25 years and
conducted a systematic analysis of interaction patterns via a
rescaled BI method – one of the most common interaction
classification schemes used in drug–drug and gene–gene inter-
actions. Although there has been a tendency towards studies
reporting more synergies, as also pointed out previously by
others (Darling & Côt!e 2008; Côt!e et al. 2016; Jackson et al.
2016), we actually observed more additivity and antagonism.
Additivity is the most frequent interaction type (41% of meta-
data are classified as additive) and antagonism is nearly as fre-
quent (40% of metadata are classified as antagonistic).

(a) (b)

Figure 3 Unscaled Versus Rescaled Bliss Independence (RBI) Model Measures. (a) Frequency distribution of interaction measures across metadata does not
yield clear distinctions between interaction types due to its unimodal characteristics. This is because weak single-stressor effects will often result in weak
DA, which is misleading because this is a result of the single-stressor effect size and not the interaction itself. (b) Rescaled interaction measures eliminate
dependence on the single-stressor effect sizes by defining the measure relative to the natural baselines of synergy and antagonism. This rescaling results in a
multimodal distribution with peaks around !1 (extreme synergy), 0 (additivity), 1 (antagonistic buffering) and 2 (extreme antagonism) that allows us to
tease apart synergistic, additive and antagonistic interactions. By definition (see section ‘Classification of Interactions’) and its resulting distribution across
metadata, rescaling reveals the actual magnitude of interactions, and consequently, it enhances the identification of interaction type.
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Moreover, we see that our method frequently classifies previ-
ously synergistic findings as non-synergistic – either as antago-
nistic or as additive.
Due to the inherent limitations of methodologies (such as

ANOVA) used by many previous studies, our findings add to
a growing body of literature suggesting that it is extremely
important to explore other interaction classification methods
and to identify the method used based on more realistically
motivated assumptions and hypotheses (e.g. Côt!e et al. 2016).
When methods are not chosen in a way that can be consis-
tently compared and evaluated, it is difficult to understand
the implications of a multiple stressor study in the broader
context of the field. Several researchers have recently begun to
explore other interaction classification methods and to deter-
mine more nuanced ways to identify the best methods for
specific situations.
For example in their meta-analysis of interactions in 171

studies in marine systems, Crain and colleagues considered
that two stressors could both have negative effects on a
response variable, both have positive effects, or have effects in
different directions (Crain et al. 2008). When the stressors
affected the response variable in opposite directions, synergy
was defined as the situation when the net effect is more nega-
tive than the additive sum of the individual effects. As Piggott
and colleagues point out, this method of defining makes sense
only when the effect default or expected direction is negative,
such as in the case of decreased survival rate or the decrease

in any response variable (Piggott et al. 2015). After taking
into account the magnitude and response direction of the net
effect and interaction effect in their additive model, they re-
classified interactions in the data from the Crain paper (Crain
et al. 2008) in absolute terms. Analysing the data in this way,
they found a slightly higher incidence of antagonism (43%)
compared to the original Crain analysis (38%) (Piggott et al.
2015).
Although several models in both the ecology and drug liter-

ature have yielded a high frequency of antagonistic interac-
tions across multiple stressor studies (Piggott et al. 2015; Côt!e
et al. 2016; Jackson et al. 2016; Tekin et al. 2018), synergistic
interactions appear to garner more attention and research
than antagonistic ones. This is true even though the interest in
synergy comes from opposite concerns with respect to conser-
vation and human health. For ecological population studies,
synergies are considered detrimental because they hasten the
loss of threatened or endangered populations. For human
health, stressor synergies are considered beneficial because
they more efficiently kill bacteria (e.g. Chapin et al. 2000;
Tong et al. 2004; Lorian 2005; Pan et al. 2006; Brook et al.
2008). More precisely, synergies always increase killing effi-
ciency, but in some contexts that is considered a positive
(drugs and health) and others a negative (species conserva-
tion).
In ecology, synergies pose some of the greatest dangers to

populations of interest for conservation because they can lead

(a)

(c)

(b)

Figure 4 Comparison of Interaction Classes Obtained by Rescaled Bliss Independence (RBI) Framework and the Interaction Classes Reported in Studies.
(a) The frequency of interaction types (Synergy, Additive, Antagonism, Inconclusive) are shown as bar graphs, with the actual counts corresponding to
each interaction class shown at the top of each bar. Here, ‘Inconclusive’ cases under RBI correspond to cases for which the outcome is not obvious due to
response values being indistinguishable, whereas ‘Inconclusive’ cases under previously published results correspond to cases for which no explicit interaction
type is reported. (b) The reports of interactions are contrasted with the interactions found via the RBI model. The errors in the interaction measurements
are estimated by sampling across different studies. The 95% CI for the frequency of the interactions are represented by error bars (see section
‘Classification of Interactions’). (c) The frequency of each interaction type resulting from RBI is represented in separate pie charts for each interaction type
identified by studies. See Table 1 for data.
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to population declines much more severe than an additive
effect would predict. However, synergies also present the
greatest opportunities. Indeed, Brown and colleagues (Brown
et al. 2013) have shown that reducing a stressor within a syn-
ergistically interacting combination has the greatest benefit to
ecosystem management. Hence, incorporating these outcomes
is crucial for the management of populations and communi-
ties. In the clinic, the goal is to use synergy to eradicate harm-
ful bacterial populations due to the greater killing efficiency
of synergistic drugs.
From a basic science perspective, there is no reason to place

primacy on synergism because antagonism in both drug–drug
and ecological-stressor effects is found about as frequently as
synergism according to large-scale studies in these fields:

Drugs: 26% synergy, 37% antagonism (Yeh et al. 2006); Eco-
logical stressors: 35% synergy, 42% antagonism (Darling &
Côt!e 2008); Marine stressors: 36% synergy, 38% antagonism
(Crain et al. 2008). Moreover, in our analysis we find 19%
synergy and 40% antagonism, meaning that the higher rate of
publication of presumed synergistic combinations likely arises
from the biases and concerns discussed in the paragraph
above and not because they occur more frequently across the
space of all possible interactions.
The data used for our study partly overlap with the data

used in other recent and remarkable meta-analyses that
involved ecological interactions (Gruner et al. 2008; Harpole
et al. 2011; Yue et al. 2017). Importantly, however, our pre-
sent study differs in approach, results and sometimes

(a)

(b)

(c)

Figure 5 Comparison of Interaction Type Results by Freshwater, Marine and Terrestrial Habitat Classes. The frequency of interaction categorisations from
data with freshwater, marine and terrestrial habitat classes are separated into distinct panels, respectively, panels a, b and c. The laboratory and estuary
habitats are not included here as they only comprise 3.7% (31 out of 840) of metadata, and hence do not provide a sufficient number of data points for
examining habitat effect. Interaction classification by Rescaled Bliss Independence (RBI) is fairly consistent between aquatic habitats and classifies relatively
fewer antagonisms in terrestrial habitats. In contrast, interaction type frequencies substantially differ between marine, freshwater and terrestrial habitats in
previously published results except for antagonistic interactions.
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questions. First, the measure of interactions in other studies is
different in form from ours. All of these other recent papers
use differences in slopes of lines or in log-ratios. Conse-
quently, these measures are conceptually similar to ANOVA
methods in that they can be converted into numerical values
or equations for linear-space ANOVA (via difference in
slopes) or log-space ANOVA (via differences in log-slopes
that are equal to log-ratios).
Since comparisons to ANOVA methods are a major focus

of this study and the results presented above, the conclusions
we discuss apply equally well in comparing to the results of
these previous meta-analyses. Furthermore, because log-ratios
are used, all of the measures are normalised to the control
treatment. We also always calculate and use relative fitnesses
that are normalised with respect to the fitness of the no-stress
(control) condition.
Second, and most importantly, the distribution of interac-

tions is substantially different because of our specific type of
rescaling, as explained above. The closest to our method is
Yue et al. (2017) who employed a more advanced measure –
Hedge’s d – that relies on differences in linear slopes (analo-
gous to one-way ANOVA) and includes a correction based on
standard deviation for sample size. This correction is crucial
because most of the studies included in the meta-analysis do
in fact have small sample sizes. Nevertheless, this correction
and the log-ratios themselves are fundamentally different than
our rescaling method. Our rescaling prevents mis-categorisa-
tion of interactions that can arise from not accounting for sin-
gle effects being either very small or very big. Indeed, earlier
papers by us and others show that not including this kind of
rescaling can completely change results because it is essentially
comparing apples to oranges and leads to more interactions
being identified as additive.
Third, some of these previous studies found and analysed

over 600 interactions, whereas our more recent search found
and included over 800 interactions. Despite the potential limi-
tations of our keyword choice in finding every article on mul-
tiple-stressor interactions, this roughly 33% increase in the
number of individual interaction studies also may change
results. Fourth, Gruner et al. (2008) was primarily addressing
the question of top-down versus bottom-up control, and Har-
pole et al. (2011) was looking for evidence of co-limitation.
So, while measuring interactions was necessary for their stud-
ies, looking carefully at the distribution and types of interac-
tion was not as essential, yet those are the direct goals of this
present study.
Recent findings on higher order interactions in natural plant

communities (Mayfield & Stouffer 2017), biodiversity of eco-
logical communities (Bairey et al. 2016; Levine et al. 2017),
epistasis and its effect on the variability of complex traits
(Taylor & Ehrenreich 2015), as well as drug interactions (Bep-
pler et al. 2016; Tekin et al. 2016), reveal the need to explore
higher order interactions to better capture the characteristics
of complex systems. This requires well-adapted interaction
measures to higher order levels that are not simply based on
pairwise effects, and the extension of the BI model (Bliss
1939) with rescaling (Segre et al. 2005) provides a potential
path forward due to its ease of use and straightforward gener-
alisation to characterise emergent interactions (Tekin et al.

2017). Future directions could entail broadening the analysis
to studies with three or more stressors. While this study found
only a few studies with three stressors, we may be able to find
a greater number of studies with three or more stressors by
examining published data beyond 25 years and expanding
keywords across biological scales beyond the population-level.
In summary, we show how a newly introduced framework

for drugs can also be used to study ecological interactions and
perform a systematic analysis of pairwise interactions on
metadata collected in the literature from the last 25 years. In
doing so, we describe some of the drawbacks and limitations
in using traditional methods of ANOVA and show that using
an RBI framework leads to different conclusions than previ-
ous reports of interaction studies. When the underlying
assumptions of ANOVA – such as for hidden replication that
the variances are constant across different stressor treatments
and thus implicitly that there are no interactions – are vio-
lated for the studied system, then the conclusions about inter-
actions between different stressors may not be correct (Billick
& Case 1994). Moreover, our findings are consistent with
other recent reviews (Piggott et al. 2015; Côt!e et al. 2016;
Jackson et al. 2016) as well as with our recent studies in drug
interactions, indicating more antagonistic interactions than
previously thought. Our study shows that choosing an appro-
priate framework for predicting interactions is essential to
correctly find and categorise interactions, with broad and vital
implications for a range of fields such as biodiversity, conser-
vation strategies and human health.
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Chapter Two: Supporting Information 
 
How to generalize to three-stressor interactions 
 
Here we present the formula to examine and rescale three-stressor interactions, following 
Beppler et al. 2016 and Tekin et al. 2016. 
 
First, as noted in the Methods, Bliss Independence uses the idea of Deviation from Additivity, 
DA, where DA = 𝑤!" −𝑤!𝑤" for two stressors. For three stressors, this can be extended to: 
DA#,%,& ≡	𝑤#%& −𝑤#𝑤%𝑤&. 
 
In three-stressor combinations, we can obtain both a net (Deviation from Additivity) interaction, 
which is the total overall interaction, and an emergent interaction (E3), which isolates only the 
component of the interaction that results from the higher-order combination and not from any of 
the lower-order (pairwise) interactions (Beppler et al. 2016). 
 
To obtain the emergent interaction for three stressors, there are three pairwise combinations, so 
subtracting all possible pairwise combinations yields: 

																										E3 = 	DA!,#,$ −𝑤!	DA#,$ −𝑤#	DA!,$ −𝑤$	DA!,# 

Rewriting this equation solely in terms of the relative fitness gives: 
 

																															E3 = 𝑤!#$ −𝑤!𝑤#$ −𝑤#𝑤!$ −𝑤$𝑤!# + 2𝑤!𝑤#𝑤$ 

We can rescale the E3 measure relative to the minimum of the fitness values attained by any 
single or pairwise components. The	normalization	factor	would	be: 
 
																|min(𝑤#, 𝑤%, 𝑤&, 𝑤#%, 𝑤#&, 𝑤%&) − 𝑤#𝑤%& −𝑤%𝑤#& −𝑤&𝑤#% + 2𝑤#𝑤%𝑤&| 

 
Thus, the new rescaled E3 measure would be: 
 

[E3]' =
𝑤#%& −𝑤#𝑤%& −𝑤%𝑤#& −𝑤&𝑤#% + 2𝑤#𝑤%𝑤&

|min(𝑤#, 𝑤%, 𝑤&, 𝑤#%, 𝑤#&, 𝑤%&) − 𝑤#𝑤%& −𝑤%𝑤#& −𝑤&𝑤#% + 2𝑤#𝑤%𝑤&|
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Box S1. Calculation of Rescaled Bliss Independence (RBI) Interaction Measures  
 
To illustrate the calculations necessary for obtaining the rescaled Bliss interaction measures, we work through examples 
of interactions. When the survival of a living organism is measured to be 70% (compared to the unstressed condition) 
under stressor 𝑥 and 50% under stressor 𝑦, this corresponds to 𝑤𝑥 = 0.70 and 𝑤𝑦 = 0.50. When both stressors are 
present, the expected survival (assuming no interaction) is then  𝑤𝑥𝑦 = 	𝑤𝑥𝑤𝑦 = 0.35. The rescaled value DA as a 
function of observed 𝑤𝑥𝑦—survival under the stressor pair—is shown in Figure S4. Some specific example values are 
worked out below. 
 
Synergy 
Suppose we measure that 𝑤𝑥𝑦 = 0.15. In this case we have 𝐷𝐴𝑥𝑦 = 𝑤𝑥𝑦 − 𝑤𝑥𝑤𝑦 = 0.15 − 0.35 = −0.20. The 
negative sign indicates that the observed growth is less than expected when there is no interaction. Following Figure 2, 
the corresponding rescaled interaction is 𝐷𝐴E𝑥𝑦 =

𝑤𝑥𝑦−𝑤𝑥𝑤𝑦

(0−𝑤𝑥𝑤𝑦(
=

0.15−0.35

0.35
= −0.57. To see the difference between the 

rescaled and non-rescaled DA metrics, suppose that for a different stressor 𝑧 we measure 𝑤𝑧 = 0.4 and 𝑤𝑦𝑧 = 0.00. 
This would give 𝐷𝐴𝑦𝑧 = 0.00 − (0.50)(0.40) = −0.20, the same unscaled DA value as for stressors (𝑥, 𝑦). However, 
the stressor pair 𝑦	𝑧 is lethal to the organism so this is a much stronger synergy (in fact, the maximum possible synergy 
between two stressors). In contrast, the rescaled interaction values are  𝐷𝐴E𝑦𝑧 = −1.00 < −0.57 = 𝐷𝐴E𝑥𝑦, correctly 
being classified as complete synergistic lethality and giving a larger deviation from 0 for the stronger interaction.  
 
Antagonistic buffering 
When 𝑤𝑥𝑦 = 0.45, then 𝐷𝐴𝑥𝑦 = 0.45 − 0.35 = 0.10. Since 𝑤𝑥𝑤𝑦 < 𝑤𝑥𝑦 < minF𝑤𝑥, 𝑤𝑦G = 0.50 we are in the 
antagonistic buffering case. This means that, while less effective than expected, the stressor combination still reduces 
survival compared to both single stressors. The corresponding rescaled DA value is 𝐷𝐴E𝑥𝑦 =

𝑤𝑥𝑦−𝑤𝑥𝑤𝑦

(min	(𝑤𝑥,𝑤𝑦)−𝑤𝑥𝑤𝑦(
=

0.10

0.15
=

2

3
≈ 0.67. This rescaled number means the strength of the interaction is 67% of the way between additivity and complete 

antagonistic buffering—when one stressor completely buffers or masks the effect of the other. 
 
Antagonistic suppression 
While less common than antagonistic buffering, in certain cases adding a second stressor can actually improve the 
survival of an organism relative to at least one of the single stressors (i.e., 𝑤𝑥𝑦 > minF𝑤𝑥, 𝑤𝑦G). This corresponds to 
antagonistic suppression. For example, when  𝑤𝑥𝑦 = 0.60, we get 𝐷𝐴𝑥𝑦 = 0.60 − 0.35 = 0.25. The corresponding 

rescaled interaction is 𝐷𝐴E𝑥𝑦 = 1 +
𝑤𝑥𝑦−min	(𝑤𝑥,𝑤𝑦)

(1−min	(𝑤𝑥,𝑤𝑦)(
= 1 +

0.10

0.50
= 1.20. 

 
Additivity 
Strictly speaking, an interaction is additive only when the survival is exactly as expected (i.e. if 𝑤𝑥𝑦 = 	𝑤𝑥𝑤𝑦 = 0.35), 
corresponding to 𝐷𝐴𝑥𝑦 = 𝐷𝐴E𝑥𝑦 = 0. However, in practice one does not typically wish to consider interactions as non-
additive when there are only minor deviations from this prediction. As opposed to evaluating a point null hypothesis 
(e.g. 𝐷𝐴E𝑥𝑦 = 0) in a similar way to ANOVA, we propose evaluating the interval null hypothesis H𝐷𝐴E𝑥𝑦H < 𝐷𝐴E𝑐𝑟𝑖𝑡, 
where 𝐷𝐴E 𝑐𝑟𝑖𝑡 is the minimum strength for an interaction to be considered a synergy or antagonism of interest (rather than 
an additive interaction).  
 
In this paper, we follow other work (Segre et al. 2005; Yeh et al. 2006; Beppler et al. 2016; Tekin et al. 2016) and 
categorize interactions where H𝐷𝐴E𝑥𝑦H < 0.5 as additive. This choice is informed by the modes and minima of the 
distribution of interactions. For the analysis conducted here, we calculated interactions based only on the published 
mean effects because we do not have access to the raw data of the individual studies. In practice, one can also test an 
interval null hypothesis statistically and get a p-value through bootstrapping with access to the raw data (e.g. see Cruz-
Loya et al. 2019 for an example involving temperature and antibiotic stress). 
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Table S1. List of papers analyzed. Habitat class, species, stressors, type of species response, 

summary of interaction types reported, and summary of interaction types by Rescaled Bliss 

Independence (RBI) framework are given. 

habitat source species stressors responses (units 
reported) 

interaction  
reported 

interaction by  
Rescaled Bliss 
Independence 
(RBI) 

Estuary Little et al. 
2000 

Menidia berylina petroleum and UV-B mortality (%) Synergy: 5 Additive: 1, 
Antagonism: 1, 
Synergy: 3 

Peachey 2005 Callinectes sapidus, 
Menippe adina, 
Panopeus herbstii, 
Libinia dubia 

fluoranthene or pyrene 
and Artificial UV or 
Solar UV 

mortality (%) Synergy: 24 Additive: 6, 
Antagonism: 3, 
Synergy: 15 

Freshwater Aalto & 
Pulkkinen 2013 

Daphnia magna Phosphorus limitation, 
parasite infection 

survival (%) and 
growth (µg) 

None: 2 Antagonism: 2 

Alton et al. 
2010 

Limnodynastes 
peronii 

UV-B and perceived 
predation 

survival (%) Synergy: 1 Additive: 1 

Amburgey et al. 
2016 

Pseudacris maculata hydration and predation  survival (%) None: 1 Antagonism: 1 

Arce-Funck et 
al. 2018 

Gammus fossarum alder or maple leaf litter 
with phosphorus 
conditioning or no 
conditioning and 
cadmium in water 

survival 
(proportion) 

None: 7 Additive: 3, 
Antagonism: 4 

Baud & Beck 
2005 

Pseudacris crucifer UV and copper survival (%) Synergy: 2 Additive: 1, 
Antagonism: 1 

Bezirci et al. 
2012 

Daphnia pulex salinity and kairomone  survival (%) Antagonism: 
29 

Additive: 2, 
Antagonism: 
13, None: 13, 
Synergy: 1 

Boone & 
Semlitsch 2003 

Rana catesbiana carbaryl and crayfish, 
sunfish, or newts 

survival (%) Antagonism: 6 Additive: 4, 
Antagonism: 2 

Boone et al. 
2005 

Rana clamitans nitrate and carbaryl survival (%) Antagonism: 2 Additive: 1, 
Antagonism: 1 

Boone & 
Bridges-Britton 
2006 

Hyla versicolor  nitrate and atrazine survival (%) None: 1 Antagonism: 1 

Boone et al. 
2007 

Rana catesbeiana, 
Ambystoma 
maculatum 

carbaryl and bluegill  survival (%) None: 2 Antagonism: 1, 
None: 1 

Bridges et al. 
2004 

Rana pipiens  pesticides and SPMD survival (%) None: 1 Antagonism: 1 

Brown et al. 
2013 

Anaxyrus 
woodhousii  

Bd and triclosan survival (%) Additive: 1 Antagonism: 1 

Buck et al. 
2015 

Rana cascadae Bd and zooplankton survival (%) None: 1 Additive: 1 

Buser et al. 
2012 

Daphnia magna Pasteuria ramosa and 
diazinon  

survival (%) None: 1 Additive: 1 

Coopman et al. 
2014 

Daphnia magna WBD infection and 
microcystis 

survival (%) None: 5 Antagonism: 5 

Dastis & Derry 
2016 

Leptodiaptomus 
minutus 

Copepod pond source 
and pH 

survival 
(number) 

None: 1 Antagonism: 1 

de Beeck et al. 
2016 

Culex pipiens natural kairomones of 
N. maculate and Bti 

mortality (log-
transformed raw 
number) 

Synergy: 1 Additive: 1 

 de Beeck et al. 
2018b 

Ischnura pumilio, 
Ischnura elegans 

chlorpyrifos and 
temperature 

mortality 
(proportion) 

None: 2 Additive: 1, 
Antagonism: 1 

de Coninck et 
al. 2013 

Daphnia magna parasite and carbaryl survival (%) Synergy: 2 Additive: 2 
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Delnat et al. 
2019a 

Culex pipiens temperature and CPF survival (%) Additive: 1, 
Synergy: 1 

Additive: 2 

Dietrich et al. 
2014 

Aeromonas 
salmonicida 

temperature and 
malathion 

survival (%) None: 1 Additive: 1 

Dinh et al. 2016 Coenagrion puella heat and starvation  survival (%) Synergy: 1 Antagonism: 1 
Engert et al. 
2013 

Moina macrocopa temperature and humic 
substance 

survival (days) 
and growth (mm) 

None: 24, 
Synergy: 8 

Additive: 3, 
Antagonism: 
19, None: 10 

Gabor et al. 
2018 

Osteopilus 
septentrionalis 

metyraponeand and Bd survival (days) None: 1 Antagonism: 1 

Gahl et al. 2011 Lithobates sylvaticus salinity and kairomone mortality (%) 
and growth (cm) 

None: 8 Additive: 1, 
Antagonism: 7 

Gomez-Mestre 
et al. 2006 

Bufo americanus jelly coat and mold survival (%) None: 1 Synergy: 1 

Gorokhova et 
al. 2010 

Monoporeia affinis Hypoxia or normoxia 
and combination of 
contaminants 

mortality (%) None: 4 Additive: 2, 
Antagonism: 2 

Green et al. 
2019 

Lithobates clamitans temperature and 
chloride 

survival 
(proportion) 

None: 6 Additive: 6 

Hallman & 
Brooks 2015 

Lithobates 
sphenocephalus, 
Hyla chrysoscelis 

BCCU and day:night 
temperature 

survival (%) None: 14 Additive: 7, 
None: 5, 
Synergy: 2 

Hani et al. 2019 Gasterosteus 
aculeatus 

temperature and Cd 
exposure 

offspring 
mortality (%) 

None: 1 Additive: 1 

Hanlon & 
Relyea 2013 

Lithobates clamitans waterbug and malathion 
or endosulfan 

survival (%) None: 4 Antagonism: 4 

Hanlon & 
Parris 2014 

Hyla versicolor Bd and Roundup or 
Sevin 

survival (%) None: 2 Antagonism: 2 

Heine-Fuster et 
al. 2017 

Brachionus 
calyciflorus 

kairomone and 
metamidophos 

growth (rate of 
population 
increase per day) 

None: 2 Additive: 2 

Hesse et al. 
2012 

Daphnia magna fish or triops kairomone 
and metschnikowia 
infection 

survival (days) 
and growth (µm) 

None: 5, 
Synergy: 9 

Additive: 12, 
Antagonism: 2 

Heye et al. 
2019 

Chironomus riparius food limitation and 
carbamazapine 

mortality (%) Additive: 1 Antagonism: 1 

Isaza et al. 
2018 

Cherax destructor pH and nitrate survival (%) None: 2 Additive: 1, 
Antagonism: 1 

Jansen et al. 
2011 

Daphnia magna carbaryl and parasites mortality (%) Additive: 1 Additive: 1 

Janssens & 
Stoks 2013 

Enallagma 
cyathigerum 

glyphosate and predator 
cue 

growth (rate per 
day) 

None: 1 Additive: 1 

Kelly et al. 
2010 

Galaxias anomalus glyphosate and 
Telogaster opisthorchis 

survival (%) Synergy: 1 Additive: 1 

Kerby & Sih 
2015 

Rana boylii, 
Pseudacris regilla 

pesticide exposure and 
predator cue 

survival 
(proportion) 

None: 2 Additive: 2 

Kern et al. 2015 Limnodynastes 
peronii 

temperature and UVR 
exposure 

survival  (%) None: 2 Additive: 2 

Kimberly & 
Salice 2014 

Physa pomilia pH and temperature mortality 
(proportion 
mortality at 14 
days) 

None: 4 Additive: 1, 
Synergy: 3 

Kimberly & 
Salice 2013 

Physa pomilia temperature and 
cadmium exposure 

survival (%) None: 10 Additive: 2, 
None: 7, 
Synergy: 1 

Leduc et al. 
2016 

Lithobates pipiens copper and nickel survival (%) Synergy: 5 Antagonism: 4, 
None: 1 

Li et al. 2012 Hyalella azteca phosphorous and copper growth (mm) None: 2 Antagonism: 2 
Long et al. 
1995 

Rana pipiens pH and UV survival (%) Synergy: 4 Additive: 3, 
Antagonism: 1 

Loureiro et al. 
2015 

Daphnia galeata NaCl and temperature survival (min) Synergy: 1 Additive: 1 

Macaulay et al. 
2020 

Coloburiscus 
humeralis 

temperature and 
imidaclorid 

survival (%) Synergy: 10 Additive: 6, 
Synergy: 4 

Macías et al. 
2007 

Rana perezi, Bufo 
bufo 

N-NO2 and UV-B mortality (%) Synergy: 8 Antagonism: 4, 
None: 4 
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Manek et al. 
2014 

Pimephales 
promelas 

cadmium and UVR 
exposure 

mortality (%) None: 1 Additive: 1 

Mari et al. 2016 Salvelinus alpinus warm temperature and 
sediment 

survival (%) None: 4, 
Synergy: 1 

Additive: 2, 
Synergy: 3 

Metts et al. 
2005 

Ambystoma 
maculatum 

temperature and 
acidification 

survival (%) and 
growth (mm per 
day) 

