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MOTIVATION Immunohistochemistry (IHC) is used widely across diseases to identify proteins of interest
and aid disease diagnosis. However, IHC is time consuming and expensive to prepare at a large scale.
For evaluating the progression of Alzheimer’s disease (AD), several hallmark changes must be identified
via IHC staining across many regions of the brain. The cost of preparing many samples with IHC staining
for AD has been a major barrier to large genomic-endophenotype studies. As a result, research and diag-
nosis of AD and other diseases would benefit from the ability to identify these proteins without the need for
IHC.
SUMMARY
We develop a deep learning approach, in silico immunohistochemistry (IHC), which takes routinely collected
histochemical-stained samples as input and computationally generates virtual IHC slide images. We apply in
silico IHC to Alzheimer’s disease samples, where several hallmark changes are conventionally identified
using IHC staining across many regions of the brain. In silico IHC computationally identifies neurofibrillary
tangles, b-amyloid plaques, and neuritic plaques at a high spatial resolution directly from the histochemical
images, with areas under the receiver operating characteristic curve of between 0.88 and 0.92. In silico IHC
learns to identify subtle cellular morphologies associated with these lesions and can generate in silico IHC
slides that capture key features of the actual IHC.
INTRODUCTION

Cellular morphology is closely linked to tissue function and dis-

ease diagnosis. A common tool in pathology for assisting with

disease diagnosis is immunohistochemical (IHC) staining, which

is used to identify specific proteins of interest in a tissue. In this

work, we propose to use deep learning to computationally

generate in silico IHC staining. We demonstrate that deep

learning algorithms can identify subtle features in cellular

morphology, which are associated with diseases and previously

required IHC to visualize. These results also open the door for

computational approaches to potentially reduce the need of per-

forming time-consuming or expensive experimental IHC

staining.

In the standard workflow, tissue samples collected for patho-

logical diagnosis have a section preparedwith a hematoxylin and
Cell R
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eosin (H&E) stain for general histologic assessment. Specialized

IHC stains are additionally applied to other sections of the same

tissue to identify structures or specificmolecules that are difficult

to directly observe in the H&E-stained sample. These IHC-

stained slides are commonly studied by eye under amicroscope.

Digitization of these slides into whole-slide images (WSIs) now

allows for computational assistance with evaluating slides (Fu

et al., 2020; He et al., 2020; Kather et al., 2020).

Performing all necessary IHC stains on a sample can cost hun-

dreds of dollars and requires several days to process, which can

be avoided by using the in silico IHC. Additionally, the computa-

tionally generated stain would allow the IHC to be run on the

same section of tissue as the original H&E-stained slide, rather

than a different section, and removes artifacts that appear on

the real IHC stains. In addition to these advantages in the diag-

nostic setting, in silico IHC has the potential to make major
eports Methods 2, 100191, April 25, 2022 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. In silico IHC

(A) Procedure for in silico staining an H&E-LFB WSI.

The H&E-LFB image is divided into patches, which

are given to the trained neural network to separately

predict the presence of each hallmark change,

which are extracted from the corresponding IHC

patch. The predictions are then combined into a

synthetic IHC image. The corresponding real IHC-

stained slide is shown for comparison.

(B) Example showing the registration process, which

is used to provide supervision to train in silico IHC.

Key points from each of the sections are detected,

and the matching key points are indicated by lines.
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contributions to genomic research that relies on IHC-generated

phenotypes. For example, large genetic association studies of

Alzheimer’s disease (AD) neuropathologic endophenotypes

have been severely limited by the lack of IHC data on research

autopsy brains (Beecham et al., 2014).

