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Abstract of the Thesis

Attention Correctness in Neural Image Captioning

by

Chenxi Liu

Master of Science in Statistics

University of California, Los Angeles, 2016

Professor Alan Loddon Yuille, Chair

Attention mechanisms have recently been introduced in deep learning for various tasks in nat-

ural language processing and computer vision. But despite their popularity, the “correctness”

of the implicitly-learned attention maps has only been assessed qualitatively by visualization

of several examples. In this paper we focus on evaluating and improving the correctness of

attention in neural image captioning models. Specifically, we propose a quantitative eval-

uation metric for how well the attention maps align with human judgment, using recently

released datasets with alignment between regions in images and entities in captions. We then

propose novel models with different levels of explicit supervision for learning attention maps

during training. The supervision can be strong when alignment between regions and caption

entities are available, or weak when only object segments and categories are provided. We

show on the popular Flickr30k and COCO datasets that introducing supervision of attention

maps during training solidly improves both attention correctness and caption quality.
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CHAPTER 1

Introduction

Attention based deep models have been proved effective at handling problems such as machine

translation [2], object detection [3, 4], visual question answering [5, 6], and image captioning

[1]. In these tasks, the input consists of a number of vectors with the same dimension. Deep

models with attention address these tasks by learning a dynamic combination of these vectors.

In this work we focus on attention models for image captioning. The state-of-the-art

image captioning models [7, 8, 9, 10, 11] adopt Convolutional Neural Networks (CNNs) to

extract image features and Recurrent Neural Networks (RNNs) to decode these features into

a sentence description. These models can be interpreted within a sequence-to-sequence [12]

or encoder-decoder [13] framework, so it is natural to apply attention mechanisms in these

models [1].

Although impressive visualization results of the attention maps for image captioning are

shown in [1], the authors do not provide quantitative evaluations of the attention maps

generated by their models. This is a common issue for attention models, because defining

and evaluating the attention maps can be hard for attention models for most tasks. However,

an accurate quantitative metric is important and can provide further insight in understanding

and improving attention models.

In this work, we propose a novel quantitative metric to evaluate the “correctness” of

attention maps. We define “correctness” as the consistency between the attention maps

generated by the model and those annotated by humans (i.e. the ground truth maps).

We use the alignment annotation between image regions and noun phrase caption entities

provided in the recently released Flickr30k Entities dataset [14] as our ground truth maps.
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Figure 1.1: The illustration of the motivation of our work. We propose a quantitative evalu-

ation metric for the quality of attention maps and find there is room for improvement of the

implicitly learned attention maps of [1]. We then propose a novel model that is able to utilize

either the strong labels of region-to-phrase correspondence, or weak labels of segmentation

with object category, to improve both the quality of the attention maps and the generated

captions.

Using this metric, we show that the attention model of [1] performs better than the uniform

attention baseline, but still has big room for improvement in terms of attention consistency

with humans.

Based on this observation, we propose a simple but effective model with explicit super-

vision of the attention maps. The model can be used not only in situations where detailed

ground truth attention maps are given (e.g. the Flickr30k Entities dataset [14]) but also when

only the object categories of image regions (which is a much cheaper type of annotations com-

pared to [14]) are available (e.g. MS COCO dataset [15]). Our experiments show that our

models perform consistently and significantly better than the implicit attention counterpart

in terms of both attention maps accuracy and the quality of the final generated captions in

2



both scenarios. To the best of our knowledge, this is the first work that quantitatively mea-

sures the quality of attention in deep models and shows significant improvement by adding

supervision to the attention module.
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CHAPTER 2

Related Work

Image Captioning Models There has been growing interest in the field of image captioning,

with lots of work demonstrating impressive results [7, 1, 8, 11, 10, 16, 9, 17]. However, it is not

clear whether the captioning models truly understand and recognize the objects in the image

while generating the captions. [1] proposed an attention model and qualitatively showed that

the model can attend to specific regions of the image by visualizing the attention maps of a

few images. We build on their work and take a step further by quantitatively measuring the

quality of the attention maps, which offers insight into understanding and improving current

image captioning models.

Deep Attention Models Attention mechanism is an important property of human

visual systems [18, 19]. Since deep neural networks are inspired by the structure of neurons

in human brains, exploring the use of attention in these artificial models seems natural and

promising.