None: 6 Additive: 2, 
Antagonism: 2, 
None: 1, 
Synergy: 1 

Mothersill et al. 
2007 

Salmo salar cadmium and aluminum survival (%) Synergy: 1 Synergy: 1 

Mothersill et al. 
2014  

Salmo salar heavy metal 
contamination and UV-
B 

survival (%) Synergy: 1 Synergy: 1 

Ortiz-
Santaliestra et 
al. 2010 

Pelophylax perezi salinity and ammonium mortality (%) None: 4, 
Synergy: 4 

Additive: 4, 
Antagonism: 2, 
None: 1, 
Synergy: 1 

Ortiz-
Santaliestra et 
al. 2011 

Pelobates cultripes ammonium and predator 
presence 

mortality (%) None: 8 Additive: 3, 
Antagonism: 5 

Pandolfo et al. 
2010 

Ligumia recta, 
Potamilus alatus, 
Lampsilis powellii 

temperature and copper survival (%) None: 18 Additive: 3, 
Antagonism: 
11, None: 1, 
Synergy: 3 

Pauley et al. 
2015 

Hyla versicolor mosquito bits, 
torpedoes, or dunks and 
predator presence 

survival (%) None: 3 Additive: 1, 
Synergy: 2 

Pestana et al. 
2009  

Chironomus riparius imidacloprid, predation 
risk 

growth (mm) None: 4 Additive: 1, 
Antagonism: 3 

Philippe et al. 
2018a 

Nothobranchius 
furzeri 

temperature and 
cadmium 

survival (%) None: 2 Additive: 1, 
Synergy: 1 

Philippe et al. 
2018b 

Nothobranchius 
furzeri 

temperature and 
cadmium 

survival (%) Additive: 3 Additive: 3 

Philippe et al. 
2019 

Nothobranchius 
furzeri 

temperature and 3,4-
DCA 

survival (%) None: 2 Antagonism: 2 

Plautz et al. 
2013 

Biomphalaria 
glabrata 

predator cue and 
malathion or cadmium 

survival (%) None: 2 Additive: 1, 
Antagonism: 1 

Poore et al. 
2013 

Peramphithoe 
parmerong 

pH and temperature survival 
(number) 

None: 2 Additive: 1, 
Synergy: 1 

Relyea 2003 Rana sylvatica, 
Rana catesbiana, 
Hyla versicolor, 
Bufo americanus 

carbaryl and predation mortality (%) Antagonism: 
5, Synergy: 7 

Additive: 1, 
Antagonism: 5, 
None: 5, 
Synergy: 1 

Relyea et al. 
2005 

Lithobates 
sphenocephalus, 
Hyla versicolor, 
Anaxyrus 
americanus 

pesticide and predation survival (%) None: 16 Additive: 3, 
Antagonism: 6, 
None: 5, 
Synergy: 2 

Reyes et al. 
2015 

Daphnia magna age at exposure to 
deltamethrin and low 
food 

survival (%) None: 3 Additive: 3 

Roe et al. 2006 Ambystoma 
talpoideum 

contaminated sediment 
and high larval density 

mortality (%) Additive: 2 Additive: 1, 
Antagonism: 1 

Rogell et al. 
2009 

Bufo calamita salinity and temperature survival (%) None: 2 Additive: 2 

Rohr et al. 2013 Osteopilus 
septentrionalis 

atrazine and Bd mortality (%) None: 1 Additive: 1 

Rumrill et al. 
2016 

Anaxyrus terrestris coper and predator survival (%) None: 1 Antagonism: 1 

Saari et al. 
2018 

Pimephales 
promelas 

dissolved oxygen and 
diltiazem 

survival (%) None: 8 Additive: 1, 
Antagonism: 1, 
None: 2, 
Synergy: 4 

Sandland & 
Carmosini 2006 

Physa gyrina atrazine and predation survival (%) None: 1 Additive: 1 

Sievers et al. 
2018 

Limnodynastes 
tasmaniensis 

copper and imidaclorid mortality 
(proportion) 

None: 4 Additive: 4 
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Smith et al. 
2011 

Bufo americanus, 
Rana sylvatica 

malathion and nitrate survival (%) and 
growth (mm) 

Additive: 3, 
None: 12 

Additive: 7, 
Antagonism: 7, 
None: 1 

Smith et al. 
2015 

Oncorhynchus 
mykiss 

radiation and aluminum survival (%) None: 2 Antagonism: 2 

Suhett et al. 
2011 

Moina macrocopa salt and humic 
substance 

growth (mm) Antagonism: 2 Additive: 1, 
Antagonism: 1 

Tüzün & Stoks 
2017 

Coenagrion puella esfenvalerate and 
hatching period 

survival (%) None: 2 Additive: 2 

Taylor et al. 
2016 

Daphnia pulex-
pulicaria 

copper and dissolved 
organic carbon 

survival (%) None: 8 Antagonism: 6, 
None: 2 

Teffer et al. 
2019 

Oncorhynchus 
kisutch 

temperature and 
handling stress (gill net 
or biopsy) 

mortality (%) None: 3, 
Additive: 1 

Additive: 3, 
Synergy: 1 

Teplitsky et al. 
2007 

Rana arvalis acidity and predator 
presence 

growth (g) None: 2 Additive: 1, 
Synergy: 1 

Vandenbrouck 
et al. 2011 

Daphnia magna temperature and nickel growth (% of 
control) 

None: 8 Antagonism: 8 

Verheyen & 
Stoks 2019 

Ischnura elegans daily temperature and 
chlorpyrifos 

mortality (%) None: 2 Additive: 2 

Whittington & 
Walsh 2015 

Daphnia lumholtzi predator presence and 
cyanobacteria 

growth (mm2) None: 3 Additive: 1, 
Antagonism: 2 

Wood & Welch 
2015 

Anaxyrus terrestris brackish water and 
carbaryl, glyphosate, or 
atrazine 

survival 
(proportion) 

None: 3 Additive: 1, 
Antagonism: 2 

Laboratory Ankomah et al. 
2013 

Escherichia coli TOB and TET growth by death 
(rate) 

None: 1 Antagonism: 1 

Friman & 
Buckling 2013 

Pseudomonas 
fluorescens 

phage and protist growth (rate) None: 1 Additive: 1 

Marine 
Anderson et al. 
1998 

Crassostrea 
virginica 

TBT and hypoxia mortality (%) Synergy: 1 Additive: 1 

Anthony et al. 
2007 

Acropora intermedia temperature and light survival (%) None: 1 Additive: 1 

Bible et al. 
2017 

Ostrea lurida salinity and temperature mortality 
(proportion) 

None: 8, 
Synergy: 4 

Additive: 8, 
Antagonism: 1, 
Synergy: 3 

Blake & Duffy 
2010 

Gammarus 
mucronatus, 
Elasmopus levis 

heat and reduced 
salinity 

growth (mg) Antagonism: 
1, None: 1 

Antagonism: 2 

Bogan et al. 
2019 

Crepidula fornicate pH and low food culture survival 
(proportion) 

Synergy: 3 Additive: 1, 
Antagonism: 1, 
Synergy: 1 

Bonsdorff et al. 
1995 

Macoma balthica predation and 
disturbance 

survival (%) Synergy: 2 Additive: 2 

Braid et al. 
2005 

Haliotis rufescens temperature and WS-
LRP exposure 

mortality 
(number) 

Synergy: 1 Additive: 1 

Bundy et al. 
2003 

Fundulus 
heteroclitus, 
Crassostrea 
virginica 

nutrient addition and 
trace element addition 

growth (%, mg, 
proportion) 

None: 11 Additive: 6, 
Antagonism: 5 

Carreja et al. 
2016 

Taliepus dentatus low UV-B and 
temperature 

mortality (%) None: 2 Antagonism: 2 

Ceccherelli et 
al. 2018 

Posidonia oceanica nutrients and burial survival (%) Additive: 2, 
Synergy: 2 

Additive: 2, 
Antagonism: 1, 
Synergy: 1 

Cleveland et al. 
2000 

Mysidopsis bahia TPH exposure and solar 
radiation 

mortality (%) Synergy: 10 Additive: 5, 
Antagonism: 3, 
Synergy: 2 

Cumbo et al. 
2013 

Pocillopora 
damicornis 

temperature and 
acidification 

mortality (%) None: 1 Antagonism: 1 

Davis et al. 
2018a 

Rockfish (Sebastes 
spp) 

hypoxia and high pCO2 mortality (%) None: 2 Antagonism: 2 

Deschaseaux et 
al. 2010 

Bembicium nanum, 
Dolabrifera brazier, 
Siphonaria 
denticulate 

temperature and salinity mortality (%) None: 6 Additive: 2, 
Antagonism: 3, 
Synergy: 1 
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Dineshram et 
al. 2016 

Crassostrea gigas temperature and reduced 
salinity 

survival (%) None: 1 Additive: 1 

Duquesne & 
Liess 2003 

Paramoera walker heavy metals and UV-B mortality (%) Synergy: 1 Additive: 1 

Fabricius et al. 
2013 

Montipora 
tuberculosa, 
Acropora millepora 

temperature and 
nutrients 

survival (%) None: 8 Additive: 1, 
Antagonism: 1, 
None: 2, 
Synergy: 4 

Firth & 
Williams 2009 

Cellana toreuma temperature and salinity mortality (%) None: 4 Additive: 1, 
Antagonism: 2, 
None: 1 

Gaitán-Espitia 
et al. 2014 

Macrocystis pyrifera temperature and pCOs mortality (%) None: 1 Additive: 1 

Glaspie et al. 
2018 

Saccostrea 
glomerate 

chronic acidification 
and episodic 
acidification 

mortality 
(proportion) 

None: 1 Synergy: 1 

Gobler et al. 
2018 

Menidia beryllina temperature or 20% less 
optimal diet and pCO2 

survival (%) None: 5 Additive: 1, 
Antagonism: 2, 
Synergy: 2 

Holmer et al. 
2011 

Halophila ovalis alga and temperature mortality (% per 
day) and growth 
(mg per apex per 
day) 

Additive: 2, 
None: 4, 
Synergy: 5 

Additive: 4, 
Antagonism: 3, 
None: 2, 
Synergy: 2 

Jansson et al. 
2015 

Macoma balthica low O2 and high pH survival (%) None: 1 Antagonism: 1 

Kahn & Durako 
2006 

Thalassia 
testudinum 

salinity and NH4
+ survival (days) None: 14 Additive: 6, 

Antagonism: 7, 
None: 1 

Kawai & 
Tokeshi 2007 

Septifer virgatus thermal period and 
disturbance period 

mortality (%) Additive: 6 Additive: 3, 
None: 1, 
Synergy: 2 

Kwok & Leung 
2005 

Tigriopus japonicus copper or temperature 
and salinity 

mortality (%) None: 11 Additive: 2, 
Antagonism: 4, 
Synergy: 5 

Lenihan et al. 
2003 

Nototanais 
dimorphus, 
Spiophanes 
tcherniai, 
Heterophoxus 
videns, 
Austrosignum 
grande, Eudorella 
splendida, 
Sterichinus 
neumayeri, 
Monoculodes 
demissus 

total organic carbon and 
copper 

growth 
(abundance) 

None: 27 Additive: 5, 
Antagonism: 
13, None: 4, 
Synergy: 5 

Liess et al. 
2001 

Paramoera walker copper and UV-B survival 
(number) 

Synergy: 4 Additive: 3, 
Synergy: 1 

Macías et al. 
2007 

Rana perezi N-NO2 and UV-B mortality (%) Synergy: 4 Antagonism: 4 

Marques et al. 
2017 

Amphistegina 
gibbosa 

copper and pH mortality (%) None: 9 Additive: 3, 
Antagonism: 6 

Olsen et al. 
2014 

Dictyota menstrualis heat and alga survival (%) Synergy: 2 Additive: 1, 
Antagonism: 1 

Pestana et al. 
2010 

Daphnia magna imidacloprid and 
predation 

growth (rate by 
day) 

None: 4 Additive: 2, 
Antagonism: 1, 
None: 1 

Prosser et al. 
2011 

Danio rerio phenanthrene and 
mycobacterium 
infection 

survival (%) None: 2 Antagonism: 2 

Przeslawski et 
al. 2005 

Siphonaria 
denticulata, 
Bembicium nanum, 
Dolabrifera brazier,  

temperature and salinity mortality (%) Synergy: 6 Additive: 4, 
Antagonism: 1, 
Synergy: 1 

Ragagnin et al. 
2018 

Pagurus 
criniticornis 

pH and photoperiod mortality 
(proportion) 

Synergy: 1 Additive: 1 
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Renegar & 
Riegl 2005 

Acropora 
cervicornis 

nutrients and CO2 growth (mg per 
day) 

Additive: 1, 
Antagonism: 
1, None: 4 

Additive: 2, 
Antagonism: 3, 
Synergy: 1 

Salo & 
Pedersen 2014 

Zostera marina salinity and temperature mortality (%) Synergy: 4 Additive: 1, 
Antagonism: 2, 
None: 1 

Serrano et al. 
2018 

Porites astreoides temperature and NO3 mortality (%) None: 1 Antagonism: 1 

Speights et al. 
2017 

Crassostrea 
virginica 

temperature and CO2 survival 
(proportion) 

None: 3 Antagonism: 3 

Staton et al. 
2002 

Microarthridion 
littorale 

salinity and pesticide 
exposure 

survival (%) None: 2 Antagonism: 2 

Steevens et al. 
1999 

Lytechinus 
variegatus 

phenanthrene or 
benzo[a]pyrene and 
UV-B 

survival (%) Additive: 16 Additive: 5, 
Antagonism: 1, 
None: 5, 
Synergy: 5 

Swiney et al. 
2017 

Paralithodes 
camtschaticus 

pH and temperature survival (%) None: 2 Antagonism: 1, 
Synergy: 1 

Thyrring et al. 
2015 

Mytilus edulis temperature and lead survival (%) None: 20 Additive: 4, 
Antagonism: 7, 
None: 7, 
Synergy: 2 

Vaz-Pinto et al. 
2013 

Sargassum muticum CO2 and temperature survival (%) None: 1 Additive: 1 

Terrestrial Chu & Chow 
2002 

Caenorhabditis 
elegans 

cadmium and nickel, 
zinc, or copper 

mortality (%) Synergy: 3 Additive: 1, 
None: 1, 
Synergy: 1 

Dżugan et al. 
2012 

Gallus gallus 
domesticus 

cadmium and zinc mortality (%) Antagonism: 6 Antagonism: 6 

Gan et al. 2016 Mus musculus [3-BrPA] and 4-OHT mortality (%) None: 2 Additive: 2 
Højer et al. 
2001 

Folsomia candida nonylphenol and 
humidity 

survival (%) Synergy: 30 Additive: 11, 
Antagonism: 7, 
Synergy: 12 

Holliday et al. 
2009 

Malaclemys terrapin salinity and PCB growth (g) None: 12 Additive: 8, 
Antagonism: 1, 
None: 3 

Jayawardena et 
al. 2016 

Polypedates 
cruciger 

cercariae and 
chlorpyrifos, 
dimethoate, glyphosate, 
or propanil 

mortality (%) None: 4 Antagonism: 4 

Jensen et al. 
2009 

Dendrobaena 
octaedra 

nonylphenol and 
temperature 

survival (%) Synergy: 30 Additive: 5, 
Antagonism: 1, 
None: 15, 
Synergy: 9 

Kramarz et al. 
2007 

Helix aspersa cadmium exposure and 
nematode infection 

mortality (%) None: 48 Additive: 18, 
None: 29, 
Synergy: 1 

Long et al. 
2009 

Lumbricus rubellus moisture level and 
fluoranthene 

survival (%) Additive: 12 Additive: 5, 
Antagonism: 4, 
None: 3 

Pringle et al. 
2016 

Acacia 
drepanolobium 

herbivory and soil type 
or ants 

mortality (%) 
and survival (%) 

Additive: 1, 
None: 1 

Antagonism: 1, 
Synergy: 1 

Schmidt et al. 
2014 

Folsomia candida chemical activity of 
phenanthrene and water 
activity 

mortality (%) Synergy: 36 Additive: 11, 
Antagonism: 2, 
None: 10, 
Synergy: 13 

Slotsbo et al. 
2009 

Folsomia candida temperature and 
mercury 

survival (%) Synergy: 1 Synergy: 1 

Ushakova 2003 Spirorbis spirorbis, 
Circeus spirillum 

temperature and salinity mortality (%) None: 4 Antagonism: 4 

Yu et al. 2015 Xenopus laevis pesticide and UV-B mortality (%) Synergy: 1 Additive: 1 
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Table S2: List of three-stressor interactions found in literature. Habitat class, species, 
stressors, and type of response measured. 
 
habitat source species stressors responses 

 

Piggott et al. 
2015 

Fragilaria ungeriana, Achnanthidium 
minutissimum, Navicula cryptotenella, 
Gomphonema parvulum, Nitzschia palea, 
Cocconeis placentula, Cymbella kappii, 
Navicula cryptocephala, Fragilaria 
vaucheriae, Encyonema minutum,  

temperature, sediment, nutrient growth 

de Beek et al. 
2018a 

Ischnura elegans 
 

temperature, CPF, density mortality 

Freshwater Hasenbein et 
al. 2018 

Hyalella azteca 
 

salinity, temperature, bifenthrin 
 

survival 

 Davis et al. 
2018b 

Agapetus fuscipes, Silo pallipes low sediment, phosphorus, 
nitrogen 

growth 

 Elbrecht et al. 
2016 

Chaetopteryx villosa 
 

sediment, reduced flow, nutrient 
addition 

growth 

 Bruder et al. 
2017 

Salmo trutta 
 

slow flow velocity, low nutrient 
enrichment, constant DCD 

survival 

 Delnat et al. 
2019b 

Culex pipiens 
 

DTV-7, CPF, Bacillus 
thuringiensis israelensis 

mortality 

 
Blake & 
Duffy 2016 

Zostera marina 
 

shade, temperature, grazers growth 

 Vasquez et al. 
2015 

Limulus polyphemus 
 

temperature, salinity, ambient O2 survival 

 Cheng et al. 
2015 

Ostrea lurida 
 

hypoxia, salinity, temperature survival 

 Vasquez et al. 
2017 

Limulus polyphemus 
 

salinity, temperature, oxygen survival 

Marine Li et al. 2017 Thalassiosira weissflogii CO2, nutrient, PAR intensity growth 

 Büscher et al. 
2017 

 Lophelia pertusa 
 

low food, temperature, pCO2 mortality 

 Gobler et al. 
2018 

Menidia beryllina 
 

diet, CO2, temperature survival 

 Dineshram et 
al. 2016 

Crassostrea gigas  
 

temperature, salinity, pH survival 

 
Caronni et al. 
2017 

Chrysophaeum taylorii 
 

nutrient enrichment, mechanical 
disturbance,  
hydrodynamic stress 

growth 

Terrestrial 

Morgado et 
al. 2016 

Porcellionidespru-inosus chlopyrifos, soil, soil moisture 
level 

survival 

Janssens et al. 
2017 

Lestes viridis 
 

egg temperature, larval 
temperature, previous 
esfenvalerate concentration 

survival 
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Table S3. Number of Replicates in the Interaction Studies Examined. Of the 840 interaction 
studies examined here, the majority (68%) had 1-6 replicates.  

No. replicates per 
treatment 

No. of interactions 

1-3 223 

4-6 352 

7-9 51 

10-12 60 

13-15 6 

16-18 32 

19-21 26 

21+ 13 

Unequal replicates 42 

Unknown or unclear 35 
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Supporting Information Figures 

 

Figure S1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) (Moher et al. 2009) Flow Diagram. A total of 2,692 unique studies (records) were 
narrowed to 146 papers with 840 total data entries that were included in our quantitative 
synthesis. 
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Additional records identified 
through other sources 

(n = 205) 

Records after duplicates removed 
(n = 2,692) 

Records screened 
(n = 2,692) 

Records excluded 
(n = 697) 

Full-text articles assessed 
for eligibility 
(n = 1,955) 

Full-text articles excluded, 
with reasons 
(n = 1,774) 

Studies included before 
data filtering 

(n = 170) 

Studies included in 
quantitative synthesis 

(meta-analysis) 
(n = 146) 
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Figure S2. Distribution of relative response values across meta-data included in our study. 
Refer to Materials and Methods for details. 
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Figure S3. Inconclusive reports of interaction types across metadata. The metadata that is 
labeled as “inconclusive” are separated into two groups: 1) “tested, no interaction found”, 
indicating that the authors looked for an interaction but ultimately did not find one or did not 
explicitly state a conclusive interaction type, 2) “untested”, meaning that categorization of 
interactions was not the particular focus of the study, and hence it is not explored and reported in 
the study. Many studies did not focus on interactions and thus did not report interactions in their 
study. The number of data corresponding to each group among 487 data points is represented as 
a bar graph. 
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Figure S4. Rescaled Bliss Interaction (RBI) metric. Here we show an example of how the 
rescaled DA interaction metric changes as a function of 𝑤)*, the survival proportion when both 
stressors are present. In this example, the survival proportions for the individual stressors are 
𝑤) = 0.7 and 𝑤* = 0.5. The case when the observed survival is equal to the expected survival 
under a null model of independence (𝑤)* = 𝑤)𝑤*) corresponds to 𝐷𝐴O )* = 0. Small deviations 
from these predictions are considered approximately additive interactions (gray dotted lines). 
When the observed survival is less than expected under the null model, the rescaled interaction is 
synergistic (red line) and 𝐷𝐴O )* < 0. The minimum possible value is -1 and corresponds to the 
stressor combination being lethal (𝑤)* = 0). When the observed growth is greater than expected 
when there is no interaction, the interaction is antagonistic (green and blue lines). Antagonistic 
buffering (green line, 0 < 𝐷𝐴O )* ≤ 1) corresponds to cases where the combined stressors reduce 
growth more than the single strongest stressor (𝑤)𝑤* < 𝑤)* ≤ min	(𝑤) , 𝑤*)). Antagonistic 
suppression (blue line, 𝐷𝐴O )* > 1) corresponds to the case where a single stressor reduces 
survival more than the combined stressors.  
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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• We used a novel interaction framework,
the Rescaled Bliss Independence (RBI).

• RBI quantifies multiple aspects of higher-
order interactions.

• RBI does not rely on restrictive assump-
tions that can lead to misidentification.

• Through meta-analysis, 96% of net 3-way
interactions were newly or re-classified.

• RBI identified emergent interactions,
which only occur with 3+ stressors.
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Althoughnatural populations are typically subjected tomultiple stressors,most past research has focusedon single-stressor
and two-stressor interactions, with little attention paid to higher-order interactions among three or more stressors. How-
ever, higher-order interactions increasingly appear to bewidespread. Consequently,we used a recently introduced and im-
proved framework to re-analyze higher-order ecological interactions. We conducted a literature review of the last 100
years (1920–2020) and reanalyzed 142 ecological three-stressor interactions on species' populations from 38 published
papers; the vast majority of these studies were from the past 10 years. We found that 95.8 % (n = 136) of the three-
stressor combinations had either not been categorized before or resulted in different interactions than previously reported.
We also found substantial levels of emergent properties—interactions that are not due to strong pairwise interactions
within the combination but rather uniquely due to all three stressors being combined. Calculating net interactions—the
overall accounting for all possible interactions within a combination including the emergent and all pairwise interac-
tions—we found that the most prevalent interaction type is antagonism, corresponding to a smaller than expected effect
based on single stressor effects. In contrast, for emergent interactions, the most prevalent interaction type is synergistic,
resulting in a larger than expected effect based on single stressor effects. Additionally, we found that hidden suppressive
interactions—where a pairwise interaction is suppressed by a third stressor—are found in the majority of combinations
(74 %). Collectively, understanding multiple stressor interactions through applying an appropriate framework is crucial
for answering fundamental questions in ecology and has implications for conservation biology and population manage-
ment. Crucially, identifying emergent properties can reveal hidden suppressive interactions that could be particularly im-
portant for the ecological management of at-risk populations.
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1. Introduction

Individuals in natural populations almost always face multiple stressors
that affect their ability to survive and tofind food, shelter, mates, and safety
(Blaustein and Kiesecker, 2002; Côté et al., 2016). These stressors include
changes to biological or environmental factors that can result in unfavor-
able responses within a population (Vinebrooke et al., 2004), further lead-
ing to unfavorable responses across entire ecological systems (Jackson
et al., 2021, 2016). Over the past century, ecological stressors such as cli-
mate change, pollution, and habitat destruction have adversely affected
natural systems, contributing to biodiversity loss and a continuing threat
to populations and ecosystems (Butchart et al., 2010; Didham et al., 2007;
Halpern et al., 2015). These stressors rarely occur in isolation. Instead,
they often co-occur with other stressors, raising the possibility of interac-
tions and potentially changing the overall impact on populations (Côté
et al., 2016; Crain et al., 2008). Therefore, there is a great need to properly
assess and predict stressor interactions to mitigate their cumulative effects.

When the combined impact of two stressors is equal to the amount of
the individual effects in isolation, the interaction type is defined as an addi-
tive interaction, or no interaction (Bliss, 1939; Loewe, 1953; Folt et al.,
1999; Yeh et al., 2006; Piggott et al., 2015c; Jackson et al., 2016). Alterna-
tively, two stressors could interact synergistically—increasing the overall
effects—or antagonistically—decreasing the overall effects (Bliss, 1939;
Loewe, 1953; Folt et al., 1999; Yeh et al., 2006; Piggott et al., 2015c). For
example, synergistic interactions were observedwhen the combined effects
of high temperatures and low pH decreased calcification (the production of
shells and plates) in certain marine animals when compared to the individ-
ual effects of each stressor (Rodolfo-Metalpa et al., 2011). On the other
hand, antagonistic interactions were found in coral (Pocillopora meandrina)
microbiome response to multiple stressor interactions (Maher et al., 2019).
Specifically, increased temperature and coral scarring both decreased the
abundance of the dominant taxon (Endozoicimonacae) in coral
microbiomes. However, the combined stressor effect led to a lower magni-
tude response than predicted if there were no interactions between the
stressors (Maher et al., 2019). Notably, an extreme form of antagonism is
termed suppression—one stressor reverses another stressor's effects;
e.g., the combined effect is weaker than expected by each or both of the
stressors' effects (Yeh et al., 2006; Chait et al., 2007; Yeh et al., 2009;
Singh and Yeh, 2017). An extreme form of suppression, also known as “re-
versals” (Jackson et al., 2016), refers to a combination of stressors leading
to opposite effects than expected by additivity—e.g., both stressors individ-
ually decreasing growth but in combination increasing growth. For exam-
ple, the combined effect of carbaryl and nitrate decreased green frog
(Rana clamitans) tadpole growth despite their individual positive effects
on tadpole growth (Boone et al., 2005).

Pairwise interactions—the effects of two stressors in combination com-
pared to individual effects—have been well studied in the ecological litera-
ture. Empirical work on pairwise stressor interactions (Hesse et al., 2012;
Cramp et al., 2014; Van Praet et al., 2014; Sniegula et al., 2017; Delnat
et al., 2019), literature reviews, and meta-analyses (Darling and Côté,
2008; Crain et al., 2008; Ban et al., 2014; Matthaei and Lange, 2015;
Piggott et al., 2015c; Côté et al., 2016; Jackson et al., 2016; Villar-Argaiz
et al., 2018; Tekin et al., 2020) have revealed their substantial influence
across biological systems and scales. Yet, there are likely more than two
stressors acting on all, or almost all, wild populations. In fact, multiple
stressor interactions are more frequent than previously thought, despite
having received less attention (Beppler et al., 2016; Tekin et al., 2018a).

