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ABSTRACT OF THE DISSERTATION

Verification and Synthesis of Information Flow Secure Hardware Designs

by

Armaiti Ardeshiricham

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2020

Professor Sicun Gao, Co-Chair
Professor Ryan Kastner, Co-Chair

The increasing number of hardware-based security attacks along with prevalence of

embedded systems in critical applications necessitate robust methods for designing digital circuits

with regards to security expectations. However, state of the art secure hardware design practices

are mainly based on manual code review and security audit which do not provide formal guarantees

of security despite being time-consuming and cumbersome. Thus, a systematic approach for

identifying and fixing security vulnerabilities in hardware designs is required.

Information flow analysis presents a coherent and systematic method for evaluation of

broad types of security policies. Information flow models capture how security-critical data

xii



propagates through a system by augmenting the design with security labels. Therefore, evaluating

the security labels of the critical components could substitute manual inspection of the design

for information leakage. Such analysis accelerates, automates, and formalizes assessment of

information flow security properties.

This dissertation shows how various security policies such as confidentiality, integrity

and timing side-channel can be formalized utilizing information flow tracking (IFT) in hardware

designs. Following this formalization, this thesis presents four practical tools – RTLIFT and

Clepsydra for verification of timing-sensitive information flow properties, VeriSketch for synthesis

and enforcement of timing-sensitive information flow properties, and lastly an error localization

framework for automated inspection of verification failures. Leveraging advances in formal

methods and commercial EDA software, the presented tools augment the traditional hardware

design cycle with sound and automated security analysis.
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Chapter 1

Introduction

Hardware-oriented security attacks have become more prevalent and powerful as novel

attack surfaces have been discovered [KGG+18, LSG+18, CCX+18, ERAG+18, KW18, MR18,

KKSAG18, SP18, LYG+15]. These attacks analyze and exploit low-level hardware characteristics

such as optimization paths, memory layout, timing behavior, energy usage, etc., to infer secret

information about the running process. As shown extensively, many of such attacks can be

lunched over the network without physical adjacency and provide efficient means for stealing

secret keys, passwords, or sensitive system information.

In order to lunch a hardware-based security attack, the adversary takes advantage of subtle

but measurable hardware behavior which is correlated with the data that is being processed.

These exploitable hardware attributes could be due to undiscovered design flaws or intentional

features which were not scrutinized with regards to security expectations. While multiple factors

contribute to prevalence of such vulnerabilities; the complexity of the hardware design process

plays a significant part. In a standard hardware design process, the designer is required to fully

describe micro-architectural features on a cycle-by-cycle basis using register-transfer level (RTL)

hardware description languages (HDLs). The verbosity and complexity of RTL HDLs opens the

door for design errors and security vulnerabilities.
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This problem is further aggravated by the lack of security-oriented languages and tools

to specify and verify security policies. Conventional HDLs such as Verilog, VHDL or System

Verilog do not directly support specification of security properties as they are traditionally built for

describing design functionality. Similarly, majority of advances in EDA tools focus on analyzing

functional correctness and performance requirements. Thus, the state of the art secure hardware

design process requires hardware designers or verification engineers to manually inspect HDL

designs for security flaws. The absence of automated hardware security verification tools requires

hardware designers to be security experts in order to capture and eliminate security vulnerabilities

– a requirement which is rarely met.

To enable automatic analysis of security policies, several industrial and academic tools

have been developed. These tools commonly use information flow tracking (IFT) to inspect

hardware designs for information leakage. IFT tools assign labels to design elements (e.g.,

registers, wires, memory units, etc.) to capture security-relevant information. These security

labels are propagated through the design and model movement of sensitive information through

the design. Various security properties such as confidentiality, integrity, isolation, and timing

side-channel can be modeled by constraining the IFT labels . For instance, to analyze the integrity

policy in a system, the IFT security labels capture how the data which is received from untrusted

inputs influences critical design components.

IFT tools are growing in popularity for verification of digital designs as they provide a

systematic and yet flexible framework for security analysis. However, multiple challenges obstruct

usability and effectiveness of these tools. Many of the existing IFT tools require the designer

to manually annotate the design with security labels [ZWSM15, LKO+14, LTO+11a, BM15] or

work at very low level of abstraction [TWM+09, OMSK14b, TWM+09]. Relying on manual

definition of security labels hinders accessibility of IFT tools as labeling increases the design time.

The problem is aggravated in cases where the annotating process must be repeated according

to different security policies. IFT analysis at low abstraction levels such as the gate level also

2



negatively affects usability of these tools since the verification time increases by moving to lower

abstractions.

Furthermore, current IFT tools are merely utilized to check if a given design adheres to

a set of security properties. If the verification fails, i.e., if an unexpected flow of information is

discovered, the IFT tool does not facilitate localizing and fixing the error. Thus, the user needs to

manually inspect and modify the design to eliminate the information leakage. Potentially, the

error localization, debugging, IFT instrumentation, and verification cycle must be iterated several

times. Ideally, this process should be automated to enable eliminating the information leakage

with minimal effort from the user.

This dissertation introduces multiple tools and techniques to enhance hardware IFT tools

and tackle some of the aforementioned shortcomings. We start by giving an overview of various

security policies that can be specified using the model of information flow in Chapter 2. We

introduce RTLIFT, a generic IFT tool for verifying information flow properties on RTL hardware

designs in Chapter 3. Next, we extend RTLIFT information flow logic to precisely capture

timing flows in RTL designs. Clepsydra, which is described in Chapter 4, uses this extended

logic for verification of hardware designs against timing side-channel attacks. While RTLIFT

and Clepsydra improve the security verification process, they do not provide any guidance for

secure hardware design. To address this issue, we present VeriSketch in Chapter 5. VeriSketch

completes a partially written hardware design with regards to information flow security and

functional properties. Lastly, in Chapter 6, we propose a framework to automatically reason about

verification failures and localize errors in RTL designs.

The rest of this chapter presents the outline and motivation of the remaining chapters.

3



1.1 Information Flow and Security Properties

Major security policies such as isolation, integrity, and confidentiality cannot be modeled

by properties which describe a single trace. This is due to the fact that these policies inherently

express the system behavior with respect to two traces. For instance, the confidentiality policy

considers two traces which differ only in the values of the secret data. To preserve confidentiality,

no difference in publicly observable behavior of the system which is executing the two traces

should be noted.

Information flow models enable capturing two-trace properties through the security labels.

Consequently, information flow tools are growing in popularity for reasoning about security and

safety properties. Hardware IFT tools have been used at different levels of abstractions ranging

from the ISA level down to the gate and the transistor level. This dissertation focuses on the

RTL abstraction as it is the most prevalent way for designing digital circuits. The existing RTL

IFT tools utilize different verification strategies and vary in terms of the level of automation.

In this chapter we describe the basic concepts and taxonomy of these IFT tools and analyze

the advantage and shortcomings of different approaches. Next, we show how information flow

models can be used to specify different security policies. This is achievable by constraining the

security labels of a design that is augmented with IFT logic. We focus on properties related

to confidentiality, integrity, isolation, timing side-channel, and information-leaking hardware

Trojans, and we provide examples of IFT security policies written for various hardware units.

These properties and benchmarks will be used in the rest of this dissertation to evaluate the

proposed tools and techniques.

1.2 RTLIFT: Verification of Secure Hardware Designs

Over the past decade, several tools have been developed for verification of information

flow properties of RTL hardware designs [ZWSM15, LKO+14, LTO+11a, BM15]. To utilize
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these tools, the user needs to annotate the design by assigning security labels to each design

variable. Similar to a type-checking framework, this annotated code is then verified to ensure

that the labeling system is consistent. While this semi-automated approach provide flexibility

as the user can define complex and mutable security labels, it considerably increases the design

time since it requires substantial annotation. Furthermore, the labeling procedure itself could be

a source of error since the user should take into account all low-level details such as different

execution paths, timing channels, and intermediate variables.

Ideally the IFT labeling process should be automated and require minimal inquiry from

the user. GLIFT [TWM+09, TWM+09] alleviates this challenge by leveraging automated label

inference rules and introduces an IFT technique for verification of IFT properties at the gate

level. The main drawback, however, is that GLIFT requires the design to be first synthesized

to a gate-level netlist. This increases the analysis time as verification is considerably slower at

lower levels of abstraction. Also, the synthesis time could be large itself and should be taken

into account. Moreover, once synthesized to the gate-level, high-level RTL information (e.g.,

conditional branches, execution paths, control flow graph, etc.) which are valuable for precise

label inference are lost.

In this chapter we introduce RTLIFT [AHMK] – an information flow tracking framework

for RTL hardware designs. RTLIFT requires the designer to only annotate the design’s inputs with

security labels. And it automatically infers the labels for the intermediate variables and outputs.

This is done by defining label propagation rules (i.e., label inference rules) for all RTL constructs

(e.g., Boolean operators, arithmetic operators, control constructs, etc.) as part of RTLIFt internal

library. As output, RTLIFT generates an RTL design which has the same functionality as the

original design and is instrumented with IFT labels. This instrumented design along with the IFT

properties (i.e., constraints written over the IFT labels as described in Chapter 2) can be analyzed

by off-the-shelves verification oracles to reason about information leakage. This verification

can be performed by EDA simulation tools, formal methods, or hardware emulation. Once the
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verification passes, the IFT labels are discarded and the original design goes through the next

steps of the hardware design cycle.

As we will show in Chapter 3, RTLIFT alleviate the aforementioned issues with hardware

IFT tools by providing an automated, scalable and flexible security verification framework for

hardware designs written in the Verilog language. To provide more flexibility, RTLIFT introduces

propagation rules with different level of precision by leveraging various RTL information.

1.3 Clepsydra: Modeling Timing Flows

Information leakage could be caused by functional flows or timing flows. Existence of

functional flow from signal A to signal B is defined as variation in the value of signal B caused

by changes in the value of signal A. Timing flows are a more subtle subset of information flows

and refer to information leaked via the time that a signal is updated (as opposed to the value of

the signal). More specifically, timing flow exists from signal A to signal B if the value of signal A

affects the time when the value of signal B is ready. Timing flows are of great importance as they

are the root cause of timing side-channel attacks such as Percival [Per05a] and Bernstein [Ber05]

cache attacks and more recent Spectre [KGG+18] and Meltdown [LSG+18] attacks. To lunch a

timing side-channel attack, the adversary monitors the execution repeatedly and measures the

execution time. Then the attacker leverages statistical analysis methods to correlate the execution

time with the data that is being processed. Thus, a major mitigation against timing side-channel

attacks is to eliminate timing variations which are dependent on secret data.

RTLIFT [AHMK] and other existing hardware IFT tools such as SecVerilog [ZWSM15],

GLIFT [TWM+09], Sapper [LKO+14], Caisson [LTO+11a], and VeriCoq [BM15] can detect

information leakage caused by both functional flows and timing flows; but they fail to distinguish

between the two cases. However, isolating timing flows from functional ones are critical as

they are exploited in different ways. In many cases, functional flows are benign since the signal
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values might be inaccessible or protected by cryptographic means. Despite that, timing flows

might still be observable through repeated measurements and statistical analysis. For instance,

in a crptographic core the ciphertext is protected as it is encrypted, but the time taken by the

core to compute the ciphertext could contain secret information. Consequently, to show that the

crptographic core is resilient against timing attacks, one needs to prove absence of timing flows

in the presence of functional flows.

In Chapter 4, we show how cycle-level timing variations can be modeled in RTL hardware

designs by analyzing how design registers are updated at each cycle. To do so, we formalize how

timing variations are generated and propagated at RTL abstraction. We further prove that the

introduced model soundly detects all timing flows and conservatively discards functional-only

flows. Based on the proposed model, we introduce Clepsydra [AHK] for tracking timing flows

and functional flows in separate channels. Clepsydra receives as input an RTL hardware designs

written in Verilog. And it instruments the design with IFT labels and propagation logic while

preserving its original functionality. Contrary to previous hardware IFT tools, Clepsydra uses

disjoint sets of labels and tracking logic for timing and functional flows. As a result, one can

use verification tools to prove that the instrumented hardware implementation is insusceptible

to various timing side-channel attacks. We use Clepsydra to verify various hardware units such

as secure cache architectures, bus arbiters, and cryptographic cores against timing side-channel

attacks.

1.4 VeriSketch: Synthesis of Secure Hardware Designs

IFT tools enable evaluation of hardware designs against different security policies and

extend the verification round in the hardware design flow with security analysis. To utilize these

tools, the design is first instrumented with IFT labels (automatically or manually), and then it is

analyzed by a verification oracle (e.g., SAT/SMT solvers or type checkers). If the verification
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passes, the IFT labels are discarded and the hardware design process continues since the design is

certified with respect to the security specifications. If the verification fails, however, the design

should be debugged and re-evaluated manually.

Ideally, this procedure should be automated by utilizing the IFT tools in the design

phase to direct the designer towards an implementation which passes the verification. One

promising approach to achieve this goal is by leveraging program synthesis techniques to complete

a partially-specified design according to a set of properties. Program synthesis algorithms

consider a partial description of a program along with a set of properties or input/output traces

and search for a complete program which satisfies both the partial design and the constraints.

Program synthesis [Gul10] frameworks have been developed for automating challenging software

engineering problems in different domains such as data processing, optimization, and security.

However, most synthesis tools focus on functional properties. To enable synthesis of secure

hardware designs, we combine program synthesis techniques and IFT tools to generate HDL

designs with respect to information flow security properties.

In Chapter 5, we introduce VeriSketch [ATGK19] for synthesizing RTL hardware designs

with respect to timing-sensitive information flow properties as described in Chapter 2. VeriSketch

accepts partially defined Verilog designs (i.e., the sketch) along with a set of functional and IFT

properties (i.e., the constraints). And it outputs a fully defined Verilog code which is proven to

satisfy the constraints. To enable partially written hardware designs, we add sketch constructs to

the Verilog language. The sketch constructs allows the programmer to leave the low level details

of the design such as conditional branches, operation/operand selection, combinational functions,

finite state machine transitions, etc., as undefined. These undefined components will be filled by

the synthesis algorithm.

VeriSketch uses counterexample guided inductive synthesis (CEGIS) [SLTB+06] to

complete the sketch. CEGIS breaks down the synthesis problem into multiple iterations of

synthesis and verification. In the verification round the design is examined against the given
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properties and a counterexample is generated if the verification fails. In the synthesis round, a

new designs (i.e., a complete Verilog code) is proposed by the SMT solver such that it satisfies the

properties for the collected counterexamples. CEGIS iterates between synthesis and verification

rounds until either the verification passes (i.e., a correct design is generated) or the synthesis fails

(i.e., there is no program which satisfies all the constraints). To enable synthesis of IFT properties,

VeriSketch leverages Clepsydra to instrument the design in each verification and synthesis round.

In Chapter 5, we show how VeriSketch can be used to sketch and generate secure-by-construction

hardware designs.

1.5 Error Localization for Hardware Designs

Formal verification tools enable analysis of a design with respect to concise specifications

written as formal properties. Formal verification can simplify and accelerate debugging by

eliminating the need to write simulation testbenches and looking for design corner cases; however,

they provide minimal help for localizing source of errors in a given design. If the formal property

fails, the verification oracle generates a counterexample which represents an input trace that

falsifies the property. The counterexample trace can be used to replay the error but it does not

pinpoint the source of the failure. To eliminate the error, the user needs to manually inspect

the design along with the counterexample trace, localize the problem, and re-verify the design

after modifying it. This process potentially might be iterated multiple times until the verification

passes. And if the specification to be verified are IFT properties, the instrumentation should be

re-done at each iteration as well.

Multiple techniques have been proposed to automatically localize errors and reduce the

time which is spent on debugging. These techniques falls in two generic categories — statistical

and formal techniques. Statistical methods require multiple simulation traces (both failing and

passing traces) to correlate the failure with program snippets. Formal techniques, on the other
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hand, rely on few traces and leverage formal solvers to reason about the source of the error. We

focus on formal techniques since we aim to find the root cause of the failure associated with a

single counterexample that illustrates the property violation.

In this chapter, we present a method for localizing single faults in RTL hardware designs.

The error localization algorithm works in three steps and tries to find the minimal code snippets

which if modified can eliminate the error. First, the counterexample trace is analyzed to find the

input variables which are critical for reproducing the error. Next, these critical inputs are traced

through the program to find the critical intermediate values. This is done by static information

flow analysis. Lastly, the selected intermediate values are trimmed again to choose the ones that

contribute to existence of the error. The first and last steps leverage an SMT solver to safely

eliminate variables which do not affect the error. In Chapter 6 we show how the error localization

method finds buggy code snippets in various HDL designs.
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Chapter 2

Information Flow and Security Properties

Formal methods are commonly employed to ensure functional correctness and reveal

design flaws in safety-critical and security-oriented systems. However, the major focus of formal

verification techniques have been on reasoning about functional properties. And analysis of

security specifications mainly relies on manual effort. More recently, several tools and techniques

have been proposed to bridge this gap and enable evaluation of security properties using formal

methods. Many of these tools leverage information flow models to define and verify security

policies. In this chapter we show how information flow models can be used to express a wide

group security policies such as integrity, confidentiality, and isolation, and we provide several

examples of each of the policies written for various hardware units.

2.1 Introduction

Formal specifications concisely capture expected behavior of a design and thus can

substitute exhaustive testing while providing sound guarantees for high-assurance systems. Formal

verification tools are mostly utilized to ensure functional correctness using trace properties. This

is due to the fact that property specification languages enable writing properties which model the

behaviour of the design considering a single trace, i.e., how the design should perform given an
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input trace described by the property. While trace properties are powerful to encode functional

properties, modeling security policies commonly requires comparing the behavior of the design

with respect to two (or more) traces. These properties which express the expected behavior of the

design according to multiple traces are referred to as hyperproperties [CS10].

To illustrate the notion of hyperproperties, consider as an example the integrity policy. The

integrity policy indicates that the behavior of trusted components of a design should remain intact

with respect to values of untrusted data objects. This policy essentially compares the behavior

of the design against multiple traces with differing values for the untrusted data. Consequently,

the integrity policy cannot be represented by a single trace property. However, integrity can

be represented by a hyperproperty that considers two traces which are identical except for the

value of the untrusted data. To preserve integrity, the system is expected to perform identical (in

terms of the trusted components) given the two traces and starting form equivalent initial states.

Using formal methods, this hyperproperty can be verified for all possible values of untrusted

data components to provide formal proof of integrity in all possible executions. Similarly, other

security policies such as confidentiality, isolation, and timing side channels can be modeled

by hyperproperties. We provide more examples of security policies which are modeled by

hyperproperties in Section 2.3.

Security hyperproperties can be represented using the model of information flow. Hence,

information flow tracking tools are gaining popularity for security verification. IFT tools model

movement of information through a given design using labels that store security relevant infor-

mation. Depending on the property to be verified, the IFT tool tracks different metadata such as

whether data objects are trusted or untrusted, confidential or public, contains timing variation or

not, etc. Considering the integrity policy again, the information flow model stores labels which

indicate if data values are trusted or not. Using this labeling scheme, the integrity policy can

be expressed by a property that considers a single trace which labels are initialized according

to the trust level of the data objects. For instance, data objects which carry untrusted values are
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initialized to have a high label while other data objects have a low label by default. To ensure

integrity, the system is expected to maintain the low label for the components which are assumed

to be trusted throughout execution. Maintaining a low label in this scenario demonstrates that

untrusted values have not influenced the trusted components.

In this chapter we describe the basic notions of information flow tracking and elaborate

how different security properties can be verified leveraging the model of information flow. We

will use the security properties and examples presented in this chapter throughout this thesis to

evaluate different IFT verification and synthesis frameworks.

2.2 Information Flow Tracking

Information flow tracking tools model data propagation through a system to enable

reasoning about security properties. To illustrate information flow in hardware modules, consider

a multiplexer which determines the value of output signal Out by choosing from one of the two

input signals A and B based on the control signal Sel as shown in Fig. 2.1. In this example,

information flows to output Out from inputs A and B due to direct writes. This direct flow of

information is referred to as explicit flow and indicates that the destination signal is directly

influenced by the value of the source signal. In the same example, information also flows from

the control signal Sel to the output Out since the control signal dictates which input signal should

be assigned to the output Out. This indirect flow of information caused by conditional branches

is denoted as implicit flow. Explicit and implicit flows in the multiplexer example are shown by

green and red arrows in Fig. 2.1(b).

To track flow of information, the IFT tool augments the design with labels that keep track

of the type of the data that is being processed. Different examples of information flow tracking for

the multiplexer example of Fig. 2.1 is shown in Fig. 2.2. In this example IFT labels are defined

for all the signals using “t” variables. The IFT logic updates these labels based on how data
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Figure 2.1: A simple example of information flow in hardware designs. (a) HDL code for a
two-way multiplexer, (b) Schematic of a two-way multiplexer where explicit and implicit flows
are shown by green and red arrows, respectively.

propagates through the design via different operations. These update rules are determined based

on many factors such as the property to be verified, the required precision and the abstraction

level. Fig. 2.2(a) shows a simple IFT instrumentation where only explicit flows are tracked, while

Fig. 2.2(b) represents a labeling scheme which tracks both explicit and implicit flows. A more

complex flow tracking logic takes into account the Boolean values of the signals along with the

connectivity analysis and precisely capture cases where the output signal is influenced by the

inputs. This is shown in Fig. 2.2(c) for the multiplexer example. The labeling system of Fig. 2.2(c)

acknowledges the fact that information flows from signal A to output Out only in cases where the

control signal Sel is set. Hence, the label propagation logic is itself guarded by a conditional

branch. As it can be seen through the different possible propagation rules for the multiplexer,

increasing the IFT logic precision adds to the complexity of the analysis. As we further elaborate

in Chapter 3, this complexity increases the verification time.

The values that can be captured by the IFT labels are defined through a security lattice.

A security lattice defines all the possible security levels and legal data movement between them

as shown by several examples in Fig. 2.3. In the simplest case, a security lattice contains two

levels – low and high as shown in Fig. 2.3(a). This lattice indicates that data with the low label
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Figure 2.2: Examples of information flow tracking for the multiplexer shown in Fig.2.1. The
highlighted parts show the code added for IFT instrumentation where IFT labels are defined
for all the signals using the “t” variables. (a) A simple IFT instrumentation which tracks only
explicit flows. (b) An IFT instrumentation which tracks both explicit and implicit flows. (c) A
more precise IFT instrumentation which tracks both explicit and implicit flows by considering
the Boolean values of the signals.
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Figure 2.3: Examples of security lattices. A security lattice defines security levels and authorized
relation between them. Any flow of information that is not allowed by the lattice violates security
expectations. (a) A generic two-level security lattice. (b) A lattice describing the integrity policy.
(c) A lattice describing the confidentiality policy. (d) A multi-layer security lattice to represent
arbitrary complex policies.

is allowed to flow to and influence data with high label while flow of data with high label to

data with low label is a security vulnerability. This simple lattice is powerful enough to model

important security policies such as integrity and confidentiality. To capture the integrity policy,

we simply need to mark “Trusted” values with low labels and “Untrusted” values with high

labels as show in Fig. 2.3(b). Similarly, the confidentiality policy can be represented by denoting

“Unclassified” values with low labels and “Secret” values with the high labels. Fig. 2.3(c) shows

a slightly different security lattice with three levels to model confidentiality. If needed, lattices

enable representing more complex policies as shown in Fig. 2.3(d).