In machine translation, [2] introduced an extra softmax layer in the RNN/LSTM structure

that generates weights of the individual words of the sentence to be translated. This allowed

the individual representations of the words to be preserved. In image captioning, [1] replaced

the individual words in machine translation model by convolutional image features, allowing

the model to attend to different areas of the image when generating words one by one. This

model is discussed in details in section 3.1. [20] proposed to target attention on a set of

concepts extracted from the image to generate image captions. In visual question answering,

[6, 5, 21] proposed several models which attend to image regions or questions when generating

an answer. But none of these models quantitatively evaluates the quality of the attention
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maps or imposes supervision on the attention.

Image Description Datasets For image captioning, Flickr8k [22], Flickr30k [23], and

MS COCO [15] are the most commonly used benchmark datasets. Each image in these

datasets has 5 accompanying captions. The original annotations of these datasets do not have

alignment between the image regions and the entities (e.g. noun phrases) in the captions.

Plummer et al. [14] developed the original caption annotations in Flickr30k by providing the

region to phrase correspondences. Specifically, they align the noun phrases in the captions

to image regions using human annotators. In this work, we use this dataset for constructing

ground truth attention maps to evaluate the quality of the generated attention maps, as well

as to train our strongly supervised attention model.
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CHAPTER 3

Deep Attention Models for Image Captioning

In this section, we first introduce Xu et al. [1]’s attention model that learns the attention

weights implicitly and then introduce our explicit supervised attention model.

3.1 Implicit Attention Models

Xu et al. [1] was the first attempt to introduce attention models to image captioning. The

model consists of three parts: the encoder which encodes the visual information (i.e. a visual

feature extractor), the decoder which decodes the information into words, and the attention

module which performs spatial attention.

The visual feature extractor produces L vectors that correspond to different spatial lo-

cations of the image: a = {a1, . . . , aL}, ai ∈ RD. Given the visual features, the goal of the

decoder is to generate a caption y of length C: y = {y1, . . . , yC}. We use yt ∈ RK to represent

the one-hot encoding of yt, where K is the dictionary size.

In [1], an LSTM network [24] is used as the decoder:

it = σ(WiEyt−1 + Uiht−1 + Zizt + bi) (3.1)

ft = σ(WfEyt−1 + Ufht−1 + Zfzt + bf ) (3.2)

ct = ftct−1 + ittanh(WcEyt−1 + Ucht−1 + Zczt + bc) (3.3)

ot = σ(WoEyt−1 + Uoht−1 + Zozt + bo) (3.4)

ht = ottanh(ct) (3.5)

where it, ft, ct,ot,ht are input gate, forget gate, memory, output gate, and hidden state of the
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LSTM respectively. W,U,Z,b are weight matrices and biases. E ∈ Rm×K is an embedding

matrix, and σ is the sigmoid function. The context vector zt ∈ RD is a dynamic vector that

represents the relevant part of image feature at time step t. In Xu et al. [1]’s deterministic

“soft” attention model,

zt =
L∑
i=1

αtiai (3.6)

where αti is a scalar weighting of visual vector ai at time step t, defined as follows:

eti = fattn(ai,ht−1) αti =
exp(eti)∑L
k=1 exp(etk)

(3.7)

where fattn(ai,ht−1) is a function that determines the amount of attention allocated to image

feature ai, conditioned on the LSTM hidden state ht−1. In [1], this function is implemented

as a multilayer perceptron. Note that by construction
∑L

i=1 αti = 1.

The output word probability is determined by the image zt, the previous word yt−1, and

the hidden state ht:

p(yt|a, yt−1) ∝ exp(Go(Eyt−1 +Ghht +Gzzt)) (3.8)

where G are learned parameters. The loss function, ignoring the regularization terms, is the

negative log probability of the ground truth words w = {w1, . . . , wC}:

Lt,cap = − log p(wt|a, yt−1) (3.9)

3.2 Supervised Attention Models

Deep network attention can be viewed as a form of alignment from language space to image

space. However, it is not clear how good this alignment is. Moreover, even if the ground

truth of this alignment is provided in a dataset, the model in [1] will not be able to take

advantage of this information to learn better attention function fattn(ai,ht−1). In this work,

we seek to enforce attention correctness by introducing explicit supervision.

Concretely, we first consider the case when the ground truth attention map βββt = {βti}i=1,...,L

is provided for ground truth word wt, with
∑L

i=1 βti = 1. Since
∑L

i=1 βti =
∑L

i=1 αti = 1, they

7



can be considered as two probability distributions of attention and it is natural to introduce

the cross entropy loss on the attention map. For the words that do not have an alignment

with an image region (e.g. “a”, “is”), we simply set Lt,attn as 0:

Lt,attn =


−
∑L

i=1 βti logαti if wt aligns with a ground truth region

0 otherwise

(3.10)

The total loss is the weighted sum of the two loss terms:

L =
C∑
t=1

Lt,cap + λ
C∑
t=1

Lt,attn (3.11)

We then discuss two ways of constructing the ground truth attention map βββt, depending

on the types of annotations available.

