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ABSTRACT OF THE DISSERTATION

Cosmological Implications of Quantum Gravity

By

Lu Heng Sunny Yu

Doctor of Philosophy in Physics

University of California, Irvine, 2021

Professor Herbert W. Hamber, Chair

Quantum gravity – as defined in the Feynman path integral approach by a gravitational

action and a functional measure over metrics – is in principle a unique theory. While ad-

ditional higher derivative terms that are consistent with general covariance are in principle

allowed in the action, they affect only the physics at very short distances. As shown by Feyn-

man, the Einstein-Hilbert action plus a cosmological constant term represents the unique

covariantly-quantized theory for a massless spin-two particle at large distances – much like

the Yang-Mills theory and QED are for massless spin-one particles. While the theory is

still infamously perturbatively nonrenormalizable, a wide range of modern analytical and

numerical methods have been developed in the past decades to study precisely such theo-

ries. From the nonlinear Heisenberg magnet in three dimensions to QCD in four dimensions

(in the nonperturbative limit), these methods have produced many useful predictions with

remarkable accuracies. Furthermore, important new physics have been revealed with these

nonperturbative methods – such as the existence of quantum condensates, anomalous dimen-

sions in critical scaling exponents, and nontrivial phase transitions – that would otherwise

be invisible with perturbation theory to any order.

In this dissertation, we explore the consequences of these techniques applied to gravity. Using

a range of analytical to numerical methods, we derive a number of physical predictions to

xv



the gravitational effects on cosmology. In particular, we explore the unique alternative

explanation for the various cosmological power spectra (including the galaxy- and CMB-

spectra) that is based on gravitational fluctuations, as derived using various nonperturbative

quantum field-theoretical methods. This is contrasted with the currently popular inflationary

models, which are based on fluctuations of scalar fields. Next, we also outline a number of

testable predictions in this picture that deviate from the conventional picture of inflation.

The key ingredients in this new picture are the appearance of a nontrivial gravitational

vacuum condensate (directly related to the observed cosmological constant), and a calculable

renormalization group running of Newton’s G on cosmological scales. Finally, we compare

these results to latest available cosmological observational data, and we find that the results

fit very well with the majority of the data. However, the limited precision of the observational

data on largest angular scales, which is where the deviations are most significant, does not yet

allow us to clearly prove or disprove either set of ideas. Nevertheless, it is expected that with

an influx of increasingly accurate observational data in the near future, the new quantum

gravitational picture we presented here can be subjected to further stringent observational

tests, thus helping us gain a deeper understanding of roles that quantum field theory and

gravity play in our Universe.
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Chapter 1

Introduction

1.1 The Mystery

In cosmology, we know that the Universe is not perfectly homogeneous and isotropic, but is

rather comprised of inhomogeneous fluctuations in both matter and energy densities. Fur-

thermore, these fluctuations are far from random, but are instead congregated and correlated

in rather specific manners. Detailed measurements made from large scale galaxy and cosmic

microwave background (CMB) surveys have revealed that the fluctuations of various sizes

follow a well-defined pattern that scales with their distance apart. In cosmology, these cor-

relations are quantified by what are known as correlation functions and power spectra [1–4].

The questions of why these density fluctuations are distributed and correlated the way they

are, or why these correlation functions and power spectra scale the way they do, are thus

important ones in cosmology.

The conventional explanation for the shapes of these power spectra are provided by inflation

models. While there are variations in detail among different inflation models, they are all

based on the hypothesis of at least one or more additional primordial scalar fields called

1



inflatons [5–7]. Inflation explains that the matter fluctuations are originated from quantum

fluctuations of this scalar field, and is able to reproduce the observed power spectrum of

matter and other fluctuations from those of the inflaton field fluctuations. This is known

as one of the earliest quantitative “verification” of inflation, and the agreement of these

predictions with observations to high accuracy has thus been widely regarded as a great

triumph and confirmation for inflation [8].

However, this picture is not without controversy [9–12], including criticisms on the natural-

ness and uniqueness of the theory. The detailed model of inflation is still largely unknown,

and many models suffer from fine-tuning problems. As a result, the goal of our work is to

propose an explanation for the shapes of the various cosmological power spectra based on

gravitational fluctuations alone, independent of inflation. This approach is not only highly

unique by nature (in the sense of having very limited adjustable parameters), arguably

more natural (in the sense of having essentially no extra ingredients, and only using well-

established cosmology and quantum field theory), but also, to our knowledge, the first of its

kind that addresses the power spectra without any additional scalar fields.

In the next section, we will first briefly outline the premise of this new picture, before we

present and explore the detailed theoretical derivations and subsequent data analyses in the

remaining of the dissertation.
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1.2 A Unique Solution – Cosmological Fluctuations

from Quantum Gravity

General relativity provides an unambiguous relation between curvature and matter distribu-

tions through the Einstein field equations

Rµν − 1
2
gµνR = 8π G Tµν . (1.1)

It is therefore natural that any fluctuations in matter are directly related to fluctuations in

curvature. Now, in any quantum theory, quantities fluctuate. As a result, a quantum theory

of gravity produces metric and curvature fluctuations for which their correlation functions

are in principle calculable from first principles. It is then possible to relate unambiguously

these correlation functions to those of matter fluctuations, via the Einstein field equations.

While the theory of quantum gravity remains speculative in the extreme short-distance, a.k.a.

ultraviolet (UV), regime—due to both an infinite number of allowed higher-order operators

consistent with general covariance together with a lack of experimental results in this regime,

the long-distance or infrared (IR) limit of the theory is however in principle well-defined

and unique, governed primarily by the concept of universality. Nevertheless, this long-

distance quantum theory of gravity still suffers from being perturbatively nonrenormalizable,

rendering perturbation theory useless for calculating any quantum corrections in gravity.

However, in the past decades, well known field theory techniques have been extensively

developed, applied and even tested to high accuracy in various disciplines of physics where

perturbation theory fails (e.g., nonlinear sigma model, Heisenberg magnets). It is thus

highly conceivable that these nonperturbative methods may find use in deriving physical

consequences for another perturbatively nonrenormalizable theory such as gravity.

From previous works [13, 14], it was shown that quantum effects of gravity may manifest
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themselves not only on the extreme small (UV) scales, but also on the extreme large (IR),

cosmological scales. In particular, our works [15,16] have shown that, utilizing nonperturba-

tive field theory methods, much of the cosmological matter power spectrum can be derived

and reproduced purely from Einstein gravity and standard ΛCDM cosmology alone, with-

out the need of any additional scalar fields as advocated by inflation. We have shown that

not only the predictions agree quite well with recent data by the Planck Collaboration [17],

but also that additional quantum effects predict subtle deviations from the classical pic-

ture, which allows this approach to be testable in the near future with increasingly powerful

cosmological experiments.

It should be pointed out that this approach only uses fundamental principles from quantum

field theory and general covariance, well-established methods in nonperturbative physics

and cosmological dynamics, and no further assumptions or extra ingredients such as any

scalar fields. The highly constrained setup from first principles also as a result dictates

a very limited number of adjustable parameters, making the theory, like QED and QCD,

essentially unique. As a result, it can be argued that this provides a more natural and unique

solution to the question of matter and energy correlations in cosmology.

In this dissertation, we will summarize the essential background of quantum gravitation

and nonperturbative dynamics, explain in detail how they provide a natural explanation

to the power spectra mystery, present quantitative analysis of the supporting observational

data, discuss constraints on the (limited) parameters in this theory from the observational

data, comparisons with the inflation-motivated picture, prospective developments that can

distinguish the two pictures in the future, and potential future works related to this subject.

More specifically, the dissertation is organized as follows. In Section 2, we provide the key

background concepts relevant to this dissertation, including the definitions of correlation

functions and power spectra in cosmology, and the essential concepts and key results from

a nonperturbative study of quantum gravity. In Section 3, we will derive the galaxy power

4



spectrum and the cosmological matter power spectrum from the results of quantum gravity,

and then compare them to the latest cosmological observational data. We also derive the

additional quantum effects that takes place in the largest scales that potentially deviates

from the classical results (including the renormalization group running of Newton’s G and

the effects of IR regulations due to the existence of a quantum condensate). We contrast

this picture and its results with the conventional inflation perspective, and point out areas

where these pictures can be tested with upcoming observational experiments. We also study

the (very few) adjustable parameters in this picture, and the constraints that current ob-

servational data set on them. In Section 4, we extend the predictions to the angular CMB

temperature spectrum, the spectrum most studied by cosmologists, in an analytical way.

And in Section 5, we further the analysis by re-deriving the spectrum, but this time using

some of the most popular numerical programs in cosmology. With the help of these state-

of-the-art cosmological programs, we also derive a number of related cosmological spectra

(including ones with E- and B-mode CMB photon polarizations, and the lensing potential

φ), and comment on the potential usefulness of these in future observational tests. Finally,

Section 6 summarizes our study, and provide an account of possible future directions that

can be further explored, based on our studies in this dissertation.
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Chapter 2

Background

In this chapter, we will recount some essential background necessary for the scope of this

dissertation. More detailed background for each of the respective topics below can be found

in the references therein as well as the standard literature. Section 2.1 reviews the standard

ways matter and energy fluctuations are quantified in cosmology (and measured in observa-

tions). Section 2.2 gives a brief outline of the nonperturbative approach of quantum gravity,

as well as key results that are important to the derivations in subsequent chapters of this

dissertation.

2.1 Power Spectra in Cosmology

In this section, as a background, we briefly summarize the two main quantities that are

used in cosmology to parameterize matter fluctuations: (i) correlation functions in both real

and momentum space, and (ii) their corresponding powers, or spectral indices. To begin,

it is customary to describe the matter density fluctuations in terms of the matter density

contrast δ(x, t) [1, 18], which measures the fractional over-density of matter relative to the
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background mean density ρ̄(t),

δ(x, t) ≡ ρ(x, t)− ρ̄(t)

ρ̄(t)
=
δρ(x, t)

ρ̄(t)
, (2.1)

where ρ̄(t) evolves only with time, in a way that is governed by the background Friedmann-

Robertson-Walker (FRW) metric.

From its definition, it is clear that the expectation value, or the “one-point function”, for the

density contrast averages to zero, i.e., 〈 δ(x, t) 〉 = 0. The first non-trivial and more interest-

ing quantity is the “two-point function”, also known as the real space correlation function1

Gρ, which measures the average correlation between the density contrast fluctuations at two

spacetime points by averaging over all space. Explicitly,

Gρ(x, t; x
′, t′) ≡ 〈 δ(x, t) δ(x′, t′) 〉 =

1

V

∫
V

d3y δ(x + y, t) δ(x′ + y, t′) (2.2)

or even more commonly, with its momentum space conjugate, known as the matter power

spectrum

P (k) = (2π)3〈 |δ(k, t0)|2 〉 = (2π)3 F (t0)2 〈 |∆(k)|2 〉 . (2.3)

In the second step of Equation (2.3), the time dependence 2 is factored out as δ(k, t) ≡

∆(k)F (t), so that the power spectrum explicitly compares fluctuations as they are measured

today, at time t = t0. The factor F (t) then simply follows the standard GR evolution

formulas as governed by the Friedmann–Robertson–Walker (FRW) metric. Furthermore,

both the real and momentum space correlation functions represent statistical averages, which

satisfy homogeneity and isotropy, and hence are expected to only depend on the magnitudes

1The matter density correlation function for galaxies in real space is usually denoted as ξM , or simply ξ,
in the cosmology literature. But in this paper it will be desirable to call it Gρ, to avoid confusion with the
quantum gravitational correlation length ξ that will be introduced later.

2F (t) simply evolves according to the FRW background; its explicit evolution can be found in [18].
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r ≡ |x− y| and k.

Note that the power spectrum is directly related to the real space correlation function via a

Fourier transform

Gρ(r; t, t
′) =

∫
d3k

(2π)3
Gρ(k; t, t′) e−ik·(x−y)

=
1

2π2

F (t)F (t′)

F (t0)2

∫ ∞
0

dk k2 Pm(k)
sin (kr)

kr
.

(2.4)

In particular, most galactic observations are taken at relatively low redshifts, where t ≈ t′ ≈

t0, in which case the pre-factor ratio of F (t)’s reduces to unity. Furthermore, in the absence of

expecting any extra critical scales in the physics, one often starts with scale-invariant models

in cosmology, which assume the power spectrum follows a simple power law, characterized

by a scaling index and an amplitude. For example, the real-space correlation function is

usually parameterized by the index γ and amplitude r0 [1],

Gρ(r) =
(r0

r

)γ
, (2.5)

and its momentum space version by the index s and a0,

P (k) =
a0

ks
. (2.6)

While the amplitudes r0, a0 may be somewhat sensitive to normalization and regulariza-

tion procedures, these so-called spectral indices γ, s are often methodology- or scheme-

independent, often referred to as “universal” quantities, and thus play a critical role in

capturing physics of the two-point correlations of their corresponding fluctuations.

It should also be noted that, with this parametrization, the Fourier transform (2.4) can be
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evaluated formally and exactly in d dimensions

∫
ddx e−ik·x

1

x2n
=
πd/22d−2nΓ(d−2n

2
)

Γ(n)

1

kd−2n
, (2.7)

which relates the spectral indices with

s = (d− 1)− γ = 3− γ , (2.8)

where the last equality is evaluated for d = 4.

Over the past few decades, these scale-invariant models have been compared against in-

creasingly accurate astrophysical data measurements. Early data [1] supported this model

with approximate values γ = 1.77 ± 0.04 and r0 = 5.4 ± 1 h−1Mpc for distances in the

range 0.01 h−1Mpc . r . 10 h−1Mpc, which then gives for the exponent s ' 1.23. More

recent data [2, 19] again supports this model, with approximate values γ = 1.8 ± 0.3 for

distances in the range 0.1h−1Mpc . r . 50 h−1Mpc, which leads to s ' 1.2. Another

set of recent estimates gives γ = (1.79, 1.84) for distances up to 100Mpc, see for exam-

ple [3,4,20–24] and references therein. Here we will focus on the most recent high statistics

data from the Sloan Digital Sky Survey (SDSS) collaboration [25], which supports the above

model with approximate values s = 1.089 (and thus γ ' 1.91) for distances in the range

0.01 h Mpc−1 . k . 0.3 h Mpc−1. This latest SDSS data is shown on Figure 3.2 in the next

chapter.3

As a result, an important challenge in cosmology is to provide a theoretical explanation for

these particular values of s and γ. At this point, it should be reminded that matter fields

can be related to gravitational fields unambiguously via the Einstein field equations, and

so can their respective correlation functions. In particular, as we will recount in the next

3For a comprehensive list of commonly accepted cosmological parameters and their uncertainties, we refer
the reader to the recent authoritative reference [26].
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section, the correlation functions for gravitational curvature fluctuations can also in principle

be calculable from a quantum field theoretical treatment of gravity. Hence, while there are

many technical subtleties in the calculation – which we will address in the following sections,

in principle and conceptually, quantum gravity provides a natural framework for calculating

and explaining these observed values for γ and s. This is the general picture we will discuss

in detail in the following section and the remainder of this dissertation.

2.2 Nonperturbative Approach to Quantum Gravity

Many more details on the nonperturbative approach to Quantum Gravity used in this paper

can be found in a number of earlier works [13,14], and many references therein. The current

section will therefore only serve to summarize the key points and main results which will

become relevant for the subsequent discussion.

Quantum gravity, in essence the covariantly quantized theory of a massless spin-two particles,

is in principle a unique theory, as shown by Feynman some time ago [27,28], much like Yang-

Mills theory and QED are for massless spin-one particles. In the covariant Feynman path

integral approach, only two key ingredients are needed to formulate the quantum theory -

the gravitational action S [gµν ] and the functional measure over metrics d [gµν ], leading to

the generating function

Z =

∫
d [gµν ] e

i
~S[gµν ] , (2.9)

where all physical observables could in principle be derived from. For gravity the action is

given by the Einstein-Hilbert term augmented by a cosmological constant

S [gµν ] =
1

16πG

∫
d4x
√
g (R− 2λ) , (2.10)
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where R is the Ricci scalar, g being the determinant of the metric gµν(x), G the Newton’s

constant, and λ the scaled cosmological constant (where a lower case is used here, as opposed

to the more popular upper case in cosmology, so as not to confuse it with the ultraviolet-cutoff

in quantum field theories that is commonly associated with Λ). The other key ingredient

is the functional measure for the metric field, which in the case of gravity describes an

integration over all four metrics, with weighting determined by the celebrated DeWitt form

[29].

There are two important subtleties worth noting here. Firstly, in principle, additional higher

derivative terms that are consistent with general covariance could be allowed in the action,

but nevertheless will only affect the physics at very short distances and will not be necessary

here for studying large-distance cosmological effects. Secondly, as in most cases that the

Feynman path integral can be written down, from non-relativistic quantum mechanics to

field theories, the formal definition of integrals requires the introduction of a lattice, in order

to properly account for the known fact that quantum paths are nowhere differentiable. It

is therefore a remarkable aspect that, at least in principle, the theory (in a nonperturbative

context) does not seem to require any additional extraneous ingredients to properly define

a quantum theory of gravity besides the standard ones mentioned above.

At the same time, gravity does present some rather difficult and fundamentally inherent

challenges, including: the well-known fact that the theory is perturbatively nonrenormaliz-

able (due to a badly divergent series in Newton’s constant G), the intensive computational

power needed in order for any concrete results to be numerically calculated (due to it be-

ing a highly nonlinear theory), the conformal instability which makes the Euclidean path

integral potentially divergent, and further genuinely gravitational-specific technical compli-

cations (such as the fact that physical distances between spacetime points – which depend

on the metric, which is a quantum entity – fluctuate).

Although these hurdles will ultimately need to be addressed in a complete and satisfactory
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way, a comprehensive account is of course far beyond the scope of this dissertation. How-

ever, regarding the perturbatively nonrenormalizable nature, some of the most interesting

phenomena in physics often stem from non-analytic behavior in the coupling constant and

the existence of nontrivial quantum condensates, which are hidden from and impossible to

probe within perturbation theory alone. It is therefore possible that certain challenges en-

countered in the case of gravity are likely the result of inadequate perturbative treatments,

and not necessarily a reflection of some fundamentally insurmountable problem with the the-

ory itself. Here, we shall take this as a motivation to utilize the plethora of well-established

nonperturbative methods to deal with other quantum field theories where perturbation the-

ory fails, and attempt to derive sensible physical predictions that can hopefully be tested

against observations. More detailed accounts on the other various issues associated with the

theory of quantum gravity can be found, for example, in [13, 14] and references therein.

So, to derive physical consequences from a perturbative nonrenormalizable and highly non-

linear theory, we can draw inspiration with methods used for theories of similar nature. As

in the case of nonlinear theories such as QCD, Yang-Mills theories, and the O(N) nonlinear

sigma model, one can nevertheless extract universal quantities, such as critical exponents

(such as the exponents ν, γ, δ, etc., in the nonlinear sigma model), and genuinely nonpertur-

bative characteristic scales (such as correlation lengths or ΛMS for QCD). Such predictions,

despite obtained from a nonpertubative treatment, are today amongst some of the best

tested results of quantum field theory. These results includes the measurement of the crit-

ical exponents for the nonlinear sigma model being the second-most accurate prediction in

physics, after the prediction of the famous g−2 anomalous magnetic moment in QED [30,31].

Analogously, utilizing a number of nonperturbative approaches (such as 2 + ε expansion and

numerical evaluations of the path integral) for gravity, one can extract universal scaling di-

mensions such as the exponent ν and the nonperturbative, renormalization group invariant,

correlation length scale ξ. The latter is in turn related to the vacuum expectation value of

curvature, which is measured via a large-scale cosmological constant λobs. Both the exponent
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ν and the scale ξ have significant effects on correlation functions, which deviate from any

semi-classical or free field (Gaussian) predictions. More importantly, these are potentially

verifiable via observations, as we will show below.

For our present discussion, we will mention several main results and ingredients from this

perspective. The nonperturbative treatments of quantum gravity via both Wilson’s 2 + ε

double expansion (both in G and the spacetime dimension) and the Regge–Wheeler lattice

path integral formulation [32] reveal the existence of a new quantum phase, involving a

nontrivial gravitational vacuum condensate [13]. Along with this comes a nonperturbative

characteristic correlation length scale, ξ, and a new set of nontrivial scaling exponents ν,

as is common for well-studied perturbatively nonrenormalizable theories [33–38]. Together,

these two parameters characterize the quantum corrections to physical observables such as

the long-distance behavior of invariant correlation functions, as well as the renormalization

group (RG) running of Newton’s constant G, which in coordinate space leads to a covariant

G(�) with � = gµν∇µ∇ν [14]. In particular, it can be shown [13, 39] that for r < ξ,

the connected correlation function of the scalar curvature over large geodesic separation

r ≡ |x− y| scales as

GR(r) = 〈 √gR(x)
√
gR(y) δ(|x− y| − r) 〉c ∼

r � ξ

(
1

r

)2n

, (2.11)

with the power 2n = 2(d− 1
ν
), and d is the dimension of spacetime. The subscript c stands

for connected correlation functions. Furthermore, the RG running of Newton’s constant can

be expressed as

G(k) = G0

[
1 + 2 c0

(
m2

k2

) 1
2ν

+O

((
m2

k2

) 1
ν

)]
, (2.12)

where m ≡ 1/ξ is a characteristic nonperturbative mass scale, and 2 c0 ≈ 16.04 a nonpertur-

bative amplitude, which (unlike the universal exponent ν) cannot be obtained in perturbation
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theory, and thus requires a genuinely nonperturbative approach, such as the Regge–Wheeler

lattice formulation of gravity [40–47].