2.3 Security Properties

Properties are logical formulas written over design variables using property specification

languages (PSLs) and describe desired invariants in the design behavior. The model of information

flow enables capturing a wider range of properties compared to what can be written and analyzed

using existing PSLs and verification tools. This is feasible by writing properties over the IFT
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labels that carry security metadata. These properties include a diverse set of security related

behaviors such as information leakage, unauthorized access to restricted memory locations as well

as undesirable interference between different execution contexts caused by design flaws, timing

channels, insecure debug ports and certain types of hardware Trojans [SA14, CCF+16, HAAK16].

In the following, we show how different classes of security requirements can be modeled

with IFT properties. We consider an information flow instrumentation where each design com-

ponent is extended with two security labels, “s” and “t” labels for functional and timing flows,

respectively. All the properties can be mapped to the two level security lattice low v high as

shown in Fig.2.3(a). We use System Verilog Assertion (SVA) language to write these properties.

2.3.1 Confidentiality

Confidentiality properties ensure that sensitive data with high label never flows to an

unclassified variable with low label. For instance, in a cryptographic core the secret key should not

flow to a point that is publicly observable. Using the IFT model, this can be stated as following.

assume(key_s==high);

assert(pub_s==low);

Confidentiality properties are written to protect secret assets in a given design. This is

done by marking the secret assets or inputs with a high security label and monitoring the label

of public ports and storage units. To preserve confidentiality, all public ports and storage units

should maintain a low label throughout the execution. Examples of confidentiality properties for

various hardware designs such as crypto cores and arithmetic units are shown in Table 2.1.

2.3.2 Integrity

Integrity is the dual of confidentiality, where we mark untrusted resources with a high

label and verify that they do not affect critical components with low labels. For example, in a
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processor the program counter (PC) should not be overwritten by data from unprotected network.

This can be modeled as following.

assume(ethernet_data_s==high);

assert(pc_s==low);

Integrity properties can be specified for any design where certain memory locations,

registers or flags should be protected against unauthorized access. This is modeled by marking

public access such as user or network input with a high label and constraining the sensitive

variables to maintain a low security label. Table 2.1 shows integrity properties written for crypto

cores, processors, and access control mechanisms.

2.3.3 Isolation

Isolation can also be enforced as an information flow security property. Isolation states

that there should never be information exchange between two components with different trust

levels. For example in SoC designs, trusted IP cores sitting in the secure world with low labels

should be separated from those which are untrusted and are in the insecure domain with high

labels. It should be noted that isolation is a two-way property as shown in the following as well

as the examples of Table 2.1.

assume(crypto_core_s==high);

assert(lcd_ctrl_s==low);

assume(lcd_ctrl_s==high);

assert(crypto_core_s==low);

2.3.4 Timing Channel

Information flow models can be used to capture timing side-channels in hardware de-

signs. These properties assess whether sensitive information can be retrieved by measuring

18



Table 2.1: Summary of security properties for confidentiality, integrity, and isolation.
Benchmark Synopsis Formal Representation

SoC Arbiter
(Confidentiality) Acknowledgement signal

is not driven from sensitive requests
assume(req s[i]==high );
assert(ack s[j]==low)

Scheduler
(Confidentiality) Grant signal

is not driven from sensitive modes
assume(mode s[i]==high );
assert(grant s[j]==low)

Crypto Core
(Confidentiality) Ready signal
is not driven from secret inputs

assume(key s==high & plain text s==high);
assert(ready s==low)

ALU
(Confidentiality) Ready signal
is not driven from the inputs

assume(operand1 s==high & operand2 s==high);
assert(ready s==low)

Crypto Core
(Integrity) Key register is

not modified by public inputs
assume(user inp s==high);

assert(key s==low)

Debug Unit
(Integrity) Debug flag is not modified

by public inputs
assume(user inp s==high);
assert(debug en s==low)

Processor
(Integrity) PC, private memory and control flow

conditions are not modified by public inputs
assume(user inp s==high);

assert(PC s==low & private mem s==low & cond s==low)

Access Control
(Integrity) Unauthorized users
cannot access protected units

assume(user s[i]==high);
assert(asset s[j] == low)

SoC
(Isolation) Accesses to different cores

on an SoC are isolated
assume(req s[i]==high); assert(ack s[j]==low)
assume(req s[j]==high); assert(ack s[i]==low)

Memory (Isolation) Memory locations are isolated
assume(mem s[i]==high); assert(mem s[j]==low)
assume(mem s[j]==high); assert(mem s[i]==low)

the computation time. To precisely capture timing flows, the information flow model needs to

distinguish between logical and timing flows. Take as example a floating point division unit

which is expected to run in constant time independent of the value of the operands. In this case,

Logical flow exists from the data inputs (i.e., the divider and dividend) to the data outputs (i.e.,

quotient and remainder) since the outputs are computed from the inputs. However, whether or not

there is timing flow from the data inputs to the data outputs (i.e., if the arithmetic unit runs in

constant time or not) depends on the implementation of the floating point unit. Using the model

of information flow, existence of such timing side channel can be captured as follows.

assume(divider_s==high);

assume(divisor_s==high);

assert(quotient_t==low);

assert(remainder_t==low);

Here, we assume an information flow model where a separate channel is dedicated to track

timing flows (denoted by “t” labels ). To verify timing leakage, the assertions are written over

these “t” labels. Table 2.2 summarizes the properties developed in [AHK, ATGK19] to analyze

timing side channel in different hardware designs.
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Table 2.2: Summary of properties used for detecting timing side channel
Benchmark Synopsis Formal Representation

Sequential Divider Result is ready in constant time
assume(dividend s==high & divisor s==high);
assert(quotient t==low & remainder t==low)

Sequential Multiplier Result is ready in constant time
assume(dividend s==high & divisor s==high);
assert(quotient t==low & remainder t==low)

Cache Data is available in constant time assume(index s[i]==high); assert(data t[j]==low)
SoC Arbiter Requests are granted in constant time assume(req s[i]==high); assert(ack t[j]==low)

Thread Scheduler Scheduling is done in constant time
assume(thread active s[i]==high );

assert(thread grant t[j]==low)

AES Cipher Cipher text is ready in constant time
assume(key s==high & plain text s==high);

assert(cipher text t==low)

RSA Cipher Cipher text is ready in constant time
assume(key s==high & plain text s==high);

assert(cipher text t==low)

Table 2.3: Summary of properties used for detecting hardware Trojans
Benchmark Synopsis Formal Representation

AES-T100 Key does not flow to Antena
assume(key s==high);
assert(Athena s==low)

AES-T400 Key does not flow to shift register
assume(key s==high);

assert(TSC-SHIFTReg s==low)

AES-T1100 Key does not flow to capacitance
assume(key s==high);

assert(Capacitance s==low)

RSA-T200 Key does not flow to count
assume(key s==high);
assert(count s==low)

2.3.5 Hardware Trojan

Information flow tracking can be used to detect certain types of hardware Trojans that leak

sensitive information by inserting malicious information channels in the design. For example,

Trust-HUB benchmarks [STK13] include examples of Trojans added to crypto cores using a small

circuitry that transfers the secret key to a public output under certain conditions. This class of

hardware Trojans can be detected using a property that observes information flow from sensitive

data (e.g., the secret key) to the public ports as shown in the following.

assume(key_s==high);

assert(pub_s==low);

Table 2.3 summarizes the the properties for detecting information leakage by gate level in-

formation flow tracking in the Trust-HUB [STK13] benchmarks as used by Hu et. al. [HMOK16a].
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2.4 Conclusion

This chapter provides a brief overview of hardware information flow tracking tools and

describes how a wide variety of security policies can be expressed leveraging the model of

information flow. The properties and examples discussed in the chapter will be used in the

following chapters to assess different IFT verification and synthesis frameworks.

Chapter 2, in part is currently being prepared for submission for publication of the material.

Wei Hu, Armaiti Ardeshiricham, Ryan Kastner. The dissertation author was the co-investigator

and co-author of this paper.
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Chapter 3

Verification of Secure Hardware Designs

Information Flow Tracking (IFT) provides a formal methodology for modeling and

reasoning about security properties related to integrity, confidentiality, and logical side channel.

Recently, IFT has been employed for secure hardware design and verification. However, existing

hardware IFT techniques either require designers to rewrite their hardware specifications in a new

language or do not scale to large designs due to a low level of abstraction. In this work, we propose

Register Transfer Level IFT (RTLIFT), which enables verification of security properties in an early

design phase, at a higher level of abstraction, and directly on RTL code. The proposed method

enables a precise understanding of all logical flows through RTL design and allows various

tradeoffs in IFT precision. We show that RTLIFT achieves over 5× speedup in verification

performance as compared to gate level IFT while minimizing the required effort for the designer

to verify security properties on RTL designs.

3.1 Introduction

Despite decades of research on software and hardware security, today’s computing tech-

nology remains vulnerable to classic exploit techniques due to the fact that many fundamental

computational models and traditional design flows do not consider or prioritize security. In
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the realm of hardware, security is rarely considered during design space exploration. Security

vulnerabilities can originate from design flaws, which can be fully eliminated after a complete

verification. Unfortunately, this is impractical due to the scale of modern chips. Furthermore,

novel attack vectors like side-channel analysis undermine classic assumptions about the accessi-

bility of internal secret information outside of a computing system. In addition, hardware designs

often required incorporating third party IP cores, which may contain undocumented malicious

design modifications known as backdoor.

Remedying these security vulnerabilities is best accomplished with a systemic solution.

One such solution that has shown promise is information flow tracking (IFT). IFT models how

labeled data moves through a system. It provides an approach for verifying that systems adhere

to security policies, either by static verification during the design phase or dynamical checking

at runtime. Recent work has demonstrated the effectiveness of hardware IFT in identifying and

mitigating hardware security vulnerabilities, such as timing channels in cryptographic cores and

caches, unintended interference between IP components of different trust, and information leakage

through hardware Trojans [TWM+09, TOL+11, LTO+11b, LKO+14, BM15, ZWSM15].

Hardware IFT techniques have been deployed at different levels of abstraction. At the

gate level, all logical information flows can be tracked by augmenting each logic primitive in the

synthesized design netlist with additional IFT logic. While this simplifies IFT logic generation by

breaking down complex language structures to lower level logic constructs, this method does not

scale with design size since it relies on gate level verification. Language level methods avoid this

problem by generating IFT logic at a higher level of abstraction. Previous language level IFT

techniques are accomplished via designing type enforced HDL (Hardware Description Language).

These techniques require that designs be rewritten or annotated in a new language in order to

verify security properties, which can be a challenging task for hardware designers.

The level of abstraction can also affect the precision of the IFT logic. More specifically,

the precision of IFT logic is determined by both the precision of the label propagation rules for
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logic operations and the granularity of the building blocks over which IFT is deployed. Gate

level IFT methods [?] achieve increased precision by defining precise tracking rules for a set of

universal gates. On the other hand, gate level methods apply IFT at a fine granularity, and thus

cannot detect higher-level dependencies (e.g., variable correlation due to reconvergent fanout)

between the signals in the design.

In this work, we propose a Register Transfer Level IFT (RTLIFT) method, which allows a

precise understanding of all logical information flows through RTL code. By defining precise

label propagation rules for RTL expressions, we show that our method can achieve a higher level

of precision as compared to gate level methods. Our IFT model is completely described with

standard RTL syntax and thus eliminates the need for acquiring a new type-enforced language.

Furthermore, we discuss how RTLIFT allows for separation of implicit and explicit flows,

enabling various tradeoff of IFT precision, which cannot be realized using existing IFT methods.

Specifically, this paper makes the following contributions:

• Proposing a method for precisely understanding all logical information flows through RTL

design;

• Providing techniques that allow trading-off IFT precision and security verification perfor-

mance;

• Presenting experimental results to show the improvement in IFT precision and security

verification time.

The remainder of this paper is organized as follows: Section 3.2 summarizes existing

IFT methods and discusses how our work differs from them. Section 3.3 deliberates the concept

of precise IFT and what RTLIFT aims to improve in this work. Section 3.4 describes the

implementation details. The experimental results are reported in Section 3.5. We conclude in

Section 3.6.
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3.2 Related Work

Software-mediated IFT, e.g., LIFT [Fen06] and RIFLE [VBC+04], use dynamic binary

translation to track flows during execution. The overhead of these methods can be prohibitive,

and thus motivated the use of custom architectural modifications to facilitate faster information

flow tracking. Such schemes generally fall into one of two categories − integrated pervasive

processor modifications (e.g., Minos [CC04] and Raksha [DKK07]) and modular core additions

or coprocessor support (e.g., Flexitaint [VDSP08] and Kannan et al. [KDK09]).

Gate level information flow tracking (GLIFT) [TWM+09] performs IFT analysis directly

on the “original” hardware design. It does this by creating a separate GLIFT analysis logic

that is derived from the original logic, but operates independently from it. GLIFT tracks any

arbitrary set of flows by labeling different hardware variables as “tainted”, and tracking their

effect throughout the design. The GLIFT logic is generated once, independent of the security

property, and can be used to verify any IFT property. GLIFT is primarily used at design time

for testing and verification but it can be used to dynamically track information flows, and thus

perform runtime security checks, but the resulting tracking logic may be prohibitive for some

applications [TOL+11].

Caisson and Sapper are hardware security design languages that directly generate circuits

that enforce the desired IFT properties (e.g., separation and isolation). Both add a typing system

to a finite state machine (FSM) language which requires that the designer assigns a security

label to each register and wire. Caisson [LTO+11b] uses static types forcing it to conservatively

perform replication to restrict flows of information. This can lead to significant increases in

logic. Sapper [LKO+14] improves Caisson by adding a dynamic type system. This reduces the

need for logic replication, but still requires that the designer learn a new language. Sapper and

Caisson enforce information flow by restricting transitions between the states. Hence, the user

must redesign the hardware using a new language which can be a nontrivial task.
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VeriCoq-IFT [BM15] automatically converts designs from their HDL representation to the

Coq formal language, eliminating the need to redesign the hardware. However, the user still needs

to annotate the generated Coq code in order to analyze security properties. Furthermore, in all

these three methods the flow of information is tracked conservatively since the label propagation

rules are defined as updating label of the output of any operation to the highest label of its inputs.

As we discuss in this work, this approach overestimates the flow of information by ignoring the

functionality of the operation and the exact values of the operands.

SecVerilog [ZWSM15] extends the Verilog language with an expressive type system.

SecVerilog users are required to explicitly add a security label to each variable in the code. These

labels are a consequence of the security property that one wishes to verify on the design. It uses a

type system to ensure that the specified information flow policy is upheld. Being a thoroughly

static tool, SecVerilog uses predicate analysis in order to acquire the hardware state essential for

precise flow tracking. This complicates the labeling processing, and inevitably the intricacy of

precise predicate analysis leads to loss of precision compared to simulation-based and dynamic

approaches. Furthermore, the designer must specify many of the flow rules when she adds labels

to the variables. Ideally, this process would be automated, e.g,. as done with GLIFT, otherwise it

impedes its use as a hardware security design tool. Often there are many (potentially hundreds

or thousands) of IFT properties that one wishes to test or verify on a single design. This would

require the user to relabel the design in order to prove each different property. For example, in

a cryptographic core proving that the secret key value does not affect the timing of the output

signals requires a different labeling from proving that no inputs except the key and the plain text

can affect the value of the cipher text.

RTLIFT creates a new methodology that combines the benefits of these previous ap-

proaches while eliminating their drawbacks. RTLIFT works directly with existing HDL languages,

and thus does not require a designer to learn a new hardware security language. Much like GLIFT,

it automatically defines flow relation properties. Yet working at a higher level of abstraction
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leads to many benefits including faster verification time and more flexibility in defining different

types of flow relationships (e.g., implicit versus explicit). The method presented in this paper

is different from available high level IFT techniques in the sense that the user does not need

to redesign or annotate the code since the labels are generated automatically. Furthermore, by

specifying precise tracking rules which evaluate the exact state of the hardware through simulation

it achieves a higher level of precision. It improves upon GLIFT by accelerating the verification

process, decreasing the false positive rate and enabling separation of implicit flow from explicit

flows.

3.3 Background and Motivation

3.3.1 IFT Basics

Information flows from signal X to signal Y if and only if a change in the value of X

can influence the value of Y. Information flow can model security properties related to both

confidentiality and integrity:

• Confidentiality: Assume that X is a secret value while Y is publicly observable. In this

case, an attacker can extract sensitive information by observing and analyzing the variations

in signal Y. For example, Y could be the “ready” output of a cryptographic core which in a

secure design should not depend on the value of the private key stored in X; otherwise there

is a timing side channel which can be used to extract the secret key. In this case, we want

to insure the property that X does not flow to Y.

• Integrity: Assume that X is an untrusted value while Y is trusted. In this scenario, we wish

to insure that an attacker cannot gain unauthorized access through Y by modifying the value

of X. For example, X may be an openly accessible memory location and we wish to insure

that it cannot be used to influence the results of a system control register. Thus, we want to
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insure again that X cannot flow to Y.

Hardware information flow tracking generally works by adding a security label to each

signal, and using that to track the influence of flow (or taint) of a set of signals throughout the

circuit. The initial taint is set based upon the desired security property, and IFT techniques are

used to test or verify whether that taint can move to an unwanted part of the system as specified

by the security property.

IFT can be done with various levels of precision. One approach marks the output of

each operation as tainted when any of its inputs is tainted. While simple, this method is overly

conservative and can inaccurately report existence of flow in certain cases (i.e., false positives).

This inaccuracy is due to the fact that based on the functionality of the operation, a single untainted

input can dominate the output, yielding an untainted output while other inputs are tainted. To

avoid this imprecision, the tracking rules need to take into account both the type of the operation

and the exact state of the hardware.

To clarify this idea, consider the expression out = secret & 0x0F, where sensitive

information is stored in an 8-bit variable secret and we want to determine if the information

from secret flows to the variable out. The most conservative and least precise approach would

mark all bits of out as tainted since secret is tainted. A more precise strategy gives us slightly

different answer: the secret information only flows to the four least significant bits of out, and

the other bits should not be marked as tainted since their values are zero regardless of the value of

secret. To achieve this level of precision, separate tracking rules for different operations shall be

defined as we discuss in Section 3.4.1.Achieving this level of precision requires separate tracking

rules for different operations. For example, for a 2-input AND gate the output is tainted only if

both inputs are tainted, or if one input is tainted and the other input is high (logical 1), which

allows for the tainted input to effect the output.
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3.3.2 IFT Precision-Complexity Trade-offs

Precise tracking rules impose more complexity, and hence it might be desirable to delib-

erately add some false positives to the IFT logic by taking a rather conservative approach. In

large designs it might be beneficial to use imprecise and efficient approaches to track the flow

through complex arithmetic operations, while preserving the precision for logical operations such

as AND, OR, XOR, etc. As opposed to the gate level where the difference between logical and

arithmetic operations is lost, considering the high level description of the design, one can define

the tracking rules for various operations with different levels of precision and more flexibility.

The notion of taking various levels of precision based on the functionality becomes more

important when extended to the different information flow paths in the design: the data flow and

the control flow. The data flow represents how the information explicitly flows, while the control

flow shows all the paths that might be traversed and hence contains information regarding the

implicit flow. For example, in a conditional statement the flow from the right hand side expression

to the left hand side variable is explicit and the logic implementing it is within the data path.

However, the value of the left hand side variable is also implicitly affected by the conditional

variable which is represented in the control path. Formally, an implicit flow is the influence that a

data value has on other data values by virtue of its use as a condition. Even though the conditions

might not directly interact with other values, they still affect values that otherwise would have

been assigned new values had the condition gone the other way. Implicit and explicit flows are

not distinguishable in the gate level netlist. However, we can differentiate between them at the

language level. We exploit this idea in order to adjust the complexity of the tracking logic based

on the verification objective. Specifically, when searching for timing flows, which are caused

by implicit flow, keeping the tracking logic associated with the data path imprecise, − hence

reducing the logic complexity − and implementing the control flow’s tracking logic precisely, we

can realize a smaller tracking logic which does not impose additional false positives for tracking

the implicit flow.
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Figure 3.1: Different IFT logic for 2:1 mux. (a) Gate level structure of a mux. (b) IFT logic
generated using GLIFT. (c) Precise IFT tracking logic for a 2:1 mux. RTLIFT can use either of
these (or more) as an IFT library element.

3.3.3 IFT Precision

In this section we discuss how generating the IFT logic at a higher level of abstraction can

improve its precision level. Gate level IFT techniques necessitate synthesizing the design to its gate

level netlist before generating the IFT logic. Different logic synthesis methodologies can generate

very different tracking logic via GLIFT, altering the result of the security verification [HBA+16].

Resource sharing done by the synthesis tool introduces reconvergent paths to the netlist which are

not present at the language level. Reconvergent paths lead to false positives in the tracking logic

since the tracking rules cannot easily take into account the exact relationship between multiple

inputs of an operation. To clarify the source of such imprecision, we deliberate the gate level and

high level tracking rules for a 2:1 multiplexer.

Fig. 3.1(a) shows the gate level structure of a multiplexer and Fig. 3.1(b) represents its

precise gate level tracking logic. Even though the flow is precisely tracked through each single

gate, when combined together the multiplexer’s IFT logic contains false positives. To examine

when a false positive happens, we analyze the case where both data inputs A and B are one, and

their security labels At and Bt are zero, indicating being untainted. The control signal S and its

security label St are both equal to one, indicating being tainted. Analyzing the gate level tracking

logic, the output of both AND gates have high security labels while only one of them is on.
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Consequently, both inputs to the OR gate are tainted resulting in a tainted output. Conceptually,

the output of the OR gate is marked as tainted because flipping the value of its high input will

change its result to zero. However, the missing part is that this flip cannot happen unaccompanied

by a flip on the other input, which forces the final output to remain the same. This imprecision, in

the presence of precise tracking logic for all the gates, occurs due to the reconvergence path at the

input of the OR gate. The false positives provoked by the reconvergnece paths at the gate level

can be avoided by generating the tracking logic at a higher level as we can see in Fig. 3.1(c).

Reconvegence paths also exist at the language level, which inevitably results in false

positives. We can define precise tracking rules for gates or language constructs; however, this

precision is based on the independency of the inputs. By generating the tracking logic at a

higher level of abstraction and hence utilizing higher level tracking rules, we can overcome the

dependency between the intermediate variables which improves the precision level. Looking

back at the multiplexer example, we are able to eliminate the false positives which are caused

by the dependency between the inputs of the OR gate. However, if the inputs of the multiplexer

are dependent themselves, that can cause false positives which we cannot avoid. Fundamentally,

precise information flow tracking is an undecidable problem as shown by Denning and Denning

[DD77a]. Nonetheless, we improve IFT precision level in two ways: First, we have precise

tracking rules specifically defined for each operation which take into account the exact state of

hardware; second, we avoid a large class of false positives caused by the reconvergent paths in

the gate level netlist by analyzing the design from a higher level of abstraction.

3.4 Implementation

In this section we elaborate details of RTLIFT implementation. RTLIFT software receives

a synthesizable Verilog code along with flags specifying the precision level of the data flow

IFT logic and the control flow IFT logic, and generates functionally equivalent Verilog code
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Figure 3.2: RTLIFT overview

instrumented with information flow tracking logic. Since the generated code is synthesizable, it

can be analyzed by standard EDA test and verification tools allowing us to leverage decades of

research on functional testing to assess security properties of hardware designs. If the IFT-enhaced

design passes the security properties the original code can be used for fabrication. Otherwise,

the original code should be modified and analyzed again. Fig. 3.2 gives an overview of how the

tool is used. RTLIFT is realized through the following steps: Designing flow tracking libraries;

enhancing the combinational circuit with tracking logic; enhancing the conditional statements

with logic required for tracking the implicit flow. We describe each of these steps in the rest of

this section.