3.2.1 Strong Supervision with Alignment Annotation

In the simplest case, we have direct annotation that links the ground truth word wt to a

region Rt (in the form of bounding boxes or segment masks) in the image. We encourage the

model to “attend to” Rt by first constructing β̂̂β̂βt = {β̂t̂i}î=1,..,L̂ by:

β̂t̂i =


1 î ∈ Rt

0 otherwise

(3.12)

Note that the resolution of the region R and the attention map ααα,βββ might be different, so L̂

could be different from L. Then we resize β̂̂β̂βt to the same resolution as αααt and normalize it

to get βββt.

3.2.2 Weak Supervision with Object Category Annotation

Ground truth alignment is expensive to collect and annotate. A much more general and

cheaper annotation is to use bounding boxes or segments with object category. In this case,

we are provided with a set of regions Rj in the image with associated object classes cj,

8



j = 1, . . . ,M where M is the number of object bounding boxes or segments in the image.

Although not ideal, these annotations contain important information to guide the attention

of the model. For instance, for a caption of “a boy is playing with a dog”, the model should

attend to the region of a person when generating the word “boy”, and attend to the region

of a dog when generating the word “dog”. We can use this information to automatically find

semantically related words in the sentences and regions with the object category labels in the

image.

Following this intuition, we set the likelihood that a word wt and a region Rj are aligned

by the similarity of wt and cj in the word embedding space:

β̂t̂i =


sim(Ẽ(wt), Ẽ(cj)) î ∈ Rj

0 otherwise

(3.13)

where Ẽ(wt) and Ẽ(cj) denotes the embeddings of the word wt and cj respectively. Ẽ can be

the embedding E learned by the model or any off-the-shelf word embedding. We then resize

and normalize β̂̂β̂βt in the same way as the strong supervision scenario.

9



CHAPTER 4

Attention Correctness: Evaluation Metric

At each time step in the base model, the LSTM not only predicts the next word yt but also

generates an attention map αtαtαt ∈ RL across all locations. However, the attention module

serves only as an intermediate step, while the backpropagated error only comes from the

captioning loss. This opens the question whether this implicitly-learned attention module is

indeed effective.

Therefore in this section we introduce the concept of attention correctness, an evalua-

tion metric that quantitatively analyzes the quality of the attention maps generated by the

attention-based model.

4.1 Definition

For a word yt with generated attention map αααt, let Rt be the ground truth attention region,

then we define the word attention correctness by

AC(yt) =
∑
î∈Rt

α̂t̂i (4.1)

which is a score between 0 and 1. Intuitively, this value captures the sum of the attention

score that falls within human annotation (see Figure 4.1 for illustration). α̂̂α̂αt = {α̂t̂i}î=1,...,L̂

is the resized and normalized αααt in order to ensure size consistency.

In some cases a phrase {yt, . . . , yt+l} refers to the same entity, therefore the individual

words share the same attention region Rt. We define the phrase attention correctness as the

10
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Figure 4.1: Attention correctness is the sum of the weights within ground truth region (red

bounding box), in this illustration 0.12 + 0.20 + 0.10 + 0.12 = 0.54.

maximum of the individual scores1.

AC({yt, . . . , yt+l}) = max(AC(yt), . . . , AC(yt+l)) (4.2)

The intuition is that the phrase may contain some words whose attention map is ambiguous.

For example, when evaluating the phrase “a group of people”, we are more interested in the

attention correctness for “people” rather than “of”.

4.2 Ground Truth Attention Region During Testing

In order to compute attention correctness, we need the correspondence between regions in

the image and phrases in the caption. However, in the testing stage, the generated caption is

often different from ground truth captions. This makes evaluation difficult, because we only

have Rt for the phrases in the ground truth caption, but not any possible phrase. To this

end, we propose two strategies.

Ground Truth Caption One option is to enforce the trained model to output the ground

truth sentence by resetting yt at each time step. This procedure to some extent allows us

to “decorrelate” the attention module from the captioning component, and diagnose if the

1We found that changing the definition from maximum to average does not affect our main conclusion.

11



learned attention module is meaningful. Since the generated caption exactly matches the

ground truth, we can compute attention correctness for each noun phrase in the test set.