Recent advances in deep learning have produced increas-

ingly accurate image recognition models (Deng et al., 2009;

Krizhevsky et al., 2012; Huang et al., 2017). These advances

have resulted in deep learning being applied across medicine

fields (Esteva et al., 2017; Ouyang et al., 2020). Within pathol-

ogy, deep learning has been used to classify disease subtypes

and predict mutations (Campanella et al., 2019; Fu et al., 2020;

Kather et al., 2020; Lu et al., 2021) and to interpret IHC stains

(Signaevsky et al., 2019; Koga et al., 2021). Combined with

spatial transcriptomics, deep learning has also been used to

link cell morphologic features with localized gene expressions

(He et al., 2020; Levy-Jurgenson et al., 2020). Finally, deep

learning has been used to transform unstained samples into vir-

tual H&E stains (Rivenson et al., 2019) and to label cellular con-

stituents, such as the nuclei and membrane, from microscopy

images (Christiansen et al., 2018). H&E and IHC are not

commonly prepared on the same tissue section, making super-

vised learning more difficult. As a result, computationally gener-

ating IHC stains directly from H&E images has been less

explored. Studies that have used IHC slides have typically
2 Cell Reports Methods 2, 100191, April 25, 2022
focused on IHC targeting specific cell

types (Xu et al., 2016; Sharma et al.,

2017; Jackson et al., 2020; Liu et al.,

2021), such as neoplastic or necrotic cells,

which are more visually distinct on H&E

slides than the AD lesions we studied.

We present in silico IHC, a system for our

in silico IHCstainingprocess (Figure 1). As a

proof of concept, we apply in silico IHC to

AD. The brains of patients with AD have

several hallmark neuropathologic lesions:

b-amyloid (Ab) plaques, neurofibrillary tan-

gles (NFT), and neuritic plaques (Hyman

et al., 2012; Montine et al., 2012). These

hallmark changes typically occur in specific

regions of the brain before the onset of

cognitive impairment, and then increase in

density and distribution as the disease ad-
vances. IHC staining is used to highlight instances of each of

these hallmark changes. IHC for Ab is used to highlight instances

of Ab plaques, and IHC for pathologic forms of tau (often collec-

tively called phospho-tau) are used to highlight instances of NFTs

and NPs, which can be differentiated via visual inspection. The

IHC assessments are used in consensus pathologic evaluation

to determine the regional distribution of Ab plaques, regional dis-

tribution of NFTs, and regional density of NPs. Together, these

form the basis of the current National Institutes on Aging–Alz-

heimer’s Association consensus guidelines for the neuropatho-

logic assessment of AD (Hyman et al., 2012;Montine et al., 2012).

To train and evaluate our system, we collected a dataset con-

sisting of brain autopsies from a total of 160 patients, consisting

of 704 samples from different regions of the brain. Within a single

patient, thepresenceof hallmarkchangesmay vary from region to

region, resulting in the need for multiple samples for each patient.

Eachsample isdivided intosections for staining.Onesection from

all samples is stained with H&E combined with Luxol fast blue

(LFB), which is commonly used to highlight the white matter in

thebrain. Thiscombinedstain is referred toasH&E-LFB.Addition-

ally, separate sections from the sample are prepared with Ab and

pathologic tau IHCstains. The regionsandstainsused inour study

follow the recommendations of the National Institute on Aging–

Alzheimer’s Associationguidelines for assessingneuropathologic

change in AD (Hyman et al., 2012; Montine et al., 2012).



Figure 2. Overview of the dataset

(A)WSIs for an example patient. The samples are collected from five regions of the brain (amygdala [AMY], contralateral hippocampus [cHIP], hippocampus [HIP],

midbrain [MID], and middle frontal gyrus [MF]). All samples have an H&E-LFB (H) slide available, along with at least one slide of amyloid-Beta (aB) or phos-

phorylated Tau (T).

(B and C) The number of slides available for each region of the brain and number of slides with positivity for amyloid plaques (AP) NFTs and neuritic plaques for

(B) training and testing themodel and (C) additional evaluation (additionally includes samples from the primary visual cortex [PVC], inferior parietal lobule [IPL], and

striatum). The samples were prepared for determining the level of AD neuropathologic change, and only the recommended brain regions to be evaluated were

stained for most patients (Hyman et al., 2012; Montine et al., 2012).
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We then divide the dataset into separate training, validation,

and test sets by patient. Training a deep learning model requires

a dataset consisting of pairs of input and expected output (e.g.,

H&E-LFB images and presence of each hallmark change). Typi-

cally, the expected output for the dataset is generated bymanual

annotation (Litjens et al., 2018) or by combining slide-level anno-

tations andmultiple-instance learning (Campanella et al., 2019; Lu

et al., 2021). However, we can computationally align the serial

slides prepared with different stains to provide annotation for

theH&E-LFB images. This approach reduces the need formanual

annotation. After training, in silico IHC achieved areas under the

receiver operating characteristic curve (AUROCs) of 0.91 (95%

CI, 0.88–0.95) for classifying the presence of NFTs, 0.92 (0.87–

0.94) for neuritic plaques, and 0.88 (95%CI, 0.82–0.93) for Abpla-

ques on the held-out test set.