When studying interactions, higher-order combinations—defined here
as a combination of three ormore stressors—have historically been ignored
(Pomerantz, 1981) despite their importance in ecological communities
(Billick and Case, 1994; Levine et al., 2017). The assumptions that have
been used to justify this include (1) paired interactions or single-stressor ef-
fects provide the main effects, so one only needs to worry about paired in-
teractions or single effects; higher-order interactions, therefore, provide
negligible effects (Pomerantz, 1981; Wootton, 1994; Ban and Alder,
2008; Wood et al., 2012; Wood, 2016); (2) higher-order interactions are

complex and depend on accurate, specific parameters and underlying null
models that are often not available for effective and reliable testing
(Billick and Case, 1994; Thompson et al., 2018); and, (3) from an experi-
mental standpoint, the collection of higher-order interactions, whether in
the lab or the field, can be onerous, time-consuming, and logistically diffi-
cult as increasing stressor combinations could theoretically lead to an expo-
nentially large number of experiments, which has given rise to research on
approximating multi-stressor responses from single pairs (Billick and Case,
1994; Côté et al., 2016; Wood, 2016; Zimmer et al., 2016; though see:
Levine et al., 2017).

In recent years, however, multiple stressor interactions have received
more theoretical and experimental attention. These include studies across
scales of biological organization—from the individual (Piggott et al.,
2015a; Bruder et al., 2017; Hunn et al., 2019) to the population (Bruder
et al., 2017; Macaulay et al., 2021b) to the community level (Piggott
et al., 2015b; Piggott et al., 2015d; Winkworth et al., 2015; Bruder et al.,
2016; Elbrecht et al., 2016; Salis et al., 2017; Beermann et al., 2018;
Davis et al., 2018; Salis et al., 2019; Juvigny-Khenafou et al., 2020;
Juvigny-Khenafou et al., 2021a; Juvigny-Khenafou et al., 2021b;
Macaulay et al., 2021a)—and across time (Macaulay et al., 2021c).

A recently introduced framework to examine interactions was used spe-
cifically to analyze both pairwise and higher-order interactions (Tekin
et al., 2018b, 2020). This framework, the Rescaled Bliss Independence
(RBI), was originally drawn from the pharmacology and microbiology
fields (Beppler et al., 2016; Tekin et al., 2016). The RBI has several key ad-
vantages compared to the most-used method to examine interactions in
ecology, ANOVA. First, ANOVA incorporates several assumptions that are
often violated or not tested (Text A.1). Second, RBI enables direct compar-
isons of interaction effects from absolute to relative fitness. Third, the
framework allows for straightforward generalization from pairwise to
higher-order interactions while keeping the ability to rescale interaction
terms—that is, to normalize interaction values relative to a natural base-
line, much like the way we typically measure fitness as relative fitness
rather than absolute fitness (see Text A.2 for details). Finally, and crucially,
the framework enables the identification of emergent properties—that is,
what interactions arise that are the result of all three stressors together,
rather than just being the dominant effect due to a pairwise interaction
dominating the landscape of multiple stressors.

Emergent properties only arise from three or more stressors; there are
no emergent properties in two-stressor interactions because the interaction
between the two stressors is what emerges from the combination of the
stressors. However, in three or more stressor combinations, the interaction
from three stressors could be coming primarily from a strong two-stressor
interaction—a non-emergent interaction—or the interaction could be the
result of all three stressors together—an emergent interaction (Beppler
et al., 2016). Together, pairwise and emergent interactions constitute the
observed net three-way interaction (Fig. 1A). For example, imagine ecolog-
ical stressors A, B, and C all are impacting the growth of a population X.
Let's say that the interaction among all three stressors together is synergis-
tic. But this three-stressor interaction could arise primarily from a strong
synergistic pairwise interaction between two of the three stressors, say A
and B, which would obscure all other interactions (described in Fig. 1B).
This would be a case of a non-emergent interaction. Or this three-stressor
interaction could need all three stressors present to show a synergistic inter-
action, whichwould be an emergent interaction (Beppler et al., 2016; Tekin
et al., 2016). Thus, it is imperative to quantify both pairwise and three-
stressor combinations to determine the nature of population X's response
to stressors A, B, and C.

The importance of identifying emergent properties lies in our ability to
understand the impacts of specific stressors, even when most populations
experience multiple stressors in combination. In fields such as conservation
ecology or climate change biology, there is often an emphasis on conserving
and bolstering endangered and threatened populations by mitigating at
least one of the stressors affecting population survival and growth (Brown
et al., 2013). However, if we do not clearly understand how stressors inter-
act, we could be mitigating the wrong stressors, or at least, not the optimal
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stressors. A striking example of the importance of emergent interactions can
be seen in the field of pharmacology, where the combination of three anti-
biotic stressors trimethoprim, streptomycin, and erythromycin have a syn-
ergistic effect, efficiently reducing bacterial population size. However, if
one of the drug stressors (for example, erythromycin) is removed from
this combination the overall killing efficiency actually increases (Beppler
et al., 2017). This results in the population of concern, the bacteria, decreas-
ing more when there are only two stressors, rather than three (Beppler
et al., 2017). This is an example of a critical emergent interaction.

Inmuch the sameway, understandingmultiple stressors and their emer-
gent, higher-order, effects could be crucial for understanding how best to
conserve species and populations. In an ecological example, pairwise inter-
actions on stream macroinvertebrate family richness vary across environ-
mental gradients, from synergistic to additive to antagonistic (Kefford
et al., 2022), pointing to the importance of understanding how ecological
interactions themselves can be affected by a third factor.

Unlike ANOVA and similar approaches, the Rescaled Bliss Indepen-
dence framework is conducive to rescaling the interaction measure
(e.g., normalization), which allows for more easily measuring and identify-
ing the strength of an interaction. Like absolute versus relative fitness, a
rescaled interaction value is normalized by a natural baseline
(e.g., lethality). Rescaling results in a multimodal distribution with clearer
cut-offs around values. Therefore, interaction types are more easily distin-
guishable (Segrè et al., 2005; Tekin et al., 2016, 2020). Without the

rescaling step, raw interaction values can be exactly the same even though
theymay represent different interaction types, leading to incorrect interpre-
tations (Tekin et al., 2016, 2017). Therefore, rescaling is critical to compar-
ing interaction measures and identifying interaction types.

Recently, three critical issues have been identified when evaluating in-
teraction terms within linear regression models—a common statistical
method used to test for interactions (Duncan and Kefford, 2021). First, a
function space (e.g., linear, logarithmic, square root)must be chosenwithin
which to perform the regressions. Depending on this choice of space (re-
ferred to as scale by Duncan and Kefford, 2021), interactions may exist in
one analysis but not another. Choice of space is equivalent to different
choices of null models that may be based on multiplicative (e.g., growth
under stressor A= 0.5, growth under stressor B= 0.5, so the null additive
model predicts growth under stressors A and B= 0.5*0.5 = 0.25) or addi-
tive assumptions (e.g., growth under stressor A = 1–0.5 = 0.5, growth
under stressor B= 1–0.5= 0.5, so the null additive model predicts growth
under stressors A and B= 1–0.5 - 0.5 = 0). In addition, nonlinearities can
introduce issues in terms of identifying interactions, and there are two dis-
tinct ways this can happen, corresponding to the second and third issues.
The second issue is that single-stressors could be correlated, and if a
single-stressor has nonlinear effects on the response variable such as
growth, then these correlations can induce an apparent but artifactual inter-
action in terms of the regressions models because the partial derivatives
will not be constant. Third, the interaction terms themselves might not be
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Fig. 1. The components needed to assess three-stressor interactions. A) Net three-way interactions are composed of lower-order two-way interactions between given stressors
(A, B, and C) and the higher-order emergent three-way interaction that is only quantifiable with all three stressors present and when all two-way interactions are known.
Together, these compose the net three-way interaction. Fig. 1 is partially adapted from Tekin et al. (2018b). B) An example of the contribution of two-way interactions on
net three-way interactions. Here, single stressors all decrease relative fitness. In two-stressor and three-stressor interactions, light gray represents the additive expectation
based on single-stressor effects on fitness. Blue represents synergistic interactions and red represents antagonistic interactions. In this example, the strong synergistic two-
stressor interaction between A and B, rather than an emergent interaction, overshadows the additive interaction between A and C and the antagonistic interaction
between B and C. This leads to a synergistic net three-way interaction between A, B, and C. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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linear across a range of stressor intensities. Specifically, this means that the
interaction term should not be just the product of the two linear stressors
but instead, at least one of the stressors should be multiplied in a nonlinear
form.

For our methods and results in this paper, the RBI is not limited by the
issues raised above, primarily because RBI is not based on linear regression
models. For the first issue, the RBI uses a multiplicative null model (Bliss in-
dependence (Bliss, 1939)) for the given level of biological interest: popula-
tion fitness. Because relative fitness must vary between 0 and 1 and can be
considered as a percentage, a multiplicative null model is appropriate. This
null model would need to possibly be adapted if other response variables at
other biological levels are considered. For the second and third issues in
terms of nonlinearities, it is important to recognize that the RBI does not
model continuous independent variables; instead, it uses a single data
point for each stressor or combination of stressors. Moreover, in terms of
the second issue and effects of correlations, our analysis here explicitly re-
lies on controlled full-factorial experimental designs. Because the experi-
ments are controlled and cover a full combinatorial range, the stressors
are varied independently such that no correlations are present. In contrast,
measurements based on field conditions and naturally occurring climate
may have essential correlations that need to be included and that are crucial
for devising management strategies. Third, because the RBI relies on single
data points and does not require a single interaction type for any set of
stressors, it does not assume a linear or non-linear response at all. That is,
the same stressors can be classified as having different types of interactions
when different amounts of each stressor are used. For example, stressor
combinations at low concentrations might yield synergistic interactions,
yet might yield antagonistic interactions at high concentrations. If an inter-
action measure is desired that covers the range of values for stressors and
can account for nonlinearities in single-stressor responses, Loewe's additiv-
ity is a natural choice (Loewe, 1953). However, this method cannot be
rescaled and cannot examine emergent properties, making it ill-suited for
testing for stressor interactions at higher orders as we do here.

Here we conduct a literature search from January 1920–November
2020, finding 3+ stressor interaction studies mostly from the last 10
years. We re-analyze stressor interactions using the new Rescaled Bliss In-
dependence (RBI) framework (Tekin et al., 2016), recently applied to eco-
logical studies to identify two-stressor interactions (Tekin et al., 2020).
For simplicity, we define “stressors” as factors that affect population growth
orfitness.Whilemost of these “stressors” decrease population growth orfit-
ness, a few stressors in the studies examined here actually increase popula-
tion growth and/or fitness.We aim to obtain amore detailed, accurate, and
complete understanding of higher-order ecological stressor interactions.
Specifically, we use this framework to reanalyze the data from previously
published papers (that used traditional methods i.e., ANOVA, General Lin-
ear Model, or log-logistic) that measure three-stressor interactions and all
the lower-order interactions: all three pairwise combinations of stressors
and all three single-stressors. We ask three questions: (1) How well does
this new framework match previously published interaction results?
(2) How often do emergent properties appear in higher-order ecological in-
teractions? (3) Can we find patterns of emergent properties—that is, for ex-
ample, do they primarily occur in synergistic interactions or antagonistic
interactions? Based on prior findings in drug-bacteria systems (Tekin
et al., 2018a), we hypothesized that (1) The new framework will yield dif-
ferent results than previously published interaction results; (2) We will find
a substantial number of emergent properties from higher-order interac-
tions; and (3) We will find more emergent antagonistic interactions than
emergent synergistic interactions.

2. Methods

2.1. Study selection and criteria

We conducted a literature search using theWeb of Science database to se-
lect the studies included in our analysis. We searched one hundred years of
published literature, from January 1920–November 2020. Asmulti-stressor

papers increased in prevalence over the last few years, we acknowledge
that there have been more papers published since the completion of the
search. Nonetheless, this search has collected a substantial number of studies
for us to evaluate broad trends in data and demonstrate how the RBI can be
applied to three stressor combinations. We used the following key terms
included in the papers' keywords, title, and/or abstract: “multiple stressors,”
“multiple antagonism,” “multiple synergy,” “multiple disturbance,” “multi-
factor,” “additions,” “indirect interactions,” and “stressors” (Fig. A.1). Then,
we further filtered the search results by selecting the following specific
topic categories to reflect our interest in ecological studies: agriculture dairy
animal science, biodiversity conservation, biology, biotechnology appliedmi-
crobiology, ecology, environmental sciences, evolutionary biology, genetics
heredity, marine freshwater biology, microbiology, and zoology.

We removed repeated records in the search so that there was only a sin-
gle record per paper present. We only selected papers that measured
growth, mortality, and/or survival at the population level for a specific spe-
cies. We restricted our analysis to one level of biological organization so
that the results aremore generalizable to the level itself and not confounded
by potential differences across scales (e.g., Simmons et al., 2021). Addition-
ally, the RBI has only been used on fitness metrics using established equa-
tions based on relative fitness. While the RBI might be theoretically
applicable to other scales of biological organization, for the sake of testing
and demonstrating the RBI on ecological systems, we restricted our analysis
based on previous studies. Next, we examined the remaining papers to de-
termine the presence of the following criteria: the study had (1) three indi-
vidual stressors and a full multi-factorial design was implemented,
(2) quantitative response variables, and (3) explicit control treatments.
From the remaining papers, we extracted growth at the population level
(e.g., growth rate), mortality, and survival data from figures and tables
from each of the qualifying studies. We used these variables as proxies for
population-level growth. We included the following: stressor type, stressor
units, responses for individual stressors, responses for combinations of
stressors, responses for control variables, sample size, species of the organ-
ism tested, species' habitat at the life stage the population was studied
(i.e., estuary, freshwater,marine, or terrestrial), and the interaction type be-
tween stressors determined by the original authors (i.e., additive, synergis-
tic, or antagonistic). If a study did not specify if there was an interaction
among the three stressors, we determined whether the authors specifically
sought to investigate an interaction. Additionally, if a study reported that
there was no interaction among the stressors—but the authors explicitly
sought to investigate an interaction—we classified the interaction as addi-
tive because additivity is the null hypothesis when testing for interactions.
Most of the quantitative responses from each study reflected mean values
generated from raw values by the authors, often summarized from tables
or figures provided in the studies. Other quantitative responses were
directly obtained from raw data. We recorded the latest time point as the
response value if mean or raw data were presented as a time series. Impor-
tantly, these factors could enhance or inhibit growth.

Finally, we filtered out combinations that would not work with the RBI
framework. Specifically, RBI only works with uniform factors (e.g., all in-
hibitors or all enhancers of growth). Therefore, combinations that affected
populations in opposite directions (e.g., a stressor decreasing population
size and one increasing population size) were removed. Combinations
that had a positive control value of zero could not be analyzed and were re-
moved from the dataset. Combinations that had a lethal single stressor or a
single stressor with no effect were assessed separately. In instances where
one or more of the single stressors was lethal, we could only accurately
identify the presence of a net suppressive interaction, and not an emergent
effect. In this case, distinguishing additive, synergistic, or antagonistic in-
teractions is not possible since a population cannot exhibit growth or sur-
vival less than zero. However, if the population demonstrates growth or
survival in the presence of the three stressors combined, we could deter-
mine a suppressive interaction when at least one of the individual stressors
is lethal. Additionally, there were cases where a single stressor had no ef-
fect. This can be problematic because it is unclear if the single stressor in
combination with additional stressors has any effect or if we only see the
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effects of the additional stressors. Since we can only identify synergistic
combinations under these circumstances, those cases were not included in
our analysis. This step filtered our data from 396 unique stressor combina-
tions to 142 unique stressor combinations. Many of the papers compared
multiple combinations of three stressors at different quantities or scales.
In total, the 142 stressor combinations came from38 papers thatmet the re-
quirements needed for our study (Table A.1).

2.2. Data analysis

The RBI framework has previously been used to examine drug interac-
tions and pairwise stressor interactions by relying on Bliss Independence
as the additive model to determine if there is an interaction between
stressors on a population (Tekin et al., 2016; Beppler et al., 2016; Tekin
et al., 2018a, 2020). We applied this framework to ecological studies ex-
ploring the impact of three stressors in each environment. Within this
framework, there are a total of seven possible measurements one can take
among the three stressors (stressor A, stressor B, and stressor C) acting si-
multaneously. These are: (1) the effects of A alone, (2) the effects of B
alone, (3) the effects of C alone, (4) the pairwise effects of A and B by them-
selves, (5) the pairwise effects of A and C by themselves, (6) the pairwise
effects of B and C by themselves, and (7) the effects of all three stressors
A, B, and C together. The net interaction—termed deviation from additivity
(DA) (Eq. (1))—occurs when we remove the effects of the individual
stressors from consideration. Removing the result of the pairwise interac-
tions produces the emergent effects (E3) (Eq. (2)). Further, we can rewrite
Eq. (2) to only reflect relative fitness effects (Eq. (3)).

DA ¼ wABC " wAwBwC (1)

E3 ¼ wABC " DAABwC " DAACwB " DABCwA " wAwBwC (2)

E3 ¼ wABC " wABwC " wACwB " wBCwA þ 2wAwBwC (3)

Here,w refers tofitness relative to the control, non-stressed treatment. A, B,
and C referring to each of the three stressors. Subscripts refer to conditions
when those stressors are individually (e.g., wA) or concurrently (e.g., wAB)
present. Upon calculating these initial interactions, rescaling methods and
cutoff values used by Tekin et al. (2018b) were used to further investigate
and identify interactions. Rescaling the interaction values creates a
trimodal distribution allowing for easier identification of net and emergent
interaction types (see Text A.2). The cutoff values at−0.5 and 0.5 allow for

clear identification of interaction types (see Fig. 2 of Tekin et al., 2016).
After rescaling (see Text A.2), both net and emergent interaction values
below−0.5 were synergistic, values between−0.5 and 0.5 were additive,
and values above 0.5were considered antagonistic (where values above 1.3
were considered suppressive). For more information about rescaling and
details on how to determine interactions for combinations where all
stressors increase growth, see Text A.2 and A.3. We also includemore infor-
mation about RBI in Box 1.

The framework described above requires that all single stressors have a
non-lethal effect on the populations' relative fitness, i.e., the whole popula-
tion does not die in the single stressor treatment (0 <w≠ 1). This is because
if a single stressor is completely lethal to the entire population (w=0) or if a
single stressor has no effect (w= 1) we would not be able to identify all in-
teraction types. For example, if the use of one stressor results in complete le-
thality one cannot determine if a combination with that stressor interacts
synergistically or additively if the combination also results in complete lethal-
ity. Similarly, if a single stressor appears to have no effect (w=1) there is no
way to distinguish if that stressor interacts at all with the system and is rele-
vant or if the other stressor in the combination acts additively. This frame-
work also requires relative fitness to be calculated with reference to a
positive control (the growth of the population under no stressor present).

While estimating uncertainty and within-treatment variation would be
useful, there are challenges for this in the context of this meta-analysis.
First, many papers do not provide the data needed tomake this possible. Ar-
guably, we could use bootstrapping to estimate probabilistic bounds on
how measured proportions within habitat classes could change if we were
to sample different studies, which is what we had done with a previous
paper (Tekin et al., 2020). However, this paper is using substantially
fewer data due to the relative novelty of 3+ factorial experiments. Second,
many papers do not provide the data needed to estimate error within indi-
vidual experiments, and they lack the replicate number needed to obtain re-
liable error estimates (Fig. A.2)—which is often challenging for the scale of
full-factorial experiments. Thus, this analysis provides a coarse overview of
differences between our methods and those originally used, though there
may be some error in the proportions of interaction types themselves. We
hope researchers can increasingly conduct experiments with substantial
replicate numbers in order to calculate within-treatment variance.

3. Results

For our analysis, we collected data from multi-stressor ecological stud-
ies published over the last 100 years, with most of these studies being pub-
lished in the past 10 years as interest has increased and methods have
improved (Fig. A.3). We subsequently applied the RBI framework to reana-
lyze three-stressor interaction data derived from those studies. These data
included populations from unicellular and multicellular species across hab-
itats, and from both biological, chemical, and physical stressors (summa-
rized in Table 1). Our findings were then compared to those from the
original studies. We found new net interactions that were previously un-
identified by the original authors and net interactions that we reclassified
based on our methods (Fig. 2). Of the 142 interactions, 19.7 % (n = 28)
were interactions that were previously untested (e.g., experiments were
conducted but no statistical analysis on the interactions themselveswere re-
ported) but classified as an interaction using RBI.We classified 21.1% (n=
30) of previously tested but unspecified interactions (e.g., an interaction
was found using statistical analyses by previous authors though the type
of interaction was not explicitly stated). Only 4.2 % (n= 6) of the total in-
teractions reanalyzed by RBI were re-classified with the same interaction
type previously reported in the original studies while 54.9 % (n = 78)
were different from what was previously reported. Collectively, 95.8 % of
interactions were newly classified or reclassified by RBI.

Of the combinations that resulted in the same interaction typewhen ap-
plying both the original method described in the published studies and the
RBI, 83 % (n= 5) were additive, 17 % (n= 1) were synergistic, and none
were antagonistic (Table 2). Among the interactions reclassified by the RBI,
67% (n= 51) were previously published additive interactions, all of which

Fig. 2. Total three-stressor interactions identified by Rescaled Bliss Independence
(RBI) contrasted to previously published results. Over 40 % of the total three-
stressor interactions examined were untested and are therefore “new” interactions
(19.72 %) or were tested in the original study, but the interaction type was not
specified or classified by the original study and are therefore “new ID”
interactions (21.13 %) that are now newly classified using RBI. Only 4.23 % of
interactions analyzed with RBI remained the “same” as previously published
results; 54.93 % resulted in a “different” interaction than previously reported.
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were reassigned as antagonistic (Fig. 3). The remaining interactions
reclassified by RBI were synergistic and reclassified as antagonism (32 %,
n=25) or additive (0.013 %, n=1). We found that 91 % (n=51) of ad-
ditive and 96% (n=25) of synergistic net interactions were reclassified as
antagonistic net interactions using RBI (Table 2). No previously identified
interaction type (n = 77) was newly re-classified as synergy, but 4 %

(n = 1) of interactions reported as synergy were confirmed using RBI
(Table 2, Fig. 3).

We also examined the frequency of interaction types among net and
emergent three-stressor combinations (Fig. 4). Of the net interactions iden-
tified, we found that antagonismwas the most prevalent interaction type at
82 % (n = 117). Of the antagonistic interactions, 44 % (n = 52) were

Box 1
Determining interactions of higher-order combinations using Rescaled Bliss Independence (RBI) framework.

The RBI framework is based on Bliss independence (Bliss, 1939) and is used to quantify synergistic, additive, and antagonistic interactions. Bliss
independence assumes that the relative effect of each stressor at a set concentration are independent of each other and is therefore used to define
additivity. Positive or negative deviations from this additivity are then considered to be antagonistic or synergistic, respectively. For example, if two
stressors, stressor A and stressor B, each inhibit growth by 50% alone the combination of stressors ABwould result in the expected inhibition of
growth to be75% (0.75=1–0.5×0.5). If the expected inhibition of growthwas observedwhen stressorsA and Bwere used in combination, the
interaction would be considered additive. There are other approaches that can be used to measure the interactions of a combination, such as
Loewe Additivity (Loewe, 1953) that, unlike RBI, assumes that a stressor cannot interact with itself. However, the RBI framework was chosen
for its unique ability to determine an emergent interaction (described below) that quantifies howmuch of the interaction is emerging from having
all three stressors in combination, rather than from a strong interaction from a 2-stressor combination (Beppler et al., 2016; Tekin et al., 2017).
In amulti-stressor combination, several factors can contribute to the overall effect of the combination. The first factors to consider are the effects of
each stressor alone. The next set of factors are the effects of each of the smaller sub-sets of interactions that interact additively with the other
stressors (or combination of stressors) in themix. For example, when examining three-stressor interactions, two stressorsmay have a strong inter-
actionwith each other that does not involve the third stressor yet the third stressor still contributes its own individual effects. The final factor is the
highest order emergent effect, the effect of the interaction between all stressors present in the combination.All of these factors are used to describe
the interactions of a three-stressor combination. Twomain types of interactions can bedescribed: (1) the overall effect,which is also termed the net
effect or deviation from additivity (DA), and (2) the emergent effect that only occurs when all three stressors are present. Both of these described
are in detail below.
The net deviation from additivity, DA, is determined by only removing the fitness effects contributed by each stressor alone from the overall fitness
effect assuming Bliss independence. Once the net DA is calculated, one can subtract the additive contributions of each stressor and also the effects
of all lower-order interactions, leaving the emergent effect. To find the net deviation from additivity for three stressor combinations, we remove the
additive effects of each stressor. This framework has been used to examine 2-, 3-, 4-, and 5-stressor combinations but can also be expanded to N
number of stressors. Below is how DA is determined in terms of relative fitness wA ¼ fitness when exposed to stressor A

fitness in control=unstressed setting

! "
for a 3-stressor combination.

DAABC ¼ wABC " wAwBwC

After the initial interaction value is determined, a rescaling process is used to better distinguish between interaction types (Tekin et al., 2017).
This step is crucial and analogous to rescaling fitness from absolute to relative fitness. For rescaling, when theDA is synergistic, one rescales to
the lethal case. This is because when measuring growth, it is not possible to be deader than dead. If the interaction was not synergistic then it
was normalized to the minimum fitness of an individual stressor within the deviation from additivity formulas. Below is an example of rescaling
the DA with a 3-stressor combination.

DArescaled ¼
DAABC

min wA,wB,wCð Þ " wAwBwCj j

Emergent interactions are only present in higher-order combinations. For example, when considering all possible stressor effects that can occur
within a single 3-stressor combination, there are a total of seven effects: three individual effects and four possible interactions (Fig. 1A). First, all
three individual stressors have their effect. These effects are accounted for when we are determining the deviation from additivity. Next, the
three pairwise interactions between two stressors can interact with the remaining third individual stressor. And finally, there is the emergent
effect, which is the interaction that is strictly because all three stressors are in combination and does not occur in any of the single- or
pairwise-stressor effects. Similar to the DA calculations, the emergent calculations (E3) remove the effects of the single stressors but then also
removes the effects of the pairwise interaction and only leaves the effects that are uniquely due to the 3-stressor combination.

E3 ¼ DAABC

zfflfflffl}|fflfflffl{

removal of
single stressor

effects

" wADABC " wBDAAC " wCDAB,C|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
removal of pairwise interaction effects

This equation can also be written solely in terms of fitness effects:

E3 ¼ wABC " wABwC " wACwB " wBCwA þ 2wAwBwC

The emergent interactions are then rescaled similarly to the DA values (Tekin et al., 2018b). For more information about the rescaling process
please refer to Text A.2. For more information on the modifications to the RBI framework and rescaling to account for stressors that increased
relative fitness rather than decrease relative fitness, please refer to Text A.3.
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suppressive. The remaining net properties were composed of 9 % (n=13)
synergistic and 8 % (n = 12) additive interactions (Fig. 4A). Of the emer-
gent interactions, we found that synergy and additivity were the leading in-
teraction types across emergent properties–accounting for 55 % (n = 78)
and 33 % (n = 47), respectively (Fig. 4A). Antagonism accounted for 12
% (n = 17) of emergent interactions and of the antagonistic interactions,
of which 47 % (n = 8) were suppressive (Fig. 4A).