Generated Caption Another option is to align the entities in the generated caption

to those in the ground truth caption. For each image, we first extract the noun phrases of

the generated caption using POS tagger (e.g. Stanford Parser [25]), and see if there exists a

word-by-word match in the set of noun phrases in the ground truth captions. For example, if

the generated caption is “A dog jumping over a hurdle” and one of the ground truth captions

is “A cat jumping over a hurdle”, we match the noun phrase “a hurdle” appearing in both

sentences.

12



CHAPTER 5

Experiments

5.1 Implementation Details

Implicit/Supervised Attention Models All implementation details strictly follow [1]. We

resize the image such that the shorter side has 256 pixels, and then center crop the 224× 224

image. We then extract the conv5 4 feature of the 19 layer version of VGG net [26] pre-

trained on ImageNet [27]. The model was trained using stochastic gradient descent with the

Adam algorithm [28]. Dropout [29] was used as regularization. We use the hyperparameters

provided in the publicly available code1. Specifically, we set the number of LSTM units to

1300 for Flickr30k and 1800 for COCO.

Ground Truth Attention for Strong Supervision Model We experiment with our

model in section 3.2.1 on Flickr30k dataset [23]. We use the Flickr30k Entities dataset [14]

for generating ground truth attention maps. For each entity (noun phrase) in the caption,

the Flickr30k Entities dataset provides the corresponding bounding box of the entity in the

image. Therefore ideally, the model should “attend to” the marked region when predicting

the associated words. We evaluate on noun phrases only because for other types of words

(e.g. determiner, preposition) the attention might be ambiguous and meaningless.

Ground Truth Attention for Weak Supervision Model The MS COCO dataset

[15] contains instance segmentation masks of 80 classes in addition to the captions, which

makes it suitable for our model in section 3.2.2. We only construct βββt for the nouns in the

captions, which we extract using the Stanford Parser [25]. The similarity function is chosen

1https://github.com/kelvinxu/arctic-captions
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The huge clock on the wall is near a

wooden table.

A man is on his laptop while people

looking on.

A young girl and a woman preparing

food in a kitchen.

A bicycle parked in a kitchen by the

stove.

Figure 5.1: Ground truth attention maps generated for COCO. The first two examples (top

row) show successful cases. The third example (bottom left) is a failed case where the

proposed method aligns both “girl” and “woman” to the “person” category. The fourth

example (bottom right) shows the necessity of using the scene category list. If we do not

distinguish between object and scene (middle), the algorithm proposes to align the word

“kitchen” with objects like “spoon” and “oven”. Uniform attention (right) makes more

sense.

to be the cosine distance between word vectors [30] pretrained on GoogleNews2, and we set

an empirical threshold of 1/3.

The βββt generated in this way still contains obvious errors, primarily because word2vec

cannot distinguish well between objects and scenes. For example, the similarity between the

word “kitchen” and the object class “spoon” is above threshold. But when generating a scene

word like “kitchen”, the model should be attending to the whole image instead of focusing

on a small object like “spoon”.

To address this problem, we refer to the supplement of [15], which provides a scene

2https://code.google.com/archive/p/word2vec/
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Table 5.1: Attention correctness and baseline. Both the implicit and the (strongly) supervised

models outperform the baseline. The supervised model performs better than the implicit

model in both settings.

Caption Model Baseline Correctness # NP

Ground Truth
Implicit 0.3214 0.3836 14566

Supervised 0.3214 0.4329 14566

Generated
Implicit 0.3995 0.5202 883

Supervised 0.3968 0.5787 901

category list containing key words of scenes used when collecting the dataset. Whenever

some word in this scene category list appears in the caption, we set βββt to be uniform, i.e.

equal attention across image. This greatly improves the quality of βββt (see illustration in

Figure 5.1).

5.2 Evaluation of Attention Correctness

In this subsection, we quantitatively evaluate the attention correctness of both the implicit

and the supervised attention model. All experiments are conducted on the 1000 test images

of Flickr30k. We compare the result with uniform baseline, which attends equally across the

whole image. Therefore the baseline score is simply the percentage of the bounding box size

over the size of the whole image. The results are summarized in Table 5.1.

Ground Truth Caption Result In this setting, both implicit and supervised models

are forced to produce exactly the same captions, resulting in 14566 noun phrase matches. We

discard those with no attention region or full image attention (as the match score will be 1

regardless of the attention map). For each of the remaining matches, we resize the original

attention map from 14× 14 to 224× 224 and perform normalization before we compute the

15



(a) Ground truth caption result (b) Generated caption result

Figure 5.2: Histograms of attention correctness for implicit model and supervised model. The

more to the right the better.

attention correctness for this noun phrase.