3.4.1 Flow Tracking Libraries

For tracking the flow of information through an RTL code, each operation should be

instrumented so it can operate both on the Boolean values and security labels of the operands.

Hence, for each operation OP such that Z = X OP Y is a valid statement in Verilog, we have

defined a module OP IFT which receives inputs X and Y along with their security labels X t and

Y t, and generates the output Z along with its security label Z t. These modules are predefined and
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module and_IFT //conservative
(Z, Z_t, X, X_t, Y, Y_t);
parameter w1,w2,w3;
output [w1-1:0] Z, Z_t;
input [w2-1] X, X_t;
input [w3-1] Y, Y_t;
assign out = X & Y;
assign out_t = X_t | Y_t; 
endmodule

module and_IFT //precise
(Z, Z_t, X, X_t, Y, Y_t);
parameter w1,w2,w3;
output [w1-1:0] Z, Z_t;
input [w2-1] X, X_t;
input [w3-1] Y, Y_t;
assign out = X & Y;
assign out_t =  (X_t & Y_t) |

     (X & Y_t)|(Y & X_T); 
endmodule

            (a)             (b)
Figure 3.3: Flow tracking libraries

given to the RTLIFT software as an input file called “flow tracking libraries”, as shown in Fig. 3.2.

These libraries serve two goals: first, improving IFT precision by enabling operation-specific

label propagation as opposed to the tracking rules in Caisson [LTO+11b], Sapper [LKO+14] and

VeriCoq-IFT [BM15]; second, automating the computation of security labels in contrast to the

approach taken in SecVerilog [ZWSM15]. We have defined two different sets of libraries, each of

which calculating Z t output with a different level of precision. In the conservative library, the

label propagation rules overestimate the existence of flow by marking the output of each operation

as tainted when any of its inputs are tainted, yielding a small tracking logic modeled with an OR

expression. In the precise library, the label propagation rules are designed to minimize the number

of false positives through each operation in exchange for a more complex tracking logic. The

user selects which library should be used by specifying the precision flag for the data path logic.

Other libraries with various precision-complexity balances can be added if required. Fig. 3.3(a)

and (b) shows the IFT-enhanced modules for the AND operation available in the conservative

and precise libraries respectively. In Section 3.5 we explain the design of IFT-enhanced modules

for arithmetic operations in more detail.

3.4.2 Tracking Explicit Flows

Flow tracking starts by extending each bit of data, i.e., wires and registers in a given

Verilog code, with a label that carries out information regarding the security properties of the

data (Lines 4-6 in Algorithm 1). In this work, we consider a single bit label, where a high value
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input [7:0] a,b,c;
output [8:0] o;
assign o = a + b&c;
 

input [7:0] a,b,c;
input [7:0] a_t,b_t,c_t;
output [8:0] o;
output [8:0] o_t;
wire [7:0] temp, temp_t;
and_IFT #(8,8,8) and1

(temp, temp_t, b, b_t, c, c_t);
add_IFT #(9,8,8) add1

(o, o_t, temp, temp_t, a, a_t);

 

    (a)

    (b)     (c)

=

o +

a

b c

&

Figure 3.4: Explicit flow tracking. (a) sample Verilog code. (b) Data Flow Graph of the code.
(c) IFT-enhanced Verilog code.

indicates either secret or untrusted value, depending on whether we want to verify confidentiality

or integrity IFT properties. To obtain a smaller IFT logic and further speed up the verification, it

is possible to make a label for a multi-bit variable; this is the power of the library based approach.

Algorithm 1 IFT Logic Generation
1: Input: Verilog code AST file, IFT libraries
2: Input: f lag im, f lag ex
3: Output: IFT instrumented Verilog code
4: for each variable V [n : 0] do
5: define new variable V t[n : 0]
6: end for
7: for each assignment Ai: V k := Exp(Xi, · · · ,X j) do
8: Traverse the DFG of Ai in order
9: for each operation OP: Y p = Xm OP Xn ∈ Exp do

10: instantiate module OP IFT (Xm, Xm t, Xn, Xn t, Y p, Y p t)
11: if (OP = DFG.root) then
12: V k := Y p
13: V k t := Y p t | Imp Flow(Ai, f lag im)
14: end if
15: end for
16: end for

After extending the variables with security labels, we replace every HDL operation

with an IFT-enhanced operation as described earlier. To do so, we examine the node of each

assignment statement via in-order traversal. The data flow graph is acquired using Yosys Verilog

frontend [Wola] to transform Verilog code to its Abstract Syntax Tree (AST) representation. For
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Figure 3.5: Implicit flow tracking. (a) Verilog code. (b) Imprecise IFT-extended Verilog code.
(c) Precise IFT-extended Verilog code. Highlighted parts show the tracking logic for implicit
flow tracking.

each operation, a module from the available libraries is instantiated (Lines 7-16 in Algorithm 1).

This process is shown for a simple code in Fig. 3.4. For sequential circuits modeled as always

blocks in Verilog language, the same approach is taken by calculating the flow of the right hand

side expression outside the always block and updating the label of the left hand side variable

using the original always block structure.

3.4.3 Tracking Implicit Flows

Merely tracking the explicit flow might inaccurately report the absence of flow in condi-

tional statements by ignoring existence of implicit flows. To track these flows, for each assignment

we obtain a list of variables which affect the execution of the statement. Having this list, we

generate the logic required for tracking the implicit flow as shown by Algorithm 2. This logic can

be generated with different levels of precision specified by “ f lag im”. If we wish to employ a

conservative IFT approach, any use of tainted condition should yield a tainted output (Lines 8-10

in Algorithm 2). While this approach captures all possible flows of information, it overestimates

the actual flow. For a more precise flow tracking, we need to traverse the control flow graph in
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order to figure out what other outcomes are possible for the right hand side of the assignment,

assuming the conditions were flipped. Now we can model each conditional statement with a mul-

tiplexer and acquire the taint of the output using the high level flow tracking rule for multiplexer

(Lines 10-13 in Algorithm 2). To better understand the idea, we analyze implicit flow tracking

through a simple code shown in Fig. 3.5(a). The highlighted parts in Fig. 3.5(b) and (c) show the

logic added to track the implicit flow while e1 t and e2 t represent the explicit flows from the

right hand side expressions e1 and e2. As it can be seen in Fig. 3.5(b), the imprecise approach

marks the output of a conditional statement as tainted if the condition is tainted by employing an

OR logic. Taking a precise approach, information flows from the condition to the output only if

the tainted condition occurs when both inputs are tainted or they have different Boolean values.

Algorithm 2 Implicit flow tracking logic generation

1: Input: assignment Ai: V k := Exp(Xi, · · · ,X j)
2: Input: f lag im, Verilog code AST file
3: Output: Verilog expression ImpFlow
4: Extract V k Conds by traversing CFG of Ai
5: if (V k Conds = Null) then
6: ImpFlow := 0
7: else
8: if ( f lag im = Imprecise) then
9: ImpFlow := ImpFlow | ci t; ∀ ci ∈ V k Conds

10: else
11: Extract OtherInps by traversing the CFG
12: ImpFlow := Mux IFT(Vk Conds, OtherInps)
13: end if
14: end if
15: return ImpFlow;

3.5 Experimental Results

We have used RTLIFT to analyze security properties on several benchmarks, and here we

compare RTLIFT and GLIFT in terms of required time for verifying security policies and the
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precision of the generated IFT logic.

3.5.1 Security Proofs

Cryptographic Cores: Table 3.1 shows the required time for proving IFT properties on

cryptographic cores. As depicted in Fig. 3.2, we have used RTLIFT to generate the IFT logic

for the design under test, which is then given to Quetsa Formal Verification tool. To inspect if

information flows from input X to output Y, we need to set X’s label high while all other inputs’

labels are low, and observe Y ’s label which tells of if information can flow from X to Y or if they

are isolated from each other. We have proved two properties on 32 bit and 128 bit RSA cores: 1)

flow from the secret key to the cipher text and 2) flow from secret key to “ready” signal. While

the former is expected as it is secured through encryption, the latter reveals an unintended flow.

Since the Boolean value of the “ ready” signal is not affected by the key value, the detected flow

reveals a timing channel. The timeout is set for one hour for this experiments.

Furthermore, we have used the tool to check confidentiality properties on a number

of trust-HUB AES benchmarks that contain hardware Trojans which leaks the secret key to

an output other that the cipher text. IFT techniques can be used to detect hardware Trojans

that cause unintended flows of information [HMOK16b]. Specifically, in a cryptographic core

information from the secret key should only flow to the cipher text, and its flow to any other

output is undesirable. Hence, we have used the tool to specify if there is a flow from the secret

key to any output besides the cipher text. Our method is capable of detecting such hardware

Trojans while considerably reducing the verification time compared to GLIFT (taken from

reference [HMOK16b]), as reported in Table 3.1.

WISHBONE:IFT can be used to detect timing flows in SoC benchmarks [Obe14]. Here,

we have used RTLIFT to inspect timing flows between cores that are connected together via the

WISHBONE bus architecture. WISHBONE is a relatively simple protocol developed by the

Opencores community [ope], and allows multiple devices to interact with each other by sharing a
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bus. The transaction starts by a master core requesting access from a device by asserting its “cyc”

signal. If the slave device is idle, access is granted to the master by setting its “ack” signal. We

want to indicate if a certain master’s “ack” signal is affected by the requests coming from other

masters. To test this, we assume one of the master cores, m1, to be untrusted by setting its “cyc t”

signal high. Next, we observe “ack t” signal from one of the trusted masters, m2. “ack t” being

high indicates a timing flow since we have not marked data values as tainted and m1 requests

are affecting the time that m2 can start and finish its computation. This timing flow is a threat to

system integrity since it can violate the real-time constraint of the master cores.

We generated both the conservative and precise IFT logic for comparison. As discussed

throughout the paper, the conservative IFT overestimates the existence of information flow

resulting in false positives. Our approach is to start the verification process by the conservative

IFT which is smaller in terms of area. If isolation can be proved using the conservative IFT, there

is no need to verify the properties on the precise version. However, if flow is detected using the

conservative approach, we need to repeat the experiments using the precise IFT to avoid getting

false positives.

For the original WISHBONE architecture with round robin arbiter, both conservative and

precise IFT indicate existence of flow. Next, we have modified WISHBONE arbiter to enforce

timing isolation. In our first model, we have implemented a TDMA arbiter. Here, the conservative

IFT can prove timing isolation, eliminating the need to test the precise IFT. In our second model,

we have divided the masters to two groups with time multiplexed access between the groups and

round robin within each group. In this scenario, the conservative IFT reports existence of flow

between the two groups, while using the precise IFT we can prove isolation. This final example

shows the importance of precision of IFT logic for reducing false positives.
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Table 3.1: Verification Time.
Benchmark property RTLIFT GLIFT
32bit RSA Key flows to cipher text 02:38 10:08
32bit RSA Key flows to ready 02:14 10:17
128bit RSA Key flows to cipher text 9:43 timeout
128bit RSA Key flows to ready 9:36 timeout
AES T100 Key leaks to output 01:05 06:48

AES T1000 Key leaks to output 01:06 6:49
AES T1100 Key leaks to output 01:07 6:46
AES T1200 Key leaks to output 01:06 6:50

3.5.2 Precision Analysis

We have compared the precision and complexity of the IFT logic generated by RTLIFT

and GLIFT for data path operations addition and multiplication, and control path logic modeled

as case statements in Verilog language. The precision is measured by comparing the number of

tainted outputs during simulation for 220 random input samples. As shown by table 3.2, high

level tracking rules result in less tainted flow. False positive percentage is reported as the ratio of

the difference in the number of tainted flows to the total number of simulations. The complexity

is reported as IFT logic area, which gives a first order estimate on testing and verification time.

We briefly explain how IFT-enhanced addition and multiplication operations are designed

for the flow tracking library which is given to RTLIFT as an input file. First we have designed a

full adder which receives three inputs A, B and Cin along with their labels A t, B t and Cin t and

generates outputs Sum and Co along with their labels Sum t and Co t. To find Boolean expression

describing Sum t and Co t, we need to consider Boolean expressions of Sum and Co and find the

circumstances under which the output can be flipped. Based on the Boolean equation Sum = A

⊕ B ⊕ Cin, the output Sum is tainted when any of the inputs are tainted since each input to an

XOR operation can control the output. The Co output is high when more than two inputs are high.

Hence the value of Co can be changed if we have control over more than one of the inputs, or we

have control over only one input but the other two inputs are not equal. Next, we have employed

the IF-enhanced full adder to design a ripple carry adder, and then an IFT-enhance multiplier is
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Table 3.2: Precision & complexity of RTLIFT vs. GLIFT.

Operation
RTLIFT GLIFT

#tainted flows Area #tainted flows Area %FP
8-bit adder 8477103 271 8535900 222 5.6%

16-bit adder 16441632 603 16524855 556 7.9 %
32-bit adder 32385907 1215 32549597 1243 15.6%

8-bit multiplier 15029971 847 15310281 1759 26.7%
16-bit multiplier 31816947 2078 32200870? 7647 36.6%

4-way case 849874 70 883810 54 3.2%
8-way case 869915 226 958070 129 8.4%

16-way case 869799 199 997874 289 12.2%

built from the adder. As it can be seen from table 3.2, generating IFT logic at a higher level of

abstraction can reduce false positives rate for both data path and control path unit.

3.6 Conclusion

This paper presents RTLIFT for precisely measuring all digital flows through RTL designs

in order to formally prove security properties related to integrity, confidentiality and logic side

channels. RTLIFT can be directly applied on HDL codes and easily integrated into the hardware

design flow through automated IFT logic augmentation. Furthermore, it enables designers to

tradeoff between the complexity and precision of the IFT logic for data path elements and control

path logic separately allowing for fast property-specific verification. Experimental results show

that generating the IFT logic at a higher level of abstraction can increase the IFT precision and

improve the performance of security verification.

Chapter 3, in full, is a reprint of the material as it appears in the Proceedings of the 20th

Annual Design, Automation and Test in Europe Conference Exhibition (DATE), March 2017.

Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, Ryan Kastner. The dissertation author was the

primary investigator and author of this paper.
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Chapter 4

Timing Flows in Hardware Designs

Emergence of side channel security attacks has challenged the classic assumptions regard-

ing what data is publicly available. As demonstrated repeatedly, statistical analysis of information

collected by measuring completion time of hardware designs can reveal confidential information.

Even though timing-based side channel leakage can be easily exploited to breach data privacy,

conventional hardware verification tools are not yet suited to assess these vulnerabilities. To

acquaint the hardware design process with formal security evaluations, we introduce a model

for tracking timing-based information flows through HDL codes. Based on this model, we have

developed Clepsydra, a tool for automatically generating circuitry for tracking timing flows and

generic logical flows within hardware designs in two distinct channels. The circuit generated by

Clepsydra can be analyzed by EDA tools to detect timing leakage or formally prove constant

execution time. We present proofs regarding soundness and precision of the proposed model

along with results of employing Clepsydra to verify security properties on a variety of hardware

units including crypto cores, bus architectures, caches and arithmetic modules.
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4.1 Introduction

Variations in the time taken by a computational unit to generate results form a leakage

channel that carries information regarding the data being processed. Many implementations of

cryptographic algorithms are shown to have a varying runtime based on the Boolean value of secret

key. Thus, an attacker familiar with the underlying algorithm can leverage statistical methods

to extract the key from timing measurements [Koc, Sch00]. In security critical applications,

timing based attacks have targeted various hardware units such as caches [Ber05, Per05b], shared

buses [Hu92, OHI+11a] and floating point arithmetic units [AS07, AKM+15]. Being both

inexpensive and pervasive, timing-based side channel attacks are attracting more attention. They

can be launched at low cost since the attacker merely needs to measure the execution time of the

victim process without physical access to the design. Moreover, any application encompassing

data-dependent optimizations is susceptible to such attacks.

Most methods to protect against hardware based timing leakage rely on manual inspection

of the HDL code, e.g., looking for sources of timing variation such as branches conditioned

on secret values or data-dependent requests sent to shared resources. This can be a lengthy

and cumbersome task, and it provides no formal guarantee regarding the design’s security.

Furthermore, such analysis only inspects the design with respect to already-known attack vectors

and falls short in providing resilience against all possible timing based threats. Exhaustively

testing the design to capture timing variations is also becoming impractical due to scale of modern

chips. As the complexity and prevalence of hardware designs grow, so does the need for automatic

and formal analysis of security properties. Over the past decade, multiple research solutions

have been proposed for incorporating security analysis into traditional hardware verification tools.

Many of the proposed techniques [ZWSM15, JM12, AHMK, TWM+09] enable the designers to

verify security properties regarding confidentiality, integrity, and non-interference based on the

notion of information flow tracking (IFT).
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By modeling how labeled data moves through a system, IFT tools indicate if sensitive

information flows to any part of the design. However, this indication is limited to a binary

decision as the nature of detected flows are not specified. More specifically, IFT techniques

cannot segregate functional flows from timing based ones. This could be problematic in many

security applications where functional flow is expected as it is protected by encryption, while

timing flows shall be eliminated. For example, in a crypto core, functional flow from the key to

the ciphertext is expected while the designer needs to ensure that the time taken for the ciphertext

to become available does not depend on the value of the secret key. Furthermore, it might be

the case that the output is not directly accessible by untrusted parties but its timing footprint

is public. For instance, completion time of a shared floating point arithmetic unit can reveal

information regarding its input values, even if the output itself is hidden. Thus, to assess the

security of the design with respect to side channel attacks, timing flows should be distinguishable

from functional ones.

In this work, we show how timing flows can be precisely modeled, and introduce an IFT

technique for capturing timing leakage of hardware designs. Our model is based on detecting and

propagating sources of potential timing variations in the code by inspecting interfaces of design’s

registers. We introduce Clepsydra, which automatically generates the logic required for tracking

timing flows and logical flows in arbitrary HDL codes. The logic generated by Clepsydra can be

processed by conventional EDA tools in order to analyze timing properties of the design under

test. As this logic is generated after statically analyzing all the execution paths in the design, it

does not rely on activating the worst case execution path of the design in order to expose timing

variation during verification.

Clepsydra is easily adoptable in the hardware design flow. It does not employ any

additional HDL language features. And while it generates synthesizable logic that could be used

for runtime detection, we envision its usage primarily during design time, when the Clepsydra

logic is analyzed by EDA tools to verify the existence (or lack thereof) of timing-based properties.
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The Clepsydra logic is only used for analysis and is discarded before manufacturing, thus it

imposes no additional runtime overhead. We show how to use Clepsydra to detect timing

leakage in various existing architectures, or prove that they have constant execution time. More

specifically, this paper provides the following contributions:

• Modeling timing-based information flows in hardware designs;

• Developing Clepsydra for automatic generation of digital logic for testing timing behaviour

of hardware designs;

• Analyzing timing-based security properties of various hardware architectures using Clepsy-

dra.

The rest of this paper is organized as follows. Section 4.2 summarizes how IFT-based methods are

employed for hardware security analysis, and how we aim to improve them. Our proposed model

for tracking timing flows is introduced in Sections 4.3. In Section 4.4 we elaborate implementation

of Clepsydra, and present the experimental results gathered from using Clepsydra to analyze

security properties of various architectures in Section 6.6. We provide a brief summary of related

work in Section 6.2, and conclude the work in Section 4.7.

4.2 Background & Motivation

In this section we elaborate how IFT-based techniques enable security analysis, and argue

why current tools are inadequate for establishing formal guarantees of timing based properties.

We further point out how employing a more meticulous model for segregating different forms of

logical flows can resolve this issue.
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4.2.1 Security Properties

Isolation of different logical components is a primary security property that hardware

designers seek to provide. Two major security properties can be enforced through isolation:

• Confidentiality: Preventing untrusted parties from observing secret information by iso-

lating the units which process secret data. For example, in a cryptographic hardware we

want to ensure that the secret key does not leak to public outputs as a result of design flaws,

hardware Trojans or side channel leakage.

• Integrity: Preventing unauthorized parties from modifying sensitive information. For

instance, the registers storing cryptographic keys should only be accessible by trusted

sources.

In order to provide sound security guarantees, information flow must be analyzed through both

data channels (also known as functional channels) and timing channels. The former ensures that

data does not move among isolated components, while the latter certifies that the timing footprints

of the isolated entities do not form a communication channel.

4.2.2 IFT & Hardware Security Verification

IFT techniques provide a systematic approach for verifying security properties related

to integrity and confidentiality. This works by assigning security labels to different signals and

tracking how these labels propagate through the system. Different security properties can be

tested by defining the input labels and inspecting the output labels. Precision of an IFT technique,

i.e. how closely the reported flows resemble the actual flows, is directly affected by the label

propagation rules.

If the label propagation rules are not comprehensive enough to capture all forms of digital

flows, the design might be inaccurately marked as secure. Information can flow in both explicit
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and implicit ways. In the explicit form, information flows to the output of an operation which is

processing sensitive data. More subtly, data that controls conditional statements can implicitly

affects the results. For instance, in the code if(c) then x = y + z; signal x is explicitly

affected by signals y and z, and implicitly by signal c. For an IFT technique to be sound and free

from false negatives, it should be capable of tracking both implicit and explicit flows.

Furthermore, label propagation rules should detect cases where flow of information is

blocked. For example, if certain bits of the secret data is ANDed with zero, there will be no flow

from those bits to the output of the AND gate. However, a conservative tracking rule, which

assigns the highest security labels of the inputs to the output, marks all the output bits as sensitive.

In contrast, a precise IFT tool, built upon stricter rules which take into account Boolean values of

the operands and the operation functionality, can recognize absence of flows and avoid certain

false positives [HBA+16].

4.2.3 Isolating Timing Flows

Existing IFT techniques track both functional flows and timing flows using the same

set of labels and propagation rules. Thus, when a flow is detected, whether it is a functional

flow or a timing flow, remains unknown. However, different applications necessitate different

forms of isolation. For instance, both timing and functional isolation should be guaranteed

when a cache is shared among mutually untrusting processes. But secure implementation of a

cryptographic algorithm only requires elimination of timing channels as functional flows are

protected by encryption. This property cannot be tested using IFT techniques which capture all

forms of logical flows through a single set of labels. As the cipher is always affected by the

secret key through functional flows, its security label will be raised to the security label of the key,

independent of existence of timing flows. This significantly limits employment of IFT techniques

for security analysis as similar scenarios happen in many applications where functional flows are

inevitable but timing based flows should be eliminated.
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Since conventional IFT techniques are designed for tracking all forms of logical flows,

employing them to detect only timing flows results in a considerable number of false positives. As

timing flows are a subset of information flows; a set of stricter propagation rules can be designed

that work on a separate set of labels and track only timing flows while ignoring functional ones.

In the next section we introduce a set of rules for detecting only timing flows and tracking them

through the system.