Here we note the important roles played by the quantum parameters ν and ξ. The appearance

of a gravitational condensate is viewed as analogous to the (equally nonperturbative) gluon

and chiral condensates known to describe the physical vacuum of QCD, so that the genuinely

nonperturbative scale ξ (or equivalently m = 1/ξ) is in many ways analogous to the scaling

violation parameter ΛM̄S of QCD. (Note that gravitons nevertheless stay massless in the

same way as gluons do in QCD, and there is no explicit violation of gauge or coordinate

invariance.) Similarly, the overall magnitude of such a scale cannot be established from first

principles, but should instead be linked with other length scales in the theory, such as the

observed cosmological constant scale
√

1/λ, or equivalently the (scalar) curvature vacuum

expectation value

〈
∫
d4x
√
g R 〉

〈
∫
d4x
√
g 〉

≡ 〈R 〉. (2.13)

The latter is related to the observed cosmological constant via the Einstein field equations

〈R 〉 = 4λ . (2.14)

It follows that the observed cosmological constant λ can be used to infer the magnitude of the

gravitational vacuum condensate scale ξ. More specifically, the combination most natural to

be identified with ξ is

λ

3
=

1

ξ2
, (2.15)

such that ξ ∼
√

3/λ ' 5300 Mpc for the observed value of λ [13,48,49]. On the other hand,

the other key quantity—the universal scaling dimension ν, can be extracted via a number

of methods, many of which are summarized in [45–47,50–70]. Multiple avenues (including a
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simple geometric argument that suggests ν = 1/(d−1) for spacetime dimension of d ≥ 4 [14])

point to a value of ν−1 ' 3.0, which will serve as a sufficiently good working value for this

parameter in the following.

It should be noted that the nonperturbative scale ξ should also act as an infrared (IR)

regulator, such that, like in other quantum field theories, expressions in the “infrared” (i.e.,

as r →∞, or equivalently k → 0) should be augmented by

1

k2
→ 1

k2 +m2
(2.16)

where the quantity m = 1/ξ ' 2.8 × 10−4 hMpc−1, expressed in the dimensionless Hubble

constant h ' 0.67 for later convenience. Consequently, the augmented expression for the

running of Newton’s constant G becomes

G(k) = G0

[
1 + 2 c0

(
m2

k2 +m2

) 1
2ν

+O

((
m2

k2 +m2

) 1
ν

) ]
. (2.17)

The aim here is therefore to explore areas where these predictions can be put to a test. The

cosmological power spectra, which are closely related to the correlation functions discussed,

thus take effects over large distances, provide a great testing ground for these quantum

gravity effects.
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Chapter 3

The Matter Power Spectrum P (k)

In this chapter, we will show how the matter power spectrum P (k) can be fully derived and

constrained from gravitational fluctuations, without the need of inflation and scalar fields.

In Section 3.1, we first focus on the galaxy regime (k > 0.15), and show how the spectral

indices s and γ from Eqs. (2.2) and (2.3) can be derived from gravitational fluctuations.

Then, in Section 3.2 and 3.3, we will extrapolate the prediction to early times (k < 0.15), and

show how the prediction compares favorably with the observational data, as well as compare

this picture with that of inflation. In Section 3.4, we include additional, genuinely quantum,

gravitational effects which are present at the extreme small k domain, and compare those

with data. In Section 3.5 and 3.6, we discuss how the only two parameters in the theory

can be constrained using current observed cosmological data. Finally, in Section 3.7, we

summarize the analysis on P (k), discuss how this gravitationally-motivated picture differs

from that of inflation, and how it can be tested.
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3.1 Matter Power Spectrum in the Galactic Regime

We begin by first deriving the matter power spectrum P (k) in the galaxy domain.

Recall in Section 2.2, we showed that over large distances, the invariant scalar curvature

correlation fluctuation at fixed geodesic distance behaves in accordance to Eq. (2.11), repro-

duced here for convenience,

GR(r) = 〈 √gR(x)
√
gR(y) δ(|x− y| − r) 〉c ∼

r � ξ

(
1

r

)2n

, (3.1)

with the power 2n = 2(d − 1/ν), and d is the dimension of spacetime. This shows that,

for distances smaller than the aforementioned characteristic length scale ξ, this two-point

correlation function follows a simple scaling law that is purely dependent on the universal

exponent ν. The value for the critical exponent ν has been calculated and estimated through

various means, including 2+ ε expansion [50–57], large d expansion [58,59], numerical lattice

calculations [45], exact results in 2+1 dimensions [60, 61] and truncated continuum renor-

malization group methods [62, 64, 65, 67–76]. Many of these results have been summarized

recently, for example, in [13], where it is argued that current evidence points to ν ' 1/3 in

d = 4 (see Figure 3.1). In particular, in the large-d limit, one finds ν = 1/(d−1) [58,59,64,65]

in addition to the usual scaling results for the relation for the power in Eq. (3.1), namely

2n = 2(d − 1/ν). This in turn implies for the power 2n = 2 for d = 4 and above. In the

following we will proceed on the assumption (supported by extensive numerical calculations

on the lattice [45]) that ν = 1/3 exactly in d = 4, and that consequently the power in

Eq. (3.1) is exactly equal, or at least very close to, two. Another key quantity here is the

renormalization group invariant scale ξ appearing for example in Eq. (3.1), and related to

the quantum gravitational vacuum condensate. It was argued in [13, 14, 43, 44] that the

renormalization group invariant ξ is most naturally identified with the scaled cosmological

constant via ξ '
√

3/λ. Modern observational values of λobs yield an estimate of ξ ∼ 5300
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Figure 3.1: Universal scaling exponent ν as a function of spacetime dimension d. Shown are
the 2 + ε expansion result to one and two loops, the value in 2 + 1 dimensions obtained from
the exact solution of the Wheeler-DeWitt equation, the numerical result in four spacetime
dimensions, and the large d result ν−1 ' d− 1.

Mpc. Since galaxies and galaxy clusters involve distance scales of around r = 1 − 10 Mpc

� ξ, the scaling relation in Eq. (3.1) should then be applicable for such matter. Using these

values, one finds in Eq. (3.1) 2n = 2(4− 3) = 2, and therefore one expects the gravitational

curvature fluctuations to scale as

GR(r) = 〈 δR(0) δR(r) 〉 ∼ 1

r2
, (3.2)

where δR denotes the curvature fluctuation above the background (i.e., the connected part

of the correlation function).

Next we proceed to relate the curvature fluctuations GR(r) to the matter fluctuations Gρ(r)

defined in Section 2.1. As alluded in the introduction, this procedure is unambiguous through

the Einstein field equations

Rµν − 1
2
gµνR + λgµν = 8πGTµν . (3.3)
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To a first approximation, by assuming galaxies follow a perfect non-relativistic (pressureless)

fluid1, the trace equation reads

R− 4λ = −8πGT . (3.4)

(For a perfect fluid the trace gives T = 3p− ρ, and thus T ' −ρ for a non-relativistic fluid.)

Since λ is a constant, the variations, and hence correlations, are directly related as in

〈 δR δR 〉 = (8πG)2 〈 δρ δρ 〉 . (3.5)

As described in Section 2.2 previously, quantum gravity predicts that the scalar curvature

fluctuations GR over large distances scale as

GR(r) ≡ 〈 δR(x) δR(y) 〉 ∼ 1

r2
. (3.6)

Using the relation in Eq. (3.5), the galaxy density fluctuations Gρ then follow a similar

scaling relation

Gρ =
(r0

r

)2

(3.7)

as r →∞, or equivalently, for the galaxy power spectrum P (k),

P (k) =
a0

k
(3.8)

as k → 0, using the fact s = 3 − γ from Eq. (2.8). Hence, we see that quantum gravity

predicts for the critical scaling exponent γ = 2, or equivalently, s = 1.

It should be emphasized here that the scaling relation of Eq. (3.1) with 2(d− 1/ν) = 2, and

1This is justified since the clumping of matter, and hence galaxy formation, happens in a matter-
dominated era of cosmology, where the perfect fluid and negligible pressure limit is applicable.
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as a result γ = 2 or s = 1, does not follow from simple dimensional arguments, (indeed the

relevant correlation function is dimensionless), and is instead a non-trivial result based on

anomalous scaling dimensions associated with quantum gravity in four dimensions. Indeed,

as discussed for example in [13], in the weak field expansion the scaling result of Eq. (3.1)

would be rather different. In fact, the approximate value of γ = 2 for galaxy matter density

correlations has been a long standing puzzle in observational cosmology, see for example the

cosmology monograph [1].

Note that the prediction of γ = 2 or s = 1 is expected to be valid in the limit of the so-

called “linear scaling regime” – i.e., in scales where galaxies can be treated essentially as

pressureless point-particles, and that the long-range gravitational correlations are expected

to be the dominant influence. More quantitatively, one observes that typical galaxy clusters

have sizes around 3 − 10 Mpc, and voids (the pockets of empty space between clusters)

have typical diameters around 25 Mpc. As a result, one would expect the effects of scaling

to be most explicit for separation scales larger than around r > 50 − 100 Mpc (or k <

0.2 − 0.1hMpc−1). These are the ranges where any effects of such nonlinear dynamics

should become unimportant and, instead, long-range gravitational correlations are expected

to dominate. It is over these separation scales that one expects the gravitationally-controlled

scaling law to take place. In other words, Eq. (3.8) implies that in the limit of small k’s

(large scales) beyond k < 0.2−0.1hMpc−1, the power spectrum should approach a horizontal

constant asymptotically on a k·P (k) vs. k plot, with the constant representing the amplitude

a0. And this is exactly what we see from the observational side, as we will show shortly below

in Figure 3.2.

On the other hand, below these separations scales, nonlinear dynamics are expected to take

over. Nonlinear effects can modify the scaling in two ways. Firstly, including the effect of

pressure to the Freidman equations will induce fluctuations around the general scaling trend,

known as baryonic acoustic oscillations (BAOs). Secondly, for separations scales below or
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around the size of galaxy clusters, nonlinear multi-body dynamics become important. As

a result, the spectrum is expected to diverge from the s = 1 scaling law at small distances

(large k). This is again seen in Figure 3.2.

Nevertheless, despite the computational complexity, such nonlinear dynamics basically follow

Newtonian dynamics and are thus well-understood and well-studied in standard literatures

such as [1, 18, 77, 78]. At these scales, neither quantum nor general-relativistic effects are

expected to play a huge role. Although it presents more technical complexity to include, no

new physics is in play. Thus, we will focus mostly on the limit of large distances (small k).

Figure 3.2 shows the most recent observational results of the galaxy matter power spectrum

from the 14th data release (DR14) of the Sloan Digital Sky Survey (SDSS), a galaxy survey

which charted over 1.5 million galaxies, covering over one-third of the celestial sphere [25], for

separations roughly from r ' 500 Mpc (k ' 0.02hMpc−1) to r ' 30 Mpc (k ' 0.30hMpc−1

). Notice that as k decreases (r increases), the data indeed approach a constant on the

k × P (k) vs. k plot. This agrees with the s = 1 scaling law, which claims

k × P (k) = a0 . (3.9)

Via a one-parameter fit, one obtains a value of a0 ≈ 686 ± 87 (Mpc/h)2 for the amplitude

of the galaxy power spectrum. In particular, notice that in the linear scaling regime k ∼<

0.15hMpc−1 (r ∼> 50Mpc), all of the 13–15 data points lie within a 3σ (∼ 15%) variance

of a0. On the other hand, as expected, for separation scales smaller than 50 Mpc (k ∼>

0.17hMpc−1), the spectrum deviates from the s = 1 scaling law, giving rise to a transient

behavior into the nonlinear regime. In addition, subtle oscillations from BAOs can also be

roughly observed about the average value given by a0 and throughout the trend.

One can further extend the phenomenological analysis over the linear regime by performing

a two-parameter fit, a0 and s, using again the scale-invariant ansatz P (k) = a0/k
s. This fit
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Figure 3.2: The observed galaxy power spectrum in k × P (k) versus wavenumber k. The
data points are taken from the Sloan Digital Sky Survey (SDSS) collaboration’s 14th Data
Release (DR14) . Quantum gravity predicts that in the linear regime (k ∼< 0.15hMpc−1),
as r → ∞ (or k → 0), P (k) should approach a scale-invariant spectrum with ν = 1/3 (i.e.,
s = 1), as in Eq. (3.8). In other words, k × P (k) should approach a constant. The solid
line represents the asymptotic value of the s = 1 spectrum, with a one-parameter fit for the
amplitude in Eq. (3.8) giving a0 ' 686 (Mpc/h)2. The gray bands represent a 3σ (∼ ±15 %)
variance to the fit. It can be seen that, below k < 0.15hMpc−1, the data generally approach
a constant of approximately a0 ∼ 686 (Mpc/h)2, but beyond k > 0.15hMpc−1 the data
shows a transient region where the points deviate from the linear scaling, due to the relevant
correlation function probing distances smaller than the linear scaling regime.
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gives s ' 1.09± 0.08 – i.e., about 9.0(± 8.0)% around the predicted value of s = 1 and a0 =

540 ± 115 (Mpc/h)2. This is a decent expectation given a first order prediction, neglecting

BAOs and other dynamical effects superimposed on the linear scaling. Further analysis

by applying the fit over the full range of observational data (k = (0.02, 0.30)hMpc−1)

gives s ' 1.31 ± 0.04, i.e., about 30% of the predicted s = 1 value, and an amplitude

of a0 = 280 ± 24 (Mpc/h)2. The larger discrepancy in s is also expected, given that the

nonlinear regime is now included in the fit. Nevertheless, it is still overall consistent with an

s ∼ 1 trend, satisfying the general trend created and set by the gravitational correlations.

To even more accurately extrapolate the results to the nonlinear regime (k > 0.15hMpc−1),

the full nonlinear dynamics has to be addressed and solved. In fact, we will see that the

nonlinear solutions can be extrapolated to even larger scales (k < 0.02hMpc−1) into a

radiation dominated era of the Universe. This will be the topic of the next section.

It should be noted here that the amplitude a0, just like the scaling dimension ν or s, is in

principle calculable from the lattice treatment of quantum gravity, as discussed for example

in [13] and references therein. Nevertheless, unlike the universal, scheme-independent, scaling

dimension s, a0 represents a non-universal quantity, and will therefore depend to some extent

on the specific way the ultraviolet cutoff is implemented in the quantum theory. This fact is

already well known from other lattice gauge theories such as lattice QCD. Therefore it seems

more appropriate here to take this non-universal amplitude a0 as an adjustable parameter,

to be fitted and constrained by astrophysical observational data. Nevertheless, quantum

gravity provides a direct prediction for the general s = 1 scaling of galaxy correlations.

Notice that since galaxy scales from the SDSS survey are of the order 50− 500 Mpc, which

is at least one to two orders of magnitude below ξ ' 5300 Mpc, the RG running of Newton’s

G as governed by Eq. (2.12) is highly suppressed, and Newton’s constant can be treated as

a constant. Later on we will explore these additional effects as we turn to fluctuations on

even larger scales in the next section.
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3.2 Matter Power Spectrum Beyond Galactic Regime

So far, our analysis asserted that the scaling of galaxy distributions, which is governed by

that of matter fluctuation correlations Gρ(r), is directly calculable from curvature fluctuation

correlation functions GR(r) in the quantum theory of gravity. In particular, the matter and

curvature fluctuations are unambiguously connected via the Einstein field equations. Usually

there is an implicit assumption that the Tµν on the right hand side takes the perfect fluid

form, which involve an equation of state of pressure-less matter. The latter assumption

is certainly valid for the matter-dominated universe2, an era in which we expect galaxy-

formations to take place. As can be seen in Figure 3.2, the observational data is in rather

good agreement with the s = 1 prediction of quantum gravity for the scale of galaxy clusters

(i.e., k . 0.15 hMpc−1).

In principle, quantum gravity with its long-range correlations and n-point functions should

also govern and make predictions beyond galactic observation scales. Below galactic scales

(large k), complex and nonlinear interactions between matter arises, and gravitational cor-

relations are expected to become subdominant effects and not easily discernible. On the

other hand, beyond the scale associated with galaxy clusters and superclusters (small k),

gravity is again undoubtedly the dominant long-range force. There we expect fluctuations

in curvature to again play a dominant role in governing long-range correlations. However,

observationally, larger spatial scale corresponds to looking at increasingly earlier epochs of

the universe, perhaps even before galaxies are formed. Therefore data from galaxy surveys

cannot serve as a test to the predictions in these regimes. Fortunately, modern astronomy

has provided very detailed measurements of the cosmic microwave background (CMB), which

encodes fluctuations over a wide range of cosmological scales. This can then be used as an

additional test for the quantum gravity predictions.

2see comment of footnote 1 from Section 3
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In this section, we will discuss how we can utilize the so-called transfer function to extrap-

olate the quantum gravity prediction to increasingly small k far beyond galaxy scales, and

compare to how it fits observed CMB data. It should be noted that in the current CMB

literature one often refers to the angular power spectrum Cl as the primary quantities ob-

tained. Nevertheless, P (k) is directly related to Cl, as described in many standard literature

works on the subject [1, 8, 18, 77]. However here instead we focus on P (k), since, as men-

tioned above, it is this quantity whose scaling is most directly related to that of curvature

fluctuations, the quantity that is predicted from quantum gravity. According to the Fried-

man equations, wavelengths that enter the horizon before matter-radiation equality evolve

differently than those that enter after. As a result, as we look at even larger scales (smaller

k’s), the s = 1 slope discussed previously is expected to change. Nevertheless, we can use

a well-known function in cosmology, the so-called transfer function T (κ), to relate small

wavelength behaviors to large wavelength behaviors. Details of the transfer function can be

found in standard texts such as [18]; for explicit numerical results see also [79]. Here we

outline below how the transfer function can be applied to our predictions.

We recall the definition of the spectral function

P (k) = (2π)3F (t0)2〈 |∆(k)|2 〉 . (3.10)

Here F (t) can be calculated from the Friedmann equations, giving

F (t) =
3

5

[
a(t)

aL

]
C(x) , (3.11)

where x = x(t) = (ΩΛ/ΩM) a(t)3 , and the correction factor C(x) is given by

C(x) ≡ 5

6
x(t)−

5
6

√
1 + x(t)

∫ x(t)

0

du
1

u
1
6 (1 + u)

3
2

. (3.12)

Detailed steps in the above derivations can be found in [18]. As for the function ∆(k) in
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Eq. (3.10), it can be calculated from the Boltzmann transport equations, again presented in

detail in [18] and references therein, giving

∆(q) ≈ δ(q, tL)− tL ψ(q, tL) =
2

3
·
q2R0

q T (κ)

H2
La

2
L

, (3.13)

where the comoving wavenumber q is often used in place of the physical wavenumber k,

the two being related by k ≡ q/a(t). Here δ(q, t) is the matter density contrast defined in

Eq. (2.1) in momentum space, ψ(q, t) is the gravitational perturbation in Newtonian gauge,

tL is the time of decoupling of radiation from matter, associated with the recombination of

hydrogen, and HL and aL are the Hubble rate and scale factor correspondingly evaluated

at tL. The last equality is obtained by conveniently parameterizing the combination of

δ and ψ with Rq and T (κ), known as the comoving curvature perturbation and transfer

function, respectively [18]. The transfer function T (k) is usually expressed with an argument

κ ≡
√

2 (k/kEQ) , where kEQ is the scale at matter-radiation equality. Inserting these results

into the definition for P (k) in Eq. (3.10) then gives

P (k) =
4(2π)2a3

0 C
2( ΩΛ

ΩM
)

25 Ω2
MH

4
0

R0
q

2
k4

[
T
(√

2
k

kEQ

)]2

. (3.14)

Again, following common convention [18], the function Rq is often parametrized as a simple

power of q

Rq ' Nq−3/2

(
q

q∗

)(ns−1)/2

, (3.15)

where q∗ is some arbitrarily chosen reference scale, and ns is referred to as the spectral index.

Then P (k) can be conveniently factorized into

P (k) = C0 A kns [T (κ)]2 , (3.16)
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with

A ≡ N2

kns−1
∗

, and C0 ≡
4 (2π)2

[
C
(

ΩΛ

ΩM

)]2

25 Ω2
MH

4
0

, (3.17)

so that C0 is a prefactor that encodes exclusively cosmological model parameters. It was

Harrison and Zel’dovich who originally suggested in the seventies that ns should be close to

one [80–82].