When comparing the frequency of interaction types among the net and
emergent properties, we found that there was almost four times asmany in-
stances of additivity in emergent interactions (emergent: n = 47, net: n=
12) (Fig. 4A). There were also substantially fewer instances of emergent an-
tagonistic interactions (n = 17), including fewer suppressive interactions
(n = 8) among emergent when compared to net properties (n = 117
total antagonism, including n = 52 suppressive interactions). We also ob-
served more synergistic emergent interactions (emergent: n = 78) than
synergistic net interactions (net: n = 13). Across all combinations, 74 %
(n = 105) were found to have instances of “hidden suppression” where a
pairwise combination is suppressed by the presence of a third stressor
(e.g., better fitness with three stressors than with two stressors for negative
stressor combinations). These interactions are only present in 3+ stressor
interaction combinations. We then examined if there was a correlation be-
tween the net and emergent interactions. We did not find a significant cor-
relation after performing a Spearman's correlation (p=0.98) (Fig. 4B). The
comparison of the interactions' distributions can be seen in Fig. 5.

4. Discussion

The implications of finding higher-order interactions extend beyond
basic science. There is growing awareness that stressor interactions are cru-
cial for population management and response predictions across systems.
Pairwise interactions have received plenty of attention and have been the
subject of many studies. In contrast, higher-order and emergent interac-
tions in 3+ stressor systems—which almost certainly present a more accu-
rate representation of what natural populations face and will continue to
face—remain less understood. Properly identifying these interactions is
critical for managing ecological stressors (Brown et al., 2013; Piggott

et al., 2015c). Using Rescaled Bliss Independence, rather than traditional
ANOVA or GLMmethods, we were able to identify these emergent interac-
tions—disentangling which and how individual and pairwise stressor ef-
fects modulate each other to produce the combined observed interaction.
The finding that most emergent interactions are synergistic or additive
rather than antagonistic, while the majority of combinations also exhibit
hidden suppression, suggests that we need to identifywhich stressors are in-
volved in a given system and what the impact may be if a given stressor is
removed or decreased.

4.1. Differences in interaction classification using RBI

In this study, we surveyed ecological literature published between 1920
and 2020 that examined the effect of three stressors simultaneously on pop-
ulationmortality, survival, or growth at the population-level of a given spe-
cies. After re-analyzing data from previously published results using a
newly introduced framework, the RBI, we identified 142 three-way interac-
tions. We hypothesized that RBI would lead to differences in classification
in comparison to the original studies. We found that only 4.2 % of the re-
sults generated by RBI matched those in the original studies, meaning
that nearly 96 % of interactions were classified as new (either unspecified
or not investigated by the previous authors) or different interaction types
(Fig. 2). RBI has several advantages over commonly-used ANOVAmethods.
ANOVA relies on restrictive assumptions that often are not met by most
studies (Tekin et al., 2020). Furthermore, RBI can rescale interaction
terms to relative baselines, which means interactions can be placed into
context much like relative fitness, which typically yields much more useful
information than absolute fitness. In addition, and crucially, RBI can iden-
tify emergent properties. RBI can more accurately and reliably identify in-
teractions, raising concern for the strong mismatch between our results
and those originally published. While we were unable to calculate error
bounds given the nature of the data used in this meta-analysis, the mis-
matched pattern we found is still striking even if there may be a degree of
error therein driven by within-treatment variation.

Our results show thatmethods used in the original studiesmay have dif-
ficulty identifying antagonistic interactions (Fig. 3). When comparing our
findings using the RBI framework to those of the original findings, we
found that interactions were more often reclassified as antagonisms than
synergy, and antagonisms made up most interaction types (82 %). Further-
more, there were no instances of both RBI and original methods classifying
combinations as antagonistic. In one example, an interaction was classified
as synergistic using restricted maximum likelihood ANOVAmethods when
assessing the combined effects of UV-radiation, water temperature, and sa-
linity stress on mollusk embryos (Przeslawski et al., 2005). However, dur-
ing our reanalysis, we reclassified the interaction as antagonistic. Similar
results were observed when using RBI to reanalyze work on pesticide com-
binations and food limitation in Daphnia magna (Shahid et al., 2019), and a
combination of abiotic and biotic stressors in a seagrass (Zostera noltei)

Fig. 3. Traditional methods have difficulty identifying antagonistic three-stressor
interactions. Each bar shows the number of combinations that demonstrated a
change from the previously published interaction type to the type of interaction
with RBI.

Table 2
Comparison counts for each net interaction type originally reported in previously
published results and how they were re-classified using Rescaled Bliss Indepen-
dence (RBI). “Inconclusive” interactions under “Previously Published Results” cor-
respond to cases for which no explicit interaction type is reported or investigated.

Net interactions Rescaled Bliss Independence (RBI)

Synergy Additive Antagonism

Previously Published Results Synergy 1 1 25
Additive 0 5 51
Antagonism 0 0 1
Inconclusive 12 6 40

Table 1
Description of organisms and stressors used in the included experiments. Counts per
category are presented and represent unique stressor combinations in the final fil-
tered dataset.

Habitat class

Estuary Freshwater Marine Terrestrial

4 60 73 5

Species class

Unicellular Multicellular

13 129

Stressor class

Chemical Biological Thermal Other physical

215 59 91 61
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(Vieira et al., 2020). Traditional ANOVA and log-logistic methods initially
classified these combinations as synergy, but using RBI they were
reclassified as antagonism.

In contrast to our findings, some prior studies observedmore synergistic
net interactions in comparison to antagonistic interactions when examining
three-stressor interactions, even if antagonism was more common in two-
stressor combinations (Crain et al., 2008; Maher et al., 2019). Our study

examined nearly three times as many interactions as Crain et al. (2008)
(n = 142 and n = 48 respectively). Maher and colleagues (Maher et al.,
2019) found that synergies dominate three-stressor interactions in the
coral microbiome using GLM and LMM models rather than RBI, which
could explain the finding of synergistic interactions. This study also focused
on a different biological scale—the microbiome community rather than a
unique population's fitness.

Fig. 5. The distribution of interaction values of both net and emergent three-stressor interactions. The distribution of net (DA) and emergent (E3) values. Cut-off values for
each interaction type are as follows: synergy is less than−0.5, additivity is between−0.5 and 0.5, antagonism is above 0.5, and suppression is above 1.3. Rescaled values are
distributed across multimodal peaks. Thus, rescaling aids in the identification of interaction types through the use of these peaks. More details on the justification for these
cut-offs can be found in the Methods. For reference, net interactions represent deviation from additivity (DA) that is calculated by removing the expected combined single-
stressor effects from the overall effects. Emergent interactions (E3) are deviations from the expectations of the single-stressor effects and the combined pairwise effects.
Emergent interactions are solely due to all three stressors being in combination together.

Fig. 4.The composition of the net and emergent three-stressor interactions using the RBImethod. In each panel, gray represents additivity, blue represents synergism, and red
represents antagonism. A darkening red illustrates an intensifying antagonism (e.g., antagonism➔ suppression). Panel A) demonstrates the composition of the net and emer-
gent interactions, respectively. Panel B) shows no significant correlation between the net and emergent interaction values (Spearman correlation, ρ=− 0.0018, p= 0.98).
For reference, net interactions represent the deviation from additivity (DA), which describes the overall effect of all interactions occurring within a combination. Emergent
interactions (E3) are the effects uniquely due to all three stressors being in combination. (For interpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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4.2. Prevalence of emergent interactions

Higher-order interactions involving three or more stressors and
emergent properties that arise from higher-order combinations are
still poorly understood (Tekin et al., 2018b, 2017). We asked how
often emergent properties appear in higher-order ecological stressor in-
teractions. We hypothesized that there would be a substantial number of
emergent properties from higher-order interactions. We found that hid-
den suppression, a type of emergent effect, occurs 74 % of the time,
suggesting that emergent properties are common among higher-order
ecological interactions. Moreover, we demonstrated that the RBI
framework can identify higher-order emergent interactions that are
overlooked or not explicitly explored when using traditional methods.
For example, when using a general linearized model (GLM) to investi-
gate the effect of pH, temperature, and oxygen availability on moon jel-
lyfish, additive interactions were reported (Algueró-Muñiz et al., 2016).
However, using RBI, we did not confirm the original authors' conclusion
and instead found antagonistic net interactions, and we also identified
synergistic emergent interactions.

4.3. Pattern of emergent interactions

Our data also demonstrate that emergent properties persist across all
interaction types—synergy, additivity, and antagonism. Our hypothesis
—that emergent antagonistic interactions would be more prevalent
than synergistic ones—was not supported. We demonstrated that syn-
ergy and additivity are the leading effects across emergent interac-
tions—accounting for 55 % and 33 % of the total interaction types
identified in our study, respectively (Fig. 4A). Among the 1.2 % of emer-
gent antagonistic interactions we identified by RBI, 47 % of them were
characterized as suppressive (where one stressor reverses another
stressor's effects) (Fig. 4). From a very different field, that of microbiol-
ogy, antibiotic-combination studies reveal that higher-order emergent
interactions were most often antagonistic than synergistic (Beppler
et al., 2016; Tekin et al., 2018a). By identifying emergent interaction
types, we can determine the combined effects of specific factors on pop-
ulations in complex habitats that are subjected to multiple stressors at
any given time.

4.4. Comparing three-stressor to two-stressor interactions

Although our study addresses three-stressor interactions, our results
are comparable to the previously mentioned two-stressor interaction
studies in that additivity and antagonism were also found to be the
most prevalent interaction types in a reanalysis of two-way interactions
using RBI from ecological studies within the past 25 years (Tekin et al.,
2020). In the two-stressor studies, 41 % (n=286 of 840) of interactions
were identified as additivity and 40 % (n = 278 of 840) as antagonism
(Tekin et al., 2020). Interestingly, those results correspond well with
previous reports that were not using RBI (Darling and Côté, 2008;
Côté et al., 2016; Jackson et al., 2016). This provides support for the
idea that synergy may be overemphasized in the literature and that an-
tagonism may occur more often than previously thought (Darling and
Côté, 2008), at least for net interactions. Synergy has been overempha-
sized in other biological disciplines, including research on antibiotic re-
sistance (Singh and Yeh, 2017).

Historically, whether three-stressor interactions exist and, if they do, to
what extent they affect natural populations and ecosystems has been a sub-
ject of debate since the 1960s (e.g., Vandermeer, 1969; Pomerantz, 1981;
Abrams, 1983; Billick and Case, 1994). At the population level, one major
limitation in understanding these interactions is determining an applicable
and generalizable model. By applying RBI, we were able to properly assess
three-stressor interactions and determine that not only do emergent proper-
ties exist across biological systems but that they are also relatively common.
Thus, a population's response cannot necessarily be predicted by assuming
additivity across stressors.

4.5. Future work and implications of higher-order interactions

Further work still needs to be done to scale from population dynam-
ics to community and ecosystem functioning across time (Côté et al.,
2016; Brooks and Crowe, 2019; Jackson et al., 2021). Beyond the
scale of single-species populations, interactions between species and re-
sources (Coyte et al., 2015; Butler and O’Dwyer, 2020) and higher-order
interactions between species (Kelsic et al., 2015; Grilli et al., 2017) have
been shown to be important in modeling stability in ecological commu-
nities. Additionally, evolution in response to multiple stressor interac-
tions and the fitness landscapes they form could influence adaptive
dynamics (Ogbunugafor et al., 2016), population outcomes (Venturelli
et al., 2015), and therefore broader eco-evolutionary dynamics. Indeed,
understanding selection can help determine trajectories that popula-
tions may traverse while adapting to given stressors (Toprak et al.,
2012).

Crucially, identifying emergent properties can reveal hidden suppres-
sive interactions (i.e., suppressive interactions that only occur among
higher-order interactions). These hidden suppressive interactions could
be particularly important for the ecological management of at-risk popula-
tions. In a three-stressor combination, the addition of a third stressor may
suppress a two-stressor interaction. For example, when examining the com-
bined effects of acidification, drought, and warming, the interaction be-
tween drought and acidification is suppressed by the effect of higher
temperature on plankton producer biomass resulting in more biomass
with all three stressors thanwith two (Christensen et al., 2006). Such an ob-
servation may be important for incorporating necessary mitigation strate-
gies. In this example, alleviating acidification would result in lower
biomass because it would undo the suppression of the interaction between
warming and drought. Instead, mitigating warming and drought would be
a better strategy if the goal were to increase biomass. If the stressor interac-
tions are not clearly understood or identified, the wrong stressor could be
mitigated. These hidden suppressive interactions are common: themajority
(74 %) of our re-analyzed stressor combinations revealed hidden suppres-
sion between a pairwise interaction and a third stressor. Hidden suppres-
sion is also prevalent in bacterial response to multiple drug combinations
(Lozano-Huntelman et al., 2021).

Throughout the ecological literature, investigations of three-
stressor interactions involving biotic and environmental stressors re-
main scarce. We completed a thorough literature search of thousands
of relevant results and found that only 0.2 % of research articles from
1990 onwards examining three ecological stressors qualified for our
meta-analysis. Comparatively, when exploring pairwise interactions
across the ecological literature, Tekin et al. (2020) found that nearly
8 % of search results were applicable. Nevertheless, over the last de-
cade, studies investigating higher-order interactions across disciplines
have increased dramatically (Fig. A.3). Most of the studies that quali-
fied for re-analysis here occurred within the past five years. Indeed, in
the two years since this search, 3+ stressor studies have continued to
be published, adding to the growth of this important and timely field
(e.g., Juvigny-Khenafou et al., 2021a; Juvigny-Khenafou et al., 2021b;
Macaulay et al., 2021a, 2021b, 2021c). The recent increase in higher-
order interaction studies highlights how crucial it is that we extend
our research beyond pairwise interactions to examine the effect of
stressors more accurately in combination.

5. Conclusion

In conclusion, we show that this new RBI framework can be generalized
from pairwise interactions to three or more stressors to examine how mul-
tiple stressors interact. RBI can distinguish between net and emergent inter-
actions, providing greater insight into complex biological systems. From a
basic science perspective, predicting higher-order interactions is essential
to understanding how the combined effects of multiple stressors interact
and impact diverse biological systems. From a conservation perspective,
multiple stressor interactions can influence the population size of species
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of concern. To understand how stressor effects occur, we must be able to
better characterize them to understand how stressors interact with each
other to determine the net effect. For example, if a sensitive population is
facing multiple stressors and one stressor is mitigated, that mitigation
might lead to unforeseen circumstances due to emergent interactions. If
that stressor was interacting antagonistically with the other stressors, the
mitigation might lead to population decline. On the other hand, if that
stressor was interacting synergistically, that mitigation might be beneficial
for the population's conservation. As we show here, there are substantial
numbers of higher-order interactions, and removing one stressor does not
necessarily help the growth of a population of concern. Additionally, iden-
tifying emergent properties can reveal hidden suppressive interactions,
where adding a third stressor can suppress a two-stressor interaction.
Here we show that emergent hidden suppressive interactions are common
and identifying these interactions could particularly be important for eco-
logical management of at-risk populations. For example, in a population
at risk due to the interaction between two stressors, having a third stressor
that suppresses this interactionmay help mitigate further loss. Thus, under-
standing these complex patterns in higher-order interactions can be crucial
to choosing the correct stressors to mitigate.
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Chapter Three: Supporting Information 

Text A.1. Issues with using ANOVA (ANalysis Of VAriance) for classifying interaction 

types 

The limitations and potential false inferences of applying ANOVA to test for and classify 

interactions are fourfold. First, variance in response measures within and across all treatments is 

determined by the number of experimental replicates, which are often limited in stressor-

combination studies. This then leads to poor estimates of higher-order moments (e.g., kurtosis 

and skewness), potentially leading to inaccurate results. Second, though hidden replication (e.g., 

assuming variance is constant across treatments) is often used to justify applying ANOVA in 

these scenarios, hidden replication rests on the assumption that there is no interaction between 

variables (Welham et al., 2014). Thus, employing hidden replication when testing for interaction 

often invalidates the findings themselves. Further, non-linear pairwise interactions require 

carefully chosen data transformations when the assumptions of ANOVA are otherwise not 

violated (Pomerantz, 1981; Billick and Case, 1994; Gotelli et al., 1999). It is particularly 

important to transform the underlying additive model to a multiplicative model when stressors 

have large effects on populations (Segrè et al., 2005; Tekin et al., 2018a). Third, ANOVA 

assumes Gaussian or parametric distributions when comparing variances between treatments. 

Therefore, a large number of replicates per treatment would be necessary to accurately assess the 

variance of non-normal distributions and subsequently reconstruct ANOVA based on the non-

parametric null model.  Fourth, ANOVA methods do not allow for rescaling. Rescaling or 

normalization, relative to control baselines (e.g., population fitness with no stressors present), is 

often necessary to classify interaction types because different interaction types may result in 
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similar unscaled values. Additionally, rescaling results in multimodal distribution of interaction 

values, aiding interaction classifications (Figure 5) (Segrè et al., 2005; Tekin et al., 2018b, 2020). 

Text A.2. Mathematics of Rescaling Bliss Independence with Multiple Stressors that Inhibit 

Growth. 

Once interaction values are calculated as described in the methods it may be hard to distinguish a 

cut-off value for each type of interaction. To do this rescaling is needed to transform a unimodal 

distribution of the raw interaction scores to become trimodal allowing for clearer distinctions of 

truly antagonistic and synergistic interactions. For this study, we follow protocols developed by 

Beppler et al. (2016) and Tekin et al. (2016) to rescale. For both net and emergent synergistic 

interactions, we rescale normalized to a lethal case because when measuring growth rates, 

relative fitness can't be below zero.  

𝐷𝐴+,-./0,1 =
𝐷𝐴

|𝟎−𝑤2𝑤3|
																𝐷𝐴+,-./0,1 =

𝐷𝐴
|𝟎−𝑤2𝑤3𝑤4|

 

Where DA refers to deviation from additivity, as described in the main text, and w refers to the 

population-level relative fitness for each stressor or combination of stressors in the subscript (A, 

B, and/or C). When rescaling occurs for non-synergistic net interactions the interaction value is 

normalized to the minimum of the single stressor effects. 

𝐷𝐴+,-./0,1 =
𝐷𝐴

|min(𝑤2, 𝑤3)−𝑤2𝑤3|
																𝐷𝐴+,-./0,1 =

𝐷𝐴
|min(𝑤2, 𝑤3 , 𝑤4)−𝑤2𝑤3𝑤4|

 

 

When rescaling occurs for non-synergistic emergent interactions, we chose to normalize the 

interaction value to the minimum of the pairwise interactions. Tekin et al. (2016) recommend 

this normalization option because it may be more biologically relevant than other options. 

𝐸3+,-./0,1 =
𝐸3

|min(𝑤2𝐷𝐴34 , 𝑤4𝐷𝐴24 , 𝑤4𝐷𝐴23)−𝑤2𝐷𝐴34 −𝑤3 , 𝐷𝐴24 −𝑤4𝐷𝐴23|
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Text A.3. Mathematics of Rescaling Bliss Independence with Stressors That Increase 

Growth 

For combinations that only had stressors that increased growth, we adapted the protocols 

developed by Beppler et al. (2016) and Tekin et al. (2016) to rescale. For the initial net (DA) and 

emergent (E3) interactions, the signs were reversed to keep synergistic interactions negative 

values and antagonistic interactions positive values, following the equations below. 

𝐷𝐴 = 	𝑤2𝑤3𝑤4 −𝑤234  

𝐸3 = 	𝑤23𝑤4 +𝑤24𝑤3 +𝑤34𝑤2 − 2𝑤2𝑤3𝑤4 −	𝑤234  

When rescaling synergistic interactions, the interaction value is normalized to the maximum 

positive value because there is no upper limit to what a synergistic combination of promoters can 

be. Ideally this maximal value would be infinity, however this is not practical. To estimate this 

maximal value, we used twice the amount of the relative fitness highest-order combination. 

𝐷𝐴+,-./0,1 =
𝐷𝐴

|2𝑤23 −𝑤2𝑤3|
																𝐷𝐴+,-./0,1 =

𝐷𝐴
|2𝑤234 −𝑤2𝑤3𝑤4|

 

When rescaling occurs for non-synergistic net interactions, the interaction value is normalized to 

the maximum of the single stressor effects. This was done to keep with the same definition of 

rescaling to buffering, as described in Tekin et al. (2016): buffering normalizes to the most 

extreme of the single stressors. 

𝐷𝐴+,-./0,1 =
𝐷𝐴

|max(𝑤2, 𝑤3)−𝑤2𝑤3|
																𝐷𝐴+,-./0,1 =

𝐷𝐴
|max(𝑤2, 𝑤3 , 𝑤4)−𝑤2𝑤3𝑤4|
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When rescaling occurs for non-synergistic emergent interactions, we chose to normalize the 

interaction value to the maximum of the pairwise interactions. Tekin et al. (2016) recommend 

this normalization option because it may be more biologically relevant than other options. 

 Again, we chose to use the maximum of the single and pairwise interactions, follow the 

definition of buffering which normalizes to the most extreme of the single stressors and lower-

order combos interacting additively with the third stressor (Tekin et al., 2016). When all 

stressors inhibit growth the most extreme affect would result in the minimal amount of growth. 

Whereas, in combinations where combinations had stressors that all increased growth, the most 

extreme affect would result in the maximum amount of growth. 

𝐸3+,-./0,1 =
𝐸3

|max(𝑤2𝐷𝐴34 , 𝑤4𝐷𝐴24 , 𝑤4𝐷𝐴23)−𝑤2𝐷𝐴34 −𝑤3 , 𝐷𝐴24 −𝑤4𝐷𝐴23|
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Table A.1. Research articles included in our study. The author(s), publication year, habitat type, 
species, unique stressors, response variable, net three-way interactions reported, interactions 
identified by RBI are provided, including the emergent and net three-way interactions, and total 
number of net interactions that are re-classified. Interactions are listed for each unique 
combination of stressors tested in each research article, sometimes including more than one 
combination per stressor.  Data presented are after data filtering (n = 142 unique stressor 
combinations). Of note, original studies often also included two-way interactions, which we are 
not including nor re-analyzing here.  

Habitat Source Species Stressors Responses 
(units 

reported) 

Interaction 
reported 

(net) 

Interaction 
by RBI 

(emergent) 

Interaction by 
RBI (net) 

Net 
interactio

ns 
reclassifie

d 
Estuary (Bazzano 

and Elmer, 
2017) 

Spartina 
alterniflora 

silicon, 
Fusarium 
palustre, 
nitrogen 

growth (g) Interaction 
not 
specified: 2 

Antagonism: 
2 

Antagonism: 2 Newly 
classified: 
2 

(Gil et al., 
2016) 

Porites rus nutrients, 
sediment, 
overfishing 

survival (%) Additive: 1 Synergy: 1 Antagonism: 1 Re-
classified: 
1 

(Gobler et 
al., 2018) 

Menidia 
berylina 

pCO2, 
temperature, 
food 
limitation 

growth 
(mm), 
survival (%) 

Synergy: 1 Antagonism: 
1 

Synergy: 1 No change 
:1 

Freshwat
er 

(Buck et al., 
2012) 

Rana 
cascadae 

carbaryl, 
Batrachochytr
ium 
dendrobatidis, 
Pseudacris 
regilla 

growth 
(mg/d) 

Additive: 1 Additive: 1 Antagonism: 1 Re-
classified: 
1 

(Davis et al., 
2018) 

Agapetus 
fuscipes, 
Silo 
pallipes 

sediment 
level, 
phosphorus, 
nitrogen 

growth 
(individuals/
mesocosm) 

Interaction 
not 
specified: 6 
Synergy: 6 

Additive: 3, 
Antagonism: 
4, Synergy: 5 

Antagonism: 
12 

Newly 
classified: 
6, re-
classified: 
6 

(De Coninck 
et al., 2013) 

Daphnia 
magna 

parasites, 
carbaryl, 
carbaryl pre-
sensitivity 

survival (%) Interaction 
not 
specified: 1 

Additive: 1 Synergy: 1 Newly 
classified: 
1 

(Elbrecht et 
al., 2016) 

Ceratopogo
nidae 

sediment, 
flow, nutrients 

growth 
(number of 
individuals) 

Additive: 1 Additive: 1 Antagonism: 1 Re-
classified: 
1 

(Hasenbein 
et al., 2018) 

Hyalella 
azteca 

salinity, 
temperature, 
bifenthrin 

survival (%) Interaction 
not tested: 
3 

Additive: 1, 
Antagonism: 
2 

Antagonism: 1, 
Synergy: 2 

Newly 
classified: 
3 

(Hatch and 
Blaustein, 
2000) 

Rana 
cascadae 

pH, nitrate, 
UVB 

survival (%) Additive: 4 Additive: 4 Additive: 2, 
Antagonism: 2 

No 
change: 2, 
reclassifie
d: 2 

(Hintz et al., 
2019) 

Physella 
acuta, 
Helisoma 
trivolvis 

nutrients, 
predator 
presence, non-
invasive snails 

growth (g) Additive: 1,  
Interaction 
not 
specified: 1 

Additive: 1,  
Synergy: 1 

Antagonism: 2 Newly 
classified: 
1, re-
classified: 
1 

(Houde et 
al., 2019) 

Oncorhync
hus 
tshawytsch
a 

salinity, 
temperature, 
hypoxia   

survival 
(count) 

Interaction 
not 
specified: 2 

Additive: 2 Antagonism: 2 Newly 
classified: 
2 

(Manzi et 
al., 2020) 

Daphnia 
crustacea 

temperature, 
low food 
quality, 
parasite 
infection 

growth (per 
capita rate of 
increase per 
day) 

Additive: 2 Additive: 1, 
Synergy: 1 

Additive: 2 No 
change: 2 
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(Op de 
Beeck et al., 
2018) 

Ischnura 
elegans 

temperature, 
CPF, density 

survival 
(proportion 
intact dead 
larvae per 
mesocosm) 

Interaction 
not tested: 
2 

Synergy: 2 Antagonism: 2 Newly 
classified: 
2 

(Piggott et 
al., 2015) 

Gomphone
ma 
minutum, 
Encyonema 
minutum, 
Fragilaria 
vaucheriae, 
Gomphonei
s minuta 
var. cassiae 

temperature, 
sediment, 
nutrients 

growth (cells 
per cm2 
x1000) 

Additive: 
11 

Additive: 5, 
Synergy: 6 

Antagonism: 
11 

Re-
classified: 
11 

(Reitsema et 
al., 2020) 

Berula 
erecta 

CO2, nutrients, 
flow velocity 

growth 
(average 
number) 

Additive: 1 Synergy: 1 Antagonism: 1 Re-
classified: 
1 

(Relyea, 
2006) 

Rana 
clamitans 

predator 
presence, high 
pH, high 
carbaryl 

survival (%) Additive: 1 Additive: 1 Antagonism: 1 Re-
classified: 
1 

(Shahid et 
al., 2019) 

Daphnia 
magna 

food 
limitation, 
Esfenvalerate, 
Prochloraz 

survival (%) Interaction 
not tested: 
5, 
Synergy: 
10, 
 

Synergy: 15 Antagonism: 
15 

Newly 
classified: 
5, re-
classified: 
10 

(Chen et al., 
2004) 

Spartina 
maritima 

nutrient 
availability, 
inundation, 
soil type 

survival (%) Interaction 
not tested: 
2 

Synergy: 2 Antagonism: 2 Newly 
classified: 
2 

Marine 
(Algueró-
Muñiz et al., 
2016) 

Aurelia 
aurita 

pH, 
temperature, 
oxygen 
availability 

survival (%) Additive: 
10 

Synergy: 10 Antagonism: 
10 

Re-
classified: 
10 

(Andrew et 
al., 2019) 

Phaeocystis 
antarctica 

temperature, 
light, iron 

growth (µ) Interaction 
not 
specified: 1 

Additive: 1 Additive: 1 Newly 
classified: 
1 

(Armitage 
and Fong, 
2006) 