RESULTS

Data curation
Our dataset consists of autopsied brains from 160 patients. Each

brain is divided into several regions of interest, resulting in 704

samples collected from multiple regions of brain (Figure 2A).
The tissue sample from each region is prepared into a

formalin-fixed paraffin-embedded block. These blocks are cut

into serial sections of five um thickness, with one slide prepared

with H&E-LFB staining, along with at least one of pathologic tau

and Ab staining.We split the dataset into a training set consisting

of 91 patients, a validation of 20 patients, and a testing set of 19

patients (Figure 2B). As an additional test, data for 30 consecu-

tive patients were collected at a different time with all sections

necessary for a full analysis of the level of neuropathologic

change in each brain (Figure 2C).

In silico staining deep learning model
In silico IHC uses a trained neural network that takes an H&E-

LFB-stained WSI as input and generates synthetic IHC-stained

images predicting the presence of NFTs, Ab plaques, and

neuritic plaques (Figure 1). From theWSI, we select non-overlap-

ping patches of 2,048 3 2,048 pixels, corresponding with

517 mm 3 517 mm. Each patch is given to the trained neural

network, which makes separate predictions for the probabilities

of at least one amyloid plaque, NFT, or neuritic plaque appearing

within the patch. The predicted probability for each patch in the

WSI is mapped to colors imitating the real IHC, which are then
Cell Reports Methods 2, 100191, April 25, 2022 3



Figure 3. Results for NFT and neuritic plaque predictions

For visualization, the predictions from in silico IHC for NFTs and neuritic plaques are combined to match the real phospho-tau IHC, which will show positivity for

both.

(A and B) AUROCs for individual slides and receiver operating characteristics curve for (A) NFTs and (B) neuritic plaques.

(C) Predictions for a highly stained slide. The model correctly identifies tangles in the gyrus, which are difficult to see on the real IHC at low resolution (inset).

(D) Predictions for a slide with low staining. Themodel correctly ignores Aging-related tau astrogliopathy (ARTAG), which include the Tau protein, but are not NFTs

(inset).
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combined into a synthetic image for each of the targets, which

can be used to identify whether they are present, along with their

locations.

Training in silico IHC consists of three main steps. First, we

register the serial sections of each sample in the dataset so

that each IHC WSI is aligned with the corresponding H&E-LFB

image as much as possible. Second, we use the IHC WSIs to

identify the patches containing NFTs, Ab plaques, and neuritic

plaques (examples in Figure S1). Third, we train a neural network

to directly predict the presence of NFTs, Ab plaques, and neuritic

plaques from the H&E-LFB image patches (see the STAR

Methods for more details).

To register the serial sections, we use the Oriented FAST and

Rotated BRIEF feature detector (Rublee et al., 2011) to identify

key points in each slide. Matching key points are selected using

the RANSAC algorithm (Fischler and Bolles, 1981). The matched

key points are then used to overlay the serial sections over each

other. To assess the accuracy of the registration, we identified 50

pairs of blood vessels visible in both the H&E and one of the IHC

slides. The registration process resulted in these blood vessels

being mapped to an average of 224 pixels apart, with a SD of

156 pixels (56 ± 39 mm). The average registration error is approx-
4 Cell Reports Methods 2, 100191, April 25, 2022
imately 10% the width of a patch, so pairs of H&E-LFB and IHC

patches are closely related.