4.3 Modeling Timing Flows

Timing flows exist from inputs to outputs of a circuit if the time that is taken for the

outputs to become available depends on the Boolean values of the inputs. These flows can be

exploited if the input signals causing them contain secret information, and the completion time of

the unit can be measured by an untrusted party. For instance, consider a division unit, as shown in

Fig 4.1, implemented via consecutive subtraction of the divisor from the dividend. The execution

time of this algorithm depends on the input values as the number of subtractions is not fixed. This

indicates that even if the Boolean value of the quotient is undisclosed, evaluating the execution

time reveals information regarding the inputs. In this section we discuss how timing variations

are represented in digital circuits, and develop a formal model for capturing them.

4.3.1 Characterizing Timing Flows

Completion time of a design is defined by the time when its output is updated to its final

value. If no timing flow exists from input X to output Y, the time taken for Y to reach its final value

should be constant as X changes. Thus, in order to detect timing flows, we need to determine

whether or not the updates made to the outputs occur at constant timesteps. This can be addressed

by detecting variations in the update time of all design variables, and tracking them to the final

outputs. We discuss how this can be done for any arbitrary digital circuit by answering three
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Figure 4.1: Division algorithm based consecutive subtraction. The red box shows generation of
timing variations, and the green box depicts their blockage.

questions: How are timing flows generated from a set of sensitive inputs? How does the flow

propagate once generated? And lastly, what are the necessary conditions for blocking the flow of

timing information and enforcing constant time execution? Since we are interested in detecting

timing variations in terms of clock cycles, we need to analyze the design’s registers and the

signals which control them.

Generation of Timing Variation: Design’s registers are written to by a set of data signals

which are multiplexed by controllers at each cycle. Considering a register where none of its data

or control signals has timing variation but might contain sensitive data, we want to figure out

the circumstances under which timing variations occur at the register’s output. If the register is

definitely updated at each clock cycle, there will be no timing variations. However, if occurrence

of updates are tentative, i.e. there is a degree of freedom for the register to hold its current

value or get a new value, timing variation could occur. If the controller signal which is deciding

the occurrence of the update is sensitive, the resulting timing variation will contain sensitive

information as well.

Going back to the division example in Fig 4.1, the updates made to the register temp quotient

are conditioned on the input. Thus, based on the Boolean values of the input signals, this register
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might get its final value at different times. In Theorems 4.3.2 and 4.3.2, we show that detecting

conditional updates caused by sensitive data soundly captures all timing flows while discarding

functional-only ones.

Propagation and Blockage of Timing Variation: If any of the data or control signals

of a register has cycle level variations, the variation can flow through the register. While simply

propagating these flows soundly exposes all timing variations, it overestimates the flow when

mitigation techniques are implemented to eliminate the variations. In other words, we need to

be able to detect situations where timing variations are not observable at a register’s output even

though they are present at its input.

In division example in Fig 4.1, instead of directly writing the temp quotient to the

output, a wait period is taken before updating the output value. If the wait period is longer

than the worst case execution time, the output gets its update at constant time steps. We will

show in Theorem 4.3.2 that if there exists a non-sensitive control signal which fully controls the

occurrence of updates to a register, it can block flow of timing variation from input to output of

the register. Fully controlling control signal implies that the register gets a new value if and only

if the controller gets a new value. Thus, the timing signature of the register output is identical to

the control signal (with a single cycle delay), and is independent of its input. Implementing this

policy reduces the number of false positives to some extent without imposing any false negative.

In the division example, if the counter is large enough, the output value changes immediately after

the done condition is updated, and keeps its old value while done does not change. Hence, all the

variations to the final output are controlled by the done signal which is non-sensitive, indicating

constant execution time with respect to inputs.

4.3.2 Theorems & Proofs

In the rest of this section we formally define IFT concepts and prove the claims we made

earlier. We show that our model soundly discovers all potential timing channels by proving that
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detecting tentative updates of design’s registers is adequate for exposing all timing variations, and

the presence of non-sensitive fully controlling signals eliminates existing timing variations. We

also prove that our model ignores functional-only flows and thus is more precise for analyzing

timing-based properties compared to IFT techniques which capture all logical flows. An event

e over data set Y and time values T is shown as the tuple e = (y, t) for y ∈ Y and t ∈ T , where

y and t can be retrieved by functions val(e) and time(e). If y is an n−dimensional vector, and

t the number of clock ticks that has past, the inputs or outputs of a design with n ports can be

represented by event e. Trace A(Y ,n) represents n events {ei}n
i=1 over data set Y , which are

ordered by time: time(ei) = time(ei+1)+ 1. For any trace A(Y ,n), its distinct trace d(A) is

defined as the the longest sub-trace of A, where consecutive events have different values, and

for any two consecutive events in A such that val(ei) 6= val(ei−1), ei is in d(A). For example,

for trace A = {(10,1), (10,2), (20,3), (20,4)}, its distinct trace is d(A) = {(10,1), (20,3)} since

the values only change at clock cycle 1 and 3. Traces A(X ,k) and A′(X ,k) are value preserving

with respect to set I if the only difference between their corresponding events ei and e′i is in the

j-th element of the value vector such that j ∈ I. In IFT analysis, we are interested in the effects

of a set of sensitive variables by testing the design with respect to input traces which only differ

in the sensitive inputs. This idea can be modeled by using value preserving traces where I is the

set of sensitive inputs.

Output of an FSM F is completely controlled by input J if the FSM output is updated if

and only if input J is updated.

For any set of wires W , sensitivity label set Ws and timing label set Wt indicate if W

carries sensitive information or timing variation, respectively.

In a sequential circuit represented by the FSM F = (X , Y , S, s0, δ, α), a functional-only

flow from a set of sensitive inputs I exists if there exist two value preserving (with respect to

I) input traces A(X ,k) and A′(X ,k) such that when fed to the FSM, the timesteps of the distinct

traces of the outputs are equivalent, while the values of corresponding events varies. Stated
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formally: if B = α(A,s0) and B′ = α(A′,s0), then:

∀ei,e′i ∈ d(B),d(B′) time(ei) = time(e′i) and

∃e j,e′j ∈ d(B),∈ d(B′) such that val(e j) 6= val(e′j)

In a sequential circuit represented by the FSM F = (X , Y , S, s0, δ, α) a timing flow

from a set of sensitive inputs I exists if there exist two value preserving (with respect to I) input

traces A(X ,k) and A′(X ,k) such that when fed to the FSM, the timestep of the distinct traces of

the outputs are not equivalent. Stated formally, if B = α(A,s0) and B′ = α(A′,s0), then:

∃e j,e′j ∈ d(B),∈ d(B′) such that time(e j) 6= time(e′j)

For a combinational logic function f : X → Y its flow tracking function fs : X ×Xs → Ys

determines whether or not sensitive inputs affect the outputs. If f (x1, ...,xn) = (y1, ...,ym) then

fs(x1, ...,xn,x1s , ...,xns) = (y1s , ...,yms), where if set of sensitive inputs {x j|x js = 1} can affect value

of yi then yis = 1 indicating information flow exists from the sensitive inputs to output yi.

For a sequential logic function f : X×S→Y , where X , S, Y are the inputs, states, and the

outputs, the time tracking function ft : X×Xs×Xt×S×Ss×St→Yt determines if a set of inputs

tainted with sensitive information or timing variation can affect timing variations of the output. If

f (x1,x2, ...,xn,s1,s2, ...,sl)= (y1,y2, ...,ym) then ft (x1, ..., xn, x1s , ..., xns , x1t , ..., xnt ,s1, ..., sl , s1s , ...,

sls , s1t , ..., slt ) = (y1t , ..., ymt ), where if a set of tainted inputs {x j|x js ∨x jt = 1} can affect whether

or not state si is updated then sit = 1 and we say timing flow exists from the tainted inputs to

output si.

The time tracking logic Ft of FSM F captures timing flows of the FSM.

Proof. To prove this theorem we show that the existence of a timing flow reduces to variations in
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occurrence of updates to the output, and therefore is captured by Ft .

If a timing flow exists with respect to the set of tainted inputs I, based on Definition 4.3.2

there exist value preserving traces A(X ,k),A′(X ,k) such that :

if B = α(A), d(B) = (e1,e2, ...,em)

and B′ = α(A′),d(B′) = (e′1,e′2, ...,e′m) then :

∃ j ∈ [1 : m] such that time(e j) 6= time(e′j)

Consider n to be the smallest index such that time(en) 6= time(e′n). Without loss of generality we

can assume that time(en) = tn and time(e′n) = tn +d, d > 0 . Basically, we are assuming n to be

the time when the new value of trace B′ appears with delay d compared to trace B. We can write

the elements of these two traces up to the nth element:

d(B) = (v1, t1), (v2, t2), ..., (vn−1, tn−1), (vn, tn)

d(B′) = (v′1, t1), (v′2, t2), ..., (v′n−1, tn−1), (v′n, tn +d)

∀i ∈ [2 : n] : vi 6= vi−1and v′i 6= v′i−1 Based on Definition4.3.2.

The following observations can be made based on the above traces:

(a) : (vn, tn) and (vn−1, tn−1) ∈ B

(b) : (v′n−1, tn) and (v′n−1, tn−1) ∈ B′

From (a) we can infer that value of trace B is updated at time tn from vn−1 to vn while equation

(b) shows that value of trace B′ is not updated at time tn and is equal to v′n−1

By Definition 4.3.2, all input events remain the same ∀i /∈ I, meaning that the only
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difference between them is the sensitive inputs. Thus, the difference in the update to the output is

caused by the set of sensitive inputs and is captured by Ft based on Definition 4.3.2.

The time tracking logic Ft of FSM F does not capture functional-only flows of the FSM.

Proof. We prove this theorem by showing that the existence of functional only flows will not

impose any variations on the occurrence of updates to the output, and thus will not be captured by

Ft .

If a functional-only flow exists with respect to the set of sensitive inputs I, then based on

Definition 4.3.2 there exists value preserving traces A(X ,k),A′(X ,k) such that:

if B = α(A),d(B) = (e1,e2, ...,em) and

B′ = α(A′),d(B′) = (e′1,e′2, ...,e′m) then :

(1) ∀i ∈ [1 : m] : time(ei) = time(e′i)

(2) ∃ j ∈ [1 : m] : such that val(e j) 6= val(e′j)

We claim that there is no time tn such that the value of one of the traces is updated while the other

one is not. Without loss of generality, we show that there is no time tn where the value of B is

updated but the value of B′ remains the same. We prove this via proof by contradiction.

Contradiction hypothesis: At time tn, trace B is updated while trace B′ holds its value.

Let vn and vn−1 be the values of trace B at times tn and tn−1 respectively. Based on the

contradiction hypothesis, (vn, tn) is an event in B. Hence, d(B) contains an event ei such that

time(ei) = tn. Let us assume that ei is the ith element of d(B). Similarly, assume values of trace

B′ in times tn and tn−1 are v′n and v′n−1. Based on the contradiction hypothesis we know (v′n, tn)

is not an event in d(B) since B is not updated at this time. Thus, d(B′) does not have any event e′j
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which timestep is tn. Hence, if we pick the ith element of d(B′), called e′i, then time(e′i) 6= tn. So:

∃i in[1 : m] such that time(ei) 6= time(e′i)

This is contradictory to the definition of functional-only flows since there could be no time tn where

the values of one of the traces is updated while the other one is not. Based on Definition 4.3.2

this is not captured by FSMt .

If FSM F is completely controlled by input J such that J /∈ I, then no timing variation is

observable at the output of FSM F as a result of processing traces which are value preserving

with respect to set I.

Proof. We will prove this theorem via proof by contradiction.

Contradiction hypothesis: there exist value preserving (with respect to I) traces A(X ,k)

and A′(X ,k) which impose timing flow at the output of FSM F which is completely controlled by

input J /∈ I.

Based on Definition 4.3.2:

let B = α(A,s0), and d(B) = {e1,e2, ...,em}

let B′ = α(A′,s0), and d(B′) = {e′1,e′2, ...,e′m}

∃i ∈ [1,m] such that time(ei) 6= time(e′i)

let n be the smallest index in the above equation such that time(ei) 6= time(e′i). Without loss of

generality we can assume time(ei) = tn and time(e′i) = tn+d. We can write elements of d(B) and

d(B′) up to the nth element:

d(B) = (v1, t1),(v2, t2), ...,(vn−1, tn−1),(vn, tn)
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Figure 4.2: Clepsydra overview

d(B′) = (v′1, t1),(v′2, t2), ...,(v′n−1, tn−1),(v′n, tn +d)

Using Definition 4.3.2, we make the following observations:

(a) : (vn, tn) and (vn−1, tn−1) ∈ B

(b) : (v′n−1, tn) and (v′n−1, tn−1) ∈ B′

The above equations specifies that trace B has been updated at time tn while B′ is not updated.

Lets denote the sub-trace of the fully controlling input J from traces A and A′ with j and j′,

respectively. Based on Definition 4.3.2, equation (a) indicates that input j is updated at time tn,

and from (b) we know input j′ is not updated at this time. This is a contradiction as the only

difference between input traces A and A′ are with respect to set I, and since J /∈ I then j and j′

should be identical.

4.4 Clepsydra Implementation

In this section, we describe implementation details of Clepsydra. As shown in Fig 6.1,

the input to Clepsydra is a hardware design described by its abstract syntax tree (AST) which

is obtained by parsing its HDL representation. As output, Clepsydra generates a synthesizable
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1. add_IFT a1 (.in1(N), .in1_s(N_s), .in2(P), .in2_s(P_s), .out(M), .out_s(M_s);
2. assign M_t = N_t | P_t;
3. always @ (posedge clk)
4. begin
5.   if (cond)
6.     begin
7.      A   <= B
8.      A_s <= B_s | cond_s;
9.      A_t <= (cond_s & (!A_bal | (A ~^ B) ) 

10.             |  cond_t 
11.             | ( B_t  & ~(~cond_t &  ~cond_s & ~(A_up ^ cond_up) ));
12.     end
13.   X   <= A;
14.   X_s <= A_s;
15.   X_t <= A_t;
16.   if (done)
17.     begin
18.      Y   <= X;
19.      Y_s <= X_s | done_s;
20.      Y_t <= (done_s & (!Y_bal | (Y ~^ X))
21.              | done_t  
22.              | (X_t & ~(~done_t & ~done_s & ~(Y_up ^ done_up))); 
23.     end
24.   else
25.     Y <= 0; Y_s <= ...; Y_t <=...; 
26. end

1. assign M = N + P;
2. always @(posedge clk)
3. begin
4. //update of “A” is 

conditional
5.   if (cond) 
6.      A <= B
7. //“X” is directly 

resulted from “A”
8.   X<= A; 
9. //“done” enforces 

constant time updates to 
“Y”

10.   if (done)
11.      Y<= X;
12.  
13.   else
14.      Y<=0;
15. end

(a) (b)

Figure 4.3: (a) Original Verilog code, (b) IFT-enhanced Verilog code generated by Clepsydra

Verilog code which has all the functionalities specified in the original design, alongside the

complementary logic for propagating both timing based and generic information flows from

design inputs to its outputs. The tracking logic is realized in two steps: 1) extending each variable

in the design with labels sensitivity level and timing level which indicate if the variable carries

sensitive information or timing variation, respectively; and 2) inserting logic for updating these

labels as their corresponding variables change. The code generated by Clepsydra is then given to

EDA tools for security analysis. Security properties are assessed by specifying labels of the input

variables and observing the output labels after simulation, formal verification or emulation. If the

output labels comply with the designers’ intention, the tracking logic is discarded and the original

design can be used for fabrication. In case of violating the security properties, the original design

should be modified, fed to Clepsydra, and retested.

Clepsydra enables analyzing timing behavior of a design with respect to any arbitrary

subset of its inputs which are marked as sensitive. This facilitates modeling a variety of security
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properties. For example, constant time execution can be tested by marking all the inputs as

sensitive. But in many scenarios we are only interested in constant execution time with respect to

certain inputs. For instance, when a cache is shared between mutually untrusting processes, timing

variations caused by accesses from sensitive data is exploitable. However, variations due to cache

conflicts on non-sensitive data are not valuable to the adversary. indiscriminately eliminating all

timing variations results in disabling the cache as a whole. Moreover, many mitigation techniques

are based on randomizing timing variations. To differentiate benign variations from sensitive

ones, we should inspect the source of the variations. This is done by tracking sensitive data

throughout the circuit, and extracting the sensitive timing variations from them.

Sensitive information affects computation result through both the data path and the control

path, creating explicit and implicit flows. To detect explicit flows, Clepsydra replaces each data

path operation with an IFT-enhanced version of it which is available as a Verilog module in a

predesigned IFT library (lines 21-23 of Algorithm 3). Each IFT-enhanced operation receives the

original inputs of the operation along with their sensitivity labels, and computes the outputs of

the operation as well as their sensitivity labels. A simple example of replacing an add operation

with an IFT-enhanced module is shown in the first line of Fig 4.3. Various complexity-precision

trade-offs for the tracking logic can be explored by modifying the label propagation rules of the

IFT-enhanced modules [HBA+16].

To track whether or not an assignment is implicitly affected by sensitive data, we need

to figure out if its execution depends on any sensitive variable. To do so, Clepsydra extracts the

design’s control flow graph from its AST representation, and constructs a list of control signals

for each conditional assignment (lines 13-15 of Algorithm 3). Next, based on the variables in the

list and their sensitivity labels the logic for tracking the implicit flow is generated and added to

the explicit flow tracking logic (lines 30-32 of Algorithm 3).
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Algorithm 3 Tracking logic generation
1: Input:Verilog code AST file
2: Output: IFT-enhanced Verilog code
3: Pre-processing:
4: for each register r do
5: n := number of the paths to r
6: m := number of the controllers of r
7: if n 6= 2m then
8: r bal := 0
9: else

10: r bal := 1
11: end if
12: end for
13: for each conditional assignment a do
14: traverse CFG
15: a con := list of controllers
16: end for
17: Logic insertion:
18: for each variable x[n : 0] do
19: define x s[n : 0], x t[n : 0]
20: end for
21: for each DFG operation a = b op c; do
22: instantiate IFT-enhanced operation:
23: op IFT (a, a s, b, b s, c, c s);
24: insert time tracking logic:
25: a t = b t | c t;
26: end for
27: for each controller c do
28: insert buffer c bu f <= c
29: end for
30: for each conditional assignment A <= B do
31: insert implicit IFT logic:
32: A s <= B s | c s; ∀c ∈ A con.
33: A t <= (B s & !A bal);
34: | (B t & !(c is non-sensitive and fully controlling)
35: end for
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4.4.1 Tracking Timing Flows

Clepsydra inserts logic components at each register interface to detect if any timing

variation is generated from sensitive data, and whether or not existing variations from the register

input flow to the register’s output (lines 33-34 of Algorithm 3). As we proved earlier, the necessary

condition for formation of timing variation is existence of a register which update depends on

sensitive values. To identify these cases, we need to determine if a register has the flexibility of

selecting between getting a new value and holding its current value. To examine this property

for each register in the design, Clepsydra statically enumerates all the paths in which the register

is written to, and compares it with the total number of paths that the controllers of that register

can theoretically activate. If these two numbers are unequal, a bit which indicates the updates to

the register are tentative is set (lines 4-11 of Algorithm 3). Such analysis on a Verilog code is

relatively easy compared to software languages since multiple writes to a register are modeled as

a single multiplexer with n data inputs and m control inputs. Tentative update scenarios happen

if n 6= 2m which indicates that the multiplexer has direct feedback from its output to its own

input. To illustrate this idea, consider the Verilog code written in Fig 4.3(a) and the IFT-enhanced

Verilog code generated by Clepsydra in Fig 4.3(b). Highlighted parts in lines 9 and 20 show

the logic responsible for detecting generation of timing flows. Values of A bal and Y bal are

statically decided by Clepsydra after analyzing the branches in the original code. An XNOR

function is also added to detect cases where the register gets its value from a different variable

without actually getting updated. Even though such scenarios are rare in actual designs, the logic

for detecting them is added to ensure capturing cases where tentative updates are disguised by

renaming the variables.

Once generated, timing variations flow directly through the subsequent registers unless

special mechanism for eliminating the variations is implemented. Register X in Fig 4.3 directly

gets its value from register A, thus if any timing variation is present as the output of A, it will

unconditionally flow to X. As shown in the second line of Fig 4.3(b), timing variation directly
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flows through combinational logic since we are interested in cycle level precision.

As we proved in the previous section if there exist any non-sensitive control signal which

fully controls the updates to the register, it can block flow of timing information. To detect

existence of fully controlling signals for conditional assignments to registers, Clepsydra inserts

XOR gates for comparing occurrence of updates. This logic is shown in lines 11 and 22 of

Fig 4.3(b). The XOR function indicates that updates of the output register and its controller are

synchronous. And the inverters specify that the controller does not have any sensitive information.

This logic is responsible for preventing overestimating the flow to some extent as depicted by

the AND function. The logic behind Y up, A up, B up and done up are not shown in the figure

for simplicity, but they are computed by XORing the current state with the next state. Since, the

updates to the control signals are observable at the register output with one cycle delay, Clepsydra

inserts buffers to store control values from the previous cycle in order to compute whether or not

they have been updated in the previous cycle (lines 16-17 of Algorithm 3).

4.5 Experimental results

In this section we elaborate how various security properties are specified based on notion

of IFT, and verified on Clepsydra logic. Table 4.1 lists the hardware designs we tested along with

the assessed security properties. For each design, we briefly discuss the architectural features

which create timing channels, the attack model for exploiting them, the existing mitigation

techniques, and the results of our security analysis. For all of our experiments, we obtained the

AST representation of plain Verilog code by parsing it using Yosis tool [Wolb], and employed

Clepsydra to generate tracking logic. On the IFT-enhanced code generated by Clepsydra, effect

of input X on timing behaviour of output Y can be inspected by setting the input signal X s as

high, and observing the value of the output Y t after simulation or formal verification.
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Table 4.1: summary of the designs and security properties tested using Clepsydra

Design Security Property Security Specification Result

Divider Result is ready in constant time
set dividend s, divisor s=H,

assert(quotient t==L) Proved

Multiplier Result is ready in constant time
set multiplier s, multiplicand s=H,

assert(product t==L) Provable after debugging

Cache Isolation bw accesses to the same line
set index s=H,

assert(data t==L) violated

PLcache Isolation bw accesses to the same line
set index s=H,

assert(data t==L) Provable if sensitive data is preloaded

RPcache Isolation bw accesses to the same line
set index s=H,

assert(data t==L) Provable if RNG is secure
WISHBONE,
round robin Timing isolation bw cores

set request1 s=H,
assert(ack2 t==L) Violated

WISHBONE,
TDMA Timing isolation bw cores

set request1 s=H,
assert(ack2 t==L) Proved

WISHBONE,
TDMA+group Timing isolation bw cores

set request1 s=H,
assert(ack2 t==L) Provable bw different groups

AES Cipher is ready in constant time
set key s, plaintext s=H,

assert(cipher t==L) Proved

RSA Cipher is ready in constant time
set key s, plaintext s=H,

assert(cipher t==L) Violated

4.5.1 Arithmetic Modules

For the first set of experiments, we sought proving constant time properties of arithmetic

units, as variation in completion time of these units can be exploited to extract information

regarding the input [AKM+15, AS07]. We tested a fixed point math library from the Opencores

website [alu], which is supposed to run in constant time as claimed by its designers. In order to

verify this claim, we marked data inputs of each unit as sensitive and observed the timing labels

of the outputs.

The multiplication unit is based on accumulating partial products at each cycle. Thus, if

the MSB bits of the multiplier are zero the result will be available faster since the partial products

in the last cycles are zero. The output ready signal of the design is set after a counter reaches zero.