Cerithidea 
californica 

nutrient, 
predation, 
snail size 

Survival (%) Additive: 1 Additive: 1 Antagonism: 1 No change 
1 

(Büscher et 
al., 2017) 

Lophelia 
pertusa 

elevated CO2, 
temperature, 
low food 
availability 

survival (% 
per day) 

Antagonis
m: 1 

Synergy: 1 Antagonism: 1 No 
change: 1 

(Dineshram 
et al., 2016) 

Crassostrea 
gigas 

temperature, 
reduced 
salinity, pH 

survival (%) Additive: 1 Additive: 1 Additive: 1 No 
change: 1  

(Gamain et 
al., 2018) 

Zostera 
noltei 

temperature, 
pesticide 
mixture, 
copper 

growth rate 
(µ) 

Interaction 
not 
specified: 1 

Additive: 1 Synergy: 1 Newly 
classified: 
1 

(Gobler et 
al., 2018) 

Menidia 
beryllina 

diet, pCO2, 
temperature 

survival (%) Synergy: 1 Additive: 1 Antagonism: 1 Re-
classified: 
1 

(Gusha et 
al., 2019) 

Pseudodiap
tomus 
hessei 
picophytopl
ankton 

temperature, 
nutrients, 
grazing 

Biomass 
(chl-a mg L -
1) 

Interaction 
not 
specified: 7 

Additive: 2, 
Antagonism: 
2, Synergy: 3 

Antagonism: 7 Newly 
classified: 
7 

(Hoadley et 
al., 2016) 

Symbiodini
um trenchii 

temperature, 
nutrients, 
pCOs 

growth (cm2) Additive: 1 Additive: 1 Antagonism: 1 Re-
classified: 
1 

(Johnson et 
al., 2018) 

Padina 
boryana 

nutrient, 
sediment, 
herbivory 

biomass (%) Additive: 2 Synergy: 2 Antagonism: 2 Re-
classified: 
2 
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(Oliver et 
al., 2019) 

Crassostrea 
gigas 

Imidacloprid, 
handling, air 
exposure 

survival (%) Additive: 1 Synergy: 1 Antagonism: 1 Re-
classified: 
1 

(Przeslawski 
et al., 2005) 

Dolabrifera 
brazieri, 
Bembicium 
nanum, 
Siphonaria 
denticulata 

temperature, 
salinity, light 

survival 
(proportion) 

Additive: 
16,  
Synergy: 8 

Synergy: 24 Antagonism: 
24 

Re-
classified: 
24 

(Vasquez et 
al., 2015b) 

Limulus 
polyphemus 

temperature, 
salinity, 
oxygen 

survival (%) Interaction 
not tested: 
8 

Additive: 6, 
Antagonism: 
2 

Additive: 1, 
Antagonism: 4, 
Synergy: 3 

Re-
classified: 
8 

(Vasquez et 
al., 2015a) 

Limulus 
polyphemus 

temperature, 
oxygen, H2S 

survival (%) Interaction 
not tested: 
1 

Additive: 1 Additive: 1 Re-
classified: 
1 

(Vasquez et 
al., 2017) 

Limulus 
polyphemus 

temperature, 
salinity, 
oxygen 

survival (%) Interaction 
not 
specified: 
12  

Additive: 9, 
Antagonism: 
3 

Additive: 3, 
Antagonism: 5, 
Synergy: 4 

Newly 
classified: 
12 

(Vieira et 
al., 2020) 

Zostera 
noltei 

nutrients, 
sediment, 
density 

growth 
(shoot 
density) 

Synergy: 1 Synergy: 1 Additive: 1 Re-
classified: 
1 

Terrestri
al 

(Janssens et 
al., 2017) 

Lestes 
viridis 

egg 
temperature, 
larval 
temperature, 
previous 
esfenvalerate 
concentration 

survival (%) Interaction 
not tested: 
1 

Additive: 1 Antagonism: 1 Newly 
classified: 
1 

(McKinney 
and Cleland, 
2014) 

Amsinckia 
tessellata 

 

exotic vs 
native origins, 
water 
availability, 
fine root 
addition 

growth 
(g/pot) 

Interaction 
not 
specified: 1 

Antagonism: 
1 

Antagonism: 1 Newly 
classified: 
1 

(Stevens and 
Gowing, 
2014) 

Anthoxanth
um 
odoratum 

clipping, 
Plantago 
lanceolata, 
Prunella 
vulgaris 

growth (g) Interaction 
not 
specified: 2 

Antagonism: 
1, Synergy: 1 

Antagonism: 1, 
Synergy: 1 

Newly 
classified: 
2 

(Wilsey, 
1996) 

Stipa 
occidentalis 

CO2, clipping, 
urea treatment 

growth 
(g/plot) 

Additive: 1 Synergy: 1 Antagonism: 1 Re-
classified: 
1 
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PRISMA 2009 Flow Diagram 
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Figure A.1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) (Moher et al., 2009) Flow Diagram. Using the Web of Science database, 38 out of 
20,912 studies (records) were identified and included in our meta-analysis, resulting in 142 
unique interactions.    
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Figure A.2. The average number of replicates per treatment for each qualifying three-
stressor combinations that examined growth, mortality, or survival at the population level 
between January 1920-November 2020. The majority of stressor combinations were tested 
with ≤ 5 replicates (n = 87). In the case that replicate numbers varied between treatment, the 
average replicate number is reported. A handful of studies (n = 11) tested survival with a 
bimodal distribution and thus each individual was considered a replicate. Most of these studies 
tested 50+ individuals and thus are excluded from this histogram to highlight the distribution of 
the most common experimental design. 
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Figure A.3. The number of qualifying three-stressor studies that examined growth, 
mortality, or survival at the population level between January 1920-November 2020, by 
year. Across a 100-year timespan, we identified 38 unique papers that were conducted in a 
factorial design that fit our data quality requirements needed for RBI. Most qualifying studies 
were conducted from 2016 to 2020 (n = 24). 
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Chapter Four: Complex patterns of convergence and non-convergence in 

multiple populations of an urban bird species1 

Abstract 

Urbanization presents a natural evolution experiment because selection pressures in cities can be 

strongly mismatched with those found in species’ historic habitats. However, some species have 

managed to adapt and even thrive in these novel conditions. When a species persists across 

multiple cities, a fundamental question arises: do we see convergent evolution? By testing if and 

how convergent evolution happens across multiple urban populations, we can assess the 

repeatability of evolution and predictability of population response to anthropogenic change. 

Here, we examine variation within and across multiple populations of a songbird, the dark-eyed 

junco (Junco hyemalis). We measured juncos in three cities and three non-urban populations in 

Southern California to determine whether morphological variation relates to differences in 

environmental conditions across cities or vary between urban areas regardless of urban selective 

pressures. Bill shape diverged across urban populations, whereby Los Angeles and Santa Barbara 

juncos had shorter, deeper bills, but San Diego juncos did not. On the other hand, body size 

decreased with the built environment, regardless of the population. Southern Californian urban 

juncos exhibit both convergent and non-convergent morphological evolution. Studying multiple 

urban populations can help us determine the predictability of evolutionary response to novel 

environments.  

 

 

 
1 This chapter is in preparation for submission with the following author order: Eleanor S. Diamant and Pamela J. 
Yeh 
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Introduction 

Urbanization drastically changes a species’ natural habitat, creating novel selection pressures 

when compared with a given species’ evolutionary history and environmental tolerance (Bonier 

et al. 2007; Smith and Bernatchez 2008; Smith et al. 2008, 2014; Sol et al. 2014; Johnson and 

Munshi-South 2017; Rivkin et al. 2019). As cities expand (Seto et al. 2012; Simkin et al. 2022; 

UN 2019), a fundamental question is whether we are able to predict how animals evolve in urban 

habitats. One way to assess this is to evaluate the possibility of convergent evolution by 

comparing different cities. Determining population response to urbanization provides an arena to 

study adaptation-in-action (Diamond 1986; Palumbi 2001; Yeh and Price 2004; Hendry et al. 

2008; Pergams and Lacy 2008; Marnocha et al. 2011; Donihue and Lambert 2015; Alberti et al. 

2017a; Campbell-Staton et al. 2020), as urban populations are a model for testing basic eco-

evolutionary questions  (Diamond 1986; Hahs and Evans 2015; Wong and Candolin 2015; 

Alberti et al. 2017a). Most notably, we can assess if similar large-scale landscape shifts result in 

similar responses, or if stochasticity shapes divergent evolutionary outcomes despite inferred 

similar selective pressures. 

 

While the field of urban evolution has developed substantially over the past couple of decades, 

its degree of predictability remains an outstanding question (Perrier et al. 2018; Rivkin et al. 

2019; Miles et al. 2021). Yet, exploring the repeatability or predictability of evolutionary 

response provides an in situ natural experiment to test the role of contingency in evolution, a 

fundamental and open question in biology (Gould 1989; Blount et al. 2018). Most research has 

focused on single urban–non-urban pairs or urban-rural gradients (e.g., Johnson and Munshi-

South 2017) to understand population response to broad urban characteristics, such as heat, 
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altered food resources, species interactions, and anthropogenic disturbance (Shochat et al. 2006). 

The few studies on species across multiple cities have found mixed results. For example, parallel 

shifts in response to urban stressors have been found in urban Anolis lizards (Campbell-Staton et 

al. 2020) and in eastern gray squirrels (Sciurus carolinsis) (Gibbs et al. 2019), yet a combination 

of parallel and non-parallel responses were found in acorn ants (Temnothorax curvispinosus) 

(Diamond et al. 2018) and in great tits (Parus major) (Salmón et al. 2021; Caizergues et al. 

2022). Responses to urbanization in European blackbirds (Tardus merula)—a common and 

successful urban colonist—morphologically vary across region and trait (Evans et al. 2009). 

These findings suggest that broad differences in urban and non-urban environments can shape 

evolution within urban environments. However, the repeatability of evolution in single urban–

non-urban pairs may not be a given (Miller et al. 2018; Rivkin et al. 2019). Populations may vary 

repeatably in response to similar selection pressures in different cities (Santangelo et al. 2022). 

Non-repeatable responses may also occur due to more stochastic, less predictable factors such as 

founder effects, non-adaptive non-directional evolution after colonization, differential selection 

pressures due to differences in community composition and competition therefrom, 

socioecological heterogeneity across cities, or social learning and innovation in some but not all 

urban populations, and subsequent eco-evolutionary feedbacks within cities (Miles et al. 2019; 

Schell et al. 2020; Des Roches et al. 2021; Caspi et al. 2022; Verrelli et al. 2022).  

 

Evolutionary response in combination with or in the form of  phenotypic plasticity drives 

differences in urban phenotypes within and across species (Miranda et al. 2013; Alberti 2015; 

Miranda 2017; Campbell-Staton et al. 2020; Caspi et al. 2022; Mascarenhas et al. 2022). 

Morphological evolution that underlies behavioral shifts is one such avenue to explore the 
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repeatability of evolutionary outcomes driven by selection pressures on behavior. While 

morphological evolution has been documented in a few species across cities (reviewed in Alberti 

et al. 2017b), broad patterns have been challenging to infer. For example, wing loading has 

evolved in human-modified landscapes likely in response to differential selection on flight 

behavior in different habitat structures in one species (Bitton and Graham 2015) and vehicular 

traffic in another (Brown and Bomberger Brown 2013). Avian bills are particularly relevant for 

teasing apart the impact of behavior and abiotic stressors on the repeatability of evolution. Bill 

shape has shifted amongst a few species in urban environments in association with differences in 

resources and therefore feeding performance (Badyaev et al. 2008; De León et al. 2011; 

Berthouly-Salazar et al. 2012; Bosse et al. 2017). On the other hand, selection on higher 

minimum song frequency, a trait many bird populations repeatedly exhibits in response to urban 

noise (Slabbekoorn and den Boer-Visser 2006; Potvin et al. 2011), can constrain evolution as it 

selects for shorter bills (Giraudeau et al. 2014). Simultaneously, bills are used for 

thermoregulation (Symonds and Tattersall 2010; Greenberg et al. 2012; Tattersall et al. 2016; 

LaBarbera et al. 2020); the urban heat island effect has been associated with larger bills in 

Northern cardinals (Cardinalis cardinalis) in multiple cities (Miller et al. 2018). 

 

The dark-eyed junco (Junco hyemalis) (hereafter: “junco”), a common North American 

passerine, has successfully colonized several cities in Southern California (Atwell et al. 2016; 

NestWatch 2021; Lehman 2022) and can be a model system for understanding urban 

evolutionary and non-evolutionary responses in wild birds (Atwell et al. 2016). In the early 

1980s, a junco breeding population established in San Diego County (Yeh and Price 2004). A 

second population established in Los Angeles, likely in the late 1990’s or 2000’s (Atwell et al. 
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2016). A breeding population has also been observed in Santa Barbara, CA, where they were 

absent in residential areas before the 1970s (Lehman 2022). The San Diego population differed 

in morphological traits in comparison to a non-urban mountain pair: San Diego juncos had 

shorter wings and tails in comparison to local mountain non-urban birds (Rasner et al. 2004) and 

a reduced white tail patch, a sexually-selected trait (Yeh 2004; Price et al. 2008). Behaviorally, 

Los Angeles and San Diego juncos have repeatedly demonstrated adaptive phenotypic plasticity 

in urban nesting behavior by nesting above-ground and on artificial surfaces, as well as 

producing more clutches per season than non-urban populations (Yeh and Price 2004; Yeh et al. 

2007; Bressler et al. 2020). They have also repeatedly exhibited less fearfulness to humans in 

comparison to non-urban birds (Atwell et al. 2012; Diamant et al. 2023). Yet urban song does 

not show repeated differences; San Diego birds, unlike Los Angeles birds, show an increased 

song frequency likely in response to urban noise (Slabbekoorn et al. 2007; Newman et al. 2008; 

Reichard et al. 2018; Wong et al. 2022). Only San Diego has been tested for morphological 

shifts, which likely represent evolutionary divergence based on common garden experiments in 

juncos (Rasner et al. 2004). Of note, the San Diego population is likely a result of genetic input 

from two different subspecies, one of which exists in the local mountains to the east, and the 

other of which breeds in Northern Californian coastal environments (Friis et al. 2022), 

Nonetheless, traits that correspond to urban or coastal characteristics in San Diego are strikingly 

different than local non-urban birds in the Laguna mountains.  

 

Here, we asked if dark-eyed junco morphology is associated with abiotic factors and landscape 

change across three geographically distinct urban populations across Southern California’s coast 

in comparison to non-urban populations, or if morphology varies between cities non-repeatedly. 
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We hypothesize that morphological changes will be associated with relevant urban factors, 

regardless of the city. More specifically we ask if: 

i. Wing size and loading is associated with built cover and differs from non-urban 

habitats repeatedly across cities. Because smaller bird species are associated with 

cities and higher wing loading is beneficial in heterogenous environments, we 

expect differences in wing shape and size to be associated with built cover.  

ii. Bill shape differs similarly across cities, and if differences relate to climate and/or 

built cover. We hypothesize that larger bills will be associated with urban areas, 

as has been found in other birds. If the urban heat island effect underlies shifts in 

bill shape, we expect a positive association between bill surface area and 

temperature regardless of population. If differential resources in urban (vs non-

urban) areas drives selection on bill morphology, we expect bill length to depth 

ratio (“bill ratio”) to differ with the built-up environment and for bill size to vary 

between urban and non-urban sites regardless of temperature.  

We tested these hypotheses by testing for parallel shifts across cities while accounting for 

relevant environmental variables.  

 

Methods 

Study system 

We conducted field work across southern California (Figure 4-1), focusing on coastal Southern 

Californian cities and neighboring mountains. To compare across cities, we sampled juncos in 

Santa Barbara County (“Santa Barbara”), Los Angeles County (“Los Angeles”), and San Diego 

County (“San Diego”). For all three urban sites, we sampled juncos at the local campuses of the 
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University of California (University of California Santa Barbara (UCSB), Los Angeles (UCLA), 

and San Diego (UCSD), respectively). Each of these sites is broadly similar in level of 

urbanization, characterized by a combination of green spaces and large buildings, with heavy but 

seasonal human traffic. All urban sites are coastal (between 0.06 – 9.43 km from ocean), low 

elevation areas experiencing a Mediterranean climate. We compared these locations to non-urban 

mountain sites that might be indicative of their historic non-urban breeding range (Allen et al. 

2016). The mountain sampling sites were the Santa Monica Mountains, the Angeles Forest in the 

San Gabriel Mountains, and the UC James Reserve in the San Jacinto Mountains (Figure 4-1).  

 

Field methods 

We captured adult juncos using targeted mist netting (mesh size of 30mm, between 1-3 nets at 

once) over a five-year span, between January and July 2018-2022 and between January and 

March 2023 in the morning (0630-1100). Banding began at each site following the onset of 

singing and territorial behavior by male juncos. In Los Angeles and San Diego, this typically 

occurs in mid to late January and in Santa Barbara in mid-February. Juncos were lured to the net 

using audio playbacks of regional junco song. We conducted targeted mist netting across each 

site, setting up nets across multiple banding locations where juncos were present and singing. We 

regularly moved nets if birds were either banded or not responding within 30-45 minutes. Male 

juncos primarily respond, though females are often also captured during the breeding season. 

Each individual was sexed by plumage and/or primary sex characteristics (cloacal protrusion 

and/or brood patch), aged by molt limit, scored for fat content, and checked for active molt (Pyle 

1997). We measured the following morphological traits: unflattened wing chord (wing length; 

measurement described in (Ralph et al. 1993), tail length from the posterior end of the uropygial 
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gland to the posterior tip of the longest rectrix, tarsus length, bill length from the distal edge of 

the nares to the tip of the upper mandible, bill depth and width at the posterior edge of the nares, 

and weight on a calibrated and tared precision pocket scale. Multiple researchers measured 

juncos over the course of the project, with two primary individuals (ESD and WAM) who trained 

all others on these measurements. Error for the primary researchers is presented in the 

supplementary material. 

 

In total, we measured 356 individuals in Los Angeles, 29 in Santa Barbara, 41 in San Diego, and 

67 across non-urban mountain sites (Table 4-1). All animals were cared for and tested according 

to institutional guideline and approval (IACUC #ARC-2018-007). 

 

Statistical Analyses 

Ecological differences between urban and non-urban populations 

We characterized each banding location by measuring and extracting the built-up index 

(Valdiviezo-N et al. 2018) in a 50m radius around the coordinates of each bird’s capture location 

using Landsat-8 images (courtesy of the U.S. Geological Survey) and QGIS (QGIS.org 2020). 

All three cities have a higher built cover than non-urban mountain sites (Figure 4-2). We then 

conducted an ANOVA on these data to determine if the built-up index differed between urban 

and non-urban sites. 

 

To determine if micro-climate differed between sites, we obtained 30-year monthly average 

temperature, maximum temperature, and precipitation (1991-2020) at an 800 m resolution 

(PRISM Climate Group 2014) through the package prism (Hart and Bell 2015). The average for 
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each variable was calculated across an 800 m x 800 m grid using the packages raster (Hijmans 

and van Etten 2020), sf (Pebesma 2018), and stars (Pebesma and Bivand 2023). We intersected 

banding location with the raster dataset to obtain averaged climate at the capture location for 

each bird. As temperature variables were correlated with each other, we used maximum 

temperature (tmax) in our analyses because temperature extremes have previously been found to 

be relevant for understanding thermoregulation by junco bills (LaBarbera et al. 2020). Because 

variance within each group were not equal, we ran a Wilcoxon signed rank test to determine if 

sites differed in tmax. 

 

Morphological differences across and between populations 

We conducted multiple linear mixed models (LMMs), each with a different dependent 

morphological variable, to test hypotheses on morphological shifts in response to urbanization 

and whether shifts repeat in difference cities.  

 

We calculated wing loading by dividing weight (g) by wing length (mm). We considered wing 

loading as a dependent variable and sex, built-up index, population (UCLA, UCSD, UCSB, and 

non-urban), and measurer as independent variables. We also considered wing length—which, in 

the absence of wing loading differences, acts as a proxy for body size—as a dependent variable 

and sex, built-up index, population, and measurer as independent variables.  

 

To assess hypotheses on bill size and shape being driven by microclimate, resources, or a 

combination thereof, we considered three bill variables: bill length (mm) as a proxy for size, bill 

length to depth ratio, and bill surface area (mm2). We estimated total bill surface area as:  
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(6700	971:;	<	6700	1,=:;)
?

× 𝑏𝑖𝑙𝑙	𝑙𝑒𝑛𝑔𝑡ℎ (Greenberg et al. 2012). 

To determine relative bill surface area, tarsus length was used as a proxy for body size; bill 

surface area was divided by tarsus length. While we did not assess thermal differences between 

bills directly, thermal differences have been assessed in a closely related species, the song 

sparrow (Melospiza melodia) (Greenberg et al. 2012). Since then, associations between 

temperature, humidity, and bill surface area have been found in juncos (LaBarbera et al. 2020) 

and urbanized Northern cardinals (Miller et al. 2018). For bill length, which may be under 

selection based on surface area and foraging, we included sex, tmax, precipitation, built-up 

index, population, and measurer as independent variables. For bill ratio, we considered sex, built-

up index, population, and measurer as independent variables. For bill surface area, we considered 

sex, tmax, precipitation, population, and measurer as independent variables.  

 

To determine the best-fit model for each independent variable, we conducted an automated 

model selection with the glmulti package (Calcagno and Mazancourt 2010). From this, we 

examined models with AIC <2 from the lowest value. As the measurer was an important variable 

in nearly all models, we included that as a random effect in our models. We then calculated AIC 

values considering the other relevant fixed effects and present the models with the lowest AIC. 

In the case that multiple models were within 2 AIC from each other, we removed variables with 

variable inflation factor ≥ 2.5 and chose the simpler model if model reduction did not result in 

removing a significant variable.  

 

Subsequently, the following models were selected for analysis: 
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1. Wing loading as the response variable, sex and built-up index as fixed effects, and 

measurer as a random effect. 

2. Wing length as the response variable, sex and built-up index as fixed effects, and 

measurer as a random effect. 

3. Bill length as the response variable, tmax, sex, and population as fixed effects, and 

measurer as a random effect. 

4. Bill ratio as the response variable, population as a fixed effect, and measurer as a 

random effect. 

5. Bill surface area by tarsus length as the response variable, tmax and population as 

fixed effects, and measurer as a random effect. 

 

LMMs were analyzed with the package lme4 (Bates et al. 2015) and car (Fox and Weisberg 

2019). For instances where population was a fixed effect, we calculated z -scores and p-values 

for within-model pairwise contrasts using the multcomp package (Hothorn et al. 2022). All 

analyses were conducted using R v. 4.1.3 (R Core team 2020).  

 

Results 

Ecological differences between populations 

All UC campuses had a higher built-up index than non-urban sites (p < 0.0001 for all 

comparisons with non-urban populations) but had similar built-up index amongst themselves 

(0.45 ≤ p ≤ 0.78); Figure 4-2A). All UC campuses differed from each other in tmax (p < 0.0001 

for all urban pairwise comparisons), but only UCSB differed in tmax from the non-urban group 

(p < 0.0001; other comparisons 0.47 ≤ p ≤ 0.60) (Figure 4-2B).  
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Morphological differences across and between populations 

Collectively, patterns varied between traits—some traits varied between populations regardless 

of abiotic variation, while others were better explained by ecological variation regardless of 

abiotic variation. These results are summarized in Figure 4-3.  

 

Wing loading was not significantly associated with built-up index (X2 = 2.28, p = 0.131). 

Population was not in the best fit model. Wing size, a proxy for body size, varied significantly 

with built cover (X2 = 5.26, p = 0.022) such that banding locations with more built cover, 

regardless of population, were occupied by birds with shorter wings (Figure 4-4).  

 

Bill length differed between populations (X2 = 77.4, p < 0.0001), and with regards to tmax (X2 = 

8.54, p = 0.003). Locations with higher maximum temperatures were occupied by birds with 

longer bills. However, urban areas did not have consistent differences in bill length (Figure 4-

5A). UCLA juncos had shorter bills than non-urban juncos and other urban junco populations 

(UCLA-nonurban contrast: z = -8.53, p < 0.001; UCLA-UCSB contrast:  z = -0.49, p < 0.001; 

UCLA-UCSD contrast: z = -2.98; p = 0.014), despite occupying locations with the highest 

maximum temperatures across urban sites (Figure 4-2B). All other comparisons were not 

significant (1.02 ≤ z ≤ 2.18; 0.12 ≤ p ≤ 0.73). The built-up index was not in the best fit model.  

 

Bill surface area exhibited similar patterns as bill length; surface area was higher relative to body 

size in locations with higher maximum temperature (X2 = 4.08, p = 0.043) and bill surface area 

relative to body varied between populations (X2 = 44.61, p < 0.0001). Patterns between urban 
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areas did not correspond to temperature differences between cities (Figure 4-5B); UCLA juncos 

had a significantly lower bill surface area in comparison to non-urban juncos (z = -6.32, p < 

0.001) and UCSB (z = -3.49; p = 0.002); as well as marginally lower bill surface area in 

comparison to UCSD (z = -2.46; p = 0.06). All other comparisons were not significant (0.297 ≤ z 

≤ 1.37; 0.50 ≤ z ≤ 0.99). The built-up index was not in the best fit model. 

 

Bill ratio differed between populations (X2 = 50.9, p < 0.0001) (Figure 4-5C), however the built-

up index did not explain these differences. UCLA and UCSB juncos had a lower bill ratio in 

comparison with non-urban juncos (z = -6.68, p < 0.001; and z = -3.33, p = 0.005 respectively). 

In addition, UCLA juncos had a lower bill ratio in comparison with UCSD juncos (z = -3.18, p = 

0.007). UCSD did not significantly differ in comparison with non-urban juncos (z = -0.96, p = 

0.76). Results for all models are presented in the supplement (Tables S4-2 and S4-3).   

 

Discussion  

Our hypotheses that urban areas would exhibit convergent morphologies in response to similar 

ecological shifts was not broadly supported; rather, complex patterns emerged. Urban 

populations across Southern California exhibited non-convergent and convergent morphological 

differences across populations. Specifically, the degree of built cover was associated with 

smaller birds regardless of population, while bill size and shape differed between urban 

populations regardless of the degree of urbanization. Urban Los Angeles and urban Santa 

Barbara breeding junco populations exhibited shorter and relatively deeper bills than non-urban 

juncos, but urban San Diego breeding juncos did not. Variation in the variables we analyzed 

(temperature or the degree of built cover) between cities does not sufficiently explain the 
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differences in beak morphology between cities, suggesting that similar large-scale ecological 

differences driven by anthropogenic structures and human disturbance do not necessarily lead to 

convergence. The variation between cities suggests that urban landscapes can facilitate 

intraspecific diversity despite their similar strong selective filters, while built cover might act as 

a filter on some but not all morphological traits (Devictor et al. 2008; Lokatis and Jeschke 2022).   

 

Non-Convergence of Morphological Evolution 

Urbanization provides a unique opportunity to assess the repeatability of evolution under strong 

selection because urban areas have been viewed as natural “replicates” of strong ecological 

change (Donihue and Lambert 2015; Alberti et al. 2017a); overarching differences between 

urban areas and their neighboring non-urban counterparts have consistently been found due to 

human disturbance, built cover, and associated stressors. Nonetheless, variation within and 

across cities complicate this notion. Studying populations across cities fundamentally allows us 

to test the role of contingency in evolution—i.e., are evolutionary trajectories predictable based 

on environmental conditions, or to what degree do randomness and incidental change drive 

unpredictable outcomes in evolutionary trajectories (Gould 1989). If evolution is 

deterministically driven by large-scale shifts in an organism’s ecology rather than differences 

between cities and/or stochastic non-deterministic processes, then evolutionary response to 

urbanization would be directional and predictable. However, morphological divergence differs 

across cities in Southern California despite broad similarities in the level of the built environment 

across coastal cities. The differences we found between urban and non-urban populations suggest 

that evolution across urban environments might not be predictable. Thus, how populations might 

respond and adapt to urban environments might not be generalizable from studies in single cities, 
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possibly due to differences within and across cities, and to more random or time-dependent 

differences between urban populations.   