Next, to identify NFTs, Ab plaques, and neuritic plaques, we

annotated 500 phospho-tau and 500 Ab IHC-stained patches

for the presence of each. Using the annotated dataset, we train

one annotator network to identify NFTs and neuritic plaques from

the phospho-tau IHC slides and a second annotator network to

identify Ab plaques from the Ab IHC slides. The annotator net-

works are then used to label each patch on the real IHC with

the hallmark changes that are present.

Finally, we combine the registration and IHC quantification to

train an end-to-end model for predicting the presence of NFTs,

Ab plaques, and neuritic plaques directly from the H&E-LFB im-

age. To train this model, we use the registered slides to identify

paired H&E-LFB patches and IHC patches. The annotator

network uses the IHC slides to provide annotations of NFTs,

Ab plaques, and neuritic plaques, which are used as supervision

to train in silico IHC.

Evaluation of in silico IHC
We run in silico IHC on a held-out test set of 83 samples (exam-

ples in Figures 3 and 4) from 19 patients to evaluate its ability to



Figure 4. Results for amyloid plaque predic-

tions

(A) AUROCs for individual slides and receiver oper-

ating characteristics curve.

(B) Prediction for a highly stained slide.

(C) Predictions for a negative slide. The model

correctly ignores neuromelanin in the H&E-LFB

slide, which are stained in the IHC but are not actual

amyloid plaques (inset).
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identify regions with NFTs, neuritic plaques, and Ab plaques.

We find that in silico IHC archives AUROCs of 0.91 (95% CI,

0.88–0.95), 0.92 (95% CI, 0.87–0.94), and 0.88 (95% CI,

0.82–0.93), respectively. As additional verification that our

results are not skewedbypotential errors in the automated iden-

tification of lesions from IHC,we annotated the IHCpatches cor-

responding to 250 randomH&Epatches in our test set as ground

truth. When evaluated on these patches, in silico IHC achieves

AUROCs of 0.92 (95% CI, 0.87–0.96), 0.90 (95% CI, 0.84–

0.95), and 0.92 (95% CI, 0.84–0.97), respectively.

In the H&E-LFB-stained slides, there can be artifacts and other

structures unrelated to AD disease, which could potentially be

falsely identified as lesions. For example, there are commonly

folds and tears in the tissue, and some regions of the brain

contain pigmented regions such as neuromelanin and lipofuscin,

which may seem to be abnormal. However, we find that in silico

IHC can correctly identify that these regions are negative

(Figure 4).

To further assess the reliability of our algorithm, we collected

H&E-LFB and IHC images from 30 consecutive patients with

neurodegenerative diseases. These images were taken at

different times from the data used in the algorithm’s training

and thus constitute a separate test set. We deployed the

algorithm without any modification to this new test data. The

in silico IHC matches well with the experimentally obtained
Cell R
IHC, achieving AUROCs of 0.94 (95% CI,

0.92–0.95), 0.93 (95% CI, 0.91–0.94),

and 0.83 (95% CI, 0.80–0.86) for NFT,

neuritic plaques, and Ab plaques, respec-

tively (Figure S2).

The prevalence of neuropathological

hallmark changes varies highly between

different areas of the brain. For example,

NFT, neuritic plaques and Ab plaques are

significantly more common in the hippo-

campus than the midbrain, and these le-

sions almost never appear in white matter.

To evaluate the ability of in silico IHC to

extract information beyond standard loca-

tion features, we trained a logistic regres-

sion model to predict the appearance of

hallmark changes using the region of the

brain, the fraction of the patch stained

with LFB (which identifies white matter),

and the number of nuclei in the patch as

features. This model achieves AUROCs of

0.78 (95% CI, 0.75–0.80) for NFTs, 0.80
(95% CI, 0.77–0.82) for neuritic plaques, and 0.78 (95% CI,

0.76–0.80) for Ab plaques and is significantly outperformed by

in silico IHC. This suggests that the computer vision algorithm

can leveragemore fine-grainedmorphological features of the tis-

sue neighborhoods in its assessment.

Additionally, we study the choice of neural network architec-

ture used by in silico IHC by comparing against the performance

of AlexNet (Krizhevsky et al., 2012), VGG-11 (Simonyan and Zis-

serman, 2015), and ResNet-18 (He et al., 2016). All models were

trained using the same data. We find that in silico IHC can

outperform the other choices of neural network architectures

(Table S1).