After analyzing this design, we noticed that while the ready output is free from timing variations,

the product result is not. This indicates that the result could potentially become available before

the ready signal is raised. In order to eliminate this flow, we modified the design by adding a

register which blocks the working result to write to the final output before the counter resets.

After this modification, we could formally prove that the design runs in constant time using

Questa Formal Verification tool. The division unit, similar to the example we had throughout
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the paper, is implemented by subsequently subtracting the divisor from the dividend. Similar to

the multiplication unit, a wait state is responsible for enforcing constant time updates at the final

outputs. This time no timing variation was detected by our analysis as all the output variables,

including the result itself, are controlled by the wait state.

This set of experiments showed that our model is capable of isolating different forms of

flows, and proving absence of timing flows while functional flows exist. Furthermore, it shows

that the generated tracking logic is precise enough to detect cases where timing variations are

eliminated by delaying all the updates as long as the worst case scenario.

4.5.2 Cache Implementations

Cache-based side channel attacks have been repeatedly employed to break software

implementations of ciphers such as RSA and AES. These attacks target implementations which

use pre-computed values that are stored in the cache and accessed based on the value of the

secret key. Thus, an attacker who is capable of extracting the cache access pattern of the process

running the encryption can deduce information regarding the key. Percival [Per05b] has shown

that an adversarial process sharing the cache with the OpenSSL implementation of the RSA

cipher can retrieve cache access pattern of the victim process by inducing collisions in the cache.

By remotely attacking AES implementation of the OpenSSL protocol, Bernstein [Ber05] showed

that timing channels can be exploited even when the cache is not shared with an untrusted process.

In his attack, Bernstein exploited the cache collisions between different requests by the victim

process itself to reveal the encryption key. While these attacks vary substantially in terms of

implementation, they all exploit the timing variations from the cache collisions. Several cache

designs have been proposed to bar index value of sensitive accesses to affect the time that it takes

for the cache to retrieve data in later cycles. We have used Clepsydra to inspect timing flows in an

unsecure cache and two secure architectures, PLcache and RPcache, introduced in [WL07]. To

model timing leakage via external interference, we consider two processes with isolated address
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spaces sharing the same cache. Marking indexes of accesses made by one process as sensitive,

we want to figure out if the data read by the other process contain timing variation. The internal

interference scenario is modeled with a single process and inspecting if marking certain indexes

as sensitive causes timing variation when the same lines are read with different tags.

PLcache eliminates leakage channel by letting processes to lock their data in the cache

and disabling their eviction. Since sensitive data can no longer be evicted, it cannot affect the

timing signature of the system. We implemented the PLcache and acquired its IFT-enhanced

tracking logic from Clepsydra to test if this partitioning scheme eliminates the flow. Based on

our analysis, if data with sensitive indexes is preloaded to the cache and locked, there will be

no information leakage as the result of later accesses to the locked lines. However, this result is

based on assuming that the preloading stage is not sensitive itself.

Next, we tested the RPcache which randomly permutes the mapping of memory to cache

addresses to eliminate any exploitable relation between the collisions. When external interference

between untrusting processes are detected, PRcache randomly chooses a cache line for eviction .

Thus, the attacker cannot evict the victim’s process sensitive information and observe whether or

not that causes delay later on. In case of internal interference, collisions are handled by directly

sending the data from the colliding access to the processor and randomly evicting another line.

Our analysis showed that RPcache eliminates timing variations assuming that the inputs to the

random number generator are not sensitive.

4.5.3 Bus Architectures

Another source of timing channel in hardware designs arises when different units are

connected over a shared bus. In such scenarios, cores that are supposed to be isolated can covertly

communicate by modulating the access patterns to a shared resource and affecting the time when

other cores can use the same resource. Using Clepsydra, we have inspected presence of timing

flows when WISHBONE interconnect architecture is used to arbiter accesses on an SoC. To
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access a shared resource over WISHBONE, the master core sends a request signal, and waits for

the arbiter to send back an ack signal. Timing channel between different cores can be assessed by

marking the request signal sent by one core as sensitive and observing the timing label of the

ack signal sent to the other core in later requests. We have tested this scenario for the original

WISHBONE arbiter and two modified versions of it.

The original WISHBONE arbiter, implemented by the Opencores community [wis], is

based on a round robin algorithm. Our experiments revealed existence of timing channel between

the cores connected over this architecture as the grant given to one core depends on the former

requests sent to the arbiter. In order to eliminate the channel, we replaced the round robin arbiter

with a TDMA scheme and retested the design. In this case, no timing channel is detected as the

grants are given based on a counter. In order to improve the efficiency of the arbiter, we tested a

more flexible scenario where the cores are divided into two different groups. The cores within

the same group are arbitrated based on a round robin algorithm, while the two groups are time

multiplexed. This time our experiments showed that the two groups are isolated from each other

while timing channel exists between elements of the same group.

4.5.4 Crypto Cores

Lastly, we tested timing variation in hardware implementation of RSA and AES ciphers.

Since the ciphertext is computed from the key, functional flow from the key to the cipher is

inevitable. Thus, existing IFT tools cannot be leveraged to inspect existence of timing channels

which are not intended by the designer. Here, we have tested existence of timing channel in

two ciphers from the Trusthub benchmarks [tru]. We have assessed timing flow from the secret

key to the ciphertext by marking the key bits as sensitive and observing the timing label of the

output. Using Questa Formal Verification tool we could prove that the AES core runs in constant

time. However, for the RSA core, timing flow was detected from the secret key to the cipher as a

result of insecure implementation of the modular exponentiation step. We have left comparing
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timing leakage of different RSA architectures and the effectiveness of the proposed mitigation

techniques as our future work.

4.6 Related Work

Over the past decade, multiple tools have been developed for tracking information flows

through hardware designs. Tiwari et al [TWM+09] implemented a microprocessor which dynam-

ically tracks information flows through the shadow logic added for each gate. Due to the huge

overhead in terms of power, area and performance, gate level information flow tracking (GLIFT)

has been used mostly for test and verification during design time [?]. Oberg et al [OMSK14b]

has proved that inserting shadow logic at the gate level detects all information flows including

timing and functional flows.

At a higher level of abstraction, multiple secure HDL languages have been introduced to

enable designing provably secure hardware. Caisson [LTO+11a] and Sapper [LKO+14] are both

FSM based languages extended with a type system. Using these languages, the designer defines

a security label for each variable and restricts information flows by controlling the transactions

between the states. SecVerilog [ZWSM15] adds a type system to the Verilog language for

representing different security levels. SecVerilog users are required to define a type for each

variable in the design based on the property they wish to enforce. SecVerilog type system statically

verifies that the user defined types and the IFT property comply. While these tools facilitate secure

hardware design, they require redesigning the hardware using a new language. VeriCoq [BM]

automatically transfers HDL codes to Coq representation where security properties can be tested

on annotated code. While all these methods employ conservative tracking rules by raising each

signal’s label to the highest label of its predecessor signals, RTLIFT [AHMK] allows for more

flexible flow tracking rules. Based on the precision level specified by the user, RTLIFT generates

the flow tracking logic for the design under test, which can be used to analyze different security
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properties.

As stated earlier, all of the mentioned IFT tools track all logical information flows through

a single channel and leave the nature of the detected flows as unspecified. In this work, we

presented a method for tracking timing flows and generic information flows in two separate

channels in order to enable analysis of a wider range of security properties.

4.7 Conclusion

In this work we presented a model for tracking timing-based information flows in hard-

ware designs. We formally proved that our model soundly captures all timing variations and

precisely separates timing flows from logical flows. We introduced an IFT tool, Clepsydra,

which automatically generates tracking logic based on the proposed model. Clepsydra facilitates

hardware security verification by enhancing plain HDL codes with synthesizable logic on which

variety of security properties can be tested using conventional EDA tools. In our experiments, we

leveraged Clepsydra to detect timing channels in different architectures, and prove absence of

timing leakage when mitigation techniques such as randomization, partitioning or delaying till

the worst case execution are implemented.

Chapter 4, in full, is a reprint of the material as it appears in the Proceedings of the 36th

Annual International Conference on Computer-Aided Design (ICCAD), November 2017. Armaiti

Ardeshiricham, Wei Hu, Ryan Kastner. The dissertation author was the primary investigator and

author of this paper.
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Chapter 5

Synthesis of Secure Hardware Designs

We present VeriSketch, a security-oriented program synthesis framework for developing

hardware designs with formal guarantee of functional and security specifications. VeriSketch

defines a synthesis language, a code instrumentation framework for specifying and inferring

timing-sensitive information flow properties, and uses specialized constraint-based synthesis for

generating HDL code that enforces the specifications. We show the power of VeriSketch through

security-critical hardware design examples, including cache controllers, thread schedulers, and

system-on-chip arbiters, with formal guarantee of security properties such as absence of timing

side-channels, confidentiality, and isolation.

5.1 Introduction

The prevalent way of designing digital circuits uses register-transfer level (RTL) hardware

description languages (HDLs). It requires designers to fully specify micro-architectural features

on a cycle-by-cycle basis. The verbosity and complexity of RTL HDLs opens the door for

security vulnerabilities. With the growing number and severity of hardware security-related

attacks [KGG+18, LSG+18, CCX+18, ERAG+18], we urgently need better tools for detecting

and mitigating security vulnerabilities for hardware designs.
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We propose the VeriSketch program synthesis framework for developing secure-by-

construction hardware designs. VeriSketch frees hardware designers from exactly specifying

cycle-by-cycle behaviors. Instead, the designer provides an RTL sketch, a set of security and

functional specifications, and an optional set of soft constraints. VeriSketch outputs complete

Verilog programs that satisfy all the specified functional and security properties, and heuristically

favors designs that satisfy the soft constraints. The unique aspect of VeriSketch revolves around

the use of program synthesis techniques and timing-sensitive hardware information flow analysis

to enable the synthesis of hardware designs that are functionally correct and provably secure,

as shown in the Fig. 6.1. VeriSketch employs Information Flow Tracking (IFT) methods to

allow the definition and verification of security properties related to non-interference [TWM+09],

timing invariance [ZWSM15, AHK], and confidentiality, and it extends counterexample-guided

synthesis methods (CEGIS) [SL13] to hardware design.

Exploration

Synthesis

Verification

SMT Solver

1) Sketch and Specification 2) Instrumentation 3) Program Synthesis 4) Secure and Correct Hardware Design
Sketch: Incomplete Verilog Design Verilog Instrumented with Security Labels Constraint-based Synthesis (CEGIS) Verified Verilog 

SAT

if(pid == i && preload[addr]) 
assume (index_s == High); 

if(pid != i)  
assert (rd_dat_proc == Low); 

try (!skip && lru_update);  

Functional and Security Properties,  
and Soft Constraints 

Modify Sketch and/or Properties U
N

SA
T

Figure 5.1: VeriSketch accepts as input an incomplete hardware design (i.e., a “sketch”) and a
set of functional and security properties and soft constraints. VeriSketch leverages hardware
information flow tracking and program synthesis to build a Verilog design that satisfies the
properties.

VeriSketch uses CEGIS to complete the sketch by breaking the synthesis problem into

separate verification and synthesis sub-problems which can be solved by a SAT/SMT solver. In

each verification round, the solver searches for a counterexample which falsifies the properties.

During synthesis, the solver suggests a new design which adheres to the properties for the visited

counterexamples. Iterating over these two stages, the algorithm either finds a design which has

passed the verification round or the synthesis fails if the solver cannot propose a new design.
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VeriSketch makes three extensions to CEGIS to enable synthesis of hardware designs

with security objectives. First, VeriSketch runs CEGIS over a program which is automatically

instrumented with IFT labels and inference logic. This enables reasoning about wider range of

security properties based on the model of information flow. Second, VeriSketch extends CEGIS to

synthesize sequential hardware designs with streams of inputs and outputs. This requires enforcing

the properties over multiple clock cycles as outputs are continuously updated. This is done by

expanding the formulation of SAT problems over multiple cycles bounded by the sequential

depth of the circuit. Lastly, VeriSketch introduces heuristics to guide the search algorithm away

from undesirable trivial designs, which is one of the major challenges of program synthesis

frameworks. This is done by collecting and reasoning about both counterexamples and positive

examples (i.e., input traces where properties fail and pass). Guided by the counterexamples, the

synthesis algorithm finds a design which satisfies the properties, while positive examples are

used to enforce soft constraints where properties are held. Soft constraints enable specification of

design attributes which are preferable for improved quality but are not strictly necessary. The

term soft constraint is used as opposed to hard constraints (i.e., our original properties) which

should always hold. Through positive examples and iterative synthesis rounds, VeriSketch favors

programs where soft constraints are held without changing the satisfiability of the synthesis

problem.

We use VeriSketch to generate hardware units that adhere to various properties from

sketches with different levels of details spelled out by the programmer. We synthesize a cache

controller which is provably resilient against access-based timing side channel attacks. We design

fixed point arithmetic units such that they are proven to run in constant time. Furthermore, we

generate multiple SoC arbiters and hardware thread schedulers that enforce non-interference,

timing predictability, and access control policies.

In all, we make the following contributions and organize the paper as follows. We

introduce the VeriSketch framework for semi-automated synthesis of RTL hardware designs that
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enforce timing-sensitive information flow policies. Section 5.3 introduces the formal language

definitions and main components of VeriSketch at a high-level. Next, we demonstrate how IFT

analysis can be used to complete information flow constraints in Section 5.4. Section 5.5 focuses

on introducing new program synthesis techniques that extend CEGIS for the synthesis based on

information flow properties, sequential circuits with bounded depth, and soft constraints. We

discuss the synthesized designs in Section 6.6.

5.2 Background and Related Work

VeriSketch adopts and extends techniques from program synthesis and repair, as well as

hardware information flow tracking systems. Here, we briefly review the related work in each of

these domains.

5.2.1 Program Synthesis

Constraint-based synthesis is modeled as ∃p∀x. φ(x, p) where φ denotes the design and

specification, x is the design inputs and p is the synthesis parameter encoding the undefined

portion of the design. The synthesizer’s goal is to find parameter p such that the properties in φ are

satisfied for all inputs x. CEGIS [SLTB+06, ABJ+13, SL13] introduces a method for breaking

down the exists-forall quantification to iterations between verification and synthesis procedures

that can be solved by SAT/SMT solvers. The verification phase at each round i fixes the parameter

p to pi and attempts to verify the universal conditions on all input combinations. The verification

problem can be written as ∃x. ¬φ(x, pi), which asks the solver to find a case where properties

are violated for the program synthesized by parameter pi. Unsatisfiability here indicates that

properties holds for all input cases. Thus, pi is a valid solution and the synthesis flow ends

successfully. If satisfiable, the solver provides a counterexample xi which falsifies the properties.

The synthesis stage looks for a new parameter that satisfies the properties for all the previously
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visited counterexamples. This problem in round i can be modeled as: ∃p.
∧

x j∈ CE φ(x j, p), where

CE is the set of visited counterexamples. If the solver fails to find a solution, the synthesis flow

terminates unsuccessfully indicating that the properties are unsatisfiable for the given sketch.

Program synthesis techniques are commonly used to automate difficult software en-

gineering tasks [SLTB+06, JGST10, GJTV11, PKSL16, FMBD18]. Program synthesis have

been employed in different domains such as data processing [SA16, YKDC16], data comple-

tion [WDS17, FMVG+17], databases [YWDD17, ZS13], and more recently in security appli-

cations [PYIS16, HJRS17]. In the HDL domain, Sketchilog [BNI14, BNI] translates partially

written Verilog code to complete ones by directly solving the exists-forall problem employing a

QBF solver. Sketchilog can only synthesize small combinatorial circuits, and is not scalable due

to the limitations of QBF solvers. Furthermore, Sketchilog does not support expressive properties

as high level specifications. VeriSketch extends CEGIS to enable synthesis of combinational

and sequential circuits written in HDLs from high level specifications. Our problem statement

is similar to that of program repair techniques for automatically generating patches for security-

critical programs [FJJ+12, GJJ06, HJR10, SMS13]. Our work is unique from these previous

works because we enforce security and functional properties while synthesizing incomplete

hardware designs. Counterexample guided algorithms have been used to automatically synthesize

device drivers [RWK+14, RCK+] and generate abstraction models for SoCs [SHV+17] and

ISAs [HSSA16]. Similar techniques have been used at the gate level to automatically modify a

netlist when errors are detected late in the design flow [CMB, WYHJ]. VeriSketch uses CEGIS

at a higher level of abstraction to complete partial HDLs with respect to security properties and

acquaint the traditional hardware design flow with automated policy enforcement.

5.2.2 Information Flow Control

VeriSketch leverages hardware-level information flow analysis to reason about security

properties. Hardware IFT tools can be broadly divided into two categories based on whether
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they introduce new HDLs enabling definition of security labels [LTO+11a, LKO+14, ZWSM15]

or rely on automated label inference rules [TWM+09, AHMK, AHK]. Here, we take the latter

approach in order to enable integration of flow tracking with sketching and synthesis. The

structure of common HDLs facilitate precise analysis of information flow policies and detection

of timing leakage (refer to Remarks 5.4.8, 5.4.11 and 5.4.13). VeriSketch adopts the approach from

Clepsydra [AHK] which provides a sound labeling system for precisely capturing timing flows in

RTL designs and verifying timing invariance properties. We extend and formalize Clepsydra’s

label inference rules and integrate them with program synthesis techniques to automatically

enforce timing-sensitive information flow policies.

5.2.3 Motivating Example

To illustrate the challenges of secure hardware design, we take design of a cache that is

resilient to timing side channel attack as an example, and show how it is done via the traditional

hardware design flow versus by using VeriSketch. Unfortunately, modifying hardware designs

according to security requirements is often not trivial; even the foremost hardware security experts

can make errors as we discuss in the following.

Threat Model We consider the Percival attack model [Per05b] where the adversary

runs concurrently with the victim process on a Simultaneous Multi-Threading processor. The

adversary is an unprivileged user process which is isolated from the victim process, i.e., it does

not share the address space with the victim. The attacker aims to learn information about the

addresses which the victim uses to access the cache. The attack relies on the fact that in certain

RSA implementations parts of the encryption key is used to look up a pre-computed table in

the cache. Hence, by observing the cache access pattern of the victim process, the adversary

could gain knowledge about the key. While the Percival attack originally targeted the OpenSSL

implementation of the RSA algorithm, similar attacks can target different applications where the

cache index is driven from secret data [KGG+18]. In order to launch the attack, the adversary
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repeatedly fills the cache with its own data and measures each access time. Once the victim

accesses some cache line, it evicts the attacker’s data from that line. This eviction increases the

attacker’s access time in the following round.

Traditional Secure Hardware Design Flow Assume that the designers decide to imple-

ment the partition locked cache (PLCache) mitigation technique [ZWSM15] to secure the cache

against the described attack model. PLCache enables processes to preload and lock sensitive

data in the cache to avoid eviction and timing variations. It extends a “normal” cache controller

with logic that arbitrates access to the cache based on the security requirements. As a proof

of concept, we created a Verilog design of the PLCache based upon the details in their paper.

We instrumented it and verified it against the IFT properties modeling cache timing leakage

(described in Example 5.4.17), and the security verification failed. Analyzing the counterexample

trace given by the verification tool, we discovered that the side channel manifests itself through

the cache metadata related to the cache replacement policy. PLCache uses a least recently used

(LRU) policy even for the locked data: in case of a cache hit, normal cache access is performed.

This introduces a subtle timing side channel that can be exploited by extending the Percival

attack (described in Section 5.6.3). This shows that even the foremost security experts can create

mitigation strategies that have flaws that go undiscovered for more than a decade. And even

worse, the designer is now stuck with developing a new strategy to fix this flaw. In this work,

we show how we use VeriSketch to synthesize a cache which is provably resilient against the

described attack model.

5.3 The VeriSketch Framework

VeriSketch synthesizes incomplete hardware designs that adhere to the specified security

and functional properties. It targets designs at the register transfer level (RTL) abstraction. RTL

remains the prevalent way of specifying hardware designs and it has the required information to
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precisely analyze timing-sensitive information flow properties and identify timing side channels.

We first give an overview of the main components of VeriSketch and then describe the details of

the language design.

5.3.1 Main Components

Fig. 6.1 describes the VeriSketch framework, which converts an RTL sketch and a set of

hard and soft constraints into a complete Verilog design. All inputs are written in the VeriSketch

language, which extends Verilog with sketch and IFT specification syntax (see Table 5.1). As

we show in the rest of this section, the VeriSketch language facilitates the modeling of security

properties and a partial description of the hardware. The sketch is first translated to a Verilog

design which contains synthesis parameters. The Verilog design is then instrumented with IFT

analysis logic. This step (discussed in Section 5.4) enables reasoning about security properties

alongside the functional ones. The instrumented design is given to the synthesis engine (described

in Section 5.5) which uses constraint-based synthesis to resolve the parameters. If the synthesis

succeeds (i.e., a parameter is found), the post-processor fills out the initial sketch based on the

parameters values and discards the IFT instrumentation. Otherwise, the programmer has to repeat

the process after relaxing the specifications or modifying the sketch.

5.3.2 VeriSketch Language

VeriSketch extends the standard Verilog language [Dim01] with sketch constructs and

security property specifications. The formal syntax is shown in Table 5.1.

Sketch Syntax Sketches are language constructs that facilitate writing partial programs

[SLTB+06]. VeriSketch enables users to describe a partial hardware design by combining low-

level and high-level sketch constructs with the original Verilog syntax. With low-level sketches,

the designer can define unknown n-bit constants (n(??)), operation select (e1 (bop1, . . . , bopm) e2),
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operand select (sel(e1, . . . ,em)), or choose the value of a variable from any of n previous cycles

(step?(v,n)). To facilitate higher level sketching, VeriSketch introduces hardware-specific sketch

constructs for describing arbitrary combinational (y = comb(x1, . . . ,xm)) and sequential circuits

(y = seq(x1, . . . , xm)) with inputs x1, . . . ,xm, and procedural statements with unknown control

flow (v ?= e0). The original Verilog language supports two types of assignments: continuous and

procedural assignments. Continuous assignments are specified by the keyword assign and are

used to specify combinational logic. Procedural assignments are only activated when they are

triggered (e.g., by each rising edge of the clock signal) and are used to describe complex timing

behaviour. Procedural assignments can be either blocking (=) or non-blocking (<=) which

indicates if the statements are executed sequentially or in parallel. VeriSketch allows sketches of

procedural assignments with unspecified control logic using the v ?= e0 [e1, ...,em] syntax. This

is synthesized to a blocking or non-blocking assignment where a function of [e1, ...,em] signals

is used as the control logic. The list of control variables [e1, ...,em] can be defined separately for

each statement or for the whole design.

Pre-Processing Sketch constructs are compiled to synthesis parameters in the pre-

processing round. The unknown constants are directly replaced by parameters. Operand and

operation selects are modeled as multiplexers where control lines are parameters. step?(v,n)

is mapped to a shift-register where one of its n slots is selected by a synthesis parameter. v ?=

e0 [e1, . . . ,em] is translated into a block where assignment of e0 to v is guarded with an unknown

control signal defined by comb(e1, . . . ,em). The comb construct is compiled to a Binary Decision

Diagram (BDD) template where the nodes are the inputs to the comb function. The leaves of

the tree are replaced by synthesis parameters. Hence, y = comb (x1, . . . , xm) is translated to

y = (p1∧ x1∧ . . .xm)∨ . . .∨ (p2m ∧¬x1∧ . . .¬xm) where {p1, . . . , p2m} are synthesis parameters.