It is known that the transfer function T (κ) is entirely determined from classical cosmological

evolution and by the solutions of the associated coupled Boltzmann transport equations for

matter and radiation. It will turn out to be useful here that the function in question can be

accurately described by the semi-analytical formula given explicitly by D. Dicas as quoted

in [18,79],

T (κ) ' ln[1 + (0.124κ)2]

(0.124κ)2

[
1 + (1.257κ)2 + (0.4452κ)4 + (0.2197κ)6

1 + (1.606κ)2 + (0.8568κ)4 + (0.3927κ)6

]1/2

, (3.18)

which will be used here in the following discussion. For later reference, the shape of the

function κ|T (κ)|2 is shown below in Figure 3.3; particularly noteworthy here is the inverted-

v shape reflecting the cosmological evolution transition from a radiation dominated to a

matter dominated universe, again as discussed in great detail in [18].

Now, both C0 and T (κ) are fully determined, the former by cosmological measured param-

eters from, for example, the latest Plank satellite data [83, 84], and the latter theoretically

from the Boltzmann transport equations, numerically evaluated in [18, 79] and further ref-

erences cited therein. Therefore the end result is that P (k) is essentially parameterized by

two quantities, an overall amplitude A and the spectral index ns. The next step is to use

quantum gravity to theoretically constrain the value of ns, and analyze how well a power

spectrum with the predicted value of ns fits the current observational data. As discussed

previously in Section 3.1, quantum gravity predicts P (k) ∼ a0/k
s with an exponent s = 1
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Figure 3.3: Shape of the transfer function κ |T (κ)|2 using the interpolating formula of
Eq. (3.18). What is of interest here is the significant turnover happening at wavenumbers
k ∼ 0.02 which is known to correspond to a cosmological time scale associated with matter-
radiation equilibrium. This marked turnover here is the primary reason for the peculiar
inverted-v shape of the power spectrum in the following plots.
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in the galaxy regime (i.e., k ∼ 0.01 to 0.3 hMpc−1). We also noted that although a0 is in

principle calculable, additional subtleties arise. Hence, for the current purpose, we simply

use the value that fits best the galaxy data at the largest scales, namely a0 ' 689. As a

result, within the galaxy regime, we should have a matching

P (k) ≡ C0 A kns T (κ) ≈ 689

k
( for k ∼ 0.01 to 0.3 hMpc−1) . (3.19)

As mentioned earlier under Eq. (3.18), both C0 and T (κ) are fully determined from the

classical cosmological FRW evolution equations, leaving this essentially an equality with two

unknowns, namely A and ns, that holds in the galaxy regime. Therefore, by appropriately

selecting two points from the quantum gravity prediction within this regime, we can derive

the values for A and ns. Since the left hand side is supposedly valid for all scales, with the

two values A and ns determined, these will then give us a power spectrum that allows us to

extrapolate the quantum gravity prediction within the galaxy regime to much larger scales.

Within the galaxy regime, there is a certain flexibility in which two points one may choose.

For the purpose of a first estimate, we select two points relatively apart, but not too close

to the margins of the available galaxy data. Although the data set ranges from 0.025 ∼<

k ∼< 0.3 h Mpc−1, the linear scaling regime is only valid up to around k ∼< 0.15 h Mpc−1, as

discussed in Section 1.2. On the other hand, extreme small k’s (large distances) are expected

to be less representative, as they suffer from limited statistical samples within the ensemble.

Thus, an appropriate preliminary choice, for first-estimation purpose, would be:

k1 = 0.035 h Mpc−1

k2 = 0.10 h Mpc−1 .

(3.20)
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These correspond to real space scales of

λ1 ∼ 250 Mpc

λ2 ∼ 90 Mpc .

(3.21)

Using these test points in Eq. (3.19) gives

ns = 1.108 , A = 5.97× 1011 . (3.22)

The best fit from the Plank 2015 data gives a fit of ns = 0.9667 ± 0.0040 [83, 84]. This

suggests our preliminary analysis, using the two above selected points, yields a value of ns

that is around ∼ 15% of the best fit value of the data.

There are two flexible aspects in this analysis. Firstly, there is a flexibility in choosing k1

and k2, and secondly there are intrinsic statistical errors in the observational data. As an

example, by purely adjusting the former, it is possible to get a value of ns ≈ 0.9827 if we

use k1 ∼ 0.040 h Mpc−1 and k2 ∼ 0.065 h Mpc−1, which correspond to λ1 ∼ 230 Mpc

and λ2 ∼ 140 Mpc, respectively. Though this normalization choice seems to yield a value

for ns closer to that of Plank, the two points do not seem sufficiently apart to normalize

the spectrum properly in our quantum gravity picture. Nevertheless, this methodology also

provides a rough estimate for the overall uncertainty in ns.

3.3 Comparison with Inflationary Models

A popular attempt to explain the matter power spectrum is through inflation models, which

proposes that the structures visible in the Universe today are formed through fluctuations in

a hypothetical primordial scalar inflaton field. Although the precise behavior and dynamics
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Figure 3.4: Full Power Spectral Function P (k) (blue solid) normalized by Plin = a0/k
s with

s = 1, a0 = 688.89 (gray dashed), and two reasonable normalization points (orange). This
choice of normalization yields a value of ns = 1.10777 and A = 5.97 × 1011, which fits well
with both CMB and SDSS data.

of the inflaton field are still largely controversial [9–12,85,86], there are some general features

common among these models that allow one to derive predictions about the shape of the

power spectrum. Here we very briefly outline the inflation perspective, and how it radically

differs from the quantum gravity perspective we have presented here. For more details and

reviews on the inflation mechanism, we refer to recent literatures such as the books [8,18,77].

Cosmic inflation was first advocated in [5–7] as a possible solution to the horizon and flatness

problem in standard big bang cosmology, by proposing a period of exponential expansion

in the early phases of the universe. This exponential expansion is expected to be driven by

a hypothetical“inflaton field”, usually scalar in nature, which dominates the energy density

in the early universe, causing a de Sitter type accelerated expansion. In these models,

the gravitational perturbations that ultimately cause gravitational collapse and structure

formations are also due to fluctuations in this inflaton field. Scalar field fluctuations are

assumed to be Gaussian for large enough distances (small k), which then naturally results
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in a value for the spectral index ns = 1. More realistic models with non-zero tensor to scalar

ratio predicts ns between 0.92 and 0.98 [10,78,87,88], without assuming excessive fine-tuning

of parameters [10]3. The above value of ns = 1 is then used in Eqs. (3.16) and (3.18), leaving

only one free parameter, the amplitude A in Eq. (3.16), which can then be determined by

normalizing to the CMB data at very large scales (i.e., small k).

Notice that the gravitational perspective we pose in this thesis differs fundamentally from

that of inflation, both in procedure and, most importantly, in origin. Firstly, inflation

models suggest that gravitational perturbations are due to fluctuations in an inflaton field,

whereas here perturbations are intrinsically gravitational and quantum mechanical in origin.

Secondly, inflation models use the corresponding inflaton correlation function, Gφ(r), or

power spectrum, Pφ(k), which are mostly scalar/Gaussian in nature, to derive those of

matter Gρ(r), P (k). Such a perspective is distinctly different from ours. In our gravitational

picture, the correlation function that constrains Gρ(r) and P (k) is the curvature GR(r),

which is highly non-Gaussian. Finally, while both perspectives provide a prediction for

ns which governs the shape of P (k), both leave the overall normalization A in Eq. (3.16)

uncertain.

Modern renormalization group theory would imply that the critical exponent ν, and the scal-

ing dimensions n that follow from it [see Eq. (3.1)], are expected to be universal, and as such

only dependent on the spacetime dimension, the overall symmetry group, and the spin of the

particle. The same cannot be said of the critical amplitudes, such as the amplitude associated

with the curvature two-point function of Eq. (3.1). In principle it is possible to estimate from

first principles the amplitude A and thus the normalization constant N is Eq. (3.15), since

these can be regarded as wave function normalization constants in the underlying lattice the-

ory. A rough estimate was given in [13]; nevertheless a number of reasonable assumptions

had to be made there in order to relate correlations of small gravitational Wilson loops to

3The measured value of ns is often used to back infer the inflation tensor to scalar ratio, r, which gives
around r . 0.11 for ns = 0.968± 0.006 [83,84].
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very large (macroscopic) ones. As a result, the estimate for the amplitude quoted there is

still two orders of magnitude smaller than the observed one. Nevertheless it is understood

that amplitudes are expected to be regularization and scheme dependent, and will differ by

some amount depending on the specific form of the ultraviolet cutoff scheme chosen, whether

it is a lattice one, or a continuum inspired momentum cutoff, or dimensional regularization.

This phenomenon is well known in scalar field theory as well as lattice gauge theories, and

allows the relative correction factors to be computed to leading order in perturbation the-

ory [89], thus reducing the regularization scheme dependent uncertainties. In the following

we choose to leave, for now, the overall amplitude in Eqs. (3.7) or (3.8) as a free parameter,

and constrain it instead directly by the use of observational data.

Inflation models on the other hand often normalize the curve at large scales with CMB

data or at the turnover point Pmax [18], but our picture normalizes it with the slope within

the galaxy domain, where we argue that the curvature-matter relation is most direct, as

discussed in Section 1.2.

We contend that there are a number of reasons that the gravitation-induced picture is more

natural for matter distributions than the inflaton-induced one. Firstly, the gravitational field

is a well-established interaction and is supposed to have long-range influences with cosmolog-

ical consequences, whereas the scalar inflaton field remains an observationally unconfirmed

quantum field whose precise properties, such as its potential and interaction with standard

model fields, remain unknown. Secondly, the Feynman path integral treatment is an unam-

biguous procedure to quantize a theory covariantly, producing in principle a unique theory

with essentially no free parameters (as in the case of QED and QCD).

On the other hand, there is little consensus on the precise dynamics of the inflation field,

the number of competing models is far from unique, and almost all suffer from fine-tuning

problems, leading to ad-hoc potentials. Many physicists also question the falsifiability of

such theories. Well-known cosmologists, including some of the creators of the theory, have
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expressed various issues with this paradigm [9]. Therefore, whether or not inflation theories

are a satisfactory solution to the cosmological problems are still unsettled.

At this stage, despite the differences in perspective, there is yet no clear-cut preference over

each other except for the naturalness arguments given above. However, a number of second

order effects due to quantum gravitational fluctuations could yield diverging and distinct

predictions, including the IR regulation from ξ, the RG running of G, and n-point functions,

which should be testable in the near future with increasingly accurate measurements. So

in contrast, the predictions from quantum gravitation are (i) unique and (ii) falsifiable.

Therefore, we believe this provides a compelling alternative to inflation. We will now discuss

these new effects in the next section.

3.4 Matter Power Spectrum in Extreme Small-k Regime

So far we have introduced the alternative picture that matter perturbations are directly re-

sulted from, and hence governed by, underlying quantum fluctuations from gravity, instead

of the inflaton. However, when it gets to large separation scales k ∼ m, additional gen-

uinely quantum effects will become important. In this section we discuss the two additional

quantum-mechanical effects as a result of gravitational condensates, which would be explic-

itly distinct from any scalar field inflationary models, and potentially provide a window to

test between these pictures. These effects are (i) the presence of an infrared (IR) regulator,

and (ii) the renormalization group (RG) running of Newton’s constant G.

In a quantum field treatment of gravity, like most nonlinear quantum field theories such as

QCD and the nonlinear sigma model, a nonperturbative “condensate” scale ξ is dynamically

generated which regulates the otherwise serious infrared divergences associated with a zero-

mass graviton. In addition, Newton’s constant G is seen to “run” with scale as a result of

34



quantum corrections, precisely in analogy to what happens in QED and QCD. In momentum

space, the formula for the running of G is found by [13,40] to be

G(k) = G0

[
1 + 2c0

(
m2

k2

)3/2

+ O
(
m2

k2

)3
]
. (3.23)

Here G0 is the classical (i.e., k � m) “laboratory” value of the Newton’s constant, or simply

G henceforth in the paper, m is the renormalization scale in momentum space related to

ξ by m = 1/ξ, and c0 the coefficient for the overall amplitude of the quantum correction,

which is generally expected to be of order one. As for the nonperturbative scale ξ, it is most

naturally related to the cosmological constant λ0 [14, 43,44] by

m2 ≡ 1

ξ2
' λobs

3
. (3.24)

It should be emphasized again that these two quantum effects are not unique to gravity,

but common in quantum field theories. The latter is most representative in the well-studied

theories of QED and QCD, where quantum corrections result in the running of coupling

constants e and αs, respectively. It is well known that a dynamically generated infrared

cutoff arises in other nonperturbative theories such as the nonlinear sigma model, QCD and

generally non-Abelian gauge theories. The scale ξ therefore plays a role analogous to the

scaling violation parameter ΛMS in QCD. ξ also serves directly as a characteristic scale in

the theory that, much like the ΛMS scale in QCD, distinguishes the small distance from the

large distance domain. Both effects are discussed in detail in [13,14].

The formal implementation of the dynamically generated scale ξ is to be inserted as a lower

infrared cutoff in any momentum integrals. This would mean amending

∫
−∞

dk →
∫
m

dk . (3.25)
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However, a more straightforward implementation is to simply make replacements k2 →

k2 + m2 with m = 1/ξ, which phenomenologically works well in other nonperturbative

theories (such as QCD) and partially includes the effects of infrared renormalons [90]. As a

result, for the power spectrum given in Eq. (3.16) one obtains

P (k) = C0 · A · kns
[
T (
√

2
k

kEQ
)

]2

→ P (k)reg = C0 A · (k2 +m2)
ns
2

[
T
(√

2
(k2 +m2)1/2

kEQ

)]2

.

(3.26)

The effect of this modification can be seen as the orange curve in Figure 3.5 below. It is

most visible in the extreme long distance (small k) domain where k ∼ 1/ξ.

Secondly, the other important expected quantum effect is the renormalization group running

of Newton’s G. To implement this, it can be done either through a scale dependence in

momentum space G(k) or by the use of a set of covariant nonlocal effective field equations

containing a G(�), where � ≡ gµν∇µ∇ν is the covariant d’Alembertian acting on n-th rank

tensors. More subtleties can be found in works from [14, 40, 43, 44]. Here, to implement the

running of Newton’s G, the crucial step is to identify where the Newton’s G would appear

in the power spectrum. Recall the matter correlations are related to curvature correlations

via the Einstein field equations by

Gρ(x) =
1

(8πG)2
(ρ̄)−2GR(x) , (3.27)

or in momentum space, via a Fourier transform

P (k) =
1

(8πG)2
(ρ̄)−2 PR(k) , (3.28)

where, as usual, P (k) is the spectrum for matter fluctuations, and PR(k) ≡< |δR(k)|2 >∼

1/ks with index s = 1 is the spectrum for curvature fluctuations. Observing that P (k) ∝
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Figure 3.5: Effects of the IR regulator and RG running of G. The red triangles here show
the 2015 Planck CMB data . The blue curve represents the full power spectral function P (k)
as derived and shown previously in Figure 3.4. The orange curve P (k)reg includes the effect
of an IR regulator. The green curve P (k)run includes the effect of an IR regulator together
with the RG running of Newton’s G.

1/G2 dimensionally, promoting G→ G(k) can be achieved by the replacement

P (k)→ P (k)run =

[
G

G(k)

]2

P (k) (3.29)

with G(k) given in Eq. (3.23). In addition, since the running of G is again an effect that is

most significant on small k’s, the strong infrared divergence near k ' 0 should similarly be

regulated as discussed above correspondingly by the replacement k2 → k2 +m2 in G(k). As

a consequence, the fully IR regulated expression with the running factor is

P (k)run =

[
1 + c0

(
m2

k2 +m2

) 3
2

]−2

·C0 A
(
k2 +m2

)ns
2 ·
[
T
(√

2
(k2 +m2)1/2

kEQ

)]2

(3.30)

This expression is plotted as the green curve in Figure 3.5 and 3.6 against two sets of

observational data by the SDSS collaboration.
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Figure 3.6: Same plot as in Figure 3.5, but now using the latest July 2018 Planck data release
(blue triangles), showing again the effect of the IR regulator and of the RG running of G. As
before, the blue curve represents the full power spectral function P (k) as derived and shown
previously in Figure 3.4, the orange curve P (k)reg includes the effect of an IR regulator, and
the green curve P (k)run includes the effect of an IR regulator together with the RG running
of Newton’s G. Notice that this new observational data set consists of additional low-k data,
which seems to support (within large errors) the lowest P (k) (green) curve which is here
implemented with the IR regulator and the running of G.
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From Figures 3.5 and 3.6, one can see that the effects of the IR regulator alone serves to level

off the curve at a low k ∼ m = 1/ξ (orange curve), whereas the full modification including

both the IR regulator and the RG running of G (green curve) bends the curve downwards

below the original classical curve (blue).

Figure 3.6 represents the newest observational data set at the time of writing – which was

actually published shortly after our first analysis was done (see version 1 of the preprint [15]).

It is interesting here to study the consistency and improvements, if any, of the data. In fact,

as one compares the first plot (Figure 3.5) with this new release, we find that the refined

observational data not only remain consistent with our original theoretical prediction, but

also an additional data point at an even lower value of k ≈ 2.9 × 10−4 hMpc−1 was found

– which seems to actually suggest a downwards dip in the spectrum at low-k regime, as

a running Newton’s constant due to quantum gravity would suggest. It is clear that the

error bars on the points are too large to make any conclusive statements. However, it is

still interesting that it expresses such a downwards bend. Therefore this should remain an

interesting development to study, and one is hopeful that as the observational resolution

continues to improve, error bars for the data in the low-k regime will continue to narrow

down, to eventually confirm or falsify this important prediction.
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3.5 Constraints on the Scaling Dimension ν from Cos-

mology

It is also possible to utilize these latest cosmological observations to constrain the theoretical

values of the microscopic parameters, and thus further shed insight into the underlying

theory. A handful of parameters in the theory are investigated, including the universal

critical scaling exponent ν, the coefficient for the amplitude of quantum effects c0, and the

characteristic nonperturbative correlation length scale ξ. Our analyses show that while the

latter (c0 and ξ) may only be constrained up to an order of magnitude, the data actually

puts rather stringent constraints on the universal scaling exponent ν.

It should by now be apparent that the universal scaling index ν plays an important role

in the theory of quantum gravity. Sections 2.2 and 3.1 summarized various methods, both

analytical and numerical, to determine this value. Furthermore, Section 3.1 shows that the

numerically derived value is in generally good agreement with recent observational data. It

is therefore of academic interest to see if the logic can be reversed – by taking advantage of

the variance in the data, to provide a constraint on this important theoretical parameter ν.

Figure 3.7 shows the same plot as in Figure 3.6 but with a 1% and 2% variance added to

the value ν = 1/3 (and ignoring the effect of IR regulation and RG running of Newton’s

constant G that is only important in the last three data points). It can be seen that, should

one want to stay within most of the error bars on the left, only a maximum of 1% variance

in ν is allowed. A 2% variance would already significantly protrude away from the rather

stringent vertical error bars in the 4th point from the left. One can therefore conclude that

current cosmological data provides a very stringent constraint on the theoretical value of the

scaling exponent ν - supporting the value of ν ' 1/3, with a maximum allowed deviation of

1− 2%. This observational constraint for ν, which should be emphasized that is the first of
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Figure 3.7: Matter power spectrum P (k) with various choices for the scaling exponent ν.
The middle (blue) curve shows the matter power spectrum as predicted by quantum gravity
with a value of ν = 1/3 as before, with two bands showing variance of 1 − 2% in the value
of ν. Notice that in order to obtain general consistency with current CMB data, ν cannot
deviate by more than ∼ 2% from the theoretically predicted value of 1/3. This can be viewed
as a rather stringent constraint on the value of the exponent ν arising from cosmology.
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its kind, is extremely consistent with the various other numerical methods, and analytical-

and semi-analytical approximations mentioned in Sections 2.2 and 3.1 for this value.

3.6 Constraints on the Running of G from Cosmology

A similar study can be performed for the magnitude of the RG running of Newton’s constant

G, and specifically the key quantum amplitude c0. Recall that the running of Newton’s G is

given by

G(k) = G0

[
1 + 2c0

(
m2

k2 +m2

)3/2

+O

((
m2

k2 +m2

)3
) ]

, (3.31)

where G0 is the currently established laboratory value for Newton’s constant, the quantum

amplitude is 2 c0 ≈ 16.04, and the nonperturbative gravitational condensate scale is esti-

mated at ξ ≡ m−1 ∼
√

3/λ ' 5300 Mpc. The value of 2 c0 ≈ 16.04 is computed from

the Regge-Wheeler lattice formulation of Quantum Gravity [45]. This is largely in exact

analogy, both in concept and in practice (via the lattice), to the evaluation of the β(g) func-

tion in QCD. The latter represents a quantity that has been extensively tested in collider

experiments, and is by now in extremely good agreement with accelerator experiments. At

this stage, unlike β(g) from QCD, the same level of precision has not yet been achieved for

c0, and it seems possible at this stage, given various numerical uncertainties inherent in the

calculation of c0, to have deviations that could modify it by up to an order of magnitude.