Both models are evaluated in Figure 5.2a. The horizontal axis is the improvement over

baseline, therefore a better attention module should result in a distribution further to the

right. On average, both models perform better than the baseline. Specifically, the average

gain over uniform attention baseline is 6.22% for the implicit attention model [1], and 11.14%

for the supervised version. Visually, the distribution of the supervised model is further to the

right towards the oracle (where attention correctness is 1 for every match). This indicates

that although the implicit model has captured some aspects of attention, the model learned

with strong supervision has a better attention module.

In Figure 5.3 we show some examples where the supervised model successfully recovered

the spatial location of the underlined entity, while the implicit model attends to the wrong

region.

Generated Caption Result In this experiment, our algorithm is able to align 883 noun

phrases for the implicit model and 901 for the supervised version. Since the word-by-word

match strategy is rather conservative, these alignments are correct and reliable, as verified by

16



Girl rock climbing on the rock wall. A young smiling child hold his toy alligator

up to the camera.

Two male friends in swimming trunks jump

on the beach while people in the background

lay in the sand.

A black dog swims in water with a colorful

ball in his mouth.

Figure 5.3: Attention correctness using ground truth captions. From left to right: original

image, implicit attention, supervised attention. The red box marks correct attention region

(from Flickr30k Entities). In general the attention maps generated by our supervised model

have higher quality.

manual check. Similarly, we discard those with no attention region or full image attention,

and perform resize and normalization before we compute the correctness score.

The results are shown in Figure 5.2b. In general the conclusion is the same: the supervised

attention model produces attention maps that are more consistent with human judgment. In

terms of numbers, the average improvement over the uniform baseline is 12.07% for the

implicit model and 18.19% for the supervised model, which is a 50% relative gain.

In Figure 5.4 we provide some qualitative results. These examples show that for the same

entity, the supervised model produces more human-like attention than the implicit model.

17



Table 5.2: Comparison of image captioning performance. * indicates our implementation.

Caption quality consistently increases with supervision, whether it is strong or weak.

Dataset Model BLEU-3 BLEU-4 METEOR

Flickr30k

Implicit [1] 28.8 19.1 18.49

Implicit [1]* 29.2 20.1 19.10

Strong Supervised 30.2 21.0 19.21

COCO

Implicit [1] 34.4 24.3 23.90

Implicit [1]* 36.4 26.9 24.46

Weak Supervised 37.2 27.6 24.78

5.3 Evaluation of Captioning Performance

In the previous subsection we showed that supervised attention models achieve higher atten-

tion correctness than implicit attention models. Although this is meaningful in tasks such as

region grounding, in many tasks attention only serves as an intermediate step. The intuition

is that a meaningful dynamic weighting of the input vectors will allow later components to

decode information more easily. In this subsection we give experimental support by showing

that the supervised attention model also provides better captioning performance.

We report BLEU [31] and METEOR [32] scores to allow comparison with [1]. In Table 5.2

we show both the scores reported in [1] and our implementation. Note that our implemen-

tation of [1] gives slightly improved result over what they reported. We observe that BLEU

and METEOR scores consistently increase after we introduce supervised attention for both

Flickr30k and COCO. Specifically in terms of BLEU-4, we observe a significant increase of

0.9 and 0.7 percent respectively.
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Image Implicit Attention

A man in a red jacket and blue

pants is snowboarding.

Supervised Attention

A man in a red jumpsuit and a

black hat is snowboarding.

A man in a blue shirt and blue

pants is sitting on a wall.

A man in a blue shirt and blue

pants is skateboarding on a ramp.

A man and a woman are walking

down the street.

A man and a woman are walking

down the street.

A group of people are sitting at

a table with drinks.

A group of people are sitting at

a table in a restaurant.

Figure 5.4: Attention correctness using generated captions. The red box marks correct

attention region (from Flickr30k Entities). We show two attention maps for the two words

in a phrase. In general the attention maps generated by our supervised model have higher

quality.
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CHAPTER 6

Discussion

In this work we make a first attempt to give a quantitative answer to the question: to what

extent are attention maps consistent with human perceptions? We first define attention

correctness at both the word level and phrase level. In the context of image captioning,

we evaluated the state-of-the-art models with implicitly trained attention modules. The

quantitative evaluation results suggest that although the implicit models outperform the

baseline, they still have big room for improvement.

We then show that by introducing supervision of attention map, we can improve both the

image captioning performance and attention map quality. Even when attention ground truth

is unavailable, we are still able to utilize the segmentation masks with object category as a

weak supervision to the attention maps, and significantly boost captioning performance.

We believe closing the gap between machine attention and human perception is necessary,

and expect to see similar efforts in other tasks, such as visual question answering.
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