The seq construct generates a finite state machine with binary encoded states where all state

transitions are parameters driven by the inputs. Thus, seq (x1, . . . , xm) is mapped to an FSM

where transitions from any state si to unknown state pi j are conditioned on “{x1, . . . , xm}= q j”

75



Table 5.1: VeriSketch Syntax.
v ∈Vars Variable
n ∈ Nums Constant

e ::= v — n — uop e — e1 bop e2 — Expression
n (??) — step? (v, n) —
sel (e1, . . . , em) —
e1 (bop1, . . . , bopm) e2 —
(uop1, . . . , uopm) e —
comb (e1, . . . , em) — seq (e1, . . . , em)

a ::= assign v = e; Continuous
Assignment

s ::=v = e; — v⇐ e; — if (e) s1 else s2 — Procedural
begin s1 . . . sm end — for (v = n1 : n2) s; Assignment
v ?= e0 [e1, . . . ,em]

γ ::= posedge clk — negedge clk — * —~v Trigger
B ::= always @ (γ) s — a Block

M ::= B1 . . .Bm Module
S ::= M1 . . .Mm Sketch

L ::= vs — vt Label
p ::= v — uop v — v1 bop v2 — Property

L — uop L — L1 bop L2 —
v 9 v — v 9t v

C ::= assume (p) — assert (p) — try (p) Spec.

where pi j and q j are synthesis parameters. The template FSM receives its caller reset and clock

signals.

While high-level constructs (i.e., comb, seq and ?=) greatly simplify sketching by provid-

ing generic templates for combinational and sequential circuits and procedural statements, they

adversely affect synthesis time since the parameter size grows exponentially according to the

number of data and control inputs. Consequently, these templates should be used sparingly if

possible, e.g., to synthesize small but critical parts of the design.

Specification Syntax Property specifications are logical formulas which express an

implementation-agnostic relationship between design variables and describe a desired invariant in

the design’s behavior. VeriSketch introduces syntax for specifying properties using an informa-
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tion flow model and also supports properties written in the System Verilog Assertion language.

VeriSketch uses two labels (s and t) corresponding to logical and timing flows for specifying

information flow properties. These labels are binary values similar to design variables (i.e.,

L ∈ {Low, High}). Security properties are expressed by initializing labels of the input variables

and constraining the labels of the output or intermediate variables. Alternatively, information

flow properties can be more abstractly stated by 9 and 9t operators. These operators indicate

absence of logical and timing flows from left hand-side to right hand-side. Properties written over

the security labels or the design variables form the specification using assume, assert, or try

keywords. assume restricts the analysis to cases where the inner expression is true while assert

causes the verification to fail once the inner expression is false. try is unique to VeriSketch and

is used to model soft constraints.

module Sketch_Cache(…);
 assign skip =
 comb(rd_rq,wr_rq,hit,lru_block[m]);

  assign lru_update =
 comb(rd_rq,wr_rq,lock,stall,waiting);

   always @ (posedge clk)
  if(!skip)
    //cache rd/wr
         if(lru_update) 
      //update LRU
  else
    //direct memory access
endmodule

(a)

module Sketch_Cache(…);
 assign skip = !hit &
 comb(rd_rq,wr_rq,lru_block[m]);

  assign lru_update = (c_rd | c_wr)   
&& lock == ?? && stall ==??;
 always @ (posedge clk)
  if(!skip)
   //cache rd/wr
       if(lru_update) 
    //update LRU
  else
   //direct memory access
endmodule

(b)
Figure 5.2: Sketching the control logic for a modified and secure version of PLCache. (a)
A high-level sketch written in VeriSketch. comb denotes a combinational circuit where the
implementation is totally unspecified. (b) Another sketch for the same design with more provided
details.

Example 5.3.1 (Sketching a Secure Cache). Fig. 5.2 shows two example sketches for designing

the locking strategy similar to PLCache but eliminating the metadata timing side channel (and

any other security flaws). We define the structural connections between the elements of the secure

77



cache similar to a “normal cache” and leave the tricky control and arbitration logic for VeriSketch

to decide. One major aspect of the partitioning mitigation technique is specifying the logic for

the skip signal which we leave as undefined. skip makes the decision about whether to follow a

normal cache access or perform a direct memory access. We also add sketch constructs to decide

when the cache LRU bits are updated. We manually extend the cache blocks to store the lock

status of the stored data similar to PLCache. The difference between the sketches in Fig. 5.2 is

the amount of detail provided by the designer and conversely that which is left to be determined

by VeriSketch. Fig. 5.2(a) is a high-level sketch; it states that the skip signal should be some

combinational function of the signals rd rq, wr rq, hit and lru block[m]. Here, lru block

is the cache block selected for eviction according to the replacement policy and m is the index of

the bit which stores the lock status of the block. The sketch for determining how the LRU bits

are updated is a combinational function depending on the signals rd rq, wr rq, lock, stall and

waiting. Here, lock is the incoming lock request and waiting shows if the cache is accessing

the memory. The sketch in Fig. 5.2(b) has more detail; here the designer provided additional

information that the skip signal is low when there is a cache hit and the structure of the logic

driving the lru update signal is given. The ?? syntax assumes one bit if not specified.

5.4 Information Flow Tracking

Traditional HDLs like Verilog and VHDL lack a framework for capturing security traits.

Information flow models enable the analysis of a wide range of hardware security properties

such as confidentiality, integrity, isolation, and timing side channels. IFT tools define labels

which convey security attributes of design variables (e.g., whether or not that variable contains

sensitive or untrusted information). IFT models capture how data moves through the system,

enabling an analysis of security behaviors of the hardware design. For instance, in order to assess

unintended data leakage in a design, secret inputs are initialized with a High label. Next, the
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design is analyzed to ensure that public outputs maintain a Low label, which indicates that no

secret data has reached these ports.

5.4.1 VeriSketch IFT Framework

VeriSketch tracks information flow by annotating each design variable (wire or register) v

with two different security labels, vs and vt , where the s-labels track logical flows and t-labels

track timing flows. Inference rules for propagating these labels are formalized in Table 5.2.

VeriSketch defines the propagation rule for each assignment within the same block by using the

same syntax as of the original assignment. For instance, label of a register which is updated in a

non-blocking procedural assignments is defined via a non-blocking procedural assignments while

label of a wire which is driven by combinational logic is defined using combinational logic as

well. This ensures that variables and their labels are updated simultaneously. VeriSketch performs

precise label propagation, i.e., all label updates take into account the exact Boolean values of the

design at the given time. This is enabled by modeling labels and inference rules with standard

Verilog syntax and leveraging EDA tools to reason about the IFT labels and design variables at

once.

Example 5.4.1. Fig. 5.3 shows the IFT instrumentation for a snippet of Verilog code imple-

menting a cache unit. Lines 1−3 and 7−16 show how instrumentation for combinational and

sequential blocks are done within the same block following the syntax of the original code. Note

that all assignments and nonblocking statements are executed simultaneously in Verilog. Hence,

all variables (e.g., stall) and their labels (e.g., stall s and stall t) are updated at the same

time. We will discuss the detail of the right hand-side logic in the following subsections.

Remark 5.4.2. The blocking (=η) and nonblocking ( <=η) assignments for statement η differ in

that blocking assignments are performed sequentially while the nonblocking ones run in parallel.

They have the same inference logic according to Table 5.2, to ensure that variables and their
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Table 5.2: VeriSketch Label Inference Rules.
Γ ` e :: (s, t)

T-uop
Γ ` uop e :: (uopift (e,s), t)

Γ ` e1 :: (s1, t1), e2 :: (s2, t2)
T-bop

Γ ` e1 bop e2 :: ( bopift (e1,s1,e2,s2), t1t t2)

Γ ` e :: (s, t), assign v = e
T-assign

Γ ` v :: (s, t)

Γ ` e :: (s, t), v=ηe, ci ∈Ctrl(v) :: (si, ti)
T-blocking

Γ ` v :: (st si, t t tit (¬Bal(v)u si))

Γ ` e :: (s, t), v⇐η e, ci ∈Ctrl(v) :: (si, ti)
T-nonblocking

Γ ` v :: (st si, t t tit (¬Bal(v)u si))

labels are updated simultaneously.

Remark 5.4.3. Labels of variables defined via procedural assignments are triggered by the same

event as the original statement and are defined in the same block. This ensures synchronous

updates to variables and their labels.

In the following, we go over the details of the label inference rules. Note that since sketch

constructs are pre-processed before the instrumentation, the inference rules are only defined for

the original Verilog syntax.

5.4.2 Tracking Logical Flows

Logical flows are tracked via label vs defined for each variable v. VeriSketch tracks

both explicit and implicit flows (i.e., flow of information via the data path and the control path).

Explicit flows are tracked by instrumenting each operation.

Definition 5.4.4 (IFT Operator). Let op be a valid binary/unary operator in Verilog RTL. IFT

operator opift computes the label of op’s output based on its inputs’ values and labels.
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1. assign stall = rq && miss;
2. assign stall_s = and_ift (rq, rq_s, miss, miss_s);
3. assign stall_t = rq_t || miss_t;
4. always @ (posedge clk) begin
5.  if(rd_rq && stall) 
6.   if(stall_cycles == N)
7.     cache[index] <= {rd_data_mem,tag,pid};
8.     cache_s[index] <= {rd_data_mem_s,tag_s,pid_s} |
9.     rd_rq_s | stall_s | stall_cycles_s | index_s;
10.      cache_t[index] <= {rd_data_mem_t,tag_t,pid_t} |
11.      rd_rq_t | stall_t | stall_cycles_t | index_t |
12.     ((rd_rq_s | stall_s | stall_cycles_s | index_s)
13.     &&!Bal(cache[index]) && !((!rd_rq_s & Full(rd_rq,
14.     cache[index]))|(!stall_s & Full(stall, cache[index]))
15.     |(!stall_cycles_s & Full(stall_cycles, cache[index]))
16.     |(!index_s & Full(index, cache[index]))));

(a)

Figure 5.3: VeriSketch IFT framework automatically extends Verilog code with IFT labels and
inference rules. The example is a portion of a cache. The gray lines here are the original code
and the instrumentation is shown in black. Logical and timing flows are captured via s-labels
and t-labels.

For instance, explicit flows of assignment z= x bop y are tracked via zs = bopift(x,xs,y,ys).

In the simplest case, zs is the join (t) of xs and ys. In a more precise analysis (i.e., lower number

of false positives), zs also depends on the Boolean values (i.e., x and y) and the operator’s

functionality [HBA+16, AHMK]. IFT operators are pre-defined and stored in VeriSketch IFT

library where label tracking precision level is controllable by the user.

Implicit flows for each statement are tracked by upgrading the label of the left hand-side

variable according to the labels of variables which control the statement’s execution.

Definition 5.4.5 (Ctrl(v)). Let η be a procedural assignment. Ctrl(η) is the set of all variables

which control the execution of η. Ctrl(v) is the union of all Ctrl(ηi) where ηi is a procedural

assignment where v is the l-value variable. Ctrl(v) is determined statically by analyzing the

program control flow graph.

It immediately follows that:

Proposition 5.4.6 (c.f. [OMSK14a]). Implicit flows via each procedural statement η with l-value
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variable v can be conservatively estimated by:

⊔
{cis : ci ∈Ctrl(v)} (5.1)

Notation 5.4.7. We use join (t) and meet (u) to describe the inference rules in a generic multi-

level security system. Since we consider binary operations, these operations can be replaced by

disjunction (∨) and conjunction (∧).

Remark 5.4.8. Note that grammar of the Verilog language and similar HDLs only permits

assignments to each variable in a single block as all blocks are executed in parallel. Hence,

Ctrl(v) can be determined by analyzing the single block in which v is used as left hand-side

variable. Furthermore, continuous assignments cannot be guarded by conditional variables.

Hence, IFT operators suffice to track information flow through continuous assignments.

Example 5.4.9. Examples of tracking explicit flows for combinational and sequential code are

shown in lines 2 and 8 of Fig. 5.3. Explicit flows capture how information moves through logical

operations and assignments from right to left. Line 9 shows an example of tracking implicit

flows. Here, execution of line 7 depends on control variables rd req, stall, and stall cycles.

Furthermore, value of index specifies which memory element is accessed. Hence, these variables

implicitly affect cache[index] and their labels are propagated to cache s[index].

5.4.3 Tracking Timing Flows

VeriSketch provides the ability to track both timing flows and logical flows. This allows

the designer to define properties related to timing invariance alongside those related to logical

flows. Timing flows are a subset of logical flows [OMSK14a] and can be modeled by capturing

how registers can be updated at each clock cycle [AHK]. We describe this in more detail in the

following.
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Definition 5.4.10 (Bal(v)). Let v be the l-value variable in the procedural assignment η. Boolean

variable Bal(v) declares if updates to v are balanced. An unbalanced update means that there

exists a clock cycle where register v can either maintain its current value or get reassigned. Bal(v)

is statically decided by analyzing the program control flow graph.

Remark 5.4.11. Bal(v) can be determined since Verilog grammar confines all assignments to

each variable v to a single block. Hence, one can compute if v keeps its value under certain

branches of that block.

Using Bal(v) VeriSketch detects timing variation occurring at assignments to variable v

and tracks them via vt .

Proposition 5.4.12 (c.f. [AHK]). Sensitive timing variations in a sequential circuit are generated

at the l-value variable v of a clocked statement if the following equation evaluates to true:

¬Bal(v)u
⊔
{cis : ci ∈Ctrl(v)} (5.2)

Any register v in a given hardware design is written to at each clock edge by a set of

data signals which are multiplexed using a set of control signals. The existence of a feedback

loop which connects the register to itself (¬Bal(v)) indicates that there are some cases when the

register maintains its value. Consequently, the final value of the register may become available

at different cycles resulting in a timing leak. Hence, the conjunction of unbalanced updates

and control signals which carry sensitive information results in sensitive timing variation at the

register. To make the analysis more precise, a new conjunction is added to check if there is any

untainted (¬cis) control variable which fully controls updating the register (Full(v,ci)). This

enables safe downgrading of timing variations:

¬Bal(v)u
⊔

cis u¬
⊔

(¬cis uFull(v,ci)) : ci ∈Ctrl(v) (5.3)
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Remark 5.4.13. Proposition 5.4.12 relies on the fact that in a hardware design registers updated

at clock edges and combinational logic do not introduce cycle-level timing variation. Hence, the

analysis is specific to HDLs and cannot be applied to software languages.

Example 5.4.14. Examples of tracking timing flows in combinational and sequential blocks are

shown in lines 3 and 10−16 of Fig. 5.3. Lines 12−16 show the logic for detecting occurrence

of timing flows while lines 3 and 10−11 show the logic for propagating them.

Example 5.4.15 (Secure Cache Property Specification). The root cause of timing side channel

leakage is that the victim’s action changes the state of the hardware in a way that affects the time

it takes for the succeeding operations to complete. If the victim action depends on secret data,

the subsequent timing variation reveals information about the secret data. In the cache example,

the index that the victim uses to read from the cache changes the state of the cache memory by

bringing in new data and evicting the adversary’s data to the next level memory. If the index

contains secret information (as in table-based RSA implementation), the increment in the time

taken for adversary’s subsequent request discloses information about the index used by the victim

process. Absence of timing information leaked from process i’s access to a cache can be modeled

by the following property:

if(pid=i) assume(index_s==High);

else assert(rd_proc_t==Low);

This property states that assuming that process i accesses the cache with an index which

contains sensitive information (shown by having High index s label), the data read afterwards

by other processes should not have sensitive timing information. This is shown by having an

assertion on rd proc t, which is the timing label of the data read by the processor from the cache.

This property along with the instrumented cache design is given to a formal verification tool

to determine if a cache implementation is vulnerable against access pattern based cache timing

attacks. Writing the IFT properties is identical to formalizing the security expectations and does
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not require knowledge of how an attack is performed since the verification tool searches for the

exact input sequence which leaks the secret data.

Notation 5.4.16. Throughout the examples, all input labels have a Low value if not specified

otherwise.

Example 5.4.17 (PLCache Property Specification). To take into account the assumption that

sensitive data should be preloaded and locked in the partition locked cache before access, we

rewrite the properties as follows:

if(pid=i&&Preloaded[addr]) assume(index_s==High);

if(pid6=i) assert(rd_proc_t==Low);

5.4.4 Enforcing Multiple Policies

In order to instrument the circuit with the appropriate IFT instrumentation, we need to

know how many disjoint flow properties we will be checking. It may be the case that different

security properties require unique and independent tracking logic, each with different input labels.

To accommodate simultaneous analysis of these properties, VeriSketch instruments the circuit

with disjoint sets of labels and tracking logic based on the number of specified flow properties.

Example 5.4.18. In order to specify absence of timing leakage between multiple processes

sharing a cache, we need disjoint labels to track flow of information from different processes:

if(pid=i) assume(index_s_i==High);

else assert(rd_proc_t_i==Low);

if(pid=j) assume(index_s_j==High);

else assert(rd_proc_t_j==Low);

Definition 5.4.19 (IFT Instrumentation). For any design F(x), its instrumented representation,

denoted by FIFT (x, xtaint), has the original functionality of F(x), as well as multiple lines of flow

tracking logic. Here, vtaint defined for each variable v is a vector of tuples of labels (vsi , vti).
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5.5 Synthesis

Reasoning about digital circuits can be encoded as SAT or bit-vector SMT problems,

making them perfect targets for constraint-based synthesis. At a high-level, the standard synthesis

problem is of the form ∃p∀xν.φ (p, xν), where φ encodes the sketches and specifications, and the

goal is to find parameters p such that the hard constraints in φ are satisfied for all possible inputs

xν. We now show how to extend this formulation to handle IFT instrumentation and solve for

finite sequential circuits with soft constraints.

5.5.1 Synthesis with IFT

In order to take advantage of the IFT model within our synthesis flow, we give the

parametric design F(xν, p) to the IFT unit. This transforms the design to FIFT (xν, xνtaint , p)

where xνtaint and FIFT are the input’s security labels and instrumented design (Definition 5.4.19).

The synthesis problem over the instrumented design now includes the labels in addition to the

original inputs:

∃p ∀x.Φ(x, p)

where Φ(x, p) := Q (xν, FIFT (xν, xνtaint , p)). (5.4)

Here Q encodes the specifications written over the instrumented design. We use vector

x to refer to the concatenation of the design inputs xν and their taints xνtaint . Note that xνtaint is

constrained by the specific security properties we want to enforce.

Example 5.5.1. For instance, in our cache example, the cache index is initialized with a High

label if it contains a sensitive address. And all other input labels have a Low label (notation 5.4.16).

Thus, all input taints are constrained.
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5.5.2 CEGIS for Finite Sequential Circuits

To handle sequential circuits, the CEGIS procedures need to expand over multiple cycles.

To accommodate that, we extended the definition of a counterexample to capture a trace instead

of a single value. Essentially, the counterexample represents a sequence of input values which

take the design into an invalid state. Hence, in the synthesis stage the solver should look for a

parameter such that the properties are satisfied for all the cycles triggered by the counterexample

sequence. We model this by changing the original synthesis equation to:

Definition 5.5.2 (Synthesis Target for Sequential Circuits).

∃p.
∧

x j∈CE

Φ
∗(x j, p)

where Φ
∗(x j, p) :=

∧
k≤|x j|

Past(Φ(x j, p), k) (5.5)

Here |x j| is the length of counterexample x j in number of cycles. Φ∗(x j, p) is the conjunction

of the properties over the length of each counterexample. Function Past(v,k), part of System

Verilog Assertion language, returns value of variable v from k previous cycles.

For the secure hardware design problems that we consider here, the bounds on the

sequential depth are clear so that we can focus on tackling the synthesis aspect of the problems.

With bounded depth, the verification component can be conveniently performed by standard

bounded model checking (BMC). For unbounded verification, various techniques such as k-

induction [ES03] can be used; and the framework can be naturally extended with more powerful

verification methods.

5.5.3 CEGIS for Soft Constraints

CEGIS could potentially suggest any program which does not falsify the formal properties.

Thus, the properties should effectively eliminate all undesirable programs. This makes property
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specification a major challenge. For example, consider the cache example where IFT properties

similar to Example 5.4.17 are in place to eliminate side-channel leakage and synthesize the sketch

from Fig. 5.2(a). A trivial implementation that results from this sketch and satisfies the IFT

properties is a design that skips all cache accesses. While this satisfies the security properties, it is

not what the designer intended to get. However, it is not clear how to formalize the property being

violated in this case. The designer can potentially get around this issue by providing input/output

(I/O) pairs which should be generated by the synthesized design, extending the formal properties,

or shrinking the sketch such that undesirable programs are unreachable. However, all these

approaches require non-trivial effort from the designer. Instead, we take an automated approach

to heuristically guide the search algorithm to avoid recommending undesirable designs. We

introduce soft constraints for specifying properties which may not hold for all cases but it

is desirable if they do. Soft constraints are particularly beneficial for modeling performance

attributes.

Definition 5.5.3 (Soft Constraint). Soft constraints are logical formulas that model properties

which are preferably true. We show soft constraints for the design being synthesized by T (x, p).

Example 5.5.4. A soft constraint for synthesizing the secure cache can be defined by indicating

that that having a low value for the skip signal and a high value for the lru update signal (from

Fig. 5.2) are desirable. While this constraint cannot be strictly enforced if one wants to eliminate

timing side channel, we use it to guide CEGIS to find a design which does not skip cache writes

and updates the LRU if possible. Using the try keyword to model the soft constraints, we rewrite

the properties for synthesizing a secure cache as follows:

if(pid=i&&Preloaded[addr]) assume(index_s==High);

if(pid6=i) assert(rd_proc_t==Low);

try(!skip && lru_update);

In order to enforce soft constraints via synthesis, we extend the CEGIS algorithm to

further explore the input space by searching for positive examples.
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Definition 5.5.5 (Positive Example). Positive example pe for the design synthesized with p = pi

is any input trace which satisfies the specification Φ∗(x, pi).

Positive examples represent cases where the design is working correctly according to the

hard constraints. Positive examples are gathered after each verification round by searching the

input space surrounding the newly found counterexample.

Definition 5.5.6 (Exploration). The exploration round computes the set of positive examples PE

by searching the design space surrounding each counterexample x. Exploration can be modeled

by the following SAT problem for xm ∈ x:

∃a. Φ
∗(a, pi)∧

∧
x j∈x∧ j 6=m

(a j = x j) (5.6)

While the original CEGIS algorithm tries to fix the design by enforcing hard constraints

on the counterexamples, we direct it to further enforce soft constraints on the collected positive

examples. This is done by modifying the synthesis round to find a design such that soft constraints

are held for the maximum possible number of collected positive examples while hard constraints

are held for all visited counterexamples. This new synthesis problem is defined by:

Definition 5.5.7 (Synthesis Target for Soft Constraints T ).

∃p.
∧

x j∈CE

Φ
∗(x j, p)∧ ∑

xi∈PE
T ∗(xi, p) = n

where T ∗(xi, p) :=
∧

k≤|xi|
Past(T (xi, p), k) (5.7)

The synthesis round iteratively solves Eq.5.7 and decreases n from |PE| to zero if unsatis-

fiable.
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Theorem 5.5.8. If satisfiable, CEGIS with soft constraints finds the program which enforces soft

constraints on the maximum number of collected positive examples.