As a result, one can parallel the previous study of ν, and utilize cosmological data to provide

a best-fit value, and thus a constraint, on the quantum amplitude c0. Also, the same type

investigation for the variance in ξ will be done at the end of this section. Figure 3.8 shows

the best fit to c0, which corresponds to roughly 1/7-th, or 15%, of the original value for c0,

i.e., 2 c0 = 16.04/7 ' 2.29 (in solid purple). The bands above and below the solid purple
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Figure 3.8: Matter power spectrum P (k) shown for various choices of the quantum amplitude
c0. The middle (purple) solid curve shows a best fit through the last few low-k data points via
an RG running of Newton’s constant G, with an amplitude of running 2 c0 ≈ 16.04/7 ≈ 2.29,
i.e., around 15% of the preliminary value of 16.04 from the lattice. The shaded (purple) band
represents a variance in 2 c0 ≈ 2.29 by a factor of 2 and 1/2. The original spectrum with no
running (top, blue, dashed) and the spectrum with running of Newton’s constant G, with
the original coefficient of 2 c0 ≈ 16.04, (bottom, green, dashed) are also shown for reference.
Note that the middle (purple) curve with 2 c0 modified to 16.04/7 can also be mimicked by
instead tuning the nonperturbative scale ξ to ∼ 2.5×5300 Mpc (≈ 13, 000 Mpc) and keeping
the quantum amplitude 2 c0 = 16.04.

curve represent a further factor of 1/2 and 2 respectively. Note that the middle solid (purple)

curve with 2 c0 modified to 16.04/7 can also be mimicked by instead tuning ξ to ∼ 2.5×5300

Mpc (≈ 13, 000 Mpc) and keeping the lattice value for the amplitude at 2 c0 = 16.04. The

initial association of ξ ∼
√

3/λ ≈ 5300 Mpc is theoretically motivated by connecting the

curvature vacuum condensate scale in the theory,
√

3/λ, to the nonperturbative correlation

length ξ [48, 49], and again in close analogy to what happens in QCD (the factor of 1/3

is often accompanied with λ in the equations of motions, such as the classical Friedmann

equations). It is thus conceivable that the order of estimate ξ can be varied by a factor up
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to an order of magnitude. The above analysis shows that, if the lattice value of 2 c0 = 16.04

is to be taken rigorously, then an increase of ∼ 2.5 on the vacuum scale ξ would best fit

the data. In essence, the RG running of Newton’s constant G requires two parameters,

the quantum amplitude c0 and the correlation length ξ, to fully determine its form. The

former is in principle calculable from the lattice, while the latter is best associated with the

scale
√

3/λ provided by the theory, which determines the long-distance decay of Euclidean

curvature correlation functions at a fixed geodesic distance. Nevertheless, the error bars in

the last data point in Figure 3.8 are too wide to provide any definite conclusions at this

stage. It is conceivable that further satellite experiments might put further constrains on

the errors in these points, and thus provide more insight on these fundamental microscopic

parameters.

Here we note that it is of some interest to explore analytical (as opposed to numerical)

methods related to the running of Newton’s constant G. One possibility briefly mentioned

earlier is the 2 + ε expansion [50–57], which provides an estimate for the scaling exponent

ν−1 to be between 2 and 4.4, through a one- and two- loop double expansion (in G and

the dimension) respectively, giving additional confidence in the numerically computed value

ν−1 ' 3. Similar estimates for the exponent ν are found within a set of truncated RG

equations, directly in four dimensions [62,70].

Another recently explored idea is a nonperturbative approach via a mean field approximation,

which in this context is essentially the Hartree-Fock (HF) self-consistent method applied to

quantum gravity [91], used here for the running of Newton’s constant G. One finds the

following expression for the running of G,

G → GHF(k) = G0

[
1− 3m2

2k2
log

(
3m2

2k2

)]
(3.32)

The result of this exercise is shown in Figure 3.9. The middle solid orange curve shows the
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Hartree-Fock expression for the running of Newton’s constant G, while the bottom dashed

green curve and the top blue dotted curve show the original lattice running of Newton’s

constant G (with original lattice coefficient 2 c0 = 16.04), as well as no running respectively

for reference. It seems that the Hartree-Fock running of G is in good consistency with the

lattice expression, except for the eventual unwieldly upturn beyond k < 2× 10−4. However,

this upturn is most likely an artifact from the Hartree-Fock expression being just a first-order

analytical approximation after all (it is well known that the Hartree-Fock approximation can

be extended to higher order, by including increasingly complex higher loop diagrams, with

dressed propagators and vertices still determined self-consistently by a truncated version of

the Schwinger-Dyson equations). Nevertheless, the Hartree-Fock approximation shows good

consistency with both the latest available observational data sets, as well as with the lattice

results. The fact that it exhibits a gentler dip at small k perhaps also provides support for

the reduced lattice running coefficient of 2 c0 = 16.04/7 ≈ 2.29 from Figure 3.8.

3.7 Comparison with Inflationary Models 2

It should be emphasized again that the two quantum gravity predictions of an emerging IR

dynamical regulator and an RG the running of Newton’s G – of which the combined effects

on the large cosmological scales are shown by the green curves in the various P (k) plots in

this paper – are independent on whether the origin of matter fluctuations is inflation-driven

or gravity-governed. Thus, conceptually, even if one insists that the power spectrum to be

inflation-driven, or some sort of combined effect between inflation and gravitation, the effects

of IR regulation and RG running of Newton’s G should be taken into account, due to the

non-trivial condensate effects from gravity by applying standard nonperturbative methods

of quantum field theory. And, as we have shown, the data seem to reflect and support this.

Or, at the very least, the inclusion of these nonperturbative quantum gravitational effects
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Figure 3.9: Lattice versus Hartree-Fock running of Newton’s constant G. The middle solid
(orange) curve shows P (k) implemented with the Hartree-Fock running of Newton’s constant
G factor. The lower dashed (green) curve shows the original lattice RG running of Newton’s
constant G (with the original lattice coefficient 2 c0 = 16.04) for comparison. The original
spectrum with no running is also displayed by the top dotted (blue) curve for reference.
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form a rather compelling explanation for the observed dip in the low-k limits of P (k).

Once again, it should be stressed that these two additional, genuinely-quantum, effects

are fairly concrete predictions associated with standard quantum modifications to classical

gravity, and are quite distinct from any effects from inflationary models – both in procedure

and in origin. With the advance of increasingly accurate astrophysical and cosmological

satellite observations, it is hoped that these new predictions could be verified, or falsified, in

the near future.
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Chapter 4

Angular CMB Power Spectrum Cl

Cosmological power spectra always play an important role as the testing ground for the

theories of inflation. In particular, the ability to reproduce the CMB temperature angular

power spectrum Cl – in additional to the galaxy matter power spectrum P (k) – to high

accuracy is often considered a triumph of inflation. In the previous chapter, we presented an

alternative explanation for the matter power spectrum based on nonperturbative quantum

field-theoretical methods applied to Einstein’s gravity, instead of inflation models based on

scalar fields. In this chapter, we extend our predictions to the angular CMB temperature

spectrum coefficients Cl. Then we investigate further the potential freedoms and uncertain-

ties associated with the fundamental parameters that are part of this picture, and show how

recent cosmological data provides significant constraints on these quantities. Overall, we

have found good general consistency between theory and data, will summarize our results

by outlining how this picture may be tested in the near future with increasingly accurate

astrophysical measurements.
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4.1 Introduction

In the previous chapter, we offered an alternative explanation based on gravitational fluc-

tuations alone without inflation [15], which to our knowledge is the first-of-its-kind. While

the short-distance theory of quantum gravity may still be highly uncertain due to both the

flexibility of higher-order operators consistent with general covariance and the lack of ex-

perimental results, the long-distance or infrared limit of the theory is however in principle

well-defined and unique, governed largely by the concept of universality. Although this long-

distance quantum theory of gravity still suffers from being perturbatively nonrenormalizable,

well known field theory techniques have been extensively developed, applied and tested in

many other fields of physics where perturbation theory fails, usually due to a non-trivial

vacuum structure. As a result, it is thus conceivable that these nonperturbative methods

may find use in deriving physical consequences of perturbatively nonrenormalizable theories

such as gravity. Previous efforts [13, 14] have shown that many such effects may manifest

themselves and become important on very large cosmological scales. In particular, we found

that much of the matter power spectrum can be derived and reproduced from Einstein grav-

ity and standard ΛCDM cosmology alone, utilizing nonperturbative quantum field methods,

without the need of additional scalar fields as advocated by inflation. We have shown that

not only the predictions agree quite well with recent data, but also that additional quantum

effects predict subtle deviations from the classical picture, which may become testable in the

near future.

In this chapter, we further investigate consequences from the above picture. Most impor-

tantly, we translate our quantum gravity prediction of the matter wavenumber power spec-

trum P (k) to a prediction for the angular temperature power spectrum coefficients Cl’s. The

angular temperature power spectrum, which expresses the power as coefficients of spherical

harmonics (instead of plane waves, like the matter power spectrum) serves as a more di-
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rect comparison with observation, since after all the CMB measurements are performed over

the sky. Unsurprisingly, we again find a general agreement between the observations and

the gravitationally motivated prediction. Furthermore, additional quantum gravitational ef-

fects are expected to affect the low-l regime of the Cl spectrum. As discussed in [15], new

quantum effects become significant when the separation-distances r become comparable to a

characteristic vacuum condensate scale of gravity ξ, which is expected to be extremely large

(∼ 5300 Mpc), affecting very small l’s in angular harmonic space. The additional quantum

effects include the infrared (IR) regulator effects from the gravitational vacuum condensate

and the renormalization group (RG) running of Newton’s constant G. Such modifications are

usually implemented via sophisticated numerical programs (such as CMBFAST and CAMB)

in cosmology. While that would produce the most sophisticated predictions, the procedure

and details become rather obscured and nontransparent. So, here we first attempt to derive

these effects in a mostly analytical manner, apart from a few standard approximations and

the help of Mathematica to perform a few final numerical integrals, instead of relying on a

“black-box” program from the start. From this derivation, we find a small dip in power in

the low-l regime. It is possible that this, the quantum effects of gravitation, may be the cause

for the well-known l = 2 anomaly in the Cl spectrum. Although it is impossible to make

conclusive statements so far due to the large cosmic variance in that region, one might hope

that there may be incremental improvements in systematic and experimental uncertainties in

the near future, or that certain statistical likelihood-arguments for this effect can be made.

After this, in the next chapter, we proceed to employ more state-of-the-art programs in

cosmology to revisit this (and other) calculations, compare against them in detail.

This chapter is organized as follows. Section 4.2 serves to outline the key theory of angular

temperature spectrum Cl, and how it relates to the matter power spectrum P (k). Section

4.3 relates the quantum gravity predictions on the matter power spectrum P (k), as discussed

in the last chapter, to the angular temperature spectrum Cl’s, as well as the quantum effects

of an IR regulator and the RG running of Newton’s constant G on the Cl’s. Section 4.4
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discusses, summarizes and contrasts the current quantum gravity motivated picture with

that of inflation, in view of explaining the measured power spectra. The section concludes

by outlining a number of future issues of interest to this study.

4.2 Angular CMB Temperature Power Spectrum

The most accurate recent measurements of the CMB are actually represented by the angular

temperature power spectrum, represented by a set of angular Fourier coefficients denoted by

Cl. It is therefore useful to translate the quantum gravity prediction to the angular temper-

ature spectrum represented by the Cl’s. The angular temperature spectrum Cl coefficients

relate to a two-point correlation function of the temperature, when expanded in terms of

spherical harmonics labelled by l and m. The Cl coefficients themselves are defined as

Cl ≡
1

4π

∫
d2n̂

∫
d2n̂′ Ll(n̂ · n̂′) 〈 ∆T (n̂) ∆T (n̂′) 〉 , (4.1)

where n̂, n̂′ are two different directions in the sky, and Ll(θ) the Legendre polynomials. Here

we avoid the usual common notation, “Pl(θ)”, for the Legendre polynomials, in order to

avoid unnecessary confusion with the various power spectra. Following [18], fluctuations in

the CMB temperature ∆T can be expanded in plane waves,

(
∆T (n̂)

T0

)
=

∫
d3q eiq·n̂ r(tL) (F1(q) + iq̂ · n̂ F2(q) ) , (4.2)

where T0 = 2.725 K (the average CMB temperature measured today), tL the time of recom-

bination, and F1,2(q) form factors given by

F1(q) = −1

2
a2(tL)B̈q(tL)− 1

2
a(tL)ȧ(tL)Ḃq(tL) +

1

2
Eq(tL) +

δTq(tL)

T̄ (tL)
, (4.3)
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F2(q) = −q
(

1

2
a(tL)Ḃq(tL) +

δuγq(tL)

a(tL)

)
, (4.4)

The B and E functions describe suitable decompositions of the metric perturbations, and

δuγ is the velocity potential for the CMB photons. These form factors simplify for certain

gauge choices. In the synchronous gauge, E = 0, whereas in the Newtonian gauge B = 0

and E = 2Φ, which then gives

F1(q) = Φq(tL) +
δTq(tL)

T̄ (tL)
, (4.5)

F2(q) = −δuγq(tL)

a(tL)
. (4.6)

The functions Φ and δuγ, as well as the scale factor a(t) and T (t), can all be obtained as

solutions of the classical Friedmann equations combined with the Boltzmann transport equa-

tions, as is done in standard cosmology, which will then in principle lead to unambiguous

predictions for the Cl’s. Note that F1(q) and F2(q) are referred to as “F (q)” and “G(q)”

respectively in [18]. Here we will use the former in order to avoid confusion with the expres-

sion for the running of Newton’s constant G(k), as it will be implemented below. We also

make the usual approximation of a sharp transition at tL during recombination, which is

quite acceptable since we are primarily interested in the general trend, and not exceedingly

precise features, of the spectrum at this stage.

Perturbations in the above form factors are fully governed by the classical Friedmann and

Boltzmann transport equations. These lead to standard solutions in terms of transfer func-
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tions T (κ), S(κ) and ∆(κ), given by

F1(q) =
R0
q

5

[
3 T

(
q dT
aL

)
RL − (1 +RL)−

1
4 e
−
(
q dD
aL

)2

S
(
q dT
aL

)
cos

[
q dH
aL

+ ∆

(
q dT
aL

)]]
,

(4.7)

F2(q) =
√

2
R0
q

5
(1 +RL)−

3
4 e
−
(
q dD
aL

)2

S
(
q dT
aL

)
sin

[
q dH
aL

+ ∆

(
q dT
aL

)]
(4.8)

where aL = a(tL) = 1/(1 + zL), zL = 1090, dT = 0.1331 Mpc, dH = 0.1351 Mpc, dD =

0.008130 Mpc, dA = 12.99 Mpc, and RL ≡ 3ΩB(tL)/4Ωγ(tL) = 0.6234. It is noteworthy

at this stage that all three transfer functions are completely determined again by (well

measured) cosmological parameters. So the only remaining ingredient to fully determine the

Cl coefficient is an initial spectrum R0
q, which is usually parameterized by an amplitude N

and spectral index ns,

R0
q = N q−3/2

(
q

qR

)(ns−1)/2

. (4.9)

Here the reference “pivot scale” is usually taken to be qR = 0.05 Mpc−1 by convention. As a

consequence, once the primary function R0
q is somehow determined, classical cosmology then

fully determines the form of the Cl spectral coefficients. It is therefore possible to write the

Cl’s fully, and explicitly, in terms of the primary function R0
q. After expanding the original

plane wave factor in a complete set of spherical Harmonics and spherical Bessel functions,

one obtains

Cl = 16π2 T 2
0

∫ ∞
0

q2 dq
(
R0
k

)2
[
jl(qrL)F̃1(q) + j′l(qrL)F̃2(q)

]2

. (4.10)

Here rL = r (tL), and we have factored out the function R0
q explicitly F1(q) = (R0

q) F̃1(q)
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and F2(q) = (R0
q) F̃2(q). Recall that, since the matter power spectrum is given by

P (k) = C0

(
R0
k

)2
k4 [T (κ)]2 , (4.11)

we can use R0
q to obtain a direct relation between the Cl’s and P (k),

Cl = 16π2 T 2
0

∫ ∞
0

q2dq P (q)
[
C0 k

4 T (κ)2 ]−1
[
jl(qrL)F̃1(q) + j′l(qrL)F̃2(q)

]2

, (4.12)

where q and k are related by q = a0k, and the scale factor “today” a0 can be taken to be 1.

4.3 Quantum Gravity Results

The Quantum theory of Gravity, as outlined in the earlier sections, predicts the form of the

full matter power spectrum function P (k). Using Eq. (4.12), one can therefore translate the

quantum gravity prediction on P (k) to the angular coefficients Cl’s. Figure 4.1 shows a plot

of the ensuing result, represented by the top blue curve, for l = 2 to l = 50. One can see

that the theoretical prediction (obtained here by numerical integration) is in generally rather

good agreement with most of the observational data. Again, it should be emphasized here

that reproducing the full expression for the Cl’s does not require the inclusion of a scalar

field anywhere. Instead, the spectrum for gravitational fluctuations is used to set the scaling

in a particular regime, which is chosen to be the galaxy regime for its most direct connection,

and the rest is then fully governed by classical general relativity and standard kinetic theory.

Another way of expressing this result is that the entire expression for the Cl’s, or for P (k),

except for the spectral index ns and the amplitude N , is fully governed by classical general

relativity and kinetic theory (and by finely measured cosmological parameters such as ΩM ,

ΩΛ, H0, etc. ...). That is, ns and N are the only two remaining theoretically undetermined

quantities in this framework. Whereas inflation provides one perspective on how these two
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Figure 4.1: Plot of the angular power spectrum coefficients l(l+ 1)Cl/2π. The upper (blue)
curve shows the quantum gravity prediction of the angular CMB power spectrum Cl’s as
obtained from the matter power spectrum P (k) (and thus with scaling exponent ν=1/3),
without any IR regulation effect from ξ, and without the RG running of Newton’s constant
G. The bottom (green) curve shows the combined quantum gravity effect now with IR
regulation and the lattice RG running of Newton’s constant G, with the original lattice
quantum amplitude 2 c0 = 16.04. The upper and lower bands on the bottom curve represent
a factor of 2 variance on the quantum amplitude c0, i.e., 2 c0 = (8.02, 32.08).
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parameters can be derived, quantum gravity provides in our view an equally well-motivated

alternative.

However, as before, additional quantum gravity effects are expected to manifest themselves at

very large distances comparable to ξ. In angular space, this corresponds to the widest angles,

or very low-l regime. In this context one can then investigate how the IR regularization

and the RG running of Newton’s constant G affects the standard prediction, thus providing

potentially testable predictions and alternatives, to distinguish between this quantum gravity

fluctuation picture and the inflation one. In the case of the matter power spectrum P (k),

the RG running of Newton’s constant G was implemented by modifying

P (k) →
[
G0

G(k)

]2

P (k) (4.13)

where G0 is the Newton’s gravitational constant measured in the laboratory or on solar

system scales. In the angular spectrum coefficients Cl, this will introduce an extra factor of

[G0/G(q)]2 in the integrand. The resulting modification is shown by the lower green curve

in Figure 4.1. As for the case of P (k), the RG running of Newton’s constant G causes a

significant drop in the magnitude of the Cl’s at large distance scales (low l). The green bands

around the curve with the RG running of Newton’s constant G shows the effects of varying

by factor of 2 the quantum running amplitude c0.

Note that in particular the last point at l = 2, which corresponds to measuring the CMB

on the largest scales on the sky, is significantly below the classical prediction, and has

represented a well-known anomaly for quite some time. Although that last point is plagued

with large uncertainties due to cosmic variance - the lack of independent samples on this

scale from our sky - many do agree that the error bars as shown already account for our

best assessments of the associated variances. If these judgements are believable, then the

classical prediction seems just marginally consistent with the allowed uncertainties. If the
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matter power spectrum indeed originates from inflation, then there are currently no widely

agreed solutions that can reasonably explain the sudden drop in power at the extreme low

l’s. This is a general consequence of inflation, providing a scale-invariant normalization at

very large scales.

Quantum gravity, however, tells us that the effects from a running Newton’s constant G must

be included, whether by an expression calculated from the lattice approach as represented

by the green curve above, or by one calculated via the Hartree-Fock approximation. Figure

4.2 shows a comparison between them.