 

One potential non-adaptive cause of divergence across cities is a founder effect. While the San 

Diego juncos were initially an island population with a small founding population, the 

morphological differences first observed in this population in comparison to non-urban birds 

were driven by selection rather than drift (Rasner et al. 2004; Yeh 2004). It is unlikely that 

divergence in the Los Angeles population is driven by a founder effect because it is not an 

isolated population. We have had two instances of juncos captured at UCLA that have also been 

sighted or captured at peri-urban and non-urban locations. One individual recaptured at UCLA 

during the breeding season was initially banded at the Santa Susana Field Station at the foothills 

of the Santa Susana mountains, which connect to the Santa Monica mountains (dispersal distance 

of approximately 18 miles between capture sites) (Mark Osokow, pers. comm.). Another 

individual was color-banded by us as a nestling at UCLA and sighted within Griffith Park, an 

urban park that is over 4,000 acres in Los Angeles and connected to local mountains, ~8 miles 

from campus (Zelia Scott, pers. comm.). As such, there is likely active gene flow between local 

non-urban mountain populations and the Los Angeles urban population, which we assume has 

been the case throughout the history of colonization.  

 

A lack of divergence in some urban populations could be due to gene flow, an absence of 

significant selection pressures, a lack of standing variation, a short time since colonization, 

selection not operating on a heritable trait, or differences in plasticity that could potentially 

prevent adaptive evolution in cities (Shochat et al. 2006; Caspi et al. 2022). Our results suggest 
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that selection is likely driving morphological divergence across urban populations in size and bill 

shape upon colonization rather than divergence due to genetic drift. However, non-adaptive 

processes or sample size limitations might explain a lack of statistically significant divergence in 

Santa Barbara junco bill shape in comparison to other urban and non-urban populations.  

 

Bill shape divergence 

Los Angeles urban juncos differ in bill shape, with shorter and deeper bills, in comparison to 

non-urban and San Diego urban juncos. Santa Barbara birds are intermediate, as they are 

significantly different than non-urban juncos but not San Diego juncos. In addition, Los Angeles 

urban juncos had lower bill surface area than non-urban juncos and Santa Barbara juncos. 

 

We tested the hypothesis that bill surface area is driven by selection on thermoregulation (Snow 

1954; Symonds and Tattersall 2010; Greenberg et al. 2012; Tattersall et al. 2016), which was not 

supported by our data. If thermoregulation explained bill shape differences across cities, we 

would expect higher bill surface area in cities with higher temperatures. Conversely, we would 

expect lower bill surface area with low temperatures. We found that while temperature was 

broadly associated with larger bill surface area, significant population differences did not match 

this pattern. Instead, urban Los Angeles juncos had lower bill surface area despite Los Angeles 

having a higher average maximum temperatures relative to other urban sites (Figure 4-2B), 

contrary to findings in non-urban populations (LaBarbera et al. 2020). Juncos may be coping 

with urban heat through other forms of thermoregulation. While tarsii are also thermoregulatory 

organs, they seem less adaptive to temperature in smaller birds (Frӧhlich et al. 2023). Feather 

melanism and differences in behavior at different temperatures also potentially impact heat 
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absorption and conservation in juncos (Carr and Lima 2012; de Zwaan et al. 2017) and should be 

further explored in the urban context. 

 

We next considered that selection on song traits could drive bill shape in the urban environment 

(Palacios and Tubaro 2000; Derryberry 2009; Giraudeau et al. 2014), although in the juncos this 

explanation is also unlikely because Los Angeles urban juncos do not sing at a higher frequency 

than non-urban juncos (Wong et al. 2022). Urban birds typically have higher minimum 

frequency to cope with urban noise (e.g. Slabbekoorn and Peet 2003; Badyaev et al. 2008; 

Derryberry et al. 2020), which is associated with less narrow bills (Giraudeau et al. 2014). San 

Diego juncos (Reichard et al. 2020), not Los Angeles juncos, sing at a higher frequency. Thus, 

the shift in bill shape is likely not due to selection on song.  

 

A third explanation for the bill shape variation is that differences in foraging within and between 

cities due to the built environment could drive differences in bill shape. This explanation did not 

fit the differences we found between cities. All studied cities had higher built cover than non-

urban areas, suggesting that Los Angeles juncos, and potentially Santa Barbara juncos, have 

uniquely diverged in their bill shape in the built environment.  

 

If bill shape reflects selection on foraging strategies in built environments, then differences in 

behavioral innovation could explain divergent evolution across cities. Bill size and shape 

polymorphisms are often associated with variation in foraging niche across bird species (e.g., 

Smith 1987, 1990). Indeed, bill divergence in response to shifts in food availability and 

anthropogenic waste is well known in birds (Grant and Grant 2002). Selection from 
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supplemental feeding on hard-shelled seeds in bird feeders has driven the evolution of longer 

bills in urban house finches (Badyaev et al. 2008) and great tits (Bosse et al. 2017). Los Angeles 

juncos have shorter rather than longer bills, suggesting that adaptation to supplemental feeding of 

hard shells, as is common in bird feeders, does not drive this shift. Instead, Los Angeles juncos 

might have learned to exploit other resources, like anthropogenic food waste, in the built 

environment while other urban junco populations have not. 

 

Adaptive behavioral plasticity in resource exploitation amongst Los Angeles and Santa Barbara 

urban juncos, but not San Diego urban juncos, can explain their bill shape divergence and higher 

variation in comparison to other populations. Urban environments broadly exhibit differences in 

resource availability, trophic dynamics, and indirect supplemental feeding through exotic 

vegetation and human waste (reviewed in Shochat et al. 2006). Multiple bird species have been 

found to access and exploit anthropogenic food resources due to increased resource availability 

where many humans eat and/or have high human food refuse (Martin et al. 2010; Goldenberg et 

al. 2016; Stofberg et al. 2019). Red-winged starlings (Onychognathus morio) at the University of 

Cape Town campus in South Africa consume more anthropogenic food and gain more weight 

when human activity is higher but supplement their diets with more natural items when human 

activity is lower (Stofberg et al. 2019). Niche expansion was also noted in Darwin’s finches 

(Geospiza fortis), where anthropogenic food flattened selection on bill shape in human-modified 

environments (De León et al. 2011). Therefore, there could be selection driven by exploiting 

anthropogenic food resources in the built environment, creating a niche the juncos have learned 

to exploit. Thus, adaptive behavioral plasticity might have facilitated rapid evolution (Ghalambor 

et al. 2007; Caspi et al. 2022) in the Los Angeles and potentially the Santa Barbara population. 
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What remains unclear is why this has not occurred in San Diego juncos. This could be a matter 

of chance (Ossola et al. 2021), where Los Angeles juncos just so happened to learn to exploit 

these resources, and potentially opportunity as Los Angeles is a denser city which may lead to 

more waste.  

 

Together, these findings contribute to answering how repeatable evolutionary response is to 

urbanization and anthropogenic change (Johnson and Munshi-South 2017; Rivkin et al. 2019). 

There is some evidence that either convergent or divergent evolution can occur (Evans et al. 

2009; Diamond et al. 2018; Campbell-Staton et al. 2020; Salmón et al. 2021; Caizergues et al. 

2022; Santangelo et al. 2022), but these trajectories depend on the strength of similar stressors in 

urban environments and stochastic processes in the population’s evolutionary history (Lambert et 

al. 2021). In the junco, some behavioral traits such as novel and above-ground nesting behavior 

(Bressler et al. 2020) and fear response (Diamant et al. 2023) converge across cities while others, 

like song (Wong et al. 2022), do not. Morphologically, body size and bill shape have different 

patterns of convergence and non-convergence between urban populations. Thus, both 

evolutionary and non-evolutionary processes could lead to independent outcomes and prevent 

trait homogenization across cities.  

 

Conclusions 

Contrary to our expectations, urban dark-eyed junco populations across Southern California 

show complex patterns of convergence and non-convergence. Most notably, Los Angeles juncos 

have longer and differently shaped bills in comparison to non-urban juncos and the long-

established urban San Diego junco population. On the other hand, body size differs with respect 
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to built cover regardless of population. These results indicate that non-convergent evolution 

occurs across cities in bill shape, but convergence might be occurring in body size. Thus, 

evolutionary response might not be generalizable across cities. These differences might be due to 

local behavioral innovations that did not occur in other cities. Further work should explore 

behavioral variation, and potential effects on diet and fitness, in response to fine-scale landscape 

differences within and between cities. 
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Tables and Figures 

Table 4-1. Sampling effort across sites by sex.  

Location 
 Los Angeles 

urban (UCLA) 
San Diego 
urban (UCSD) 

Santa Barbara urban 
(UCSB) 

Non-urban Southern 
Californian mountains 

Male 243 34 26 58 
Female 113 7 3 9 
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Figure 4-1. Junco banding sites across Southern California. These sites included three urban UC 
campuses in three cities (black circles with dwelling icons) and three non-urban mountain 
populations (green circles with tree icons) grouped together into one non-urban group. 
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Figure 4-2. Banding locations at UC campuses in urban areas exhibited different abiotic 
conditions from each other and from non-urban locations. (A) All UC campuses had a higher 
built-up index across banding locations than the non-urban locations. (B) All UC campuses 
exhibited different average maximum monthly temperatures from each other, but none 
significantly differed from non-urban locations. Letters demonstrate statistically significant 
differences from (A) a Tukey HSD test and (B) a Wilcoxon signed rank test. Dots refer to data 
from individual bird’s capture locations. Black lines refer to the median value per group. Please 
see Table 4-1 for sample sizes.  
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Figure 4-3. Urban and non-urban birds showed patterns of shape variation where (A) the 
population was associated with morphological differences between and non-urban birds and (B) 
the degree of built cover, regardless of urban population, was associated with morphological 
differences. (A) Bill size and shape, while partially explained by average maximum 
temperatures, differed between cities incongruently with climate-driven hypotheses. (B) Built 
cover index, rather than population, was associated with smaller wing size, a proxy for body size, 
in juncos across all populations. Negative associations between morphology and urbanization are 
orange. Details on statistical analyses are presented in Tables S4-2 and S4-3. Silhouetted image 
is of a closely related bird, Spizelloides arborea, and uploaded by Ferran Sayol to PhyloPic.org.   

Non-urban junco

UCLA junco UCSD junco UCSB junco

A B
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Figure 4-4. Juncos with shorter wings occupied areas with more built cover across all 
populations. Blue represents males and red represents females. Linear trendlines are added per 
group with a shaded 95% confidence interval. Model results considering fixed and random 
effects are presented in Table S4-2. 
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Figure 4-5. Juncos varied in bill size and shape across urban populations. (A) bill length (mm) in 
UCLA juncos differed from non-urban juncos while other urban junco populations did not.  (B) 
Bill surface area by tarsus length (mm) showed similar patterns as bill length—despite a higher 
average maximum temperature at UCLA in comparison to other urban sites, UCLA juncos 
exhibited lower relative bill surface areas than UCSB. (C) bill shape differed between sites such 
that UCLA and UCSB exhibited relatively shorter, wider bills than non-urban juncos, while 
UCSD juncos did not strongly differ from non-urban juncos. Letters refer to significant groups 
significantly different based on pairwise contrasts (Table S4-3) and black bars represent the 
group’s median value. 
  



 122 
 

 
Chapter Four: Supplemental Materials 
 
Inter- and intra-individual repeatability of measurements 
 
Seven banders have measured juncos between 2018 and 2023. Two researchers—ESD and 

WAM—trained all other researchers and collectively banded across all time points. All banders 

have measured birds in all sites. ESD and WAM measured a song sparrow frozen specimen 4 

times each (Table S4-1). New banders did not work independently until they were consistent in 

measurements with one of the two primary banders for at least 3 birds in the hand, including 

between ESD and WAM. Nonetheless, model results revealed slight differences between 

individual measurements and thus these were accounted for in the models with a random effect.   

 

Table S4-1: Inter- and intra-individual variation in measurements of a song sparrow. 

 Tarsus length 
(mm) (mean ± 
SD) 

Culmen length 
(mm) (mean ± 
SD) 

Bill depth (mm) 
(mean ± SD) 

Bill width (mm) 
(mean ± SD) 

ESD 20.40 (0.28) 9.19 (0.09) 6.59 (0.06) 5.88 (0.05) 
WAM 20.16 (0.23) 9.10 (0.00) 6.70 (0.00) 5.78 (0.15) 
ESD + WAM 20.28 (0.27) 9.14 (0.07) 6.64 (0.07) 5.83 (0.11) 
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Table S4-2: Model outputs for linear mixed models considering wing measurements. 

  

Wing loading as response variable    
Fixed effects C2  df p-value 
Intercept 2129.7 1 < 0.0001 
Sex 10.5 1 0.001 
Mean built-up index in 50 m 2.28 1 0.13 
    
Random effects variance sd p-value 
Measurer 0.0001 0.012 < 0.0001 
Residual 0.0004 0.02  
    
Number of observations 412   
AIC -2005.7   
    

Wing length as response variable    
Fixed effects C2  df p-value 
Intercept 37342.0 1 < 0.0001 
Sex 193.3 1 < 0.0001 
Mean built-up index in 50 m 5.26 1 0.02 
    
Random effects variance sd p-value 
Measurer 0.17 0.41 0.44 
Residual 5.48 2.34  
    
Number of observations 469   
AIC 2143.4   
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Table S4-3: Model outputs for linear mixed models considering bill measurements  

 

Bill length as a response variable    
Fixed effects C2  df p-value 
Intercept 112.7 1 < 0.0001 
Tmax 8.54 1 0.003 
Sex 2.08 1 0.15 
Population 77.4 3 < 0.0001 
    
Random effects variance sd p-value 
Measurer 0.19 0.43 < 0.0001 
Residual 0.23 0.48  
    
Number of observations 470   
AIC 701.5   
    
Pairwise contrasts: Population estimate se z-score p-value 
Non-urban – UCLA 0.61 0.07 8.53 < 0.001 
Non-urban – UCSB 0.12 0.12 1.02 0.73 
Non-urban – UCSD 0.27 0.12 2.18 0.12 
UCLA – UCSB -0.49 0.12 -4.16 < 0.001 
UCLA – UCSD  -0.34 0.11 -2.98 0.01 
UCSB – UCSD 0.15 0.14 1.04 0.72 

Bill surface area by tarsus length as a response variable   
Fixed effects C2  df p-value 
Intercept 51.5 1 < 0.0001 
Tmax 4.08 1 0.043 
Population 44.6 3 < 0.0001 
    
Random effects variance sd p-value 
Measurer 0.007 0.09 < 0.0001 
Residual 0.01 0.11  
    
Number of observations 464   
AIC -703.9   
    
Pairwise contrasts: Population estimate se z-score p-value 
Non-urban – UCLA 0.10 0.02 6.32 < 0.001 
Non-urban – UCSB 0.008 0.03 0.30 0.99 
Non-urban – UCSD 0.37 0.03 1.37 0.50 
UCLA – UCSB -0.09 0.03 -3.50 0.003 
UCLA – UCSD  -0.06 0.02 -2.46 0.06 
UCSB – UCSD 0.03 0.03 0.93 0.78 
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Bill length to depth ratio as a response variable   
Fixed effects C2  df p-value 
Intercept 2415.0 1 < 0.0001 
Population 50.86 3 < 0.0001 
    
Random effects variance sd p-value 
Measurer 0.005 0.07 < 0.0001 
Residual 0.009 0.10  
    
Number of observations 469   
AIC -803.6   
    
Pairwise contrasts: Population estimate se z-score p-value 
Non-urban – UCLA 0.10 0.01 6.68 < 0.001 
Non-urban – UCSB 0.07 0.02 3.33 0.005 
Non-urban – UCSD 0.02 0.02 0.96 0.76 
UCLA – UCSB -0.02 0.02 -0.96 0.76 
UCLA – UCSD  -0.06 0.02 -3.18 0.008 
UCSB – UCSD -0.05 0.03 -1.78 0.27 
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Chapter Five: Urban birds become less fearful following COVID-19 re-
openings2 
 

Abstract 

Following the COVID-19 pandemic, many people around the world stayed home, drastically 

altering human activity in cities. This exceptional moment provided researchers the opportunity 

to test how urban animals respond to human disturbance, in some cases testing fundamental 

questions on the mechanistic impact of urban behaviours on animal behaviour. However, at the 

end of this “anthropause,” human activity returned to cities. How might each of these strong 

shifts affect wildlife in the short and long term? We focused on fear response, a trait essential to 

tolerating urban life. We measured flight initiation distance—at both individual and population-

levels—for an urban bird before, during, and after the anthropause to examine if birds 

experienced longer-term changes after a year of lowered human presence. Dark-eyed juncos did 

not change fear levels during the anthropause, but they became drastically less fearful 

afterwards. These surprising and counter-intuitive findings, made possible by following the 

behaviour of individuals over time, has led to a novel understanding that fear response can be 

driven by plasticity, yet not habituation-like processes. The pandemic-caused changes in human 

activity have shown that there is great complexity in how humans modify a behavioural trait 

fundamental to urban tolerance in animals. 

  

 
2 This chapter is in revision for publication with the following author order: Eleanor S. Diamant, Ian MacGregor-
Fors, Daniel T. Blumstein, and Pamela J. Yeh 
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Background 

In 2020, many countries in the world went into “lockdown” in response to the COVID-19 

pandemic. With human mobility suddenly halted, these lockdowns drastically changed the 

dynamics of our cities and caused what has been coined as the “anthropause” [1]. While 

devastating for human communities, the absence of humans from the landscape provided a 

unique opportunity to study how animals respond to human activity, from the level of individual 

behavior to population dynamics to community composition. Likely because of the direct and 

indirect effects of human activity, such as vehicular traffic, collisions, light pollution, and noise 

pollution, some wildlife—specifically urban wildlife—adjusted their behaviours and patterns 

across the globe [1–6]. For example, during the initial pandemic lockdowns, urban white-

crowned sparrows (Zonotrichia leucophrys) rapidly responded to the reduction in traffic noise by 

notably changing their songs to more high performing songs that are otherwise interrupted by 

urban noise [2]. Lockdowns have sporadically ended and re-occurred in different parts of the 

world, though human activity has broadly bounced back to pre-pandemic levels. As a result, 

urban animals are now faced with increased human activity and stressors following a long 

absence. By assessing their individual and population-level behaviours before, during, and after 

the anthropause, we can begin to understand how animals respond to dynamic human processes 

and stressors. We can also determine if and how this exceptional event continues to impact 

wildlife even after humans have returned to the landscape. 

 

Determining how animals cope with urban stressors is essential to predicting wildlife response in 

the face of strong anthropogenic change [7,8]. Urbanization is a leading cause of habitat loss and 

biodiversity loss, though some animals manage to survive, adapt, and ultimately thrive in cities 
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[9–12]. Though the underlying causes and associations for urban success vary across species and 

populations, tolerating humans is essential to urban life [13–15]. Indeed, at the population and 

species levels, we see that urban animals typically have a reduced fear of humans [16]. The 

mechanisms underlying this behavioural shift are challenging to parse out: in some organisms, 

this is due to habitat selection wherein individuals that are less fearful choose urban habitats with 

increased human activity and stress [17]. However, habituation-like processes that may underly 

within-generational behavioural plasticity—an individual’s propensity to shift their behaviour in 

response to differences in their environments—can also explain this observed phenomenon [18]. 

Here, individuals exposed to human activity might decrease their fear response with increased 

exposure. Once in the city, the urban environment might select for individuals that are less 

fearful. Plasticity itself might be under selection if certain individuals express less fear upon 

exposure than others and may evolve if this has reproductive consequences [19,20]. 

 

COVID-19 lockdowns and reopenings provided the opportunity for us to study the complex 

nature of how fear is affected by human activity, allowing us to test how plastic the response is 

in a successful urban bird: the dark-eyed junco (Junco hyemalis). This songbird, native to North 

America, began breeding in urban habitats in the past 20-40 years in Southern Californian cities 

[21–23], likely independently. By assessing fear response across lockdown conditions, we can 

then determine if and how non-evolutionary mechanisms, such as habituation-like processes that 

might lead to tolerance and habitat selection whereby tolerant individuals settle around humans 

while less tolerant ones avoid humans, as well as evolutionary processes like selection on 

plasticity itself, impact fear. Further, the relatively sudden reintroduction of humans to the 

landscape provided us with the opportunity to assess if dark-eyed junco behaviour returned to a 
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pre-pandemic “normal” or if lockdowns shifted how this urban bird behaves and copes with 

human presence long-term.  

 

We tested individual and population-level fear response in urban dark-eyed juncos before, 

during, and after COVID-19 closures to understand the immediate and longer-term effects of 

COVID-19 on other animals and to test fundamental questions in urban behavioural adaptation. 

If lower urban fear response is due to habituation, we expected fear response to lower during the 

COVID-19 closures and increase following reopening. On the other hand, if lower urban fear 

response is due to habitat selection and is less plastic, we expected fear response to remain 

unchanged with respect to the closures. If both habitat selection and habituation play a role, as 

might be seen if birds that have relatively lower fear response and a plastic habituative response 

are selected for, we expected fear response to increase during the closures, though not to the 

level of non-urban birds, and to decrease after reopening at the individual and population level. 

None of these hypotheses were supported by our findings. Instead, we found that, at the 

population level and individual level, urban birds did not change their behaviour during the 

COVID-19 closures but became significantly less fearful of humans following reopenings in 

comparison to pre-pandemic baselines.  

 

Methods 

 

Study Sites 

To confirm that urban dark-eyed juncos have lower fearfulness across cities in comparison with 

non-urban dark-eyed juncos, we conducted field work at urban and non-urban sites in Southern 
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California between 2017 and 2022. We assessed individually colour-ringed birds across three 

metropolitan areas: Santa Barbara County (“Santa Barbara”), Los Angeles County (“Los 

Angeles”), and San Diego County (“San Diego”). At each of these metropolitan areas, we 

sampled birds at the local University of California (University of California Santa Barbara 

(UCSB), Los Angeles (UCLA), and San Diego (UCSD), respectively). In Los Angeles, 

specifically, we also sampled birds across the city in Occidental College and parks of various 

sizes across the urban core. Dark-eyed juncos likely began breeding in San Diego in the early to 

mid 1980s, in Los Angeles in the early to mid 2000s, and in Santa Barbara in the early 2010s. 

These sites were compared to non-urban, mountainous sites that are indicative of their historic 

breeding range [23,24]: the UC Stunt Ranch Reserve in the Santa Monica Mountains, the UC 

James San Jacinto Mountain Reserve, and the Angeles Forest in the San Gabriel Mountains. 

 

Because we have a longitudinal study site in urban Los Angeles, dark-eyed juncos at UCLA 

were individually distinguishable by unique coloured leg rings. In March 2020, UCLA closed 

classes and research, except for essential researchers. UCLA remained remote until Fall 2021, 

when classes resumed on campus. We conducted human pedestrian surveys at UCLA to confirm 

that human activity was lower during campus closures than when classes are in session and in 

person. We previously surveyed 12 points across campus twice per week, once in the morning 

and once in the afternoon during the anthropause (May-July 2021) and the campus was “back to 

normal” (March-July 2022). Each survey lasted two minutes and all individuals, vehicles, and 

dogs crossing the observer’s eyeline were counted. Campus closures caused human activity to be 

approximately 7x lower than “normal” in 2021 [25], and therefore even lower during 2020 at the 

height of Los Angeles lockdowns and UCLA campus restrictions.  
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Individual Colour Ringing 

We captured and ringed local dark-eyed juncos at each site at the start of territorial singing – 

around mid-January in urban sites and April in non-urban sites – to July 2017. Birds were 

captured between 6:30 and 11:00. They were lured into mist-nets using playback of junco song 

recorded at UCLA in 2018 or from the MacCauley Library (Cornell University). Each junco was 

fitted with 3 colour rings and 1 aluminium USGS ring in a unique combination. Birds were aged 

by moult limits as “second year,” “after second year,” or “after hatch year” (when age could not 

be determined) and sexed by cloacal protuberance or brood patch. When birds were not in 

breeding condition, they were sexed by plumage, which was later confirmed by behaviour 

(singing or exhibiting nesting behaviour). All birds were released after processing. 

 

Flight Initiation Distance Assays 

We assessed the fear levels of individually identifiable birds using a flight initiation distance 

assay repeatedly during the 2018-2022 breeding seasons (January-June/July). We determined 

flight initiation distances (FIDs) for each bird following established methods [26,27]. All FID 

tests were conducted by ESD. A marker was dropped at first site of the focal bird. The researcher 

walked at a steady pace of ~0.5m/sec towards the bird. A second marker was dropped at the 

point the researcher was when the bird flew or hopped away, and then a third where the bird was 

when it flew or hopped. We recorded the starting distance (the distance between the first marker 

and the third), FID (the distance between the second and third). Effort was made to universally 

assay juncos in instances with low human activity (<15 humans walking in the vicinity while 

assays were conducted, except for 18 data points in areas rarely empty during the academic year) 
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and with no other humans or juncos between the investigator and the focal bird. Trial number per 

individual was determined for each fear response assay and varied between 1 to 10 trials per 

individual. We also included distance to cover—defined as habitat a bird could hide within or 

behind, i.e. vegetated cover, trees, or artificial cover such as benches)—that was reflective of 

very local habitat structure and potential risk assessment. While visibility can affect fear 

response, we accounted for potential variation in fog retrospectively by including a time by 

month covariate as, anecdotally, fog cover in Southern California typically is earlier in the year 

and earlier in the day. To the best of our knowledge, hourly numeric cloud cover data do not 

exist for Southern California. A small subset of trials were missing data on distance to cover, 

which were imputed with the median value across all trials. 

 

We conducted FID tests in 2018 and 2019 in non-urban sites. At sites other than UCLA, we 

conducted FIDs before COVID-19 lockdowns in 2018, 2019, and up to March 2020, as the 

campuses closed following “safer-at-home” measures. At UCLA, we conducted FIDs on birds in 

2018, 2019, 2020 (npre-pandemic=71; n2020 anthropause=135), 2021 (n=131), and 2022 (n=67). Most 

FIDs were conducted during the pre-breeding and breeding seasons—between January and 

July—as birds were more conspicuous, easier to find, and not in wintering flocks, which has 

been found to affect FIDs in other songbirds [28]. We measured FIDs of juncos before COVID-

19 restrictions started on 14 March 2020 (i.e., “pre-pandemic”). In-person classes were cancelled 

on that date, and the campus was mostly closed thereafter (i.e., “during anthropause”). During 

this time, we attempted to re-measure FIDs for individuals every 2 weeks, though this was not 

possible universally due to the spontaneous nature of FID testing. We re-assessed individuals 

following COVID-19 lockdowns from January to June 2022 following UCLA returning to in-
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person instruction (i.e., “post anthropause”). We categorized these time periods as “pre-

pandemic” (2018-March 14, 2020), “2020 anthropause” (March 25, 2020-July 2020), “2021 

anthropause,” and “post-anthropause” (2022). 