Proof Outline. Each synthesis round solves Eq.5.7 by setting n := |PE| initially and

decrease n if unsatisfiable. Hence, if satisfiable, parameter p represents the design where soft

constraints are held for maximum n≤ |PE|. �

Algorithm 4 Given sketch F(x), hard constraints C(x), and soft constraints C′(x), VeriSketch
generates Fsyn(x).

1: Input:F(x),C (x), C′ (x) : VeriSketch
2: Output:Fsyn(x) s.t. ∀x. C(x) : Verilog
3: F (x, p)← pre-processing (F(x))
4: FIFT (x, xtaint, p)← instrumentation (F(x, p),C(x))
5: P← CEGIS (FIFT (x, xtaint, p), C(x), C′(x))
6: if P 6= unsat then
7: Fsyn(x)← post-processing (F(x, p),P)
8: return Fsyn
9: else

10: return unsat
11: end if

Soft constraints are ignored in the verification round since they do not necessarily hold for

all input traces. This means that the equisatisfiability of the synthesis problem does not change as

soft constraints are added. Hence, one can add soft constraints without worrying about making

the problem unsatisfiable.

Theorem 5.5.9. Soft constraints do not impact satisfiability of the synthesis problem.

Proof Outline. The synthesis parameter, the verification equation, and hence the domain

of valid programs remain the same by adding soft constraints. Furthermore, the synthesis equation

in each round reduces to the original synthesis equation (i.e., Eq.5.5) in the worst case. Thus, the

satisfiability does not change. �

Synthesis by soft constraints combines techniques from property-based and example-based

synthesis by automatically searching for examples which should be generated by the synthesized
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Algorithm 5 Counterexample guided inductive synthesis (CEGIS) for synthesizing sequential
circuits with soft constraints

1: Initial Stage:
2: pi← random assignment
3: CE← /0

4: PE← /0

5: while 1 do
6: Verification Phase:
7: ce← SAT (∃x. ¬Φ(x, pi))
8: if ce = unsat then
9: return pi

10: else
11: CE←CE ∪ ce
12: Exploration Phase:
13: pem← SAT (∃a.Φ∗(a, pi)∧

∧
ce j ∈ce ∧ j 6=m

a j = ce j)

14: Φ∗(a, p) :=
∧

k≤|a|
Past(Φ(a, p), k)

15: if pem 6= unsat then
16: PE← PE ∪ pem
17: end if
18: end if
19: Synthesis Phase:
20: for (l = |PE|; l ≥ 0; i = i−1) do
21: solution← SAT ∃p.

∧
x j∈CE

Φ∗(x j, p)∧ (sumpe = l)

22: sumpe := ∑

x′j∈PE
T ∗(x

′
j, p)

23: T ∗(x
′
j, p) :=

∧
k≤|x′j|

Past(T (x
′
j, p), k)

24: Φ∗(x j, p) :=
∧

k≤|x j|
Past(Φ(x j, p), k)

25: if solution6=unsat then
26: then pi← solution; break l=0 then return unsat
27: end if
28: end for
29: end while
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design. Alternatively, one can manually specify the positive examples; however, defining traces of

examples for sequential circuits may be challenging itself. The overall VeriSketch flow and CEGIS

algorithm for synthesizing sequential circuits with soft constraints are shown in Algorithm 4

and 5, respectively.

5.6 Experiments

We now demonstrate four examples of security-critical hardware designs that are success-

fully synthesized by VeriSketch.

• Constant Time Arithmetic Units We implement fixed point arithmetic units which run

in constant time. We use IFT specification to model constant time behaviour and non-

synthesizable1 portion of the Verilog language to model functional properties.

• Leakage-free caches: We add sketch constructs (following the partition lock methodol-

ogy [WL07]) to traditional cache architectures and synthesize two caches (direct mapped

and 4-way set associative) which are resilient against timing side channel attacks. We model

resilience against timing side channel attacks as IFT properties and add soft constraints to

model performance traits.

• Hardware thread schedulers: We synthesize schedulers for fine-grained multithreading

in mixed criticality systems by defining properties regarding confidentiality between threads,

guaranteed scheduling frequency, and timing predictability. We define three sketches of

different size and synthesize each to satisfy different combinations of the properties along

with soft constraints modeling efficiency and fairness.

• System-on-chip (SoC) arbiters: We synthesize arbiters to mediate access in bus archi-

tectures by enforcing (one or multiple of) non-interference, access control, priority, and
1Synthesizable in this case refers to the portion of the language that can be mapped to a gate-level netlist. Complex

Verilog operators can only be used in simulation.
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Table 5.3: Summary of synthesized designs in terms of lines code for the sketch, synthesized
code and specifications.

Design
Sketch LoC Spec. LoC Syn. LoC

VeriSketch VeriSketch Verilog/AST

Fixed Point Arithmetic 59 33 107/961
Direct Mapped Cache 243 73 379/3809

4-way Set Associative Cache 303 73 512/6098
Hardware Thread Scheduler 73 92 365/2308

SoC Arbiter 57 80 487/4262

fairness between the cores.

Table 5.3 shows the code size for the biggest synthesized design in each experiment set.

These numbers are reported in terms of lines of code written in VeriSketch language for the sketch

and specification (i.e., the formal testbench) and in Verilog and AST for the synthesized code. We

will first explain the implementation details of the framework and then discuss the synthesized

designs.

5.6.1 Implementation

As shown in Fig. 6.1 and Algorithm 4 VeriSketch flow consists of an IFT engine and

a program synthesis unit. The IFT tool uses the Yosys [?] front-end parser to get the AST

representation of the Verilog design. It then analyzes the design’s data and control graph along

with the security properties to generate the corresponding information flow tracking logic. It

writes back the instrumented design in Verilog. The instrumented Verilog design is then given

to the synthesis unit to search for the ideal parameter. The program synthesis unit makes calls

to a SAT/SMT solver for verification, exploration, and synthesis. This unit can either use a

commercial EDA tool (Questa Formal Tool from Mentor Graphics) or open source solvers (Any

of Yices2 [Dut14], Boolector [BB09], Z3 [DMB08], or CVC4 [BCD+11]) by using Yosys to

translate Verilog to SMT-LIB2 representation.
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module div (clk, start, dividend, divisor, quotient, done, overflow); 
 assign flag = reg_a (>=,>,<,=>) reg_b;  
 always @(posedge clk) begin 
  if( done && start)  
    //initialize … 
  reg_q[reg_count] ?= ??; 
  reg_b ?= reg_b(>>, <<, <<<, >>>) ??;  
  reg_a ?= reg_a - reg_b; 
  quotient ?= reg_q; 
  ctrl_vars = [start, done, count_done, flag]; 
  //counter, overflow and sign logic … 

assert (dividend, divisor -/->t quotient); 
assert (done && divisor!=0 |->(|quotient-((dividend << Q)/divisor)|<=1)); 

endmodule  

module div (clk, start, dividend, divisor, quotient, done, overflow); 
assign flag = reg_a >= reg_b;  
always @(posedge clk) begin 
  if(done && start)  
    //initialize …  
 if(!reg_done && !count_done && (reg_a >= reg_b)) 
    reg_q [reg_count] <= 1; 
  if(!reg_done) 
    reg_b <= reg_b << 1; 
  if(!reg_done && (reg_a >= reg_b)) 
    reg_a <= reg_a - reg_b; 
  if (!start & !done & count_done) 
    quotient <= reg_q; 
  //counter, overflow and sign logic … 

endmodule  
(a) (b)

Figure 5.4: Synthesizing a constant time fixed point divider using VeriSketch. (a) Sketch
of a shift-and-subtract divider where the structure of the procedural statements, operations,
and constant values are left unspecified as shown by the highlighted code. Constant time and
functional properties are modeled by IFT and built-in Verilog operators, respectively. (b) The
divider unit generated by VeriSketch. The highlighted parts show the code that is generated
automatically.

5.6.2 Constant Time Arithmetic Units

The Verilog language supports multiplication and division operators; however, these

operators cannot be directly mapped to hardware by EDA tools due to their complexity. For

instance the statement “assign c=a\b;” requires the EDA tool to build a divider which runs in

a single cycle. As this is not feasible in most cases, the complex operations can only be used

in simulation and the hardware designers need to implement arithmetic units using low level

operators. These arithmetic units run in multiple cycles and could have early termination based

on the operands’ values which leaks information about the values. We use VeriSketch to design

fixed point multiplier and divider units which run in constant time independent of their operands’

values.

Sketches and Properties. We sketch a shift-and-add multiplication unit and a shift-and-

subtract division unit for fixed point computation as described in [alu]. The sketch of the divider

unit along with the functional and security properties are shown in Fig. 5.4(a). We leave the

structure of the procedural statements undefined using “?=” construct and ask the synthesizer

to find the correct control logic and cycle-level register updates using the list of the control

variables in the design (start,done,count done and flag). Here, start and done indicate

the beginning and end of the computation while count done shows that the counter has reached
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its maximum value. Variable flag is defined in the sketch. For simplicity, control signals

ctrl vars are globally defined for all assignments. We also use low-level sketch constructs to

leave operations and constant values undefined. The first assertion in Fig. 5.4(a) describes constant

time requirements using IFT operators. The second property states that the quotient computed

by the sequential circuit should differ from the value computed by the built-in operations by at

most one bit. This error value is equivalent to 2−Q where Q is the number of bits used to represent

the fractional segment. The dividend is shifted by Q bits to follow the fixed point representation.

module Sketch_Cache(…);
 assign skip = 
  (!rd & wr & !hit & lru_block[m])| (rd & !wr & !hit & lru_block[m]) 
  |(!rd & !wr & hit & lru_block[m])|(!rd & !wr & !hit & lru_block[m])|  
  (!rd & !wr & hit & !lru_block[m]); 
 assign lru_update =  
  (rd & !wr & waiting & stall & !lock)|(rd & !wr & waiting & !stall & !lock)| 
  (rd & !wr & !waiting & stall  & !lock)|(rd & !wr & !waiting & !stall & !lock)| 
  (!rd & wr & waiting  & !stall & !lock)|(!rd & wr & !waiting & stall  & !lock)| 
  (rd & wr  & waiting  & !stall & lock) |(rd & wr  & waiting  & !stall & !lock)| 
  (rd & wr  & !waiting & !stall & lock ); 
always @ (posedge clk)
  if(!skip)
   //cache rd/wr
       if(lru_update) 
    //update LRU
  else
   //direct memory access
endmodule

Figure 5.5: VeriSketch synthesizes the sketch from Fig. 5.2(a) to a fully specified Verilog design
that meets the functional and security properties specified in Example 5.5.4.

Synthesized Designs. The divider unit synthesized by VeriSketch is shown in Fig. 5.4(b).

VeriSketch finds the appropriate control signal to guard execution of the procedural statements as

shown by the if statements. The last statement ensures that the final output quotient is updated

at a constant time, even though the intermediate variable reg q may contain the final result sooner.

This example shows how the IFT unit safely downgrades timing variations ( Eq. 5.3) from reg q

to quotient since count done fully controls timing of the updates to the quotient. We skip

reporting the details of the synthesized multiplier as it is similar to the divider.
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5.6.3 Leakage-Free Cache

We use VeriSketch to modify an existing (non-secure) cache implementation such that

it defends against timing attacks. We define sketch and properties for this set of experiments as

shown in Fig. 5.2(a) and Example 5.5.4 for both a direct mapped and a 4-way set associative cache

(with the difference that the direct mapped cache does not require LRU logic). Fig. 5.5 shows the

output of VeriSketch Synthesizing a fully specified and functional Verilog design. We only show

the parts of the code that is automatically generated. The synthesized skip logic indicates that

when a read or write request result in a cache miss, it should skip the cache and go through direct

memory access if the block to be evicted is locked. The cache design created by VeriSketch does

not update the LRU state when a locked cache block is accessed, and hence eliminates the timing

leakage in the original PLCache. Note that as the comb syntax is mapped to a BDD, it generates

logic for certain input combinations that do not occur in execution (e.g., having both a read and

write request). Using Yices2 [Dut14] as the SMT solver, the synthesis process takes around six

and eight hours for the direct mapped and set associative caches, respectively. The synthesis time

in this set of experiments are considerably longer compared to the ones reported in the rest of

the examples and are dominated by the time taken to perform bounded model checking in the

verification rounds. This is due to the fact that formally verifying and reasoning about memory

elements take large amount of time. This can be alleviated by abstracting the unrelated data path

or giving hints to the solver on what the relevant variables are. We leave this problem for future

work.

Security Analysis of Sketch Cache vs. PLCache

The PLCache is resilient against the original Percival attack as the victim’s access to its

preloaded data results in a cache hit and does not evict the attacker’s data. However, accessing

preloaded data changes the LRU bits of that cache set. More specifically, accessing the preloaded

data marks the locked block as the most recently used block in the set; and it prioritizes other

blocks in the set for eviction. Consequently, even though accessing locked data does not evict
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the attacker’s data directly, it prioritizes eviction of the attacker’s data. In order to exploit this

subtle change in the state of the cache, we extend the Percival attack such that the adversary can

observe the effect of the change in the LRU bits. This is done by adding an extra stage to the

attack where the attacker tries to evict its own data. If the attacker is able to evict its data (i.e., the

attacker observes an increased access time in the next access), it indicates that the attacker’s data

has been prioritized for eviction as a result of the victim’s action. The Percival attack is extended

as suggested by the counterexample trace collected while verifying the PLCache.

//(1) Victim preloading sensitive addresses 
pid=1, lock=1, addr=0x801, addr_s=0x0,stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing preloaded data 
pid=1, lock=1, addr=0x801, addr_s=0xFFFF, stall=0, rd_proc_t= 0xFFFF

//(4) Adversary actions exposing the effect of the LRU bits  
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0,  stall=0, rd_proc_t=0

//(5) Adversary getting a cache miss 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0x0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t= 0xFFFF

//(1) Victim preloading sensitive addresses 
pid=1, lock=1, addr=0x801, addr_s=0x0, stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing another cache set 
pid=1, lock=0, addr=0x802, addr_s= 0x0, stall=0,rd_proc_t= 0x0

//(4) Adversary actions exposing the effect of the LRU bits 
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=0, rd_proc_t=0

//(5) Adversary getting a cache hit 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0x0


(a) (b)

Figure 5.6: Timing leakage in PLCache. (a) Victim process (pid=1) accesses its locked data
in stage 3. This results in a cache miss for the attacker in stage 5 (shown by stall=1). The
verification tool captures this since rd proc t has a High value in stage 5. (b) Victim does not
access its locked data in stage 3 and the attacker observes a cache hit in stage 5.

Fig. 5.6 shows the results of simulating the PLCache with simulation traces that resemble

the extended Percival attack. In both Fig. 5.6(a) and (b) the victim process first preloads and

locks its data (stage 1). Next, the adversary fills the cache set, but fails to evict the locked block

(stage 2). Fig. 5.6(a) represents the case where the victim accesses its locked data at stage 3

making the locked data the most recently used block and the attacker’s data the least recently

used block. Fig. 5.6(b) represent the case where the victim accesses some other cache set and

leaves the LRU bits unmodified (i.e., the locked block remains the least recently used block). In

stage 4, the adversary aims to observe the change in the LRU bits by trying to evict the its own
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data that was used to fill cache in stage 2. In case (a), adversary’s access to the cache set evicts its

own data since victim’s action from stage 3 has prioritized eviction of the attacker’s data. In case

(b), the attacker’s access to the cache is skipped because the least recently used block is locked

and cannot be evicted. The adversary is able to observe the difference in victim’s action from

stage 3 at stage 5 through timing variation. In case (a) the adversary experiences a cache miss

(i.e., increased cache access time) while in case (b) adversary’s access results in a cache hit. This

difference is shown in the value of the stall signal in simulation. The IFT instrumentation shows

a high value for rd proc t at stage 5 of Fig. 5.6(a) which is a violation of the security property

specified in Example 5.5.4. VeriSketch synthesizer mitigates this vulnerability by generating the

lru update logic such that accessing locked blocks does not change the LRU bits (and any other

hardware state). Results of simulating PLCache and the sketch cache with traces that represent

the extended Percival attack on LRU bits are shown in Fig. 5.7. Fig. 5.7(a) and (b) show the

results of simulating PLCache and are identical to Fig. 5.6(a) and (b). Fig. 5.7(c) and (d) show

the results of simulating the sketch cache. Fig. 5.7(a) and (c) show the case where the victim

process (pid=1) accesses its locked data at stage 3 (case A). Fig. 5.7(b) and (d) represent the case

where the victim does not access its locked data and accesses a different cache set (case B). In

this simple example we use the 4 lowest bits as index; hence, all addresses except for 0x802 map

to the same cache set.

The extended Percival attack on the LRU bits of a partition locked cache comprises five

stages. In the first stage the victim process preloads and locks its sensitive data. Next, the attacker

fills the cache set but is not able to evict the cache block which contains the locked data. At this

point, the cache set includes the victim’s locked data as well as the attacker’s data. Furthermore,

the attacker knows that its data is the most recently used data as it was just accessed. Now,

consider case A where the victim process accesses its locked data at stage 3. This access results

in a cache hit. In PLCache (Fig. 5.7(a)) this access changes the LRU bits by making the locked

data the most recently used block and consequently making the attacker’s data the least recently
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//Sketch Cache — Case A 
//(1) Victim preloading sensitive addresses 
pid=1, lock=1, addr=0x801, addr_s=0x0,stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing preloaded data 
pid=1, lock=1, addr=0x801, addr_s=0xFFFF, stall=0, rd_proc_t= 0xFFFF

//(4) Adversary actions exposing the effect of the LRU bits  
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0,  stall=0, rd_proc_t=0

//(5) Adversary getting a cache hit 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0x0

Sketch Cache — Case B 
//(1) Victim preloading sensitive addresses 
pid=1, lock=1, addr=0x801, addr_s=0x0, stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing another cache set 
pid=1, lock=0, addr=0x802, addr_s= 0x0, stall=0,rd_proc_t= 0x0

//(4) Adversary actions exposing the effect of the LRU bits 
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=0, rd_proc_t=0

//(5) Adversary getting a cache hit 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0x0

(c) (d)

//PLCache — Case A 
//(1) Victim preloading sensitive addresses 
pid=1, lock=1, addr=0x801, addr_s=0x0,stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing preloaded data 
pid=1, lock=1, addr=0x801, addr_s=0xFFFF, stall=0, rd_proc_t= 0xFFFF

//(4) Adversary actions exposing the effect of the LRU bits  
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0,  stall=0, rd_proc_t=0

//(5) Adversary getting a cache miss 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0x0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t= 0xFFFF

//PLCache — Case B 
//(1) Victim preloading sensitive addresses 
pid=1, lock=1, addr=0x801, addr_s=0x0, stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing another cache set 
pid=1, lock=0, addr=0x802, addr_s= 0x0, stall=0,rd_proc_t= 0x0

//(4) Adversary actions exposing the effect of the LRU bits 
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=0, rd_proc_t=0

//(5) Adversary getting a cache hit 
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0x0

(a) (b)

Figure 5.7: Simulating PLCache and the synthesized cache with traces representing the extended
Pecival attack.
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used block. In the sketch cache (Fig. 5.7(c)) this access does not modify the LRU bits and the

locked block remains the least recently used. In case B, the LRU bits remain unmodified in both

PLCache and the sketch cache (Fig. 5.7(b) and (d)). In stage 4, the attacker aims to observe the

potential changes in the LRU bits. This is done by the attacker trying to bring new data to the

cache in order to force an eviction in the set. In PLCache, the attacker is able to evict its own

data in case A since it had become the least recently used. However, it cannot evict its data in

case B because the locked data is the least recently used block which cannot be evicted. In the

synthesized cache, the attacker is not able to force an eviction in any of the cases. In stage 5, the

attacker accesses the data which was brought to the cache in stage 2. In PLCache, this results in a

cache miss in case A and a cache hit in case B. Hence, the attacker can observe the difference

between the two cases through the timing variation. In our simulations, this timing variation

manifests itself through the value of the stall signal and the timing label of the data which is

read by the processor rd data proc t (Fig. 5.7(a) vs. Fig. 5.7(b)). In the synthesized cache, the

adversary observes a cache hit in both cases (Fig. 5.7(c) vs. Fig. 5.7(d)).

Soft Constraint Analysis. As described in Section 5.5.3, performance related soft

constraints are essential for synthesizing a practical cache. In order to analyze the effect, we

simulate the caches which are synthesized with and without soft constraints using memory traces

from the CloudSuite benchmarks [FAK+12]. Fig. 5.8 shows cache misses for simulating 4-way

set associative caches of size 32KB with one million memory traces for each application. All

numbers are normalized to the number of misses for a non-secure cache of the same size. As

shown by the graph, the cache which is synthesized with soft constraints has a considerable lower

miss rate.

5.6.4 Hardware Thread Scheduler

Here we describe design of a hardware thread scheduler module for fine-grained mul-

tithreading in mixed criticality systems [BD13]. The design problem is borrowed from the
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Figure 5.8: Number of cache misses for caches synthesized with and without soft constraints
simulated with memory traces from CloudSuite benchmarks [FAK+12]. The numbers are
normalized to the number of cache misses from a non-secure cache.

FlexPRET project [ZBSL14] which implements a processor dedicated to real time needs. We

have expanded the scheduler design by introducing confidentiality requirements and automatically

generating different modifications of it. The scheduler decides which hardware thread should

execute at each clock cycle based on inputs from the operating system. These inputs consists of

two vectors freq and mode. freq specifies the expected execution frequency for the threads, and

mode describes different traits of each thread. These traits state if the thread has hard real-time or

soft real-time requirements, whether or not it carries sensitive information, and if it is active or

asleep at the given cycle.

Sketches and Properties The scheduler sketch consists of two FSMs and one combina-

tional function written with seq and comb syntax, respectively. The first FSM outputs a thread id

based on the given frequencies freq. The second FSM generates a new thread id according to

the result of the first FSM and the mode signal. The combinational function selects between the

outputs of these two FSMs. This implements two interleaving schedulers where details of the
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scheduling schemes are unspecified. We have modeled different properties regarding real-time

requirements, fairness, confidentiality, and efficiency as hard and soft constraints. The real-time

properties, borrowed from [ZBSL14], include timing predictability for hard real-time threads,

and guaranteed expected frequency for soft real-time threads. Timing predictability requires the

scheduler to give the hard real-time the exact frequency that they asked for. Guaranteed frequency

on the other hand, requires the scheduler to give the soft real-time threads at least what they asked

for. This enables the scheduler to assign soft real-time threads to any empty slots (for instance

caused by others being asleep). Hence, the soft real-time threads can have expected frequency

of zero and still get to execute. Both of these properties are modeled as hard constraints. We

also model fairness for the extra quota given to soft real-time threads as soft constraints. The

confidentiality requirement states that activity status of sensitive threads should not be revealed.

We model this as an IFT property by assigning High labels to active/asleep bit of sensitive threads,

and asserting that the scheduler output should maintain a Low label. Enforcing this property

changes how the scheduler assigns empty slots to available soft real-time threads. Lastly, an

efficiency property – modeled as a soft constraint – synthesizes a scheduler which selects active

threads for execution. If written as a hard constraint, the problem becomes unsatisfiable due to

cases where no active thread is available for scheduling. This experiment illustrates how soft and

hard constraints are used in property-based program synthesis frameworks. While security and

safety requirements are modeled as hard constraints since they should be held unconditionally,

soft constraints are helpful for modeling properties regarding system performance.