So it seems that for distance scales roughly r < ξ, both quantum gravity and inflation

produce a spectrum that agrees rather well with observations. Although one can argue the

gravity induced perspective is more natural to the principle of Ockham’s Razor, being able

to explain the same physical phenomena without the need of a new field, the question of

which picture is more desirable remains largely a philosophical one. However, for distance

scales roughly r > ξ (i.e., small k or small l), both the observed matter power spectrum

P (k) and the corresponding observed angular power spectrum Cl seem to hint towards the

quantum gravity picture. Of course, ultimately, much more precise data will be needed to

conclude this decisively. Nevertheless, the current context presents an intriguing possibility

for a new explanation for the nature of correlations and for the origin of cosmic fluctuations,

and also beyond that an interesting testing ground for quantum gravity.

It is of some interest here to compare the running of Newton’s constant G obtained from

the lattice to the analytical result of the Hartree-Fock approximation. Using the Hartree-

Fock expression Eq. (3.32), the corresponding result is displayed by the orange curve in

Figure 4.2. One notes that, similarly to P (k), the Hartree-Fock expression analogously (i)

predicts a smaller power in the low-l’s (l < 50), (ii) has a less dramatic dip compared to

the lattice running at the very large scales (l < 10), and finally (iii) predicts a somewhat

unwieldly upward turn at the extreme large scales (l < 3). As is the case of the matter power
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Figure 4.2: A comparison of the lattice versus Hartree-Fock RG running of Newton’s constant
G on the angular spectrum coefficients Cl. The middle (orange) curve shows Cl implemented
with a Hartree-Fock running of Newton’s constant G factor, in comparison with the original
lattice RG running of Newton’s constant G (with the original lattice coefficient 2 c0 = 16.04),
represented by the lower (green) curve. The original angular spectrum with no running of
G is shown by the upper (blue) curve for reference.
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spectrum P (k), some of these features, especially the unwieldy upturn at extremely large

scales, may be an artifact from the fact that Hartree-Fock is essentially a mean-field type

approximation. Nevertheless, while the lattice prediction may be more trust-worthy due to

it being an exact, numerical evaluation of the path integral, the Hartree-Fock expression

provides a good independent consistency check for this picture.

Finally, it is possible to investigate the effect of varying the lattice quantum amplitude c0

appearing in the running of G, as in Eqs. (2.12) and (2.17). From the investigation of P (k),

the value of c0 that best fits the large scale data at small k is 2 c0 = 16.04/7 ≈ 2.29. Figure

4.3 plots the effect of this modification. As before, this choice seems to fit rather well with

most of the data in the low-l regime. Nevertheless it should be noted that this modification

can also be mimicked by modifying the correlation length ξ ≈ 5300 Mpc to ξ ≈ 13000 Mpc, or

by any combined adjustments of the two parameters ξ and c0. Although at first sight it may

seem impossible to eventually distinguish the difference between the classical and quantum

picture by the still highly uncertain data, it may not be so with better telescopes in the

near future. Table 4.1 shows the percentage difference between the classical prediction, and

one with the RG running of Newton’s constant G included, in accordance with Eq. (2.17),

with the choice 2 c0 = 16.04/7 ≈ 2.29. From Table 4.1, one can see a 58% difference

in the Cl for l = 2, which future experiments may be able to distinguish. However, too

much emphasis should not be put in the extreme low-l points due to statistical limitations

arising from cosmic variance, which under reasonable assumptions (mainly Gaussianity) is

expected to grow rapidly as l decreases, by ∆Cl ∼ 2/
√

2l + 1 [18]. Nevertheless, focusing

on the l = 6 to l = 10 points, the narrowing of errors needed to distinguish between the

classical and the quantum predictions may very much be achievable. Thus, for example,

for l = 6, the percentage difference between the predictions is 13%. In comparison, the

current errors on the Planck data for the l = 6 value is +67%
−36%

. For l = 10, the current

uncertainties in the Planck data is +46%
−29%

, whereas the difference between the classical and

quantum prediction is only 3.53%, which may be more difficult to resolve with future satellite
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Figure 4.3: Angular power spectrum shown, with a comparison between various choices for
the lattice RG running of G parameters of Eq. (2.17). For reference, the top blue curve
represents the original spectrum with no RG running of Newton’s constant. The bottom
green curve shows the effect of the lattice RG running of Newton’s constant G with a modified
value for the lattice amplitude 2 c0 = 16.04/7 ≈ 2.29. This new curve, represented by the
modified amplitude 2 c0, appears to fit best through the last few (l < 10) data points. Here
the green bands represent a factor of two in variance around this modified c0. The last
curve reveals that although the original value of 2 c0, as obtained from numerical lattice
simulations, is around the correct order of magnitude, nevertheless when looked at more
carefully, a slightly smaller value seems to be favored by the very low l cosmological data.
It seems therefore that future data from the CMB could be useful in further constraining
the precise value for the quantum amplitude. Note that a coefficient of 2 c0 ≈ 16.04/3.13
will allow the green curve to precisely go through the last point at l = 2. However cosmic
variance suggests ∆Cl ∼ 2/

√
2l + 1, which disfavors giving too much weighting to the final

point.
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l l(l + 1)Cl/2π Classical l(l + 1)Cl/2π Quantum Difference %-Difference

2 788.78 328.47 460.31 58.36 %
3 778.43 457.41 321.02 41.24 %
4 772.58 555.42 217.16 28.11 %
5 769.52 623.18 146.34 19.02 %
6 768.55 668.59 99.96 13.01 %
7 769.30 699.51 69.80 9.07 %
8 771.56 721.59 49.97 6.48 %
9 775.17 738.51 36.67 4.73 %
10 780.04 752.51 27.53 3.53 %

Table 4.1: Values of, and percentage differences between, the classical predictions for the
angular spectrum coefficients Cl’s, and the prediction with a quantum RG running for New-
ton’s constant G included. The quantum gravity values for the Cl’s were computed here
with a lattice RG running quantum amplitude of 2 c0 = 16.04/7 = 2.29.

experiments. Nonetheless, while the magnitude of the errors in the CMB observational data

may initially seem unpromising to make any claims, this table shows there may still be hope

in distinguishing the various theoretical predictions. Within the l = 6 to l = 10 points

range, the improvements in technology needed to improve the measurements and support

the validity of the gravitational fluctuation picture may actually be within reach in the next

decades, which provides an exciting prospect for the future.

In conclusion, in this section we showed how the quantum gravitation prediction for P (k)

unambiguously translates to a prediction for the Cl’s - which is essentially related to the

former via a spherical Bessel transform, weighted by some suitable combination of trans-

fer functions. The transfer functions in turn are ultimately just solutions to the classical

Friedmann equations and associated Boltzmann transport equations which, apart from the

measured values of standard cosmological parameters such as H0, Ωm, etc., require no further

theoretical input. As a result, we were able to show how the quantum gravity prediction for

the matter power spectrum P (k) directly and unambiguously translates to the angular coef-

ficients Cl. It can be seen that the prediction is rather consistent with current cosmological

data.
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We also discussed several theoretical parameters, which in this picture potentially have

some variance and related uncertainties. The first two key parameters in the quantum

gravity motivated picture are the universal scaling exponent ν, and the fundamental vacuum

condensate correlation length ξ. A third additional parameter here is the quantum amplitude

c0, which governs the amplitude of quantum correction in the RG running of Newton’s

constant G as given in Eqs. (2.12) and (2.17). Of the three parameters, as shown above

in Section 3.5, ν is pretty much highly constrained (both theoretically and observationally)

around ν−1 ' 3. The value of this last parameter should also be the most trustworthy of

the three since, as a universal scaling exponent, it is expected to be entirely independent of

schemes and regularization. On the other hand, the values of ξ and c0 are somewhat less

definite. Here the nonperturbative length scale ξ is quite analogous (via the observed scaled

cosmological constant λ = 3/ξ2) to the vacuum condensate scale in QCD 〈F 2
µν〉 ∼ 1/ξ4,

or to the scaling violation parameter ΛM̄S ∝ ξ−1. This implies that its absolute value in

physical units is not determined theoretically, and can ultimately only be fixed by experiment.

Current cosmological data seem to suggest the best – and most consistent – estimate for ξ

is roughly ξ ' 2.5× 5300 Mpc, whereas for the quantum amplitude 2 c0 ' 16.04/7, or some

degenerate combination between the two (as discussed in the beginning of this chapter).

Finally, we explicitly listed the percentage differences between the classical prediction and

the quantum one implemented with an RG running of Newton’s G, which should provide a

useful guide as to how improved observational data must trend in order to support the picture

advocated here. Although such precision has not been achieved yet, it should hopefully be

attainable in the near future, and thus provide an additional significant test for the quantum

gravity picture.

Nevertheless, with these flexibilities in mind, the quantum gravity picture outlined here

provides a radically different perspective to the origin of matter and radiation fluctuations,

as compared to the other common perspectives, for example, from inflation. In addition, the

inflation picture normalizes the spectrum at large scales (i.e., small-k), so that for the Cl’s
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it predicts a flat scale-invariant plateau for small-l’s. If the last point of l = 2 is to be taken

seriously, despite the flexibility inherent in various inflation models, it would be difficult

to account naturally for the reduction in power on the very largest scales. In contrast,

the demand of a renormalization group running Newton’s constant in the quantum gravity

picture appears to explain the dip quite naturally. Of course, due to the large uncertainties

in the data at small l’s, significant improvements on the errors needs to be made before

definite conclusions can be drawn.

4.4 Conclusion

In this chapter, we have revisited some key procedures in how the angular CMB temperature

spectrum is related to the matter power spectrum and showed, mostly analytically, how the

gravitationally motivated fluctuations can give rise to the angular temperature spectrum.

We also showed how the additional quantum effects are predicted to affect the spectrum in

the low-l regime.

To reiterate, the primary benefit of the quantum gravity explanation over inflation is the

non-necessity of additional and untested physics ingredients, other than standard Einstein’s

gravity and accepted modern quantum field theory methods. The basis of the methods begins

with the path integral formulation of gravity [27,28] which, unlike inflation, provides a very

constrained theoretical framework. Also, given the well-known fact that the theory is not

perturbatively renormalizable, standard nonperturbative methods and approaches must be

used. While a lot of the results used here are derived from the lattice numerical treatment,

additional confirmations via analytical methods are also briefly discussed, including the

2+ε and the Hartree-Fock approximation. The general consistencies of these numerical and

analytical methods gives confidence to the results. The lattice treatment in particular has
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a long history of high precision success in other fields from QCD to condensed matter and

statistical systems, and thus provides us with particularly trustworthy results.

On the other hand, for inflation, a new (minimum of one) inflaton field, usually scalar in

nature, must be invoked. The details of the particular theory are also highly flexible, leading

to a myriad of models, see for example [88] and references therein. In addition, recent

studies have shown that a majority of single-field inflation models have either been ruled out

or highly constrained. The amount of flexibility for inflation has thus led many to question

the predictability and ultimate naturalness of such scalar-field based solutions [10–12,85,86].

Although the original model of inflation was invented to explain the flatness and horizon

problem, it has been convincingly argued that it is not a necessary ingredient to do so

[92–102]. We have argued therefore that the gravitational picture provides a more concrete

and natural explanation to the origin and distribution of cosmological matter fluctuations.

Finally, we have pointed out that the gravitational fluctuation picture also provides a clear

set of predictions that diverge from scalar field induced predictions on very large scales.

As advanced satellite experiments are continuously being conducted, and increasingly accu-

rate measurements are becoming available, the predictions originating in quantum gravity

outlined in Section 4.3 could be verified or disproved in the near future.

We should add that it is certainly possible for our picture of gravitational fluctuations to

even coexists with inflation, with both effects providing significant contributions to the power

spectra. Nevertheless, we do not explore this idea in depth here, as the primary aim of this

thesis is to show that the same power spectra can be reproduced purely from macroscopic

quantum fluctuations of gravity, independent of any inflation mechanism, making use of well-

accepted and tested methods for dealing with perturbatively nonrenormalizable theories.

Still, this could be a potential avenue for future explorations.

In addition to the results presented here, there are also a number of exciting future directions
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which seem meaningful to explore. For example, the quantum gravity-based explanation is

most certainly not Gaussian, due to the presence of non-trivial anomalous scaling dimensions

[13] which affect all gravitational n-point functions, although they may seem to be Gaussian

in certain regimes. While the corresponding predictions for the two-point functions, or

power spectra, are similar to those motivated by inflation, a divergence will definitely be

expected on higher order n-point functions, commonly known as bispectra and trispectra

in the cosmology context. For example, the two-point function scalar curvature result of

Eq. (3.6), derived from quantum gravity, will also determine the form of the connected

reduced three-point function, or bispectrum, for large scale scalar curvature correlations [13]

〈 R(x1) R(x2) R(x3) 〉c,R ∼
dij � ξ

C123

d12 d23 d31

, (4.14)

with constant amplitude C123, and relative geodesic distances dij = |xi − xj| in coordinate

space. It is easy to see that this last correlation leads to a Fourier transform in momentum-

or wavenumber-space of the form

BR(k1,k2,k3) ≡ 〈R(k1)R(k2)R(k3) 〉c,R ∼
ki � m

log (k1 + k2 + k3) + γE
k1 k2 k3

δ(3) (k1 + k2 + k3) ,

(4.15)

where k1,k2,k3 are the three momenta conjugate to d12, d23, d31, the scale m = 1/ξ, and

γE is Euler’s constant. One can then follow the same line of argument given in Section

1.2 to relate this to measured quantities from the CMB. Here we outline the main points

of the argument. Firstly, the Einstein’s field equations of Eq. (3.3) allow this bispectrum

for curvature to directly translate to the bispectrum for matter 〈 δρ δρ δρ 〉. Secondly, the

transfer function, responsible for turning the two-point spectrum from ∼ 1/k to ∼ k when

connecting the late-time galaxy regime to the early-time CMB regime, essentially supplies
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an extra factor of k for each fluctuating field. This then leads to the result

B
(CMB)
δρ (k1,k2,k3) ≡ 〈 δρ(k1) δρ(k2) δρ(k3) 〉 ∼

ki � m
[ log (k1 + k2 + k3) + γE ] δ(3) (k1 + k2 + k3) .

(4.16)

Nevertheless, most CMB bispectrum measurements are presented nowadays in terms of the

Bardeen field Φ, which roughly relates (as it describes a specific metric component) to the

curvature by R ' �Φ in the weak field limit. This supplies an additional factor of −k2 for

each field, giving the following explicit prediction for the bispectrum of the Φ field

B
(CMB)
Φ (k1,k2,k3) ≡ 〈Φ(k1) Φ(k2) Φ(k3) 〉 ∼

ki � m
fNL ·

log (k1 + k2 + k3) + γE
k2

1 k
2
2 k

2
3

δ(3) (k1 + k2 + k3) .

(4.17)

Here the quantity fNL here represents the overall amplitude for the expected non-Gaussian

effects. However, these non-Gaussian amplitudes are expected to be rather small, with

very significant suppressions by extra factors of 1/ξ [13]. This follows simply from the

fact that in real space one has for the two-point function 〈RR 〉 ∼ 1/ξ2r2, whereas for

the scalar curvature three-point function 〈RRR 〉 ∼ 1/ξ3r3, and also 〈RRRR 〉 ∼ 1/ξ4r4

etc., where r represents the relevant and appropriate combination of relative distances for

each reduced curvature n-point function. More detailed analyses on this issue, and on the

magnitude of these bispectra, shall be left for further work. Nevertheless, it should be

clear at this point that analogous results, as hinted above, can also be derived for various

four-point functions. We note here that the relevance and measurements of such nontrivial

(non-Gaussian) three- and four-point matter density correlation functions in observational

cosmology were already discussed in great detail some time ago by Peebles in [2]. The

results presented here imply that further observational constraints on these higher order n-

point functions could potentially provide additional tests on the vacuum condensate picture
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for quantum gravity, and more specifically the implications of a non-trivial gravitational

scaling dimensions scenario as described previously.

In addition, it is clear that the gravitational fluctuation-based explanation presented here

should also give rise to nontrivial tensor perturbations, and with their magnitudes compara-

ble to the scalar one. This could lead to new insights on the corresponding tensor-to-scalar

ratio parameter r [87], and to a number of potentially interesting and testable consequences

to be explored. Here we note that tensor perturbations first require the knowledge of the

semi-classical Ricci tensor (as opposed to scalar curvature) correlation functions,

〈 Rµν(x1) Rρσ(x2) 〉 ∼
d12 � ξ

Pµν,ρσ

(d12)∆
, (4.18)

with polarization tensor P and relative geodesic distance d12 = |x1 − x2| in coordinate space.

These correlations have not been measured yet on the lattice, but should be calculable in the

near future. Nevertheless, based on the known scaling dimension for the scalar curvature, one

would expect here the same result for the operator Rµν(x), namely ∆ = 2, as in Eqs. (2.11)

and (4.14) for the scalar curvature R case. In turn, these curvature correlation functions

can then be related to suitable matter and radiation sources, via the quantum equations of

motion

Rµν(x) = 8πG
[
Tµν(x)− 1

2
gµν(x)T λλ(x)

]
(4.19)

with the (trace reversed) Tµν here representing either matter or radiation contributions, and

thus in complete analogy to what was used earlier in Eq. (3.3), and following, for the scalar

(trace) case. Since the scalar curvature correlation function of Eq. (2.11) involves traces of

the Ricci tensor (using the weak field limit here)

〈 (R00(x1)+R11(x1)+R22(x1)+R33(x1) ) · (R00(x2)+R11(x2)+R22(x2)+R33(x2) ) 〉
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versus say the intrinsically tensor correlation 〈R12(x1)R12(x2) 〉, one would expect for the

ratio of tensor over scalar correlation amplitudes, based just on Lorentz symmetry, to be

1/42 = 1/16. The translation of these simple results into measurable cosmological predictions

is of course a lot more complicated.

In conclusion, the ability to reproduce the cosmological matter power spectrum has long been

considered one of the “major successes” for inflation-inspired models. Although within our

preliminary study, further limited by the accuracy of present observational data, it is not yet

possible to clearly prove or disprove either idea, the possibility of an alternative explanation

without invoking the machinery of inflation suggests that the power spectrum may not be

a direct consequence nor a solid confirmation of inflation, as some literature may suggest.

By exploring in more detail the relationship between gravity and cosmological matter and

radiation, together with the influx of new and increasingly accurate observational data, one

can hope that this hypothesis can be subjected to further stringent physical tests in the near

future.
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Chapter 5

Numerical Results

Power spectra play an important role in the theory of inflation, and their ability to reproduce

current observational data to high accuracy is often considered a triumph of inflation, largely

because of a lack of credible alternatives.

In previous chapters we introduced the alternative picture for the cosmological power spectra

– based on the nonperturbative features of the quantum version of Einstein’s gravity, instead

of currently popular inflation models based on scalar fields.

The key ingredients in the gravitational picture are the appearance of a nontrivial gravi-

tational vacuum condensate (directly related to the observed cosmological constant), and

a calculable renormalization group running of Newton’s G on cosmological scales. More

importantly, one notes the absence of any fundamental scalar fields in this approach.

Results obtained previously were largely based on a semi-analytical treatment, and thus,

while generally transparent in their implementation, often suffered from the limitations of

various approximations and simplifying assumptions.

In this chapter, we extend and refine our previous calculations by laying out an updated and
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extended analysis that utilizes a set of suitably modified state-of-the-art numerical programs

(ISiTGR, MGCAMB and MGCLASS) developed for observational cosmology. As a result,

we are able to remove some of the approximations employed in our previous studies, leading

to a number of novel and detailed physical predictions. These should help in potentially

distinguishing the vacuum condensate picture of quantum gravity from that of other models

such as scalar field inflation. Besides the matter power spectrum Pm(k), here we work out, in

detail, predictions for what are referred to as the TT, TE, EE, BB angular spectra, as well as

their closely related lensing spectra. However, the current limited precision of observational

data today (especially on large angular scales) does not allow us yet to clearly prove or

disprove either set of ideas. Nevertheless, by exploring in more details the relationship

between gravity and cosmological matter and radiation both analytically and numerically,

together with an expected future influx of increasingly accurate observational data, one can

hope that the new quantum gravitational picture can be subjected to further stringent tests

in the near future. The chapter is organized as follows. In Section 5.1, we introduce the

various numerical programs we used in the study, and in Section 5.2 we present the numerical

results and analysis. Finally, key points and future work will be summarized in the overall

conclusion next chapter.

5.1 Numerical Programs

There are a variety of publicly available Einstein–Boltzmann (EB) solvers that have been in

use for the past two decades starting with CMBFAST [103]. The main independent programs

are CAMB [104] and CLASS [105] which solve the coupled Einstein–Boltzmann equations in

a background FRW metric. These codes are computed for ΛCDM cosmology with a limited

set of choices for a parameterization of equation of state for the Dark Energy (w). In all our

programs we use w = −1, which considers dark energy as a vacuum energy.
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For modifications of gravity with a scale dependent gravitational constant, there are three

EB solvers. We used Integrated Software in Testing General Relativity (ISiTGR) [106] as

the primary code to generate power spectra. Then we compare with two other programs

Modified Growth with CAMB (MGCAMB) [107] and MGCLASS (CLASS version for phe-

nomenological modified gravity) [108]. ISiTGR and MGCAMB are patches for CAMB and

COSMOMC [109] which are written in the FORTRAN language, while MGCLASS is a patch

for CLASS written in C. All three programs have implemented the parameterization effective

gravitational coupling (µ)—gravitation slip parameter (η) which sometimes is denoted as γ.