 

Because we were also tracking reproductive behaviour prior to COVID-19 lockdowns, we know 

with certainty that at UCLA all chicks were hatched following the cancelation of in-person 

classes, and thus a significant decrease in human activity. As such, all birds ringed at UCLA in 

2021 and 2022 that were in their second-year plumage were likely to have been hatched and 

fledged during the COVID-19 lockdown, with minimal human activity relative to older birds on 

campus. We also followed reproductive activities in 2021 and ringed chicks in the nest, some of 

which returned to campus and were assayed as second-year birds.  

 

Measuring Human Activity 

To gauge human activity shifts in the city as a whole, we accessed Google’s Community 

Mobility Reports [29]. This dataset compiled data from smartphones to determine where users 

spent time across different place categories compares aggregated data to a pre-pandemic baseline 

for a given community (in this case, Los Angeles) per day. We used the categories: mean change 

in activity (averaged across categories) and time spent in residential places as variables in our 

analysis. Because this dataset only began in February 2020, we calculated the mean and standard 

deviation for pre-pandemic levels (15 February to 14 March 2020) and randomly generated a 

normal distribution with the calculated mean and standard deviation. We imputed Los Angeles 

Community Mobility data for each date before 15 February 2020 randomly from this normal 

distribution.  
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Statistical Analysis 

To determine which variables were important to include in GLMMs, we first ran a regression 

tree analysis using UCLA data. Here, our dependent variable was flight initiation distance (m). 

Independent variables we included were: sex, month, time, UCLA’s anthropause status+year 

(2018-2020 “pre-pandemic,” “2020 anthropause,” “2021 anthropause,” 2022 “post-

anthropause”), Google’s mean change in activity in Los Angeles, Google’s time spent in 

residential places in Los Angeles, distance from cover, and starting distance. Based on this 

analysis, UCLA’s anthropause status+year, mean change in community mobility, distance from 

cover, time (before or after ~9am) and starting distance were variables that were found to 

diagnose differences in flight initiation distance. Mean change in activity and time spent in 

residential places were associated with each other, because mean change in activity is calculated 

using time spent in residential places, in combination with other variables. The regression tree 

analysis found that mean change in activity was a more important variable than time spent in 

residential areas. Thus, we included mean change in activity in our GLMM.  

 

To test the assumption that urban dark-eyed juncos across Southern Californian cities exhibited 

parallel shifts in FID in comparison to non-urban dark-eyed juncos before the pandemic, we 

fitted a generalized linear mixed model (GLMM) using a gamma distribution and an inverse link 

function. We included city and starting distance as fixed effects and bird ID as a random effect. 

For this analysis, we only included dark-eyed juncos in Los Angeles (n=119), San Diego (n=33), 

and Santa Barbara (n=13) that were assayed before the COVID-19 pandemic. We aggregated 
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data (n=25) across non-urban populations to compare to. We then determined within model 

contrasts to test if urban populations were different from each other and from non-urban juncos. 

 

We then fitted a GLMM with a gamma distribution and an inverse link, fitting the distribution of 

our data. We included UCLA’s anthropause status+year, a given individuals’ trial number, mean 

change in community mobility use with the Los Angeles Google Community Mobility Reports 

data, and starting distance as fixed effects and bird identity as a random effect. We visualized 

individual shifts by subsetting juncos who were assessed before and during the anthropause 

and/or during and after the anthropause to determine if trends at the population level were 

repeated at the individual level (Figure 2). Due to lower sample sizes for samples within 

individuals across time periods, we combined 2020 and 2021 anthropause categories into one 

category. To determine if patterns in these data were driven by habituation-like processes, we 

fitted the same GLMM, but only considered 3 anthropause categories (i.e., “before,” “during,” 

and “after” the anthropause) instead of differentiating between 2020 and 2021. All other 

variables remained the same. 

 

To assess early-life effects, we compared four cohorts of second-year juncos’ FID at UCLA. 

Second-year birds assayed in 2019 (n=15) hatched and were assayed in a high-human-activity 

environment. Second-year birds assayed in 2020 (n=34) hatched with high human activity and 

were assayed in an anthropause environment. Second-year birds assayed in 2021 (n=11) hatched 

and were assayed in an anthropause environment. Second-year birds assayed in 2022 (n=10) 

hatched in an anthropause environment yet were assayed in a high-human-activity environment. 

We fitted a GLMM with a gamma distribution and an inverse link function. The fixed effects 
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were “year second-year bird was assayed” (pre-pandemic, 2020 anthropause, 2021 anthropause, 

2022 post-anthropause) and starting distance. Bird ID was included as a random effect. We 

calculated within-model contrasts to determine if there were significant differences in FID 

between groups. We tested the assumptions of all models by testing for normality and linearity of 

residuals, as well checking for multicollinearity between independent variables. Assumptions 

were met for all models. 

 

All tests were done in R v. 4.2.2 [30]. Regression trees were built and tested using R packages 

RSAMPLE [31] and RPART [32]. GLMMs were built and analysed using LME4 [33]. Within-model 

contrasts were calculated using R packages GMODELS [34] and MULTCOMP [35].  

 

Results 

Across tested Southern California populations, urban juncos have a consistent decrease of fear 

response in comparison to non-urban conspecifics (Supplementary Information; Figure S1). 

 

At the population-level, fear response remained relatively unchanged during campus closure in 

comparison to pre-pandemic levels (N=404). Upon campus reopening in the 2021-22 academic 

year, fear response in the 2022 breeding season was significantly reduced compared to 

measurements from prior breeding seasons (Figure 1). We found that campus closure status 

(X2=16.37, df=3, p=0.001) strongly and significantly affected fear, but relative change in human 

activity (X2=1.86, df=1, p=0.17), trial number (X2=3.57, df=1, p=0.06), distance from cover 

(X2=0.03, df=1, p=0.85), and starting distance (X2=0.02, df=1, p=0.96) did not. Additionally, 

there was significant individual variation in fear (sd=0.23, p<0.0001) and time by month 
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(sd=0.01|0.01, p=0.007; Figure S2). Collectively, individual juncos varied in their fear response, 

but the reopening and increase of human activity following restrictions significantly lowered fear 

across the population (p<0.001 in 2020 anthropause and 2021 anthropause fearfulness compared 

with post-anthropause fearfulness, and p=0.047 in pre-pandemic fearfulness compared with post-

anthropause fearfulness; Figure 1; Figure S2; Table S1).   

 

Fig. 1. Population-level fearfulness remained unchanged during lockdowns but decreased 
following reopenings. Population-level flight initiation distance (m) before (n=71), during 
(n2020=135; n2021=131), and after (n=67) the anthropause. The dark-eyed junco population at 
University of California Los Angeles (UCLA) did not shift their FID across the anthropause 
(GLMM contrast: p>0.05). FID significantly dropped in the 2022 post-anthropause environment 
in comparison to both years in the anthropause and the pre-pandemic baseline (GLMM contrasts: 
p<0.05 for pre-pandemic, 2020 anthropause, and 2021 anthropause compared to 2022 post-
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anthropause). Flight initiation distance (FID) data are log10 transformed for visual aid, but not in 
the formal statistical analysis. Data points represent mean log10 FID ± standard error for each 
time period assessed. Groups with the same letter are not statistically significantly different from 
each other.  Groups with different letters are statistically significantly different. 

 

The patterns seen at the population level were repeated at the individual level (Figure 2; Table 

S2). A subset of individuals was tested repeatedly before, during, and after pandemic closures. 

While individuals varied in their fear response once lockdowns occurred, individuals nearly 

universally became less fearful following campus reopening (n=10 of 11). These results are 

consistent with the hypothesis that behavioural plasticity in fear response explained the pattern at 

the population-level. While we expected individual birds to become more tolerant to humans 

during the closures and return to a pre-pandemic fear response following reopening, we found 

that urban dark-eyed juncos had a surprisingly plastic response to increased human activity, but 

not to decreased human activity.   
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Fig. 2. Individuals became less fearful after reopenings in comparison to before the 
pandemic closures. Individual shifts in flight initiation distance (FID) before, during, and after 
anthropause. A. FID measurements only for individuals that were tested repeatably for at least 
one time point in each period: before, during, and after the campus closures (n=11). Trends 
reflect a similar decrease in FID from before the pandemic to the end of the anthropause. Lines 
are fitted linearly to demonstrate the change from before to after the anthropause. Each line 
represents one individual. Dashed red vertical lines denote the beginning and end of the 
anthropause, respectively. A GLMM, only including birds tested across all time periods and 
accounting for potential habituation (by including trial number) and treating the anthropause as a 
single category were similar. Here, differences in pre-pandemic fearfulness compared with post-
anthropause fearfulness were significant (p=0.09) and differences in anthropause compared to 
post-anthropause fearfulness were significant (p=0.02) B. Mean FID values per individual (gray) 
in pre-pandemic, anthropause, and following reopening—“post-anthropause”—time periods. The 
thick black line represents shifts across all individuals sampled repeatedly between the pre-
pandemic and anthropause (n=33) or the anthropause and post-anthropause time periods (n=24). 
These demonstrate pairwise shifts in mean fear response for each individual to account for 
individuals that might not have been tested in one of the time periods. A GLMM accounting for 
potential habituation (by including trial number), closest cover, time by month, and considering 
the anthropause as a single category, revealed significant pairwise differences between pre-
pandemic and post-anthropause environments (p=0.02) and between the anthropause and post-
anthropause environments (p<0.001). Though FIDs were not log10 transformed in our analyses 
(given their gamma distribution), they are log10 transformed here for visual ease. 

 

Discussion 

We found that fear response did not shift at the height of the COVID-19 closures, in comparison 

to before the pandemic, but that the re-introduction of humans led to a decrease in fear both at 

the population-level and at the individual-level. Thus, this urban bird did not become more like 

its wildland counterparts without human presence but rather, when faced with more human 

activity, became even less fearful than pre-pandemic levels, which is already less fearful than 

wildland birds. That dark-eyed juncos did not increase fearfulness with decreased human 

activity, even amongst birds who hatched during the COVID-19 closures (Supplementary 

Information; Figure S3), suggests that lower urban fear response is not dynamically driven by 

habituation-like processes—if these processes have a role in explaining tolerance at all. Indeed, 

habituation-like processes were controlled for at the individual level in all our analyses and do 
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not explain the population-wide pattern we found. Rather, fear response expression is likely 

more complex and suggests that studying their ontogeny will be particularly illuminating. It 

could be that urban colonists from non-urban origins might have a lower baseline fear response 

in comparison to the non-urban population at large, and potentially decrease their fear response 

with human activity.  We note, that in contrast to virtually all other studies of anthropause effects 

in birds (e.g., [1,3,4,36–38]) that used unmarked birds and were unable to focus on individuals, 

these insights emerged only from a detailed, longitudinal study of individuals. 

 

A population increase coupled with a re-introduced landscape of fear might have led to higher 

competition for resources in 2022 and thus trade-offs favouring increased foraging despite higher 

perceived predator (human) risk. Changing patterns of human mobility shifted birds’ use of 

space broadly across lockdowns [5], suggesting that human presence affects the habitability of 

urban spaces. Entering into COVID-19 lockdowns and reopenings, contrasting shifts in human 

activity—one increasing human activity and one decreasing human activity—led to contrasting 

fitness consequences reflecting this shift in the landscape of fear: great tits (Parus major) in an 

area with lower human activity had higher reproductive output than that with higher human 

activity [39]. However, there was no evidence for increased fitness by means of increased 

nestling condition and nest success when comparing 2021 and pre-pandemic 2019 breeding 

seasons in this population [25]. Additionally, there were no changes in aggressive interactions in 

the population following reopenings in 2022 and pre-pandemic 2019 breeding seasons [25], 

suggesting that fear response is not a by-product of shifting behavioural strategies due to a 

different socioecological context or due to indirect effects on predator density during the 

anthropause. Urban song rapidly shifted during San Francisco’s lockdowns in a related species 
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(white-crowned sparrows) potentially because there was a clear communicative signal being 

interrupted by urban stressors [2]. The relationships that exist between human activity and other 

urban behaviours appear more nuanced. 

 

Fear responses could vary because ecological conditions changed, altering the trade-offs in 

escape behaviour following reopenings. Recent drought conditions in Southern California might 

have made urban birds more reliant on anthropogenic food to buffer declines in natural food 

resources—as was the case in an urban monkey [40]—leading to a higher tolerance of human 

presence in 2022. However, urban areas act as a buffer to arid conditions because of irrigation, 

supporting larger populations and diversity of arthropods [41]. Additionally, UCLA is an 

irrigated and green campus in an affluent area, which in turn is associated with increased 

irrigation and higher plant and bird diversity relative to non-urban arid conditions [42]. Thus, 

drought conditions in 2022 might not have caused strong detrimental effects, if any, to local 

urban resource distribution. Emergency regulations in California limiting turf irrigation only 

began in June 2022, making this a particularly unlikely explanation for lower fear response in the 

time period we were sampling, but something that could be accounted for in future studies given 

recent water-use restrictions.  

 

Alternately, we could have been measuring the level juncos were distracted by stimuli. Indeed, 

escape behaviour can vary based on the number of stimuli as prey must divide their attention. 

With high human density and disturbances, prey can become distracted and either fail to respond 

as rapidly to an approaching threat or flee more rapidly [43,44]. Here, fear response in juncos 

would reflect the focal bird being more or less distracted, rather than more or less fearful. If 
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distraction by the sudden increase in humans was responsible for the reduction in FID, we might 

expect that distracted animals were unable to detect an approaching human and therefore 

tolerated closer approach. Nonetheless, if fear response were solely modulated by distraction, we 

would have expected a higher fear response during the anthropause than after reopening; this 

pattern was not seen. Thus, juncos behaved surprisingly differently following the re-introduction 

of high human activity, though it could be due to them filtering stimuli differently than before 

the pandemic. 

 

We propose two novel hypotheses explaining how fear response develops and is modulated in 

urban-adapted birds: urban bird fear response is either a ratchet or a spring. Birds that hatched 

during the anthropause mirrored the population as a whole: they became less fearful with 

increasing human activity following reopenings rather than expressing fearfulness at the same 

level as second year birds did before the pandemic, despite differences in their early life 

environment. Similarly, the population as a whole became less fearful than their pre-pandemic 

fear levels following reopenings (Supplementary Information). Thus, the prolonged absence of 

human activity followed by a rapid increase, rather than recurrent exposures to human activity, 

could be driving the expression of this fear response.  

 

If a fear response acts as a spring that returns to pre-existing baseline with continuous exposure, 

we would expect that dark-eyed juncos will eventually re-sensitize to human activity and return 

to a pre-pandemic intermediate baseline. Alternatively, fear responses could change like a ratchet 

where each burst of rapid increases in human activity an urban bird is exposed to could lead to 

lower fear response. Rather than dynamically returning to a pre-pandemic baseline, a long 
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absence coupled with a rapid burst of human activity drives an increase in human tolerance. 

Testing these hypotheses requires on-going study. 

 

Conclusions 

Collectively, our results suggest that changes in fear responses might not be as predictable as we 

might expect, and likely depends on which individuals and how their behaviours develop and 

shift in combination with strong and rapidly shifting collective human behaviours. Only through 

studies on individual animals tracked over time can we understand the mechanisms underlying 

population response, which cannot be confirmed from contradictory broadscale patterns found in 

metanalyses [36,38]. While the anthropause created much human hardship, it offered a unique 

opportunity to identify an important new avenue of ontogenetic research that can create insights 

which will help us better conserve biodiversity in a rapidly changing, human-dominated world. 
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Chapter Five: Supplementary Material 

Fear response across Southern Californian populations 

Urban populations across Southern California exhibited lower, yet similar FID to each other in a 

pre-pandemic baseline, in comparison to non-urban dark eyed juncos aggregated across non-

urban populations (Figure S1). Dark-eyed junco population was a significant effect in the model 

(X2=41.8, df=3, p<0.0001) and starting distance was not (X2=2.59, df=1, p=0.108). All urban 

populations had non-significant differences in FID (p>0.1), but each was significantly lower than 

non-urban juncos (p<0.01), suggesting that time since urban colonization and population does 

not affect an urban junco population from shifting fear response lower. 

 

Fear response across age cohorts 

FID significantly varied by anthropause stage+year when assessing second-year bird fear 

response (X2=8.10 df=3, p=0.03; starting distance: X2=3.67; df=1, p=0.06; trial number: X2=1.84; 

df=1, p=0.17). 2022 second-year juncos—those that hatched during the anthropause yet had 

exposure to human activity in adulthood—had a substantially lower FID in comparison to all 

other groups. These results were marginally significant in pairwise contrasts (pre-pandemic – 

post-anthropause: p=0.02; 2020 anthropause – 2022 post-anthropause: p=0.04; 2021 anthropause 

– 2022 post-anthropasue: p=0.09; Figure S3). However, all other groups did not significantly 

differ from each other (p>0.90). Low sample sizes likely affected power to detect differences 

between groups using an α=0.05. 
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Supplementary Tables 
 

Table S1. Generalized linear mixed model (GLMM) results for population-level differences in 
flight initiation distance (FID) across years and anthropause status (before, during, after).  

GLMM is fitted to a gamma distribution with an inverse link. P-values for random effects were 
calculated by comparing models with and without the given random effect using ANOVA. 
Pairwise contrasts for anthropause stage categories for the model are included. Significant p-
values are in bold. Significant p-values for pairwise contrasts reflect significant differences in 
FID within the model between the groups contrasted. 
  

Fixed effects C2  df p-value 
Mean change in Los Angeles mobility across 
measured mobility categories 

1.86 1 0.17 

Trial number 3.57 1 0.06 
Anthropause+Year 16.37 3 0.001 
Starting distance 0.02 1 0.96 
Distance from cover 0.03 1 0.85 
    
Random effects variance sd p-value 
Bird ID 0.05 0.23 < 0.0001 
Time|Month 0.01|0.01 0.09|0.1 0.007 
Residual 0.23 0.48  
    
Number of observations 402   
Log-likelihood -430.5   
    
Pairwise contrasts: Anthropause+Year estimate se z-score p-value 
pre-pandemic – 2020 anthropause -0.04 0.10 -0.43 0.97 
pre-pandemic –2021 anthropause -0.07 0.10 -0.69 0.9 
pre-pandemic –post-anthropause -0.31 0.12 -2.55 0.047 
2020 anthropause – 2021 anthropause -0.03 0.05 -0.56 0.94 
2020 anthropause – post-anthropause -0.27 0.07 -3.67 < 0.001 
2021 anthropause – post-anthropause -0.24 0.06 -3.85 < 0.001 
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Table S2. Generalized linear mixed model (GLMM) results for individual-level differences in 
flight initiation distance (FID) across anthropause status (before, during, after) with 3 categories 
for COVID-19 closure status.  

GLMM is fitted to a gamma distribution with an inverse link. P-values for random effects were 
calculated by comparing models with and without the given random effect using ANOVA. 
Pairwise contrasts for anthropause stage categories for the model are included. Significant p-
values are in bold. Significant p-values for pairwise contrasts reflect significant differences in 
FID within the model between the groups contrasted. 
  

Fixed effects C2  df p-value 
Mean change in Los Angeles mobility across 
measured mobility categories 

2.48 1 0.12 

Trial number 6.38 1 0.01 
Anthropause status 15.97 2 0.0003 
Starting distance 0.01 1 0.92 
Distance from cover 0.02 1 0.89 
    
Random effects variance sd p-value 
Bird ID 0.05 0.22 < 0.0001 
Time|Month 0.01|0.01 0.1|0.1 0.003 
Residual 0.23 0.48  
    
Number of observations 402   
Log-likelihood -430.6   
    
Pairwise contrasts: Anthropause estimate se z-score p-value 
pre-pandemic – anthropause -0.06 0.09 -0.65 0.63 
pre-pandemic –post-anthropause -0.31 0.12 -2.58 0.024 
anthropause – post-anthropause -0.25 0.06 -3.99 < 0.001 
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Supplementary Figures 
 

 

 
 

Fig. S1. Flight initiation distance (m) was lower across urban dark-eyed junco populations 
in comparison with non-urban populations in Southern California. Flight initiation distance 
in Los Angeles (n=119), San Diego (n=33), and Santa Barbara (n=13) were all significantly 
lower than that of non-urban dark-eyed juncos (n=25) (p<0.01), yet not significantly lower from 
each other (p>0.05). Flight initiation distance data are log-transformed for visual aid, but not in 
the analysis. Grey represents urban populations and green represents non-urban populations. 
Shaded violin plots represent the data distribution. Lines within the violin plots represent 25%, 
50% (thicker center line), and 75% quantiles. Data points per category are jittered. Groups with 
the same letter are not statistically significantly different from each other.  Groups with different 
letters are statistically significantly different. 
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Fig. S2. Population-level fearfulness remained unchanged during lockdowns but decreased 
following reopenings, though exhibits strong variation across time. Population-level flight 
initiation distance (m) before (n2018+2019+2020 pre-pandemic =71), during (n2020 anthropause=135; n2021 

anthropause=131), and after (n2022=67) the anthropause. The dark-eyed junco population at 
University of California Los Angeles (UCLA) did not shift their FID across campus closures 
(GLMM contrasts: p>0.05. FID significantly dropped in the 2022 post-anthropause environment 
in comparison to both years in the anthropause and the pre-pandemic baseline (GLMM contrasts: 
p<0.05). Flight initiation distance (FID) data are log-transformed for visual aid, but not in the 
analysis. Shaded violin plots represent the data distribution, with white represented a pre-
pandemic baseline, orange-red representing closures in UCLA and Los Angeles as whole, yellow 
representing the lifting of some but not all restrictions, and green representing full reopenings 
and the end of the anthropause. Lines within the violin plots represent 25%, 50% (thicker center 
line), and 75% quantiles. Data points per category are jittered. Groups with the same letter are 
not statistically significantly different from each other.  Groups with different letters are 
statistically significantly different. 
  



 155 
 

 

Fig. S3. Early life and adulthood exposure to human activity does not affect adult fear 
response. Each column corresponds to only second-year birds assayed in different years in a 
natural full factorial experiment. The left column represents second-year birds assayed in 2019 
(n=15) hatched and were tested in a pre-pandemic, high human activity environment. Second-
year birds assayed in 2020 (n=34) hatched in an environment with high human activity yet were 
assayed as adults during the anthropause. Next, second-year birds assayed in 2021 (n=11) 
hatched and were tested during the anthropause, never having been exposed to high human 
activity. Finally, the right column represents second-year birds assayed in 2022 (n=10): hatched 
during the anthropause and naively exposed to high human activity in adulthood. 2022 second-
year birds have a marginally significantly shorter FID than the pre-pandemic group (2019-2022: 
p=0.04) with no clear distinction between other groups (2020-2022: p=0.11; 2021-2022: p=0.57; 
2019-2020: p=0.97; 2019-2020: p=0.93; 2020-2021: p=0.78). Data are restricted to dark-eyed 
juncos at UCLA. Shaded violin plots represent the data distribution. Flight initiation distance 
data are log-transformed for visual aid, but not in the analysis. Shaded violin plots represent the 
data distribution, with white represented a pre-pandemic baseline, orange-red representing 
closures in UCLA and Los Angeles as whole, yellow representing the lifting of some but not all 
restrictions, and green representing full reopenings and the end of the anthropause. Lines within 
the violin plots represent 25%, 50% (thicker centre line), and 75% quantiles. Data points per 
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category are jittered. Groups with the same letter are not statistically significantly different from 
each other.  Groups with different letters are statistically significantly different. 
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Chapter Six: Phenotypic plasticity in the anthropause: Does reduced 
human activity impact novel nesting behaviour in an urban bird?3 
 
Abstract 

The COVID-19 pandemic temporarily transformed urban ecosystems by restricting public 

human activity to only the most essential societal functions, even as other landscape-level factors 

such as the built environment remained unchanged. In so doing, it provided a unique opportunity 

to experimentally answer questions about the role of human disturbance in driving behavioural 

adaptation in urban wildlife. We compared nesting data collected on an urban dark-eyed junco  

(Junco hyemalis) population nesting on the University of California, Los Angeles (UCLA) 

campus during the 2021 nesting season, when the campus restrictions were in effect, to a similar 

dataset collected in 2019, before the pandemic, in order to examine (1) whether urban dark-eyed 

juncos on the UCLA campus altered their use of novel off-ground and artificial nesting sites in 

response to reduced human activity, and (2) if reduced human activity impacted nesting success. 

We found that after a >80% reduction in human activity, junco nesting success during the 

COVID-19 pandemic modestly increased compared to pre-pandemic levels. However, nest-site 

selection remained unchanged. Our findings suggest that the landscape of the built environment 

or urban predators, rather than disturbance by human activity, drives novel nest-site selection in 

urban birds. 

Keywords: COVID-19, dark-eyed junco, human disturbance, urban adaptation, urbanization 
  

 
3 This chapter is in revision and provisionally accepted for publication Animal Behaviour with the following author 
order: Samuel A. Bressler*, Eleanor S. Diamant*, Christina Cen, and Pamela J. Yeh.  
*authors contributed equally 
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Introduction 

The COVID-19 pandemic, and the social distancing, isolation, and quarantine measures 

enacted in response to it, resulted in the extraordinary, multi-year phenomenon of cities emptied 

of people, with environmental effects ranging from reduced human and vehicular traffic 

(Marinello et al., 2021) to attenuated smog (Ravina et al., 2022) and sound pollution (Aletta et 

al., 2020; Guenaga et al., 2021; Lecocq et al., 2020). The unique environmental conditions 

arising in this period, subsequently dubbed the “anthropause” (Rutz et al., 2020), radically 

shifted wildlife behaviour and ecology in many cities across the world (Manenti et al., 2020; 

Miraglia & Di Brita, 2022; Montgomery et al., 2021). Furthermore, the anthropause created the 

conditions of a natural experiment for testing the direct impact of human activity on urban 

wildlife. In the short-period of time since the onset of the COVID-19 pandemic, urban ecologists 

have linked reduced human activity in urban areas to a range of effects on animals, including 

declines in vehicle-induced mortality in hedgehogs (Łopucki et al., 2021), increased use of urban 

areas by birds (Schrimpf et al., 2021), a shift to lower song frequencies in urban white-crowned 

sparrows (Derryberry et al., 2020), and a shift in spatial foraging patterns by urban mountain 

lions (Benson et al., 2021). While most national and regional governments have largely lifted 

pandemic-era restrictions on human activity and movement, ecological and behavioural data 

collected during this period continues to inform our understanding of the relationship between 

humans and wildlife in the urban environment.  

Prior research across many species and cities has established and quantified the impacts of 

human activity on urban animal behaviour. For example, urban wildlife typically exhibit reduced 

fear response (Møller, 2008; Samia et al., 2015; Stansell et al., 2022), reduced stress levels 

compared to their wildland counterparts (Atwell et al., 2012; French et al., 2008), and vocalize at 
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different times of day to avoid competition with anthropogenic noise (Arroyo-Solís et al., 2013; 

Cartwright et al., 2014; Vargas-Salinas et al., 2014). Nevertheless, studies of human-animal 

interactions in cities are limited by human omnipresence itself: we cannot shut down a city to 

study how animals might respond to our absence. As a result, the extent to which organisms 

respond to the physical presence of humans, versus our infrastructure, landscapes, and 

commensals, is difficult to tease apart. The pandemic-driven decoupling of human activity from 

other urban features has made it possible to experimentally test whether behaviourally plastic 

traits in urban wildlife vary in response to human activity or are tied to the built environment 

(Bates et al., 2020; Derryberry et al., 2020; Seress et al., 2021). Urban birds, due to their 

abundance and conspicuousness within the city, as well as their dominance within the prior 

urban ecology literature, are an ideal model for testing these hypotheses. 