Interpretation of in silico IHC predictions
To better understand the predictions made by our model, we

use deep learning interpretation methods to provide attribu-

tions. We used the integrated gradients method (Sundararajan

et al., 2017), which identifies pixels in an image that the model

considers most useful for making a prediction. In Figure 5, we

show several examples of attributions for neuritic and Ab pla-

ques. We additionally show the corresponding IHC stain and

find that the attributions match the plaques in location and

size, suggesting that in silico IHC has learned to identify indi-

vidual lesions, despite only being trained on patch-level

labels.
eports Methods 2, 100191, April 25, 2022 5



Figure 5. Attribution of in silico IHC predic-

tions

(A and B) Raw H&E image, model attribution, and

corresponding IHC for (A) phospho-Tau and

(B) amyloid beta. The circled regions on the left are

the regions in the image that the model pays the

most attention in each H&E image. These regions

have subtle differences in their morphology and

texture that the computer vision model picks up.

They match the areas where actual phospho-Tau

and amyloid beta are located, as identified via

experimental IHC (brown blobs in the right).
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DISCUSSION

In this work, we introduce a model for translating from standard

H&E-LFB-stained neuropathological samples to synthetic phos-

pho-tau and Ab-stained images. Our model achieves high accu-

racy for classifying the presence of NFTs, neuritic plaques and

Ab plaques on independent test samples. Moreover, it signifi-

cantly outperforms models using hand-crafted features based

on information about the nuclei and region of the brain. We addi-

tionally use interpretation methods to identify regions that the

model considered most relevant for making a classification

and found that the regions closely match the areas identified

by the real IHC, suggesting that the model has learned fine-

grained morphological features of cellular neighborhoods that

are indicative of the AD related plaques and tangles.

A complete analysis of a brain sample for neurodegenerative

disease requires IHC-stained slides to be prepared for many

regions of the brain, greatly increasing the cost and time needed

for preparing the samples, limiting diagnostic workup outside of

research settings, and severely limiting large-scale genomic-

endophenotype association studies (Beecham et al., 2014; Fla-

nagan et al., 2017). As a result, we focused on themost common

neurodegenerative disease as a case study using in silico IHC

for translating from routinely and cost-efficiently prepared

H&E-LFB-stained slides to the necessary IHC stains.

In other tissues and diseases where immunostaining is used,

paired H&E-LFB and IHC samples can be used to train deep
6 Cell Reports Methods 2, 100191, April 25, 2022
learning models, decreasing the need for

gathering expert annotations, allowing

large datasets with fine-grained labels to

be created. The methodology we propose

for developing in silico IHC can be

extended to these diseases and can aid

in advancing future work in translation to

other areas of medical imaging.

An exciting potential application of in

silico IHC is to help pathologists quickly

assess samples and prioritize samples

for experimental immunostaining in both

diagnostic and large cohort research

settings. In silico staining also makes it

easier for pathologists to visualize

different biological information on the

same tissue section compared to the
typical setting where one must mentally align stains taken

on different sections.

Limitations of the study
Our work is a proof-of-concept study that demonstrates the pos-

sibility of in silico IHC. More work is needed to harden this tech-

nique into a software that can be readily used in laboratories. It is

also necessary to ensure variability in the histochemical slide

preparation from other sources does not degrade the perfor-

mance of in silico IHC. We note that in silico IHC is only able to

identify pathologic changes that have a discernible disturbance

in the H&E-LFB slides, and performance on pathologic change

with less disruption may be more challenging to identify. For

example, Ab plaques result in less disruption than both NFTs

and neuritic plaques, which may explain in silico IHC’s weaker

performance on Ab plaques. It may also be more challenging

to identify pretangles, which are precursors to NFTs, owing to

their limited disruption on the H&E-LFB slides.
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, James Zou (jamesz@
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d The histopathology images will be shared by the lead contact upon request.