Those two parameters are defined as µ(a, k) ≡ G(a, k)/G0 and η(a, k) ≡ Φ/Ψ where G0 is

the laboratory value of Newton’s gravitational constant and Φ,Ψ are scalar potentials in the

conformal Newtonian gauge. The comparison of the three programs for no RG running of

G as in standard ΛCDM cosmology is shown in Figures 5.1 and 5.2.

One can see that while all three program’s ΛCDM predictions are generally consistent, only

ISiTGR’s modified Newton’s constant patch with µ(a, k) ≡ Gmod/GNewt = 1 (or equivalently

c0 = 0 in Eq. (2.17)) is consistent with its original default-ΛCDM prediction. Matter power

spectrum from MGCLASS has a noticeable upper trend for small k from the ΛCDM curve, as

shown in the left plot in Figure 5.1. Figure 5.2 shows a significant deviation of MGCAMB’s

CTφ
l from the ΛCDM curve. Primarily due to this reason we chose ISiTGR over these two

other programs.
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Figure 5.1: As an example we illustrate the Pm(k) predictions between the three programs—
Integrated Software in Testing General Relativity (ISiTGR) (blue), Modified Growth with
CAMB (MGCAMB) (orange) and Modified Growth with CLASS (MGCLASS) (green)—
with their corresponding patches for a modified Newton’s constant. This serves as a consis-
tency check between the programs and a validity check for their patches. The solid curves are
generated from the respective original ΛCDM programs, while the dashed curves are gener-
ated by each program’s modified Newton’s constant patch setting µ(a, k) ≡ Gmod/GNewt = 1.
It can be seen that ISiTGR is the most consistent, and hence reliable program of the three,
to investigate the effects of a modified Newton’s constant.
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Figure 5.2: Comparison of the CTφ
l predictions between the three programs—ISiTGR (blue),

MGCAMB (orange) and MGCLASS (green)—with their corresponding patches for a mod-
ified Newton’s constant. This serves as a consistency check between the programs and a
validity check for their patches. The solid curves are generated from the respective orig-
inal ΛCDM programs, while the dashed curves are generated by each program’s modified
Newton’s constant patch setting µ(a, k) ≡ Gmod/GNewt = 1. It can be seen that ISiTGR is
the most consistent, and hence reliable program of the three, to investigate the effects of a
modified Newton’s constant.

In the ISiTGR program all times are in conformal time, as is the case for CAMB. The growth

equations are written based on a perturbed FLRW metric in the Newtonian gauge,

ds2 = a(τ)2
[
−(1 + 2Ψ)dτ 2 + (1− 2Φ)γijdx

idxj
]
, (5.1)

where Φ and Ψ are scalar gravitational potentials, xi represents comoving coordinates and

a(τ) is scale factor at conformal time τ . For a flat universe the three dimensional spatial

metric γij in cartesian coordinates is given by

γij = δij, (5.2)
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From now on we only discuss cosmology for a spatially flat universe.

There are four built-in functional forms for selected modified cosmologies [110] and we used

(µ)- gravitation slip parameter (η) form. The modified growth equations are

k2Ψ = −4π Ga2µ(a, k)
∑
i

[ρi∆i + 3ρi (1 + wi)σi] , (5.3)

and

k2 [Φ− η(a, k)Ψ] = 12π Ga2µ(a, k)
∑
i

3ρi (1 + wi)σi (5.4)

where wi and ρi are respectively the equation of state and density of ith particle species.

Generally there are three species which are radiation, non-relativistic matter and dark energy.

∆i is the gauge-invariant, rest-frame overdensity defined by,

∆i = δi + 3H
qi
k

, (5.5)

where H = ȧ/a is the Hubble’s constant in conformal time, fractional overdensity δi = δρ/ρ̄

and qi is the heat flux, related with the peculiar velocity (θi)

qi = θi
1 + wi
k

. (5.6)

From the conservation of energy-momentum tensor of the perturbed matter fluids and for

uncoupled fluid species ∆i evolution is given by

∆i = 3(1 + wi)
(

Φ̇ +HΨ
)

+ 3Hwi∆i −
[
k2 + 3(H2 − Ḣ)

] qi
k
− 3H(1 + wi)σi . (5.7)

Secondary effects considered by ISiTGR are reionization, weak gravitational lensing and

the integrated Sachs–Wolfe (ISW) effect. For reionization it uses the same approach as in
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CAMB [111], namely a simple tanh model for reionization fraction (xe), given by

xe(y) =
f

2

[
1 + tanh

y(zre)− y
∆y

]
, (5.8)

where y(z) = (1+z)3/2 , zre is the red shift value where the xe = f/2, and ∆y is the fractional

change in y. The latter agrees with a Thomson scattering optical depth for an instantaneous

reionzation which occurred at zre. The treatment of weak lensing is discussed here later in

Section 5.2.

Since the required formulation for µ(a, k), as appropriate for the quantum RG running of

Newton’s G as described earlier, does not appear as a built-in function, we added a part with

newly defined functions µ(a, k), µ̇(a, k) for our need in the above equations. In accordance

with Eq. (2.17) we have

µ(a, k) = 1 + 2c0

(
m2

k2 +m2

) 1
2ν

, (5.9)

and µ̇(a, k) = 0.

As secondary effects, ISiTGR considers reionization, weak gravitational lensing and the ISW

effect. η(a, k) = 1 is assumed since there are no different modifications to the potentials.

ISiTGR has two binning methods but here we only used the traditional binning method. For

all the power spectra computations we set the tensor part to zero. The program computes

2-point self- and cross-correlation functions for the temperature, E-mode and B-mode polar-

ization and weak lensing potential. Each generated power spectrum appears in two separate

files, one with lensing and the other without. In the following we use power spectra with

gravitational lensing included. The values of the cosmological parameters we used here as

initial conditions are shown in Table 5.1.

In our published work [15, 16] we used semi-analytic methods to solve for the matter power
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spectra using semi-numerical approximations for the relevant transfer functions. In the

current approach the numerical programs solve the full set of Boltzmann equations, and uses

integration techniques such as adaptive Runge–Kutta method to integrate all the tightly

coupled equations. Secondary effects accounted for like reionization and integrated Sachs–

Wolfe (ISW) effect are treated as a more general case compared to our published work.

Table 5.1: Values used here for cosmological parameters in the ΛCDM model. We have used
the Planck-18 68% interval from CMB power spectra, in combination with CMB lensing
reconstruction and Baryonic Acoustic Oscillations (BAO).

Parameter Symbol Value

barryon density Ωbh
2 2.242× 10−2

cold dark matter density Ωch
2 1.1933× 10−1

acoustic scale angle 100 θ∗ 1.04

scalar amplitude As 2.105× 10−9

reionization optical depth τ 5.61× 10−2

scalar tilt ns 0.9665

Hubble constant H0 67.66 km s−1Mpc−1

curvature density Ωk 0

effective extra relativistic degrees of free-

dom
Neff 3.046

CMB temperature temp cmb 2.7255 K

equation of state of dark energy w −1

5.2 Numerical Results

In this section we present numerical results for the quantum gravitational corrections to the

various cosmological spectra (Pm(k), CTT
l , CTE

l , CEE
l , ...). This includes both the effects of
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an RG running of Newton’s constant and the IR regulation, collectively achieved by replacing

G → G(k) = G0

[
1 + 2 c0

(
m2

k2 +m2

)3/2

+O

((
m2

k2 +m2

)3
)]

. (5.10)

For simplicity, of the three numerical programs used for our analysis (ISiTGR, MGCAMB,

MGCLASS), only the results from the ISiTGR numerical program shall be plotted. The

reason for this choice is that we expect this program to provide better consistency and

reliability in the particular region considered (small k, small l), as explained in Section 5.1.

Furthermore, all numerical results presented here are generated using the latest values of the

cosmological parameters as given by Planck (2018) [17].

In the above, c0 is the coefficient that governs the amplitude of quantum corrections. For

all the following spectra, three different values of c0 = 0, 1.146 and 8.02 will be plotted.

Lattice calculations give c0 ≈ 8. However, being a non-universal parameter, it can depend

on specific choices arising from the way an ultraviolet cutoff is imposed. Therefore, not

too much weight should not be placed on this specific value, beyond perhaps the order

of magnitude. In practice, this value could be further constrained by experiments, which

is precisely what these observations of cosmological spectra can achieve. From our work

published in [16], using the approximate semi-analytical methods, we see that a value of

8.02/7 ' 1.146 is generally favored.

5.2.1 Matter Power Spectrum Pm(k)

We start with the matter power spectrum Pm(k). Recall the definitions

Gρ(r; t, t
′) ≡ 〈 δρ(x, t) δρ(y, t′) 〉 , Pm(k) ∼ 〈 δρ(k) δρ(−k) 〉 , (5.11)
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where the variable δρ ≡ (ρ− ρ̄)/ρ̄ is the fractional density fluctuations above the average,

referred to in cosmology as the mass-density contrast. The numerical results for Pm(k)

obtained from the numerical program (ISiTGR) for both the classical ΛCDM (i.e., c0 = 0)

and quantum (c0 > 0) results, as well as the respective analytical results (as derived in

[15,16]), are shown and compared in Figure 5.3.

Figure 5.3: Comparison between analytical vs. numerical predictions of the RG running of
Newton’s constant’s effect on the matter power spectrum Pm(k). The solid curves represent
the analytical predictions, with the top (blue), middle (green) and bottom (orange) repre-
senting the quantum amplitude quantum amplitudes (see Eq. (2.17)) c0 = 0, 1.146, 8.02,
respectively (see Eq. (2.17)). The corresponding dashed curves represent the corresponding
numerical predictions generated by ISiTGR, showing very good general consistency with
the trend derived from analytical methods. The observational CMB and galaxy data points
taken from the Planck (2018) collaboration and Sloan Digital Sky Survey (SDSS)’s 14th
Data Release (DR14) are also shown.

From Figure 5.3, we see that all the numerical results are generally consistent with the corre-

sponding analytical results from the work obtained by following the semi-analytical interpo-

lating formulas from [18], and the implementation of the RG running following dimensional

arguments. The small deviations may be attributed to the slightly older values of cosmo-
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logical parameters [112] and some analytic approximations used by Weinberg and Dicus’

interpolating formula for the transfer function in [18], whereas the numerical results pre-

sented here use the latest cosmological parameter values from the Planck collaboration [17].

Despite the small discrepancies, we see that the overall trends, and the extra downwards

bend due to the inclusion of the (IR regulated) RG running of Newton’s constant as pre-

dicted analytically using the semi-analytical formulas, are in very good agreement with the

numerical predictions using the latest-fitted cosmological parameters. This overall general

agreement between the analytical and numerical result provides a good verification and con-

fidence that the procedure of including a running Newton’s constant as presented above is

reliable.

The same numerical analysis has now been repeated with the other two numerical programs

MGCAMB and MGCLASS, besides ISiTGR. The result of MGCAMB is in extremely good

agreement with ISiTGR, with its predictions for all three values of c0 almost completely

overlapping with ISiTGR’s result, giving additional confidence to the latter. However, while

MGCLASS is relatively consistent with ISiTGR for most of the angular spectrum results (as

we will discuss later), its prediction for Pm(k) shows a rather radical upturn below k = 10−3,

which is at odds with both ISiTGR and MGCAMB, as well as the analytical predictions (also

shown and discussed earlier in Figure 5.1 and then in Section 5.1), even for the c0 = 0 ΛCDM

case. The pathological upturn at small-k and resultant disagreement of MGCLASS (even

with CLASS, the original ΛCDM program that MGCLASS is based on, when setting c0 = 0)

suggests some potentially unresolved issues in MGCLASS’s prediction for Pm(k), while the

consistent results between ISiTGR, MGCAMB and the analytical predictions should be

treated in our opinion with a higher reliability.

Given the more reliable (and in principle more accurate) predictions from the numerical

programs as shown in Figure 5.3, it can be seen that the value of c0 ' 1.146 is a better

overall fit to the observational data from Planck, which is a consistent conclusion from our
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work that was based exclusively on the early analytical results [16]. Armed with the new

tools of numerical programs, we now move on to present the numerical results for the other

various correlation functions, which will hopefully shed new insights to the validity of the

quantum gravity effects in cosmology.

It should be noted that there is a slight degeneracy between c0 and ξ in the original expression

for the RG running of Newton’s G, as in Eq. (2.17). Support of a smaller c0 from the

observational data can equivalently be mimicked by an increase in the vacuum condensate

scale ξ. In fact, the apparently better fit value of c0 ' 1.146, seven times smaller than the

lattice predicted value of ≈8.0 ± 3.1, can be mimicked by simply a factor of ∼1.9 times

larger in ξ. Technically, including IR regulation will change the shape of the curve and break

the degeneracy, which in principle could be fitted in a more sophisticated way, say, with a

Monte Carlo simulation. However, not only is such an exercise beyond the current scope of

this dissertation, the scarcity and imprecision of data points in the small-k regime do not

render this exercise fruitful as well at this stage either.

On the other hand, it may be instructive, amongst other physical motivations, to look at

the quantum effects on a variety of other spectra of cosmological significance with these

numerical programs. With independent quantities and measurements, the new plots may

not only provide additional constraints to these quantum gravitational parameters, but also

potential insights to the physics.

5.2.2 Angular Temperature Power Spectrum CTT
l

The TT power spectrum is one of the most important cosmological spectra since it has

been measured to a high degree of accuracy, thus potentially allowing for great insights in

constraining various cosmological models. Figure 5.4 shows the numerical predictions for the

temperature-temperature (TT) angular power spectrum CTT
l with and without the quantum
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effects. We will first briefly recall the definitions for CTT
l and how theoretical predictions for it

can be obtained, and then compare them against observational data. Following notations in

Weinberg [18], the temperature fluctuations ∆T can first be resolved into spherical harmonics

Y m
l (n̂)’s,

∆T (n̂) ≡ T (n̂)− T0 =
∑
lm

aTlm Y
m
l (n̂) , (5.12)

where T (n̂) is the temperature in the direction n̂, T0 ≡ (1/4π)
∫
d2n̂ T (n̂) is the average

temperature over the sky and the coefficients aTlm quantifies the fluctuation for each harmonic.

Since ∆T ’s are real, and the products of ∆T s are rotationally invariant, one has

〈
∆T (n̂) ∆T (n̂′)

〉
=
∑
lm

CTT
l Y m

l (n̂)Y −ml (n̂′) =
∑
l

CTT
l

(
2l + 1

4π

)
Ll(n̂ · n̂′) . (5.13)

Here the Ll’s are the Legendre polynomials, and CTT
l is defined as

〈
aTlm a

T
l′m′

〉
≡ δll′δm−m′ CTT

l , (5.14)

the 2-point correlation functions of aTlm, the temperature fluctuation in “l”-space. Or equiv-

alently,

CTT
l =

1

4π

∫
d2n̂ d2n̂′

〈
∆T (n̂) ∆T (n̂′)

〉
Ll(n̂ · n̂′) , (5.15)

by inverting the transformation. As a result, the correlations for temperature-temperature

fluctuations are fully quantified with the CTT
l s. (Note that here we use Ll instead of the

usual notation Pl for the Legendre polynomials in order to avoid confusion with the matter

power spectra.)

Theoretically, since CMB photon temperatures and matter density are coupled, the CTT
l s are

therefore related to the matter power spectrum Pm(k) via integral transforms that involve
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spherical Bessel functions and appropriate form factors and transfer functions. However,

from transforming the predictions from one set of observable to another, new insights (and

potential constraints) to the theory can be derived.

To do so, one can first use the Friedmann and continuity equations to relate temperature

fluctuations to metric perturbations via suitable form factors F1,2(q), through

(
∆T (n̂)

T0

)
=

∫
d3q eiq·n̂ r(tL) [F1(q) + iq̂ · n̂ F2(q) ] , (5.16)

where the latter are defined as

F1(q) = −1

2
a2(tL)B̈q(tL)− 1

2
a(tL) ȧ(tL)Ḃq(tL) +

1

2
Eq(tL) +

δTq(tL)

T̄ (tL)
, (5.17)

and

F2(q) = −q
(

1

2
a(tL)Ḃq(tL) +

δuγq(tL)

a(tL)

)
. (5.18)

Here the B and E functions are suitable decompositions of the metric perturbations, and δuγ

is the velocity potential for the CMB photons. It is known that these form factors become

simplified in certain gauge choices. In the synchronous gauge, one has E = 0, whereas in

the Newtonian gauge B = 0 and E = 2Φ, which then gives

F1(q) = Φq(tL) +
δTq(tL)

T̄ (tL)
, (5.19)

and

F2(q) = −δuγq(tL)

a(tL)
. (5.20)

(Note that F1(q) and F2(q) are referred to as “F (q)” and “G(q)”, respectively, in [18]. Here
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we use the former in order to avoid confusion with the expression for the running of Newton’s

constant G(k), as it will be implemented below. The above equations also assume a sudden

transition to opacity on the CMB at a time tL, which does not change the form of the

basic equations and only some of the details, and are later taken into account fully with the

numerical programs, as discussed below.)

Hence, given appropriate initial conditions, the functions Φ and δuγ, as well as the scale

factor a(t) and the function T (t), can all be obtained as solutions of the classical Friedmann

equations. These are then combined with the Boltzmann transport equations, as is done in

standard cosmology, which eventually leads to unambiguous predictions for the Cl’s. The

solutions for F1,2(q) can be parameterized in terms of transfer functions T (κ), S(κ) and

∆(κ), leading to the following expressions for F1(q) and F2(q)

F1(q) =
Ro
q

5

[
3 T

(
q dT
aL

)
RL − (1 +RL)−

1
4 e
−
(
q dD
aL

)2

S
(
q dT
aL

)
cos

[
q dH
aL

+ ∆

(
q dT
aL

)]]
,

(5.21)

and

F2(q) =
√

2
Ro
q

5
(1 +RL)−

3
4 e
−
(
q dD
aL

)2

S
(
q dT
aL

)
sin

[
q dH
aL

+ ∆

(
q dT
aL

)]
(5.22)

where aL = a(tL) = 1/(1 + zL), zL = 1090, dT = 0.1331 Mpc, dH = 0.1351 Mpc, dD =

0.008130 Mpc, dA = 12.99 Mpc and RL ≡ 3ΩB(tL)/4 Ωγ(tL) = 0.6234 (the latest set of

suitable parameters are taken from Planck 2018 [17]). It is noteworthy at this stage to point

out again that all three transfer functions are completely determined by standard measured

cosmological parameters, so that the only remaining ingredient to fully determine the CTT
l

coefficients is the initial (or primordial) spectrum Ro
q, where q is the wavenumber, and “o”

refers to outside the horizon. Conventionally, Ro
q is parameterized by an amplitude N and
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spectral index ns,

Ro
q = N q−3/2

(
q

qR

)(ns−1)/2

. (5.23)

Here the reference “pivot scale” is usually taken to be qR = 0.05 Mpc−1 by convention. As

a consequence, once the primary function Ro
q is somehow determined, classical cosmology is

then expected to fully determine the form of the CTT
l spectral coefficients. It is therefore

possible to write the CTT
l ’s fully and explicitly in terms of the primary function Ro

q. After

expanding the plane waves factor in a complete set of spherical harmonics and spherical

Bessel functions, CTT
l from Eq. (5.15) becomes

CTT
l = 16π2 T 2

0

∫ ∞
0

q2 dq
(
R0
k

)2
[
jl(qrL)F̃1(q) + j′l(qrL)F̃2(q)

]2

, (5.24)

where rL = r (tL), and we have factored out the function Ro
q explicitly by defining F1(q) =

(Ro
q) F̃1(q) and F2(q) = (Ro

q) F̃2(q).

Now, recall that the matter power spectrum Pm(k) is given by

Pm (k) = C0

(
R0
k

)2
k4 [T (κ)]2 , (5.25)

which tells us that we can obtain a direct relation between the matter power spectrum Pm(k)

and the angular temperature coefficients CTT
l ,

CTT
l = 16π2 T 2

0

∫ ∞
0

q2dq Pm(q)
[
C0 k

4 T (κ)2 ]−1
[
jl(qrL)F̃1(q) + j′l(qrL)F̃2(q)

]2

, (5.26)

where q and k are related by q = a0k, and the scale factor “today” a0 can be taken to be

1. As a result, the predictions on Pm(k) can be directly transformed into a prediction for

CTT
l . Utilizing the same parameters in numerical programs, the effects of with and without

the RG running of Newton’s constant (with IR regulation) on CTT
l can then be generated.
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Figure 5.4: Comparison of the numerical prediction of the classical ΛCDM program vs. the
numerical predictions of the renormalization group (RG) running of Newton’s constant’s ef-
fect on the temperature (TT) power spectrum CTT

l . The solid curves represent the numerical
predictions generated by the ISiTGR program, with the bottom (blue), middle (green) and
top (orange) representing quantum amplitudes (see Eq. (2.17)) c0 = 0, 1.146, 8.02, respec-
tively (see Eq. (2.17)), showing a higher trend at large angular scales (l < 20) as compared
to the classical ΛCDM (no running) numerical curve. The dashed curve represents an error-
weighted cubic fit to the observational CMB data, from the Planck (2018) collaboration
.