Nesting behaviour in birds is an important natural history trait that is subject to filtration, 

plasticity, and natural selection in urban areas (Croci et al., 2008; Reynolds et al., 2019). Cities 

often have stressors that select against certain nesting guilds, such as ground nesters (Cooper et 

al., 2020; Croci et al., 2008; Evans et al., 2011), while favouring those that can make use of 

artificial cavities (Jokimäki et al., 2016; Tomasevic & Marzluff, 2017). In addition, many species 

that do adapt to city life develop flexibility in reproductive traits. For example, many urban bird 

populations use a wider variety of nest sites than their wildland conspecifics (Yeh et al., 2007), 

develop modified breeding phenology (Capilla-Lasheras et al., 2022; Fudickar et al., 2017), and 

incorporate anthropogenic materials into their nests (Antczak et al., 2010; Potvin et al., 2021; 

Suárez-Rodríguez et al., 2013). At least some evidence indicates that birds may alter nesting 

behaviour in urban areas to cope with increased levels of human activity. For example, nest 

height in a Singaporean population of Eurasian magpies (Pica pica) was positively correlated 
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with pedestrian activity (Wang et al., 2008), while species with less plastic nesting strategies, 

such as American kestrels (Falco sparverius), reduced incubation and nest provisioning in 

response to human presence (Strasser & Heath, 2013).  

The COVID-19 pandemic created the conditions for comparisons of urban nesting behaviour 

before and after the onset of reduced human activity. In doing so, it opened up new lines of 

inquiry into the impact of human activity on nesting behaviour, such as the relative importance 

of human disturbance on nest-site placement, as opposed to other potential drivers of urban 

nesting behaviour, such as predation by human commensals (Schmidt et al., 2006) or the 

inherent desirability of novel nesting sites in urban areas (Bressler et al., 2020; Finley & Finley, 

1924).  

The dark-eyed junco (Junco hyemalis) is a small sparrow that breeds in woodlands and 

forests throughout much of North America (Nolan et al., 2020). In Southern California, this 

species was historically restricted as a breeder to montane wildland habitats for nesting, but over 

the past several decades, it has successfully colonized numerous cities in Southern California 

(Bressler et al., 2020; Yeh & Price, 2004). Urban juncos have diverged from their wildland 

counterparts behaviourally, including through reduced aggression (Newman et al., 2006), a 

longer breeding season (Price et al., 2008), and the use of novel nesting sites (Yeh et al., 2007). 

Novel nesting behaviours adopted by urban juncos include an increased use of off-ground 

nesting, largely driven by abundant use of crevices and ledges on artificial structures for nesting. 

This behaviour is correlated to increased nesting success in cities (Bressler et al., 2020; Yeh et 

al., 2007). Individual juncos also display a high level of nesting plasticity, as breeding pairs have 

been observed to shift between the use of traditional and novel nesting sites; furthermore, 

informed re-nesting has been demonstrated in at least one population: pairs are more likely to 
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select a nest site with similar characteristics to a prior nest if the prior nesting attempt was 

successful, rather than a failure (Bressler et al., 2020). Thus, if nest placement is sensitive to 

human disturbance, then shifts in nest locations should be readily observable with changes in 

human activity. 

In this paper, we examine the impact of an unexpected reduction in levels of human activity 

due to the COVID-19 pandemic on nesting behaviour in juncos on the campus of the University 

of California, Los Angeles (UCLA). We compared the proportion of nests placed off the ground 

and in novel nesting locations during the 2021 breeding season—when human activity was 

severely reduced as a result of limitations on campus access during the COVID-19 pandemic—

with data previously collected during the 2019 breeding season before the pandemic. We 

predicted that if novel nest placement were a reaction to disturbance by human activity, fewer 

nests would be placed off-ground in 2021 than in 2019. By contrast, if nest placement were 

driven by landscape-level, non-human factors such as availability of nest sites, then there would 

be no difference in off-ground nesting between 2019 and 2021. Understanding the drivers of nest 

placement in cities will better inform wildlife and habitat management not just in cities but 

wherever humans and wildlife coexist. 

 

Methods 

Study Site and Field Methods 

The UCLA campus is located in western Los Angeles, California. It lies in the foothills of the 

Santa Monica Mountains and has a Mediterranean climate characterized by hot, dry summers 

and cool, wet winters. The campus is heavily urbanized, with many large buildings interspersed 

with stretches of lawns, planted trees (particularly non-native pines (Pinus sp.), sycamores 
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(Platanus sp.), and various palm species (family Arecaceae). The campus is surrounded by the 

economically affluent neighbourhoods of Westwood, Beverly Hills, and Bel Air, and lies within 

a matrix of urban commercial and suburban residential development with a high level of 

relatively high vegetation and tree canopy cover. The nearest undeveloped open space is 2 km 

away in the Santa Monica Mountains. 

As a result of the coronavirus pandemic, between March 2020 and September 2021, on-

campus classes were moved online, a large majority of students left the on-campus residence 

halls, and research/laboratory activity was heavily curtailed on campus. On-campus amenities 

such as cafés and stores were closed, and any person entering campus was required to complete 

an online COVID-19 symptom questionnaire. These actions led to a dramatic decline in human 

activity on campus, as formerly bustling plazas, commons, and walkways emptied of people. 

While restrictions gradually loosened over the course of the pandemic, human activity would not 

approach pre-pandemic levels until the resumption of in-person classes in September 2021. 

Human pedestrian surveys were conducted across campus from May to July in 2021 and from 

April to June in 2022 to compare human activity during campus closure and after campus 

activities returned to normal conditions (Walters et al., 2023). Twice weekly, two-minute surveys 

were conducted at 13 sites distributed approximately evenly across campus. All pedestrians 

crossing a line of sight were recorded over the course. There was a six-fold increase in human 

activity—as a broad measure of the presence of people across campus—following campus re-

opening in comparison to campus closures (Walters et al., 2023), suggesting a dramatic drop in 

human activity between pre-pandemic and pandemic conditions.  

As part of a longer-term study, juncos have been mist-netted across much of the campus 

since 2017. Targeted netting using junco playback is employed to facilitate trapping, and 
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individuals are fitted with one aluminium leg band and three coloured plastic leg bands for 

individual recognition before being released. A majority of nests identified in both years 

belonged to at least one banded adult. 

Nest-hunting was conducted by teams of researchers led by one investigator in 2019 and a 

second investigator in 2021. The first investigator trained the second investigator in 2019. 

Methods employed in nest hunting remained identical between the 2 years. Nesting began each 

year in early March and was largely complete by early August; during this period, most pairs 

raised between two and four broods. Nests were located by observing and monitoring adult 

juncos during the nesting season for behavioural cues, and upon discovery, the height of the nest 

above ground was estimated, and whether the nest was placed on an artificial substrate (such as 

directly on a building ledge or within ivy covering the exterior of a building) or natural substrate 

(such as in ornamental vegetation). In the interest of conciseness, these two types of nest 

locations are hereafter referred to as “artificial” and “natural” nests respectively. Nests were 

found during the nest building stage by observing female juncos repeatedly depositing nesting 

material such as dried grass or pine needles in a concealed location. These nests were checked 

every second day until the first egg was laid, so that the first egg date could be ascertained. Nests 

were found during the nesting stage by monitoring female juncos animatedly foraging before 

retreating to a potential nesting site. Subsequently, the general area of the nest would be 

methodically searched until the nest was found, with special care being taken not to trample the 

nest during the process. Nests found or observed with eggs were checked weekly until hatching. 

Nests found or observed with young (<7 days old) nestlings were aged based on morphological 

and behavioural characteristics, and the nestlings were banded once they reached 7 to 8 days of 

age. Nests found with nestlings older than 8 days old were not banded to avoid pre-fledging the 



 164 
 

nest. Subsequently, all nests were monitored from a safe distance every 2 to 3 days until 

nestlings fledged and were observed being fed by adults outside the nest. Nests were considered 

successful if they produced at least one fledgling. Prior research of this population found that 

approximately 85% of nest failure was due to some form of predation (Bressler et al., 2020). 

While the cause of nest predation remained unknown for most nests, a variety of potential nest 

predators are common on the study site, including American crows (Corvus), feral and domestic 

cats (Felis cattus), eastern fox squirrels (Sciurus niger), and rats (Rattus sp.) At all stages of nest 

hunting and nest monitoring, care was taken to avoid causing nest predation by scanning the area 

for potential predators before approaching the nest, minimizing time spent at the nest during 

monitoring and banding sessions, and taking care to avoid unnecessary disturbance to 

surrounding vegetation. 

Certain nests were not banded due to inaccessibility, particularly those placed on trees or 

buildings not accessible by a standard stepladder. These nests were instead monitored once every 

week until vocal nestlings could be heard (approximately 5 days after hatching), then every 2 to 

3 days until fledging. 

The location description and characteristics of each nest were logged using the Citizen 

Science app NestWatch. We estimated height in meters of each nest, and we also recorded the 

substrate in which each nest was built.  

 

Statistical Analysis 

All statistical analysis was conducted in R v. 3.6.1 (R Core Team, 2021). The primary 

variables examined in this study were: nest year (coded as a two-factor categorical variable, 

either 2019 or 2021), use of artificial substrate and use of off-ground sites (both of which were 



 165 
 

coded as binary variables), and age of the nest at discovery (calculated by subtracting the 

measured or estimated first egg date from the date the nest was first discovered). Discovery age 

was included as a variable in the models as nests placed higher up or in hard-to-reach locations, 

such as on trees or the sides of buildings, were more difficult to find than those at ground level or 

in low-growing vegetation, and often could only be confirmed at the nestling stage, when adult 

birds would be observed making frequent trips to the nest carrying food. As nests found at more 

advanced stages could be expected to show greater success (as fewer days between discovery 

and fledging would mean a smaller window for predation), including discovery age as an 

explanatory variable would remove this potential source of bias. This method was used instead 

of Mayfield’s method of calculating daily survivorship rates (Mayfield, 1975; Shaffer, 2004) due 

to our monitoring protocol involving purposefully infrequent site visits, particularly during the 

incubation stage, to minimize disturbance. Parental identity was initially included as a random 

variable in all models but was subsequently removed as the number of nests observed was not 

sufficient to allow for model convergence. Longitudinal studies of individual pairs were not 

conducted due to lack of data, as there were only three banded female juncos for whom at least 

one nest was found in both 2019 and 2021. 

A pair of two-proportion z-tests was used to determine the impact of reduced human activity 

in 2021 on off-ground nest placement and artificial substrate use. Additionally, we used a 

Bayesian analysis to determine posterior distributions of parameter values for a pair of logistic 

regression models. In each model, success was used as the response variable and discovery age 

was used as an explanatory variable. We were unable to determine the first egg date and 

discovery age for some nests; to avoid discarding samples, we imputed values for these nests 

using the multiple imputation package mice (van Buuren & Groothuis-Oudshoorn, 2011). An 
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interaction variable between year and either artificial substrate or off-ground nest placement was 

incorporated into the first and second models, respectively. The off-ground and artificial 

substrate variables were not included in the same model because artificial substrate was entirely 

nested within the off-ground nest site and the phi coefficient of similarity (package psych) 

(Revelle, 2022) between the two variables showed a high degree of similarity (PHI = 0.67). We 

used a Bayesian approach to fit a logistic regression model as residuals were not normally 

distributed in a generalized linear mixed modelling approach and thus p-values could not be 

interpreted for significance. In our Bayesian logistic regression model, the posterior distribution 

of each variable’s coefficient was calculated using 3 MCMC chains and 20,000 iterations per 

chain, with a thinning rate of 10. We used weakly informative priors, with a distribution of 0 - 

0.1 for each coefficient, and a burn in of 5,000 iterations. Traces of the MCMC chains as well as 

posterior distribution density curves were assessed to ensure that chains did not diverge and that 

posterior distributions were informative (Figures S1 through S4). We interpreted independent 

variables as statistically affecting nest success when the 95% confidence intervals of their 

parameters did not overlap with 0. We removed interaction effects as their confidence intervals 

overlapped with zero (Figure S5), the posterior distribution of the term was normally distributed 

for all chains, and because of the challenges of interpreting interaction terms in non-linear 

models (Ai & Norton, 2003; Berry et al., 2010). We then re-ran the models without interaction 

effects. We checked the two models’ fits (Conn et al., 2018) by determining that residuals were 

normally distributed (Figure S6), by conducting posterior predictive checks (Figure S7) and 

calculating Bayesian p-values. While Bayesian p-values are known to be conservative (Conn et 

al., 2018), we found strong goodness of fit (0.50 for both models). These methods suggested that 

both of our models were well fit for both the model with artificial substrate as a response 
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variable and with off-ground nesting site as a response variable. These analyses were conducted 

using JAGS (Plummer, 2003) in R (R Core Team, 2021) using packages R2Jags (Su & Yajima, 

2021), MCMCvis (Youngflesh, 2018), jagsUI (Kellner & Meredith, 2021) and bayesmix (Grün, 

2004). 

 

Ethical Note 

All animals were cared for and tested according to institutional guideline and approval (IACUC 

#ARC-2018-007). Procedures were conducted under United States Geographical Survey 

Banding Permit 23809 and California Department of Fish and Wildlife Specific Collection 

Permits S-183270002-18337-001, S-183040004-18313-001, and S-193110002-20012-001. Mist 

nets were always monitored visually such that birds were immediately extracted upon capture. 

They were placed in a cotton bag and processed rapidly. During each stage, birds were 

monitored for signs of stress (panting, drooping eyelids) and released immediately in a safe 

location, such as under a bush, if they showed signs of stress. They were then observed from a 

distance to ensure they flew away safely. As part of an ongoing long-term study on urban juncos 

in Los Angeles, we aimed to individually band the UCLA junco population so that each could be 

individually identified and both the male and female in each pair would be uniquely known. 

Bands did not impede normal songbird behaviour. 

 

Results 

A total of 164 and 117 junco nests were found and monitored during the 2019 and 2021 

nesting seasons, respectively. Of these, 38.5% of nests were placed off the ground in 2021, 

versus 34.8% in 2019. This difference was not significant (X12 = 0.26; p = 0.61; Figure 1B). 
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Similarly, 22.2% of nests were placed on artificial substrates in 2021 versus 18.9% in 2019; this 

difference was also not significant (X12 = 0.28; p = 0.59; Figure 1A).  

 

 

Figure 1. Effect of reduced human activity associated with the pandemic restrictions of 2021 on 

the frequency of (A) artificial and (B) off-ground nest site use. Error bars represent 95% 

confidence intervals. Neither artificial nor off-ground site use was significantly affected by 

reduced human activity in 2021 (p = 0.59 and p = 0.61 respectively). 

Artificial nest placement had a positive effect on nest success compared to nests placed on 

non-artificial substrates (mean coefficient of artificial nest placement [95% CI] = 1.83 [0.74, 

3.11]). Year had a positive effect on nest success (74.4% in 2019 versus 82.1% in 2021; mean 

coefficient of year [95% CI] = 0.69 [0.03, 1.37]; Figures 2A and S8). This model had a good fit, 

with a Bayesian p = 0.50. 

Off-ground nesting also had a positive effect on success (mean coefficient [95% CI] = 1.16 

[0.43, 1.95]). Year had a positive effect on nesting success in the model that included off-ground 
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nesting but not artificial nesting (mean coefficient [95% CI] = 0.71 [0.05, 1.42]; Figures 2B and 

S8). This model had a good fit, with a Bayesian p = 0.50. We report the details of diagnostic 

plots in the supplement for both analyses (Figures S1-S4 and Figures S6-S7).  

 

 

Figure 2. Effect of reduced human activity associated with the pandemic restrictions of 2021 on 

the relative nesting success of (A) artificial vs. non-artificial nests and (B) off-ground vs. on-

ground nest sites. Error bars represent 95% confidence intervals. Reduced human activity 

predicted nest success in both models, though the confidence interval is close to zero (95% CI) = 

0.69 (0.03, 1.37) in the former and (95% CI) = 0.71 (0.05, 1.42) in the latter model. 

 

Discussion 

We found that reduced human activity during the anthropause did not significantly change 

the frequency of novel nesting behaviours in response to reduced human activity in dark-eyed 

juncos. Despite the greatly reduced human footprint in the study site during 2021, the use of 

artificial and off-ground nesting sites did not change. We also found a small but significant 

increase in nest success during the pandemic. Our findings suggest that plasticity in nest-site 
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selection of this established population of urban juncos is likely not driven by human activity and 

disturbance. 

Other studies have found little to no impact of the anthropause on many urban bird 

behaviours or life history metrics, particularly those associated with reproduction. For instance, 

pandemic-induced restrictions on human recreation in urban parks did not impact nestling body 

size in great tits (Parus major) (Seress et al., 2021), various reproductive life history traits such 

as first egg date and clutch size in blue tits (Parus cyanistes) and great tits (Corsini et al., 2022), 

or fear response in dark-eyed juncos (Diamant et al., 2023). These results contrast with other 

studies finding impacts of reduced human activity on behaviours associated with communication, 

such as changes in song characteristics in urban white-crowned sparrows (Zonotrichia 

leucophrys) (Derryberry et al., 2020), a shift to earlier singing times in a Catalonia bird 

community (Gordo et al., 2021), and reduced territorial aggression in dark-eyed juncos (Walters 

et al., 2022).  

What can be made of these contradictory effects of reduced human activity on urban avian 

behaviour? One possible explanation is that urban bird behaviour is affected more strongly by 

human disturbance in the realm of communication compared to predation or other threats. That 

is, human activity may contribute less to the landscape of fear that governs individual anti-

predator behaviours and decision-making (Laundre et al., 2010), but birds nevertheless do 

respond behaviourally to the masking effect of human activity on essential communication such 

as establishing territories, attracting mates, and responding to interlopers. This has not been 

universally observed, however. A few pandemic-era studies contradict this pattern: for nestling 

great tits, there were no differences in condition in urban parks that saw reduced human activity 

during the pandemic compared to pre-pandemic conditions, but nestling condition decreased in 
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parks that experienced abnormally high levels of human recreation during the same time period 

(Seress et al., 2021).  

It is possible that our finding of no change in nest site selection might be due to the unusually 

rapid collapse in human activity, and that if anthropause levels of human activity continued for 

more than 2 years, then the juncos might gradually have shifted their nesting behaviour. 

However, we consider this scenario unlikely, as high levels of nesting plasticity have been found 

within individual pairs: rather than most pairs exhibiting either nesting exclusively on or 

exclusively off the ground, many pairs switch repeatedly between the two strategies, at least 

partially in response to prior nest success (Bressler et al., 2020). Thus, we would expect real or 

perceived changes in site suitability to be rapidly incorporated into nesting decisions. Juncos in 

this population have been shown to use information gleaned from their environment in choosing 

nesting sites (Bressler et al., 2020), but human presence does not appear to contribute to the 

decision-making process. 

Our findings suggest that novel nest site selection is driven by the urban landscape structure 

itself, rather than direct human activity. Instead of predation pressure “pushing” juncos to novel 

nesting site selection, juncos might instead be “pulled” to these atypical nesting sites due to the 

relative abundance of these sites in urban environments. Such a pre-existing affinity for artificial 

nest sites has been hypothesized as the reason why chimney swifts (Chaetura pelagica) began 

using chimneys and similar structures as nesting and roosting sites as soon as several decades 

after the arrival of Europeans in North America (Graves, 2004). Cities contain abundant novel 

nesting sites, such as window ledges and outdoor lamps that are of sufficient size and shape to 

host junco nests.  
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Alternatively, novel nesting behaviours may be a response to predation pressure by cats, rats, 

fox squirrels, or other human commensal mesopredators. Predation is one of the primary threats 

to birds in urban areas, particularly ground-nesting species such as juncos. Indeed, artificial 

ground nests have had a higher predation rate closer to town centres in Finland (Jokimäki & 

Huhta, 2000). Predation pressure is a known driver of nesting plasticity in a range of songbirds, 

including orange-crowned warblers (Hays et al., 2022; Peluc et al., 2008), Siberian jays (Eggers 

et al., 2006), and dusky warblers (Forstmeier & Weiss, 2004). Furthermore, mesopredator 

abundance, spatial distribution, and behaviours were also impacted by the pandemic; for 

example, urban Norway rats (Rattus norvegicus) in Sydney, Australia, declined in abundance 

after the initial stages of lockdown (Bedoya-Pérez et al., 2020), while rat populations in New 

York, USA, and Tokyo, Japan, shifted spatially to forage closer to clusters of urban restaurants. 

However, such shifts were not found in Warsaw, Poland (Parsons et al., 2021).  

There may have been little fitness benefit for juncos to switch to ground nesting in response 

to reduced human activity if predation pressure remained unchanged; indeed, predation pressure 

might even increase if mesopredators lost access to human scraps and refuse and subsequently 

switched to natural food sources such as eggs and nestlings. Our analysis of reduced human 

activity on nesting success did not yield clear results regarding mesopredators. Our models 

predicted a small but significant increase in nesting success between 2019 and 2021, but this may 

not be due to a lack of human activity. The 8% difference in nest success between 2019 and 2021 

was roughly in-line with year-to-year differences in an intensive four-year junco nesting study 

conducted by Yeh et al. (2007), which reported annual nesting success rates within a 20% range 

(36-56%) over the course of the study. Thus the differences in nest success we found may reflect 

natural stochasticity in nesting success due to factors other than human disturbance. The 
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interaction between nesting behaviour and year did not predict nest success in either model, 

suggesting that reduced human activity did not differentially impact nest success in artificial 

versus natural nest sites.  

Individuals, populations, and species lacking behavioural responses to human activity and 

disturbance may be superior competitors in urban environments. Human-tolerant populations 

such as the Los Angeles juncos may navigate the urban landscape differently from either their 

non-urban ancestors, or conspecific or heterospecific populations residing in nearby wildlands. 

For these individuals, human presence may be simply an incidental component of their 

environment, contributing minimally to behaviour and decision-making. Such individuals would 

minimize energy-costly and maladaptive fear responses such as alarm calling and mobbing, thus 

increasing reproductive success compared to less tolerant species. If tolerance of humans occurs 

concurrently with invasion of urban habitats, this might lead to a priority effect in urban 

community assembly, whereby early-colonizing species have more time to habituate to human 

activities and thereby outcompete more recent, less-adapted colonizers more likely to prioritize 

human avoidance (Alberti et al., 2020). Alternatively, tolerance of humans may serve as an 

ecological filter, whereby only species that are pre-adapted or possess sufficient behavioural 

variation are able to colonize urban areas (Cooper et al., 2020; Croci et al., 2008). Urban juncos 

seem to be one such example of this: in addition to nesting behaviour, fear response was not 

impacted by reduced human activity (Diamant et al., 2023); this tolerance of human disturbance 

might be mediated hormonally, such as through reduced corticosterone levels in urban birds 

(Atwell et al., 2012). In the case of nesting, this adaptive plasticity where nest site location is 

driven by the landscape might facilitate adaptive evolution (Ghalambor et al., 2007).  
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While early headlines in popular newspapers emphasized the novel ways birds and other 

animals adapted to human absence from urban spaces (Silva-Rodríguez et al., 2021), one of the 

enduring legacies of the COVID-19 anthropause in the field of urban ecology may be how urban 

wildlife maintained much of their typical behaviour and ecology in the face of a nearly 

unprecedented transformation of their ecosystem. The indirect impacts of human presence on 

urban wildlife, from community assemblage to adaptation, are a defining characteristic of the 

urban ecosystem itself, so it is perhaps ironic that some behaviours in certain urban-adapted 

species are not strongly impacted by physical human presence. Further research on avian 

behaviour during and after the anthropause will more clearly identify the nature, extent, and 

limits of avian responses to human disturbance.  

 

Data availability: data is available for peer review through figshare.com: 

https://figshare.com/s/1e55b465dd00f99c1ae7. Data will be made publicly available upon 

acceptance. 
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Chapter Six: Supplementary Materials 

 Supplementary Material for:  
 
Phenotypic plasticity in the anthropause: Does reduced human activity impact 
novel nesting behaviour in an urban bird? 
  

 
Fig. S1. Density plots of the posterior distributions of parameter estimates per MCMC chain for 
modeling a logistic regression with artificial (vs. non-artificial) nest site as a predictor. Here, b0 
refers to the intercept, b1 to the coefficient of artificial (vs. non-artificial) nest site, b2 to 
discovery age, and b3 to year. Each color (red, blue, and green) refers to one MCMC chain. 
Priors were distributed between 0 and 0.1 for all parameters. 
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Fig. S2. Trace plots of the parameter estimates per MCMC chain over all iterations for modeling 
a logistic regression with artificial (vs. non-artificial) nest site as a predictor. Here, b0 refers to 
the intercept, b1 to the coefficient of artificial (vs. non-artificial) nest site, b2 to discovery age, 
and b3 to year. Each color (red, blue, and green) refers to one MCMC chain. Priors were 
distributed between 0 and 0.1 for all parameters. 
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Fig. S3. Density plots of the posterior distributions of parameter estimates per MCMC chain for 
modeling a logistic regression with off-ground (vs. on-ground) nest site as a predictor. Here, b0 
refers to the intercept, b1 to the coefficient of off-ground (vs. on-ground) nest site, b2 to 
discovery age, and b3 to year. Each color (red, blue, and green) refers to one MCMC chain. 
Priors were distributed between 0 and 0.1 for all parameters. 
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Fig. S4. Trace plots of the parameter estimates per MCMC chain over all iterations for modeling 
a logistic regression with off-ground (vs. on-ground) nest site as a predictor. Here, b0 refers to 
the intercept, b1 to the coefficient of off-ground (vs. on-ground) nest site, b2 to discovery age, 
and b3 to year. Each color (red, blue, and green) refers to one MCMC chain. Priors were 
distributed between 0 and 0.1 for all parameters. 
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Fig S5. Parameter estimates of the posterior distributions of parameter estimates for modeling a 
logistic regression including an interaction with (A) artificial (vs. non-artificial) nest site as a 
predictor and (B) off-ground (vs. on-ground) as a predictor. Here, b0 refers to the intercept, b1 to 
the coefficient of (A) artificial (vs. non-artificial) nest site or (B) off-ground (vs. on ground) as a 
predictor, b2 to discovery age, b3 to year, and b4 to the interaction of nest location and year. 
Circles refer to the medians, bold lines refer to 50% confidence intervals. Un-bolded lines refer 
to 95% confidence intervals.  
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Fig S6. Logistic regression model residuals with (A) artificial (vs. non-artificial) nest site as a 
predictor and (B) off-ground (vs. on-ground) as a predictor. Both models have normally 
distributed residuals, suggesting goodness of fit. 
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Fig S7. Posterior predictive checks for predicted logistic regression models with (A) artificial 
(vs. non-artificial) nest site as a predictor and (B) off-ground (vs. on-ground) as a predictor 
variable. Observed data of success were compared with simulated success data based on the 
posterior distributions of variable parameters. Each model had a Bayesian p-value of 0.50, 
suggesting a strong goodness of fit, as models with p-values closer to 0.50 are better fit. 
  

A B 



 193 
 

 
 
 
 
Fig S8. Parameter estimates of the posterior distributions of parameter estimates for modeling a 
logistic regression with (A) artificial (vs. non-artificial) nest site as a predictor and (B) off-
ground (vs. on-ground) as a predictor. Here, b0 refers to the intercept, b1 to the coefficient of (A) 
artificial (vs. non-artificial) nest site or (B) off-ground (vs. on ground) as a predictor, b2 to 
discovery age, and b3 to year. Circles refer to the medians, bold lines refer to 50% confidence 
intervals. Un-bolded lines refer to 95% confidence intervals.  
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