d All original code has been deposited at Github (https://github.com/bryanhe/insilico-ihc) and Zenodo (https://doi.org/10.5281/

zenodo.6236002).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Data curation
The training cohort comprised 160 cases drawn from the 90 + Study (Head et al., 2009). Tissues were sampled and analyzed as pre-

viously described (Montine et al., 2016; Besser et al., 2018). Regions analyzed for the training cohort included the substantia nigra at

the level of the red nucleus, middle frontal gyrus or Brodmann area (BA)9, hippocampus at the level of the lateral geniculate nucleus,

and amygdala. The additional validation cohort comprised 30 consecutive cases from the 90 + Study. For this validation cohort, each

case consists of samples from the primary visual cortex (BA 17), substantia nigra at the level of the red nucleus, inferior parietal lobule

(BA39), striatum at the level of the anterior commissure (caudate nucleus and putamen), and hippocampus at the level of the lateral

geniculate nucleus. For evaluating AD neuropathologic change by consensus guidelines, Ab staining on the inferior parietal lobule

andmiddle frontal gyrus are the same score, Ab staining on the striatum and amygdala are the same score, and phospho-tau staining

on the primary visual cortex and middle frontal gyrus are the same score.

Tissues were stained histochemically with H%E-LFB, and immunohistochemically with antibodies to Ab (4G8, Biolegend,

cat#800701, working dilution 1:1,000) or phospho-Tau (AT8, ThermoScientific, cat#MN1020, working dilution 1:1,000). All slides

are digitized at 403 magnification on a Leica AT2 scanner.

Digital staining procedure
In silico-IHC takes an H&E-LFB-stained WSI as input (Figure 1A). WSIs are typically around 100,000 3 100,000 pixels (>1 GB),

which are too large to process with a neural network. To handle this large size, in silico-IHC first divides the WSI into

2,048 3 2,048 patches (517 mm 3 517 mm). Each patch is then passed through our trained neural network, resulting in a separate

prediction for the probabilities that the patch contains an Ab plaque, NFT or neuritic plaque. The predictions for the patches are

then merged as a synthetic IHC stained image by representing each patch with a colored spot based on the probability of con-

taining each lesion.

Registration of H&E-LFB and IHC slides
To train our system, we use serial sections of tissue stained with H&E-LFB, phospho-tau IHC, and Ab IHC (Figure 1B). The samples

are collected from five different regions: amygdala, hippocampus, contralateral hippocampus, midbrain, and BA9. The sections from
Cell Reports Methods 2, 100191, April 25, 2022 e1

mailto:jamesz@stanford.edu
mailto:jamesz@stanford.edu
https://github.com/bryanhe/insilico-ihc
https://doi.org/10.5281/zenodo.6236002
https://doi.org/10.5281/zenodo.6236002
https://github.com/bryanhe/insilico-ihc
https://doi.org/10.5281/zenodo.6236002


Article
ll

OPEN ACCESS
a sample are closely related owing to their serial nature (5 mm between sections), but cutting the sample results in the exact spatial

relationship between the sections being destroyed: slight distortions in the tissue will result from the cutting process, and the images

will be translated and rotated owing to the sections not being in the same position on the slide when digitizing (Figure S3). The first

step in our training procedure is then to register the IHC slides to the H&E-LFB slides to provide paired examples for the neural

network.

To avoid this issue, we begin by using Otsu’s method to threshold the H&E-LFB and IHC slides into foreground and background

(Otsu, 1979). After binarizing the images, the different color schemes of the stains are no longer an issue, but the main features of the

sample are still visible.

Next, we identify candidate key points using the ORB feature detector. The ORB feature detector identifies areas of the image with

distinctive structures (e.g., sharp corners of the tissue) as candidate key points. For each key point, the ORB feature detector pro-

vides a descriptor, a real-valued vector, that allows the key point to be matched across images.

With the candidate key points and descriptors for a pair of H&E-LFB and IHC slides, we create a matching between the key points

from the two slides with the most similar descriptors. This process results in many correct matches, but will also include incorrect

matches that must be filtered before finding a transform between the images. We use the RANSACmethod for identifying the outliers

from the matches, and we fit an affine transform on the remaining matches to register the images (Figure S3). We run RANSAC for

2,000 iterations and consider a key point as an inlier if the error is within 25 pixels.