Figure 5.4 shows the numerical result of c0 = 0 (no running), 1.146, and 8.02 with the

blue, green and orange curves, respectively, generated by ISitGR. The observational CMB

data from Planck (2018), as well as an error-weighted cubic fit for reference, are also shown.

Noticing that the point l = 2 is anomalously low, with large uncertainty due to cosmic

variance, the error-weighted fit shown in this plot has not included the l = 2 point.

From Figure 5.4, we see that the effects of a RG running of Newton’s constant generally cause

an upturn to the spectrum at low-ls, starting at roughly l = 20. It can also be seen that the

orange curve with a quantum amplitude (see Eq. (2.17)) c0 = 8.02 (or ξ = 5300 Mpc) creates
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a much more dramatic deviation, reaching a maximum of 140% larger in value compared to

the blue, classical (c0 = 0) ΛCDM curve, while the green curve with c0 = 1.146 (or roughly

ξ ' 2.65 × 5300 = 14,000 Mpc) has a milder deviation of ≈24% from the classical result.

Again, neglecting the anomalous l = 2 point, the green curve with c0 = 1.146 is generally

consistent with all observational data, arguably also with the desirable feature of marginally

going through the error bars of l = 5 and l = 6. On the other hand, the orange c0 = 8.02

curve, while still lying within a few points’ error margins, is less favorably supported by the

data in this plot. It is also seen that its deviation starts earlier at a higher value around

l ∼ 22, which causes it to miss a few more error bars in the low l points. As a result, the

numerical results of this TT plot shows that the green c0 = 1.146 (or ξ ≈ 14,000 Mpc)

curve is currently a more favorable parameter than the orange one. Note that this is also

consistent with the discussion and conclusion from the matter power spectrum Pm(k) plot

in Figure 5.3.

We also investigated the results with all 3 programs. However unlike Pm(k), the three

programs do not agree, despite being supplied with the same RG modified expression for

Newton’s constant. Figure 5.4 displays the result from ISiTGR, which seems to be the most

consistent among all plots. MGCAMB produces a much more dramatic upturn effect from

the RG running at small ls, roughly having its c0 = 1.146 curve coinciding with ISiTGR’s

c0 = 8.02 curve, and the MGCAMB c0 = 8.02 curve even higher. On the other hand,

MGCLASS predicts a much milder upturn, with its c0 = 8.02 curve almost coinciding with

ISiTGR’s c0 = 1.146 curve. In other words, MGCAMB seem to predict an upturn around 7

times larger than ISiTGR, while MGCLASS seem to predict an upturn that is 7 times smaller

than ISiTGR. Given the blackbox nature of such programs, the cause of this difference is

unclear given that all programs were supplied with the same modification in Newton’s G.

These programs, designed for modified gravity models, are known to be less well-tested

compared to their base program (CAMB, CLASS), and it may not be surprising that two

(or all) of them may be incorrect. One consistency is that all three programs predicts an
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upturn at low l’s, just to a different degree, roughly ±1 order of magnitude. Hence, the best

we can conclude from these available programs is that the RG running of Newton’s G causes

an upturn to roughly the order of magnitude presented in Figure 5.4.

Perhaps even more intriguing is the disagreement with a naive analytical analysis. From Eq.

(5.26), the first order estimate is that since CTT
l is the (weighted) integral of Pm(k) over

all k, a smaller Pm(k) caused by an RG running (c.f. Figure 5.3) should cause a smaller

value of CTT
l . In fact, if one assumes the transfer functions are not affected by the quantum

corrections, the integral Eq. (5.26) can be performed numerically (as done in [16]), since

the classical interpolating formulas for the transfer functions are known, which does show

a downturn, as naively expected, instead of an upturn. This work utilizes programs that

in principle modifies the initial Friedmann and Boltzmann equations from the beginning,

and includes any effects of the RG modified Newton’s G into the solutions, and thus in

principle more trustworthy. Given the opaque nature of such programs, it would require

further investigations through a more detailed study of the entangled initial set of coupled

differential equations to fully understand the disagreements between the programs and the

first-order analytical result, as well as the disagreement (and hence the reliability) within

the numerical programs.

Nevertheless, given that these programs represent the most sophisticated state-of-the-art

tools to date, it is still constructive to look at their predictions of the quantum effects on

other modes and variables of the CMB. For example, the theoretical predictions for the

percentage deviations for c0 = 1.146 curve with the classical curve is ∼37% on Pm(k) at

its further available data point, while it is only ∼24% on CTT
l . This reveals the fact that

the quantum effects maybe more significant in different physical variables. So by studying

the predictions for different auto- and cross-correlations of different variables, and com-

paring them to potentially independent data (e.g., ground-based measurements of E- and

B-mode polarizations as opposed to space-based measurements of CMB temperature), new
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constraints and insight may be deduced. We will present the analysis and results of the other

spectra of interest to cosmology in the remaining of this section.

5.2.3 Temperature-E-Mode Power Spectrum CTE
l

The next few most popularly studied correlations on the CMB are the so-called E- and

B-type polarization modes. Here we will give a brief recap of the physics, and present the

numerical results of the quantum corrections from a RG running Newton’s constant, later

compared with the observational data.

Recall that observations of the CMB photons not only reveal their intensity (i.e., temper-

ature) from various directions, but also the photons’ polarizations, which can result from

scattering on free electrons either at the time of recombination, or during the later period of

reionization. Measurements on polarizations then reveal extra information in constraining

the parameters arising from a running of Newton’s constant.

Following notations in [18], CMB photon distributions are fully described through a number

density matrices nij(x,p, t), or, more usefully, the dimensionless version of its perturbation

Jij(x, p̂, t) (referred to as the dimensionless photon intensity perturbation matrix), related

to nij via

Jij(x, p̂, t) ≡
1

a2(t)

1

ρ̄γ(t)

∫ ∞
0

4π p3dp δnij(x, pp̂, t) . (5.27)

In a line-of-sight direction n̂, Jij can be parameterized via

Jij(x,−n̂, t) =
2

T0


∆T (n̂) +Q(n̂) U(n̂)− iV (n̂) 0

U(n̂) + iV (n̂) ∆T (n̂)−Q(n̂) 0

0 0 0

 , (5.28)
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where Q,U and V are three real functions of direction (with units of temperature), known

as the Stokes parameters, describing the photon’s polarizations. Notice that the photon

temperature perturbations are given by the trace

∆T (n̂)

T0

= 1
4
Jii(0,−n̂, t0) . (5.29)

It is these Stokes parameters that are measured in current observations of the CMB. Since

the scattering of light by non-relativistic electrons does not produce circular polarization,

one expects that all CMB photons will be linearly polarized, so that Jij is real, and therefore

V = 0. For further convenience in comparing with observations of 2-point functions, which

respect spherical symmetry, it is useful to expand the Stokes parameters Q(n̂) and U(n̂) seen

in a direction n̂ in a series of functions Yml (n̂)

Q(n̂) + iU(n̂) =
∞∑
l=2

l∑
m=−l

aP,lm Yml (n̂) , (5.30)

Yml (n̂) ≡ 2

√
(l − 2)!

(l + 2)!
e+i(n̂) e+j(n̂) ∇̃i∇̃j Y

m
l (n̂) , (5.31)

where the subscript “P” in the coefficient aP,lm stands for “polarization”, ∇̃ is the angular

part of the gradient operator and e±(n̂) = (1,±i, 0)/
√

2 are the polarization vectors in the

direction n̂. To further satisfy the reality condition, one defines the amplitudes

aE,lm ≡ −
(
aP,lm + a∗P,lm

)
/2 , aB,lm ≡ i

(
aP,lm − a∗P,lm

)
/2 , (5.32)

so that their correlation functions

〈
a∗T,lm aT,l′m′

〉
= CTT

l δll′ δmm′ , (5.33)
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〈
a∗T,lm aE,l′m′

〉
= CTE

l δll′δmm′ , (5.34)

〈
a∗E,lm aE,l′m′

〉
= CEE

l δll′δmm′ , (5.35)

〈
a∗B,lm aB,l′m′

〉
= CBB

l δll′δmm′ , (5.36)

are real and rotationally invariant. The above relations define the various angular power

spectrum functions CXX
l , where X = T,E,B. The superscripts E and B are referred to

as E- and B-type polarization, respectively, since under spatial-parity inversion, aE,lm 7→

(−1)l a∗E,lm, and similarly for aT,lm, whereas aB,lm 7→ −(−1)l a∗B,lm. As a result of parity,

there are no bilinear correlations between B and either E or T . (i.e., CTB
l = CEB

l = 0.)

With this background, we shall present the numerical predictions for the corresponding

spectra with and without an RG running of Newton’s G, compared against the latest ob-

servational data. We start with the TE spectrum. Figure 5.5 shows the numerical results

with the observational data for CTE
l . The lowest solid (blue) curve represents the classical

(c0 = 0) spectrum, while the solid middle (green) and top (orange) curve represents the

effect of a RG running Newton’s constant with c0 = 1.146 and 8.02, respectively.
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Figure 5.5: Comparison of the numerical prediction of the classical ΛCDM program vs.
the numerical predictions of the RG running of Newton’s constant’s effect on the cross-
temperature-E-mode-polarization (TE) power spectrum CTE

l . The solid curves represent
the numerical predictions generated by the ISiTGR program, with the bottom (blue),
middle (green) and top (orange) representing quantum amplitudes (see Eq. (2.17)) c0 =
0, 1.146, 8.02, respectively. Here again one finds higher trends at large angular scales (l < 10)
as compared to the classical (no running) numerical ΛCDM curve. The dashed curve repre-
sents an error-weighted cubic fit to the observational CMB data from Planck (2018) .

It turns out new constraints for the RG running parameter c0 can be deduced with this

new plot. With the inclusion of the E-type polarization data, we see that this has further

constraints on some of the error bars in the low-l data points. This is due to the smaller error

bars from the observational data in the E-type polarization correlations in the low-l regime

(see Figure 5.6). As a result, one sees that the top c0 = 8.02 curve (orange) is strongly

disfavored by this plot. Another observation is that the difference between the c0 = 1.146

and the classical ΛCDM (c0 = 0) curve is about 60% in this TE plot, which is a larger

percentage deviation compared to ≈24% for the TT plot.

We also compared the results from the other two programs (MGCLASS and MGCAMB,
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not shown on Figure 5.5). All the resultant curves of MGCLASS agree with ISiTGR for

l > 30. But for l < 30, the c0 = 8.02 curve of MGCLASS is about 36% lower than the

corresponding ISiTGR curve. All two curves with RG running from MGCLASS are within

the error bars but due to the mismatch as shown in the Figure 5.1, MGCLASS results should

be investigated further. For MGCAMB, the curves with RG running are significantly higher

than ISiTGR, making them disfavored. In addition, there is a slight horizontal shift for

MGCAMB in l-space compared to the other two program, which should be investigated

further.
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5.2.4 EE- Power Spectrum CEE
l

Figure 5.6: Comparison of the numerical prediction of the classical ΛCDM program vs. the
numerical predictions of the RG running of Newton’s constant’s effect on the E-mode (EE)
power spectrum CEE

l . The solid curves represent the numerical predictions generated by
ISiTGR, with the bottom (blue), middle (green) and top (orange) representing quantum
amplitudes (see Eq. (2.17)) c0 = 0, 1.146, 8.02, respectively, showing slightly higher trends
for large angular scales (l < 10) as compared to the classical (no running) numerical ΛCDM
curve. The dashed curve represents error-weighted cubic fit for observational CMB data
from the Planck (2018) collaboration.

We move on to the EE spectrum. Figure 5.6 shows the numerical results with the obser-

vational data for CEE
l . We also plotted an error-weighted cubic fit (dashed line) for the

classical (c0 = 0) spectrum (solid blue), as well as the quantum RG running of G for the

above values for c0 (green and orange). It can be seen that there is no significant deviation

from standard ΛCDM prediction like in temperature power spectra and all the curves are

well within the data point error bars. We can see that in the large scales (l < 20) the errors

are significantly small which makes T-E spectrum having smaller error bars in the scale of

interest in this paper.
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When the other two programs are compared, there is no significant deviation to rule out any

any curve. There is no noticeable deviation for MGCAMB curves from ISiTGR for l < 20

but there is a slight upward deviation for l > 20. With MGCLASS, the curves with RG

running of G are lower than those of ISiTGR, making smaller deviation from ΛCDM curve.

5.2.5 BB- Power Spectrum CBB
l

Next we discuss B-mode polarization power spectrum shown in Figure 5.7. We have plotted

an error-weighted quadratic fit (dashed line) for the classical (c0 = 0) spectrum (solid blue),

as well as the RG varying of Newton’s G for c0 = 1.146 (green). It can be seen that there

is no noticeable deviation from standard ΛCDM prediction like in the temperature power

spectra, and all the curves are well within the data point error bars. As a result of the

unnoticeable deviation, we did not include the c0 = 8.02 curve. In standard cosmology, due

to weak lensing, there is a partial conversion of the E-mode to the B-mode polarization that

is predicted to be considerable around the l ∼ 1000 scale, which leaves the actual values

of CBB
l close to zero on the large angular scales (l < 30). Also, due to limitations in dust

modeling and telescope technology, there are only data up to l = 29, as shown in Figure 5.7.
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Figure 5.7: Comparison of the numerical prediction of the classical ΛCDM program vs. the
numerical prediction of the RG running of Newton’s constant’s effect on the B-mode (BB)
power spectrum CBB

l . The solid curves represent the numerical predictions generated by
ISiTGR, with the top (blue) and bottom (green, not quite visible due to substantial overlap
with the blue one) representing c0 = 0, 1.146 respectively, showing no significant deviation
with the classical no running numerical ΛCDM curve. The dashed curve represents error-
weighted quadratic fit for observational CMB data from the Planck (2018) collaboration.
The other c0 = 8.02 curve, like the c0 = 1.146 (green) curve, is consistent with zero (to
around 1 part in 10,000). So any deviations from the classical and c0 = 1.146 curve are too
insignificant to be seen, and negligible relative to the size of the error bars from the current
latest data. Hence the c0 = 8.02 curve is not included in this plot for clarity.

5.2.6 Lensing Power Spectrum Cφφ
l

The theory of CMB lensing is a vast topic on its own. Here, we just attempt to present the

key defining equations of the lensing spectrum, and then look at the numerical results of

quantum gravitational effects on the lensing potential spectra. A more complete account for

the physics and observations can be found in [18,113,114].

Consider a small deflection angle θ from the undeflected direction n̂ of a CMB photon, with
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θ describing perpendicular direction to n̂, and |θ| � 1. Define the shear matrix Mab as

∆θa =
∑
b

Mab(rS, n̂) θb , (5.37)

where a, b run over the directions orthogonal to n̂, rS is the radial distance of the source

from earth in a Robertson–Walker coordinate system and δθa is the amount of deflection of

θ. From standard general relativistic calculations, the shear matrix can be related to the

Newtonian potential of the lens source (φ), via

Mab(rS, n̂) = 2

∫ rS

0

dr
r(rS, n̂) r

rS

[
∂2

∂ya∂yb
δφ(rn̂+ y, t)

]
y=0,t=tr

, (5.38)

where y is a small perpendicular deflection vector to n̂, and tr is the time for a photon that

just reached us from radial coordinate r. Hence, the measurements of the shear matrix can

yield information about perturbations to the gravitational potential (δφ) by masses spread

along the line of sight. Define the so-called lensing convergence field κ as

κ ≡ 1

2
TrM =

∫ rS

0

dr
r(rS, n̂) r

rS

[(
∇2 − ∂2

∂r2

)
δφ(rn̂+ y, t)

]
y=0,t=tr

. (5.39)

κ is particularly useful because, if the lensing is due to a collection of bodies all at about the

same radial coordinate rL, it can be directly related to the matter perturbations δρm. More

explicitly, δφ falls off rapidly for large distances, so that the factor r(r, rS)r can be replaced

in a first approximation with r(rL, rS)rL and similarly the second term with ∂2/∂r2 can be

dropped. Then Poisson’s equation a−2∇2δφ = 4πG δρm gives

κ =
4π Ga2(trL) dA(LS) dA(EL)

dA(ES)

∫ rS

0

dr δρm(rn̂, tL) a(tL) , (5.40)

resulting in an expression directly linking κ to matter density fluctuations δρm. Hence, a

measurement of the value of κ for sources seen in one direction can reveal the total mass
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density of a cluster of lensing masses that lies along that line of sight at distance rL (projected

onto a plane perpendicular to the line of sight). Since, as we have shown, gravity constraints

the scaling of correlations of matter, it should also do so for κ.

So, to project the convergence field κ onto the sky, we decompose it in a way that is analogous

to the other angular spectra,

κ(n̂) =
∑
lm

aκ,lm Y
m
l (n̂) , (5.41)

with

aκ,lm = −2π il
∫
d3q q2 α(q)Y m∗

l (q̂)

∫ ∞
0

dr g(r) δφq(tr) [jl(qr) + j′′l (qr)] , (5.42)

with quantum noise fluctuation correlation

〈α(q)α∗(q′)〉 = δ3(q− q′) , (5.43)

which defines Cκκ
l

〈
aκ,lm a

∗
κ,l′m′

〉
= δll′ δmm′ Cκκ

l . (5.44)

Or more explicitly, by inverting the expression in Eq. (5.44), we have

Cκκ
l = 4π2

∫ ∞
0

q6 dq

∣∣∣∣ ∫ ∞
0

dr g(r) δφq(tr) [jl(qr) + j′′l (qr)]

∣∣∣∣2 . (5.45)

In the literature [113, 114], often the correlation for the lensing potential Cφφ
l is plotted,

instead of that of the lensing convergence field Cκκ
l , which are related by

κ (n̂) = 1
2
∇2φ(n̂) . (5.46)
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Finally, the cross-correlations CTφ
l and CEφ

l can be similarly defined in analogous to Eq.

(5.44) with their respective expansion coefficients aT,lm and aE,lm, similar to those from Eqs.

(5.33)–(5.36). With this background, we hereby present the numerical results of including a

quantum RG running of Newton’s constant for these spectra.

In Figure 5.8, for Cφφ
l we have plotted the classical (c0 = 0) spectrum (solid blue), as

well as the ones for an RG running of G with the previously used values for c0 (green and

orange). One can see significant deviation which is up to 80% for c0 = 8.02, but only 10%

for c0 = 1.146, compared to the standard ΛCDM prediction. Due to current observational

limitations, only three data points lie inside our region of interest (l < 50). Apart from Planck

collaboration (2018) data, other projects such as the South Pole Telescope (SPT) [115] and

the Atacama Cosmology Telescope (ACT) [116] have few observational data points and they

mostly lie in the region l > 100.
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Figure 5.8: Comparison of the numerical prediction of the classical ΛCDM program vs.
the numerical predictions of the RG running of Newton’s constant’s effect on the deflection
lensing (φφ) power spectrum Cφφ

l . The solid curves represent the numerical predictions
generated by ISiTGR, with the bottom (blue), middle (green) and top (orange) representing
the quantum amplitudes (see Eq. (2.17)) c0 = 0, 1.146, 8.02, respectively, showing just
slightly higher trends at the very large angular scales (l < 5) as compared to the classical
(no quantum running) numerical ΛCDM curve. Only limited observational data are available
currently, especially at large angular scales (below l < 15).

5.2.7 Temperature-Lensing Power Spectrum CTφ
l

For the CTφ
l and CEφ

l power spectra, there are no observational data points so far. Since

there are only limited data points for Cφφ
l , especially in the large scale regions of l < 50,

so it is not surprising there are no significantly useful data for the cross-correlations of CTφ
l

and CEφ
l . Nevertheless, we present the numerical program’s predictions here. In Figure 5.9,

we have plotted the classical (c0 = 0) spectrum solid blue and the ones with RG running

of G (with c0 = 1.146, 8.02) in green and orange, respectively, for CTφ
l . We do see more

significant deviations, with the c0 = 8.02 (orange) curve running down to negative values in

the vertical axis. For example, at scales of around l ≈ 5, we see the c0 = 1.146 (green) curve
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gives around a 16% deviation from the classical one, and the c0 = 8.02 (orange) curve gives

an almost 83% difference from the classical one. Should there be any data points for this

spectrum in the future in these ranges, this spectrum can potentially be a good candidate

to test for the RG running of G effects.

5.2.8 Lensing-E-mode Power Spectrum CEφ
l

In Figure 5.10, we show the results for CEφ
l , and we have plotted the classical ΛCDM

(c0 = 0) spectrum (solid blue) compared with the RG running of Newton’s G spectrum

using the values 1.146 and 8.02 for c0 (green and orange, respectively). In this spectrum, the

deviation begins similarly around the scale of l < 30. But the deviations with classical are

small, especially with the c0 = 1.146 curve, going up to ∼ 30% only at l ≈ 3. On the other

hand, the c0 = 8.02 curve does show larger deviations, and also starting at a larger value of

l. Since for now there are limited observational data points for this, nothing can be done

about ruling out any specific c0 value from this. In the near future with CMB-S4 (the next

generation ”Stage-4” ground-based CMB experiment) [117], perhaps more data on Cφφ
l , and

hence CTφ
l and CEφ

l , might provide a good test for these parameters – especially with the

potential to rule out the c0 = 8.02 value.
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Numerical Classical ΛCDM (c0=0)

Numerical QG with c0=1.146

Numerical QG with c0=8.02
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Figure 5.9: Comparison of the numerical prediction of the classical ΛCDM program vs. nu-
merical predictions of the RG running of Newton’s constant’s effect on the cross-temperature-
lensing (Tφ) power spectrum CTφ

l . The solid curves represent the numerical predictions
generated by ISiTGR, with the top (blue), middle (green) and bottom (orange) representing
quantum amplitudes (see Eq. (2.17)) c0 = 0, 1.146, 8.02, respectively, showing again just
slightly higher trends at the large angular scales (l < 20) as compared to the classical no
running numerical ΛCDM curve. No data with reasonable errors are found so far for CTφ

l .
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Figure 5.10: Comparison of the numerical prediction of the classical ΛCDM program vs.
numerical predictions of the RG running of Newton’s constant’s effect on the cross-E-mode-
lensing (Eφ) power spectrum CEφ

l . The solid curves represent the numerical predictions
generated by ISiTGR, with the top (blue), middle (green) and bottom (orange) representing
quantum amplitudes (see Eq. (2.17)) c0 = 0, 1.146, 8.02, respectively, showing this time
smaller trends at the large angular scales (l < 20) as compared to the classical no running
numerical ΛCDM curve. No data with reasonable errors are found so far for CEφ

l .
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have revisited the derivation of the matter and temperature power spec-

tra from the quantum theory of gravity without invoking any additional scalar fields from

inflation. To our knowledge, our treatement is the first of its kind. We reviewed that while

the short-distance quantum theory of gravity remains speculative, the long-distance behav-

iors are well known and primarily governed by the renormalization group (RG) behaviors

near its critical point. In particular, we reviewed how the critical scaling dimension “s”

of the correlation function of the scalar curvature fluctuations at large distances directly

governs the scalar spectral index “ns” of the cosmological spectra, as well as the additional

quantum gravitational effects, such as the (IR-regulated) renormalization group running of

the coupling constant (Newton’s constant) G, that will affect these spectra subtly at large

distances. We then presented the various numerical programs that we used in this work, as

well as their main results in Chapter 5, to complement the primarily analytical analysis from

Chapter 3 and 4. We further utilized these programs to study other cosmological spectra of
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different modes. We compared these spectra using the latest available observational data,

and provided new constraints and insights to the parameters (c0, ξ) of the quantum theory.

We also discussed the possibility of verifying, or falsifying, some of these hypotheses with

increasingly powerful observational cosmology experiments in the future.

Using the numerical results, we find that especially the plots of the matter power spectrum

Pm(k), the angular temperature spectrum CTT
l , and the angular temperature-E-mode spec-

trum CTE
l - all play an important role in revealing new insight to constraining the quantum

amplitude c0, a parameter that governs the size of quantum corrections due to the RG run-

ning of Newton’s constant. We find that all three plots consistently favor a value of c0 closer

to around 1.15, rather than the naive estimate of ∼8.0. This is particularly obvious in the

new CTE
l plot from this work, with the c0 = 1.146 curve showing a ∼60% deviation from

the classical ΛCDM (no quantum running) curve. On the other hand, the angular E-mode

spectrum CEE
l and angular B-mode spectrum CBB

l plots are the least useful in distinguish-

ing the running effect, with the EE plot showing only a mild deviation of about 15% from

the classical prediction for the c0 = 1.146 curve, and the deviations on the BB plot are

essentially consistent with zero. The three angular lensing spectra, namely, Cφφ
l , CTφ

l and

CEφ
l , are potentially feasible candidates in providing further insights and constraints. Of

particular note is that the Tφ plot, shows around 20% and almost 150% deviation, respec-

tively, for the c0 = 1.146 and c0 = 8.02 curves from the classical curve, on the largest angular

scales. However, all these latter (Cφφ
l , CTφ

l , CEφ
l ) spectra suffer from the scarcity or lack of

observational data in the low-l regime, making it impossible to draw any conclusion about

the favorability of the parameter or the RG running in general at this stage.

However, although the percentage differences between the spectra with and without quantum

corrections are decently significant for scales below l < 10—ranging from ∼15–60% even with

the milder value of 1.146 for c0, the uncertainties from current observational data in those

ranges are unfortunately even larger. As a result, it is not yet possible to conclude at this
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stage the visibility of these effects. At best, one can claim the slight hints of RG running

from the smallest data point in Pm(k), as well as the last few points (3 < l < 7, ignoring the

anomalous l = 2 point) of CTT
l . Nevertheless, with technology and precision of cosmological

experiments improving at a rapid pace, better observational data in this regime perhaps form

one of the most promising area where quantum effects of gravity can be revealed and tested

for the first time. This is a consequence of the concrete predictions of the long-distance

quantum effects, based on well-established renormalization group analysis, as opposed to

the still rather speculative short-distance theories of gravity.

From a theoretical perspective, the numerical results from this work also serve an important

purpose in ruling out the less favorable value of c0 = 8.0 for the quantum amplitude, but

instead suggesting a value around seven times smaller, closer to c0 = 1.15. We also noted that

the uncertainties in the observational data at low-ls cannot yet fully constrain the precise

shape of the RG running, allowing for the possibility that these various deviations can all be

mimicked instead by a modified value of ξ ≈ 14,000 Mpc, or around 2.5 times larger than the

naive estimate ξ '
√

3/λ = 5300 Mpc. As we discussed in the theory section (Section 3.4),

unlike the universal critical scaling index ν (shown from various methods to have a value

very close to ν = 1/3), the parameters c0 and ξ do not necessarily follow from universality,

but are instead reliable only up to order of magnitudes. While the observational data at this

stage cannot yet exhibit the effects of RG running, they do provide a useful constraint to

the possible values of these theoretical parameters. In particular, as discussed in detail in

our work [16], even with the current observational data’s (im-)precision, our work shows an

extremely stringent constraint on the allowed values of ν, down to at most a 1–2% deviation

from 1/3. This result not only provides a great verification of the values obtained from various

theoretical methods such as the Regge lattice calculations of the path integral, but perhaps

the first phenomenological test of the quantum theory of gravity in cosmology. It is thus

hopeful that as observational technology continues to improve, more insights can be gained

regarding the values for c0 and ξ. With more data and smaller error bars, one can further
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narrow down a best-fit value for the quantum amplitude c0 or vacuum condensate scale ξ by

Markov Chain Monte Carlo (MCMC) sampling in the ISiTGR program. In addition, ISiTGR

is also capable of calculating tensor perturbations, which can be used to test this quantum

gravitational picture as soon as more observational data on that becomes available. As a

fundamentally tensor theory, this gravitational fluctuation picture is expected to produce

nontrivial predictions to those of scalar field based inflation models.

It should also be noted that the numerical programs show very encouraging agreement with

the analytical results on the matter power spectrum Pm(k), as shown here in Figure 5.3.

This agreement provides great confidence in the analytical methodology used in [15], or

as summarized in Section 3.4. The concordance between numerical and analytical results

provides extra support on how the quantum fluctuations of the gravitational field are linked

to the fluctuations of the matter density field. However, the numerical results for the effects

of a RG running of G, suggesting an upturn at low ls, seem to challenge the analytical

intuition that a lower Pm(k) should give a lower CTT
l , as suggested in Equation (4.12).

Since the derivation of Equation (4.12) is purely classical and does not involve any quantum

gravitation input, this suggests a lack of analytical understanding of the effects of a having

a modified RG running Newton’s constant on the Boltzmann equations, and hence also

their solutions of the form factors F1 and F2 (Equations (4.7) and (4.8)). It is unclear

analytically from the coupled differential equations how the running of Newton’s G from

Equation (5.10) affects their solutions, making it difficult to translate the predictions on

Pm(k), which agrees with the numerical results, to CTT
l . This is an area under active further

theoretical investigations, and has to be addressed in future work. Nevertheless, armed with

the supposedly more comprehensive and reliable numerical programs, new insights should be

gained regarding the various quantum effects of gravity on the different cosmological spectra.

At first, the results presented in this dissertation might appear puzzling, since one usually

associates quantum fluctuations with microscopic, very short distance phenomena. This is in
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fact generally incorrect, with well-known examples of condensation and macroscopic quan-

tum cooperative behavior in areas such as superconductors, superfluids, phase transitions

and white dwarf stars. The point here is: experience shows that the magnitude and scale for

quantum fluctuations in quantum field theory is instead generally related to an intrinsic dy-

namical length scale, here the gravitational correlation length ξ, or equivalently the vacuum

condensate 〈R〉 ∼ 1/ξ2 connected to it. In this QCD-like picture, supported by extensive

nonperturbative calculations on the lattice and in the continuum, quantum fluctuations exist

on all length scales and propagate from the microscopic to the macroscopic regime, all the

way up to the cosmological domain (since in the quantum theory the only relevant scale is

the vacuum condensate 〈R〉, which we know from observation is exceedingly small). This

is not unexpected, as the graviton is massless and macroscopic effects thus arise because of

strong infrared divergences (again in a way that is similar to what happens in QCD) where

perturbation also fails completely in the infrared regime. Consequently, quantum fluctua-

tions of the gravitational field are not just primordial (t → 0) or microscopic (r → 0) in

nature. Instead, they occur on all length scales (including infrared scales) at all times, with

specific features (such as a weak running of G) predicted by the existence of those scale

invariant quantum fluctuations, and with the parameter ξ setting the scale for those very

subtle quantum effects, again in close analogy to QCD. Of course, such effects are entirely

missed in ordinary perturbation theory, which is badly divergent due to a (largely invisible)

nontrivial vacuum condensation.

In conclusion, we have presented in this dissertation a compelling alternative picture for the

various observed cosmological spectra that is motivated by gravitational fluctuations. In this

work, we have provided updated- and extended-analyses utilizing numerical programs in cos-

mology, as well as new physical predictions that can potentially distinguish this perspective

from that of standard scalar field inflation. To this day, inflation still forms one of the more

popular approaches, but its full acceptance has remained controversial [10, 12]. While there

exist a number of alternatives to the standard horizon and flatness problems [85, 98], the
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ability to explain the various cosmological power spectra has long been one of the unique

predictions from inflation-motivated models, and thus often considered as one of the “ma-

jor successes” for inflation. It is thus significant that this work provides an entirely new

alternative, which is in principle arguably more elegant as it only uses Einstein gravity and

standard (and well established) nonperturbative quantum field theory methods, without the

usual burden of flexibilities associated with inflation. Nevertheless, because of the limited

precision of current observational data, it is not yet possible to clearly prove or disprove

either idea. In addition, a complete account of various other cosmological problems such as

the horizon and flatness problem, the issue of cosmological initial conditions, quantum co-

herence of the initial state, etc., are certainly interesting and important though quite beyond

the scope of this work. Future work is pending to see how these issues can be integrated into

the picture. Still, the possibility of an alternative explanation without invoking the artificial

machinery of scalar fields is significant, as it suggests that the observed power spectra may

not be a direct consequence nor a solid confirmation of inflation, as some literature may

suggest. By exploring in more details the relationship between gravity and cosmological

matter and radiation both analytically and numerically, together with the influx of new and

increasingly accurate observational data, one can hope that this hypothesis can be subjected

to further stringent tests in the future.

6.2 Related Issues and Future Work

Given the vastness of the subject, we have to reiterate that it is impossible to address all

the cosmological problems related to inflation in a single work, nor is this the intent of

this dissertation work here. Hence, the work primarily focuses on the central problem of

explaining the matter power spectrum. As a result, our scope here is restricted to two-fold:

(i) to describe this perspective and present detailed calculations of the power spectrum as
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reproduced from macroscopic gravitational fluctuations, and (ii) to describe predictions of

deviations from the classical picture, which serves as a test for this gravitational picture as

experimental accuracies in the large-scale regions improve in the near future. Nevertheless,

the other cosmological problems addressed by inflation, including an explanation of why the

universe is flat, isotropic and homogeneous, remain of great interest. These, amongst other

inflation related problems such as B-mode polarizations and quantitative tests against higher

order correlation functions, are intended to be pursued in future work.

According to current established physical laws, two main aspects determine the cosmological

evolution. The first aspect involves the use of the correct field equations for a coupled matter

gravity system, and these in turn follow from Einstein’s classical field equations, coupled with

an exhaustive specification of all the various matter and radiation components and their

mutual interactions. The second main ingredient is a set of suitable initial conditions for all

the fields in question, which should then lead to a hopefully unambiguous determination of

the complete subsequent time evolution.

While there is currently very little controversy on the nature of the correct cosmological evo-

lution equations themselves (which largely follow from the choice of a suitable metric based

on physical symmetry arguments and on a complete list of matter and radiation constituents

based on our current understanding of fundamental particle physics), the same cannot be

said for the choice of initial conditions. The latter are largely unknown, and generally involve

a number of explicitly stated, and sometimes implicitly assumed, assumptions of what the

universe might have looked like close to the initial singularity. Furthermore, it is generally

expected that quantum effects do play a major role at such early stages, be it for the matter

fields and their interactions, or for the gravitational field itself for which a classical descrip-

tion is clearly inadequate in this regime. Indeed, over the years, attempts have been made

to partially include some quantum effects, for instance, by assuming non-trivial Gaussian

(free field) correlations for some matter and gravity two-point functions.
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Recent attempts at overcoming our admitted ignorance regarding the initial conditions for

the evolution equations have explored a number of different avenues. In one popular sce-

nario [92–95], it is argued that the universe might have evolved initially from a state that

could not even remotely be described in terms of a simple and symmetric physical character-

ization. If, as suggested by particle physics and string theory, a modified quantum dynamics

becomes operative at short distance, then one would expect a complete removal of the ini-

tial spacetime singularity, replaced herewith instead by some sort of bounce. One key, but

nevertheless natural, consequence of this perspective is that the universe must have evolved

into and out of the initial singularity in a highly coherent quantum state, with non-trivial

quantum correlations arising between all fields, and with the latter presumably operating on

all distance scales. These highly coherent and complex initial conditions would then repre-

sent the surviving physical imprint of a previous, presumably very long, cycle of cosmological

evolution, thus generating a set of suitable initial conditions for the cosmology of our current

universe.

Another possibility regarding the initial conditions is inspired by the semi-classical approach

to quantum gravity [96,97], and entail a more geometric point of view regarding the nature

of gravity. In this approach, the universe naturally evolves instead from an initial simple,

symmetric and elegant geometric construct, as described in practice for example by the

so-called no-boundary proposal for homogeneous isotropic closed universes, endowed with

a cosmological constant and a variety of other fields. Another popular attempt to explain

features of the early universe, and more specifically properties of the matter power spec-

trum, is through inflation models [5–7]. These models propose that structures visible in the

Universe today get formed from quantum fluctuations in a hypothetical primordial scalar

inflaton field. Although the precise behavior and dynamics of the inflaton field are to this

day still largely controversial [9–12,85,86], one nevertheless finds some general features that

are common among these models, and which allow one to derive predictions about the nature

of the power spectrum.
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In broad terms, the approach adopted in this dissertation can be viewed as more in line

with the first scenario, where as little as possible is assumed about the nature of the initial

quantum state of the universe given that, as mentioned previously, the latter might be quite

far from a simple and symmetric physical characterization. Instead, in this work, we make

extensive use of prior knowledge from nonperturbative studies of quantum gravity regarding

the large distance behavior of gravitational and matter two-point functions. An important

ingredient in the results presented here will therefore be the nontrivial scaling dimensions

obtained from these studies, and how these relate to current observational data. We note

here that the quantum-field theoretic treatment of perturbatively nonrenormalizable theo-

ries – in particular the determination of their generally nontrivial scaling dimensions – has

a rather distinguished history: originally developed in the context of scalar field theories by

Wilson and Parisi [33–35,38], and recently reviewed in great detail in [30], as well as in many

other excellent monographs [31,118–120]. Attempts at quantizing gravity within established

rules of quantum field theory also have a long and distinguished history, dating back to

Feynman’s original investigations, and the subsequent formulation of a consistent covariant

path integral framework [27, 28]. Quantum gravity, and by now the rather compelling the-

oretical evidence of a nontrivial ultraviolet (UV) renormalization group fixed point in four

spacetime dimensions, in principle leads to a number of unambiguous predictions, recently

reviewed and summarized in [13, 14]. Perhaps the most salient observational effects of such

an approach include a running of Newton’s constant G with scale on very large cosmological

distances [40], the modification of classical results for the growth of relativistic matter den-

sity perturbations and their associated growth exponents, and a non-vanishing slip function

in the conformal Newtonian gauge [41,42]. Moreover, the existence of a nontrivial UV fixed

point, arising from the highly nonlinear nature of the Einstein-Hilbert action, leads in a

natural way to a nontrivial quantum condensate in the curvature. Such a condensate ef-

fectively produces long-distance correlations between local curvature fluctuations, and these

curvature fluctuations couple locally to matter density fluctuations unambiguously through
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the field equations. The fluctuations in matter density, which are in principle unambiguously

calculable in this perspective, should lead to gravitational clumping of matter in the over-

dense areas, which eventually brings about the formation of galaxies. In other words, the

correlations of galaxy distributions should in principle become predictable from correlations

of curvature fluctuations derived from quantum gravity. The calculated results can then be

compared with observations, and thus viewed as a potential test for the proposed vacuum

condensate picture of quantum gravity.
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Appendix A

Quantum Gravity on Solar-System

Scales

A.1 Magnitude of Quantum Gravity Effects on Solar-

System Scales

It is of some interest to investigate the magnitude of quantum gravitational effects on So-

lar System scales, and see if they could become potentially significant. This paper uti-

lizes three particular results from a quantum treatment of gravity - the two-point cor-

relation functions, the infrared (IR) regulator, and the renormalization group (RG) run-

ning of Newton’s constant G. First, it is easiest to see the IR regulator and RG run-

ning of Newton’s constant G play completely negligible roles in the Solar System. Using
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ξ ∼
√

3/λ ' 5300 Mpc = 1.093× 1015 AU, the respective modifications

1

k2
→ 1

k2 +m2
, (A.1)

and

G→ G+ δG(k) +O
(
δG2

)
, where

δG

G
≡ 2 c0

(
m2

k2 +m2

)3/2

(A.2)

are only significant when k falls below ∼ m ≡ 1/ξ, or equivalently r above ' ξ. Taking the

Solar System size as rsol ≈ 100 AU, such quantum effects in the Solar System are suppressed

by large factors of rsol/ξ ' 10−13. For example, for the running of Newton’s constant G, one

can estimate

δG

G
∼
(
rsol

ξ

)3

∼ 10−39 . (A.3)

Next, for the scaling of correlation functions, the fluctuations are governed by the Einstein

field equations

〈 δR δR 〉 = (8πG)2 ρ̄2

〈
δρ

ρ̄

δρ

ρ̄

〉
' G2 ρ̄2

(r0

r

)2

, (A.4)

where r0 ' 10 Mpc ∼ 10−2 ξ, and ρ̄ is the average matter density of the Universe, which is

roughly given by

ρ̄ ' M

ξ3
, (A.5)

where M is of the order of the mass of the currently observable Universe, roughly M ' 1080

protons, and ξ is roughly the size of the currently observable Universe. In the following,

again, we are just interested in rough order of magnitude estimates. The value of Newton’s
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constant G, as argued for example in [28], is roughly

G ' ξ

2M
. (A.6)

So, putting together the numbers, one has

〈δR δR〉 '
(
ξ

M

)2(
M

ξ3

)2(
10−2 ξ

r

)2

=
1

ξ2 r2
· 10−4 (A.7)

In a semi-classical approach, one can relate fluctuations in the curvature to metric fluctua-

tions via the weak field relationship

δR ' �h , (A.8)

and inserting the value for ξ then gives

〈 δR δR 〉 ' 〈 �h�h 〉 ' 10−4

ξ2 r2
∼ 10−34

(1 AU)2
· 1

r2
. (A.9)

Therefore, if we use Poisson’s equation �h ' ∆Φ ' δρ to relate the metric to matter

density in the Solar System, it should still obey a 1/r2 scaling law, but with an amplitude

suppressed by a very large factor 10−34. In conclusion, within Solar System scales, any

other Newtonian dynamics will completely dominate over the (very tiny) correlations due to

quantum fluctuations of the gravitational field.
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