Identification of lesions from IHC
The next step in generating the expected output for training the neural network is identifying the hallmark lesions from the IHC images.

The IHCs can have considerable variation in the background color along with other unrelated structures such as folds in the tissue,

lipofuscin, and neuromelanin, which must be distinguished from the NFTs and Ab plaques. To handle these issues, we selected 500

Ab and 500 phospho-tau IHC regions of 16,384 3 16,384 pixels (4,161 mm 3 4,161 mm) from the WSIs in the training set. The Ab

patcheswere annotated for instances of Ab plaques, and the phospho-tau patcheswere annotated for instances of NFTs and neuritic

plaques. The regions were then divided into 2,048 3 2,048-pixel patches, which were considered positive for each lesion if any

instance of the lesion appeared within the patch.

With these annotated patches, we trained two separate DenseNet121 models (Huang et al., 2017) to identify Ab plaques from the

Ab IHC slides and identify NFTs and neuritic plaques from the phospho-tau IHC slides using 2,0483 2,048-pixel patches extracted

from the larger patches. Our models were implemented using the PyTorch library (Paszke et al., 2019). Our trained model achieved

AUCs of 0.98 for NFTs, 0.99 for neuritic plaques, and 0.97 for Ab plaques (Figure S4).

Training and evaluating the H&E-LFB model
With the combined results of registration and identification from IHC, we have patch-level annotations for the H&E-LFB slides. For

each H&E-LFB patch, we identify the corresponding IHC patch and run our trained IHC model on the patch to identify if Ab plaques,

NFTs, or neuritic plaques are present. From our training set, we extract 190,992 patches, and train a Densenet121 model to predict

both the presence of Ab plaques, NFTs, and neuritic plaques. We evaluate the performance of the model on the patches from the

held-out test patients corresponding to IHC patches that were confidently classified for each hallmark change (<5% or >95%).

We find that the model’s predicted probabilities of the hallmark changes are closely aligned to the true fraction of positive patches

(Figure S5).

Model architecture and training
For generating predictions with in silico-IHC, we use a DenseNet121 architecture (Huang et al., 2017), which has previously been

shown to perform well on the ImageNet dataset (Deng et al., 2009; Russakovsky et al., 2015). The DenseNet121 architecture con-

sists of 120 convolutional layers arranged into 4 densely connected blocks, followed by a fully connected layer. We initialize the

model with pretrained ImageNet weights, and we fine-tune all parameters in the model for 150 epochs. We use a stochastic

gradient descent optimizer with an initial learning rate of 1 3 10�4 and a momentum of 0.9, and we decay the learning rate by

a factor of 10 every 50 epochs. The optimizer trains the model by minimizing the binary cross-entropy loss between the model’s

predictions and the label for each hallmark change extracted from the matched IHC patch. During training, we augment the data-

set by including all rotations and reflections of the patches. For our final evaluation, we select the model from the epoch with the

highest AUC on the validation set.

Interpretation of in silico-IHC predictions
To interpret the predictions made by in silico-IHC, we first use the integrated gradients method to provide per-pixel attributions for

each patch. We then sought to identify regions, rather than pixels, that resulted in positive predictions. First, we applied a

Gaussian filter to the attributions with a standard deviation of 5 for the Gaussian kernel; this allows nearby regions with high at-

tributions to be connected. Next, we identified pixels with attributions above the 90th percentile, and extracted connected regions

of pixels. Regions smaller than 500 pixels (32 mm2) were then filtered out. Finally, the contours of the remaining regions were then

extracted.
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CIs for the AUROCs in the results were computed using 10,000 bootstrapped samples and obtaining 95 percentile ranges for each

prediction. The performance of in silico-IHC for NFT and neuritic plaque predictions were computed for 51 samples with phospho-tau

staining in the test set, and the performance for amyloid plaque predictions were computed for 53 samples with Ab staining in the test

set. The performance of in silico-IHC on the additional evaluation data was computed for 60 samples with phospho-tau staining and

90 samples with Ab staining. The performance of the identification of lesions from IHCwas computed using 75 labeled patches in the

test set. Additional analysis details are provided in the Results section and in figure legends. Statistical analysis was performed using

Python.
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