Synthesized Designs. In order to show how the sketch size affects synthesis time, we

generate the circuitry from three different templates. We gradually add the sketch constructs

and decrease the manually specified details to observe the effect. Synthesis results are shown in

Table 5.4 where the property abbreviations are as follows. V: Valid thread id, C: Confidentiality

for sensitive threads, P: Predictability for hard real-time threads, G: Guaranteed frequency, E:

Only Scheduling available threads, F: Fairness between soft real time threads. The formal
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Table 5.4: Summary of synthesized thread schedulers.
Sketch

Size Prop. Time(sec.)[Syn., Ver., Exp.]
- E F

72bits
V G C 9, 3, - 11, 5, 2 14, 4, 3
V G P 7, 4, - 13, 4, 3 10, 3, 2

V G C P 9, 3, - 12, 4, 2 15, 5, 3

192bits
V G C 50, 12, - 175, 17, 14 187, 19, 14
V G P 114, 18, - 140, 19, 11 221, 22, 15

V G C P 105, 20, - 205, 24, 15 209, 21, 15

232bits
V G C 185, 17, - 338, 27, 23 877, 29, 31
V G P 357, 20, - 831, 32, 28 1592, 38, 38

V G C P 412, 23, - 781, 32, 27 2900, 71, 44

representation of these properties is available in Table 5.6. As shown in Table 5.4, the synthesis

time increases proportionally to the sketch size mostly due to the increase in the time spent on

synthesis. In the first set of experiments we only leave the combinational select logic unspecified,

and implement everything else manually. For the other two rounds, we replace the FSMs with

sketches as well. For each set, we synthesize the sketch using various combinations of the

discussed properties. The synthesis time increases as soft constraints are added. This increase is

mainly caused by multiple synthesis stages which fail and are replayed by relaxing the problem.

Collecting positive examples does not contribute much to the overall time. Yices2 [Dut14] is

used as the SMT solver for generating all the designs in these experiments.

5.6.5 SoC Arbiter

System-on-chip arbiters which mediate accesses in bus architectures have been shown to

be vulnerable against timing side channel attacks [OHI+11b, OSK13]. The vulnerability arises

as different cores which are requesting access to a shared unit can infer about each others access

pattern based on the time they are granted access themselves. We model timing side channel

elimination as IFT properties to enforce non-interference between mutually untrusted cores. We

further specify various functional properties and synthesize multiple SoC arbiters from generic

FSM sketches.
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Table 5.5: Summary of synthesized SoC Arbiters.

Design Properties
Time
(sec.)

Arbiter w/ 4 cores
and 1 shared unit

338 bits

WISHBONE [MS06] 248
WISHBONE w/ priority for core 1 162

Priority-based access 616
WISHBONE w/ no access for core 1 171

TDMA 128
Non-interference b/w all cores 157

Non-interference b/w cores 1&2 113

Arbiter w/ 4 cores
and 3 shared unit

1014 bits

U1: Non-interference
U2: Non-interference bw/ cores 1&2

U3: WISHBONE 312
U1: Non-interference

U2: Non-interference bw/ cores 1&3
U3: WISHBONE w/o access for cores 2&3 278

U1: WISHBONE w/o access for core 3
U2: Priority-based access

U3: WISHBONE 719

Sketches and Properties. To synthesize the arbiter module, we have sketched three

FSMs where state transitions are left unspecified. The one-hot encoded req and grant signals

indicate the incoming requests and the given grant at each clock cycle. The first two FSMs are

defined using seq syntax with different sets of inputs. The first one takes req and grant as

inputs, and the second one models a smaller FSM where state transitions are independent of the

incoming requests. While the second FSM models designs that can be generated by the first one,

it can more quickly synthesize arbiters where the scheduling is independent of the input (e.g.,

TDMA policy). The third sketch models an FSM which groups different cores in disjoint sets.

Finally, we sketch a combinational logic which selects one of the FSMs. We define two sets

of sketches modeling an arbiter module which mediates between four cores sending requests

to one and three shared units. We define properties regarding access control, non-interference,

and priority-based scheduling to synthesize different arbiters. The formal representation of these

properties is available in Table 5.7.

Synthesized Designs. Table 5.5 shows the result of synthesizing different arbiters by

combining different sets of properties. Note that while the sketch includes multiple FSMs,
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only one of them is chosen and synthesized by CEGIS. Using this strategy, the sketch can

be automatically selected from a pool of available sketches eliminating the need to explicitly

determine a single template for synthesis. The first four designs from Table 5.5 are synthesized

by the first most generic template. The next two designs are generated from our second template.

Lastly, adding non-interference properties between two cores results in using the third template

where different cores are appropriately placed in separate groups. As we can see from the results,

adding IFT properties speeds up the synthesis procedure because these properties constrain the

high-level structure of the design. In the next round of experiments, we replicated the templates

to synthesize an arbiter which mediates accesses to three shared units with distinct policies. Ui in

the table refers to shared uint number i. The last column of Table 5.5 shows the time taken for

synthesis using Questa Formal Tool.

Table 5.6: Summary of properties used for synthesizing thread schedulers.
Synopsis Formal Representation

(V) Valid thread id valid 7→ assert(thread id < n)
(C) Confidentiality of sensitive threads ∀i.(i.sensitive) 7→ assume (i.actives = High)assert (thread idt = Low)

(P) Predictability of hard real-time threads ∀i. (i.hardRT ) 7→ assert (i. f req+ i.sleep = i.count)
(G) Guaranteed frequencies ∀i. assert (i. f req+ i.sleep≤ i.count)

(E) Scheduling available threads ∀i. ¬i.active 7→ try (thread id 6= i)

(F) Fairness for soft real-time threads ∀i, j.(¬i.hardRT ∧ ¬ j.hardRT )) 7→ try ((i.count− i. f req) = ( j.count− j. f req))

Table 5.7: Summary of properties used for synthesizing SoC arbiters.
Synopsis Formal Representation

Grant given to at most n cores assert(Countones(grant)≤ n)
Grant given to a core which requested assert(Past(req) 7→ (∀i. grant[i] 7→ Past(req[i])))

Stabilizing the grant while a core is using assert((grant[i]∧ Past(req[i])) 7→ Stable(grant))

Equal share assert(
n−1∧
i=0

(
n−2∧

j=i+1
(Past(grant, period ∗ i) = Past(grant, period ∗ j))))

Denying access to core #i assert(¬grant[i])
Prioritizing core #i assert(Past(req[i]) 7→ grant[i])

Priority-based access assert(
i−1∧
j=0
¬Past(req[ j])∧ (Past(req[i]) 7→ grant[i]))

Non-interference between all cores assert(reqs 9t ¬grants)
Non-interference between cores #i, j assert((reqs[i]9t ¬grants[ j])∧ (reqs[ j]9t ¬grants[i]))
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5.7 Conclusion

This work presents a semi-automated and security-oriented methodology for designing

hardware with formal proof of security. The proposed design framework consists of language

support for sketching digital circuitry, and a set of techniques for translating partially written HDL

codes into complete designs that provably comply with the designers’ functional and security

specifications. The proposed flow speeds up and simplifies the lengthy process of hardware

design and verification, and acquaints the traditional design flow with automated enforcement

of security properties. We have shown how combining program synthesis techniques with the

model of information flow enables generating hardware units which are correct and secure by

construction.

Chapter 5, in full, is a reprint of the material as it appears in the Proceedings of the

26th Annual Conference on Computer and Communications (CCS), November 2019. Armaiti

Ardeshiricham, Yoshiki Takashima, Sicun Gao, Ryan Kastner. The dissertation author was the

primary investigator and author of this paper.
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Chapter 6

Error Localization for Hardware Designs

Formal verification techniques facilitate identifying design flaws given high-level specifi-

cations. However, determining the source of the errors remains a time-consuming and manual

task. To address this challenge, we propose a formal approach for error localization in Register

Transfer Level (RTL) hardware designs. The presented method requires a single counterexample

trace acquired from a verification tool, and it identifies a set of source code statements that

includes the faulty statement. We develop a tool for capturing single errors at Verilog RTL designs

and show the practicality of the proposed technique by finding errors introduced into multiple

functional and control units taken from open source implementations. We further provide proof

of soundness for the underlying algorithm.

6.1 Introduction

Property-based verification enables designers to model design expectations in a concise

way and automatically finds counterexamples which violate the specifications (i.e., the properties).

While advances in formal methods have simplified error detection, debugging using the discovered

counterexamples remains a manual and tedious process taking around 60% of the time spent on

verification [Fos08]. The counterexample trace generated by a formal solver (or from a failed
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simulation testbench or random test) can be complex, it may span over many cycles, and thus

it complicates bug analyses [CBM07]. Furthermore, the counterexample trace is an assignment

over all design’s primary inputs and does not indicate which parts contribute to the error.

To address these challenges, we propose a method for error localization in Register

Transfer Level (RTL) hardware designs. The proposed technique considers an RTL design and its

specifications along with a counterexample trace which violates the specifications. It identifies a

set of suspicious code segments such that modifying them is sufficient for debugging the design.

The proposed method leverages formal solvers and sound program analysis techniques to safely

eliminate code segments which are irrelevant to the observed error.

The proposed error localization technique has three steps. It first reduces the counterex-

ample trace by identifying the input variables which are irrelevant to the observed failure. While

the original counterexample is an assignment to all primary inputs such that the properties are

unsatisfiable, the reduced trace only contains a subset of assignments such that the properties

remain unsatisfiable. We model the counterexample reduction problem as a series of calls to an

SMT solvers to find input variables which values are critical for reproducing the error. In each

query, a subset of inputs are set as free variables while the rest are fixed to their counterexample

values, and the satisfiability of the properties is checked. If unsatisfiable, the inputs which were

set as free variables are safely dropped from the counterexample. This yields a smaller and

generalized counterexample by eliminating the input variables which do not contribute to the

failure.

Once the relevant inputs are identified, we collect the set of program variables which

are affected by those inputs using static program analysis. This is done by analyzing the data

flow and control flow graph of the design and tracking how information flows from inputs to

intermediate variables. The set of suspicious state variables gathered by information flow analysis

could potentially be very large; however, not all elements of the set contribute to the error.

In the last step, we reduce the set of suspicious state variables by removing those that
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do not contribute to the property violation. This is formulated similar to the counterexample

reduction problem (from the first step) but with a minor modification. In order to look for the

set of variables where changing their values could satisfy the properties we need to consider

them as free variables. However, the values of intermediate variables are defined by the logic

which drives them. To allow free variables, for each call to the SMT solver a temporary design

is generated where state variables of interest are set as free variables by removing the logic

driving them. This captures the notion that the removed logic could be potentially buggy and

removing it would allow the solver to replace it with any possible value. If the solver cannot find

a solution where the properties are satisfied, it indicates that the unconstrained (i.e., free) state

variables do not contribute to the error. Consequently, they can be safely removed from the set of

suspicious variables. By iteratively setting some state variables as free variables and removing

the unsatisfiable solutions, the set of suspicious variables is gradually reduced.

The proposed framework employs open source verification tools (Yices [Dut14] and

Yosys [Wolb]) as shown in Fig. 6.1. While several techniques have been introduced for error

localization in gate-level netlists, our framework assists debugging at a high-level of abstrac-

tion where it is easier and faster for the designer to fix the bugs. Using formal solvers, a

single counterexample trace suffices for the presented technique to succeed, contrary to sta-

tistical methods which require multiple failing and passing traces to identify faulty code seg-

ments [ANCRL07, PV16, PKL+09, LNZ+05, WPF+10, WWQZ08]. We test our framework by

localizing errors added to open source functional and control units implemented in behavioral

Verilog RTL.

The rest of this paper is organized as follows. Section 6.2 summarizes the previous

work. We formalize the problem definition and error model in Section 6.3. Sections 6.4 and 6.5

provide details of the proposed method and proof of correctness of the algorithm, respectively.

We describe the implementation details and experimental results in Section 6.6 and conclude in

Section 6.7.
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Figure 6.1: Overview of the presented error localization methodology. The proposed framework
receives RTL design Φ and properties P such that verification fails. It identifies a set of suspicious
source code expressions s> from Φ that contains the bug.
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6.2 Related Work

Error localization and automated debugging techniques based on statistical or formal

approaches have been explored both in the software and hardware domains.

Statistical approaches rely on collecting information about program execution across

multiple simulation traces to find correlation between program entities and the observed er-

rors. Such information can be collected by instrumenting the design with Boolean predi-

cates [LAZJ03, LNZ+05, ANCRL07, WPF+10], information flow tracking code [MFF16],

invariant analysis [PKL+09], and program Spectra [AZVG07, MFF16]. Once the execution

information is available, different statistical metrics rank the program statements specifying

how probable they are to contribute to the error [WWQZ08, PV16, CKF+02, JHS02]. Program

analysis techniques such as program slicing [Wei81, ZGG07] can further increase the accu-

racy of statistical methods by finding the parts of the program which are located on the failure

path [MLD+14, CFR+99]. These methods have also been combined with program synthesis

techniques to automatically fix the errors once they are localized [NQRC13, LCL+17].

Formal approaches leverage formal solvers to locate errors. Several solutions have been

proposed for localizing errors in gate-level netlists by modeling it as a Boolean satisfiability

problem. In debugging with constraint satisfaction [SVAV05, SFBD08, SV07], each gate in

the netlist is instrumented with extra logic which models existence of a fault. The added logic

is a multiplexer which chooses the original gate or a free variable to indicate that the gate is

faulty. The instrumented circuit is replicated for all the failing test vectors and the SAT solver is

queried to find a satisfying solution for the added multiplexers. The injected logic in constraint

satisfaction is defined for primitive gate types and cannot be directly applied at RTL. Model-

based diagnosis [Rei87, FSW99] computes conflict sets to search for fault candidates that share

logic with these sets. In the hardware domain, model-based diagnosis have been used for error

localization in structural RTL [PW06]. Error localization can also been modeled as a MaxSAT

111



problem [CSMSV10, JM11, MYR15] by finding the maximum satisfiable part of the program, i.e.,

the non-erroneous part. Using interpolating theorem provers, computing error invariants [ESW12]

have shown promises in localizing bugs in sequential code.

Our proposed solution differs from previous work in error localization in hardware designs

as it can localize errors in arbitrary RTL designs and is not restricted to specific representations

such as techniques developed for gate-level netlists [SVAV05, SFBD08, SV07, CSMSV10] or

structural RTL [PW06]. This facilities debugging earlier in the hardware design flow and at an

abstraction level which is easier for the designer to repair the code. Furthermore, using formal

techniques, the proposed method only requires a single failing trace.

6.3 Preliminaries

Here we formalize the error localization problem for a given hardware design and a set

of properties. While we consider formal properties to describe the expected behaviour of the

design, one can replace the properties by a list of input/output pairs without affecting the proposed

technique.

6.3.1 Problem Definition

We represent the sequential1 hardware design that we are interested in debugging by the

transition function tran(xi,si,si+1) where xi and si are the input and state variables at step i. The

following formula encodes the design with initial state s0 unrolled up to depth k:

Φ(x,s) := init(s0)∧
k−1∧
i=0

(
input(xi)∧ tran(xi,si,si+1)

)

Notation 6.3.1. Both x and s are sets of variables with different bitwidths. We use the notation xi

1We formulate the problem for a generic sequential circuit, but the same reasoning can be applied to combinatorial
circuits as well.
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to refer to the elements at cycle i and use xn to denote the n-th element which is a single variable.

Let P(x,s) encode the desired properties of the circuit. Then a counterexample is a

satisfying assignment to Φ(x,s)∧¬P(x,s). Any counterexample xc is a cube (conjunctive clause)

over the input variables x and can be written as:

xc :=
∧

xn∈x
xn = xn

c

The above formula indicates assigning value xn
c to the n-th input variable xn. For simplicity,

we write C(x,xc) to denote the assignment of xc values to x variables. Note that the counterexample

assigns a value to each input variable at each execution cycle.

We know that Φ(x,s)∧P(x,s)∧C(x,xc) is an unsatisfiable formula, because xc is chosen

to falsify the property P. We can now analyze the values in xc to find the core reason for property

violation and reduce the counterexample xc.

Definition 6.3.2 (Reduced Counterexample). Given counterexample xc such that Φ(x,s) ∧

P(x,s)∧C(x,xc) is an unsatisfiable formula; reduced counterexample x̄c ⊆ xc is a minimal

sub-cube of xc such that Φ(x,s)∧P(x,s)∧C(x, x̄c) is unsatisfiable.

Reduced counterexample x̄c only assigns values to a subset of inputs and leaves the rest

as free variables. The reduced counterexample identifies a set of input variables which contribute

to the property violation. We describe an algorithm for efficiently computing x̄c in Section 6.4.2.

For error localization, however, we are interested in finding the set of state variables from

s which cause the error. To do so, we need to find the unsatisfiable core on the state variables.

Definition 6.3.3 (Minimal Sub-Cube s>). Given reduced counterexample x̄c, s> ⊆ s is the

minimal subset over state variables such that Φ̃(x+ s− s>,s>)∧P(x,s)∧C(x, x̄c) is unsatisfiable.

Here, Φ̃(x+ s− s>,s>) represents the same design as Φ(x,s) except that variables which

are not included in s> are set as free variables by removing the logic driving them and making
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them inputs. We will describe how Φ̃ is built in Section 6.4.3. s> indicates a set of state variables

which values are critical for violation of the property. This set contains the suspicious state

variables which are sufficient for debugging the design. s

Definition 6.3.4 (Debugging). Given design Φ(x,s), specification P(x,s), and counterexample

xc, the set of state variables s> ⊆ s is sufficient for debugging Φ according to P and xc if there

exists design Φ′ such that Φ′∧ xc∧P is true and Φ′ is equivalent to Φ for all variables in s− s>.

This can be written as:

∃Φ′.
( ∧
∀si /∈s>

(Φ′.si = Φ.si)∧Φ
′∧ xc∧P

)
Notation 6.3.5. We use Φ.si to refer to the logic which drives state variable si in design Φ. This

logic could be a combinatorial or sequential expression, a constant, a port assignment in module

instantiation, etc..

In Section 6.5 we show that s> is sufficient for debugging the design since it is proven to

include the faulty state variable which should be modified.

6.3.2 Error Model

We consider debugging designs where a single bug is added to the RTL implementation

such that it modifies the logical expression assigned to a single state variable. A state variable

here refers to RTL variables which could have multiple bitwidths. Hence, a single fault at

RTL could map to multiple gate-level faults. Furthermore, a single fault could trigger multiple

counterexamples or failing test vectors. Note that if the buggy logical expression drives multiple

other state variables, it is still included in our error model and can be soundly detected. We

formalize the error model used in this work as follows.

Definition 6.3.6 (Error Model). Design Φ′(x,s) has a single fault compared to the design Φ(x,s)

if and only if the two designs only differ in the logical expression assigned to a single state

variable si.

114



6.4 Error Localization

Algorithm 6 Given erroneous design Φ(x,s) and properties P(x,s), error loc(Φ,P) returns a set
of state variables s> which includes the faulty state.

1: Input: Φ(x,s), P(x,s): Verilog, System Verilog Assertion
2: Output: s> ⊆ s s.t. faulty state si ∈ s>.
3: xc← SAT (∃x.Φ(x,s)∧¬P(x,s))
4: if xc = unsat then
5: then return /0

6: else
7: x̄c← sub cube (Φ,P,x,xc)
8: s̄← static ift (Φ, x̄c)
9: s>← sub cube (Φ,P, s̄, x̄c)

10: return s>

11: end if

6.4.1 Overview

Algorithm 6 describes the overview of the presented error localization technique. Given

design Φ(x,s) and properties P(x,s), the design is first verified against the specifications to find

counterexample xc that violates the properties. The counterexample is an assignment to all design

inputs for k cycles such that if replayed the properties are false at cycle k. This indicates that

formula xc∧Φ∧P is unsatisfiable.

In the first step toward error localization we reduce the counterexample by eliminating

the maximal number of assignments such that the reduced counterexample still falsifies the

properties. This can be stated as finding minimal x̄c ⊆ xc such that x̄c∧Φ∧P is unsatisfiable. We

find x̄c by relaxing concrete assignments to the symbolic variables and checking the satisfiability.

We use the notation xc[n 7→?] to denote the assignment on the input variables according to the

counterexample xc but leaving the n-th input variable free. We can use the following formula for

analysis:

ψ(xn) := Φ(x,s)∧P(x,s)∧C(x,xc[n 7→?]) (6.1)

115



Formula ψ(xn) is used to find conditions on xn such that the properties are true. If satisfiable, then

we know that there exists an assignment on xn such that the properties hold. That means xn is a

key variable whose value is crucial for determining whether the properties are true or false. On

the other hand, if ψ(xn) is unsatisfiable, we know that the value of xn does not affect the value of

the properties, and thus it can be eliminated from the counterexample.

We can find x̄c by checking the satisfiability of ψ(xn) formulas for all n. Taking this

approach, the required number of SAT queries is linear with respect to the number of input

arguments (|x|). In Section 6.4.2 we describe a binary search algorithm for computing x̄c such that

the number of SAT queries is linear with respect to |x̄c|. We refer to this algorithm as sub cube.

The reduced counterexample identifies the input variables which values are important for

the failure. Once these inputs are identified, we leverage a static information flow tracking engine

to find all the intermediate variables which are affected by the critical inputs. The flow tracking

algorithm described in Section 6.4.4 finds the set s̄⊆ s which values are driven by some input xn

in x̄c. We refer to this algorithm as static ift.

The last step of the procedure is to further minimize s̄ by eliminating the variables which

values do not affect the error. This is a very similar problem to that of counterexample reduction.

Note that values of all intermediate variables can be computed by replaying the counterexample.

We use C(x,s, x̄c,sc) to denote assignment x̄c and sc values to x and s variables. Similarly sc[n 7→?]

denotes that the n-th state variable is a free variable. However, in Φ values of state variables are

determined by the logic which drives them (i.e., they are not free variables.). Hence, to actually

have sn as a free variable we define Φ̃(x+ sn,s− sn) by removing the logic which drives sn in Φ

and turning sn to a primary input. Now we us the following formula to compute s> (Defn. 6.3.3):

ψ̃(sn) := Φ̃(x+ sn,s− sn)∧P(x,s)∧C(x,s, x̄c,sc[n 7→?]) (6.2)

We use formula ψ̃(sn) to decide if state variable sn is critical for debugging Φ by finding

116



conditions on sn that make the properties true. If ψ̃(sn) is satisfiable, it indicates that there exists

an assignment on sn which eliminates the error. Thus by altering the logic that drives sn in the

original design Φ one can potentially debug the design. In this scenario, sn will be included in s>.

If unsatisfiable, we can conclude that sn is irrelevant to the error and should not be included in

s>. Note that we only need to check satisfiability of ψ̃ for the intermediate variables which are

marked as tainted by static ift. Having temporary Φ̃ designs, we use the sub cube algorithm to

compute s>.

6.4.2 Computing Unsatisfiable Sub-Cube

Here we describe the sub cube algorithm for computing minimal sub-cube of an unsat-

isfiable formula. Given a cube c and formula ρ such that formula c∧ρ is unsatisfiable, finding

the minimal unsatisfiable sub-cube of c is defined as computing c̄ ⊆ c such that c̄∧ ρ is still

unsatisfiable. This directly corresponds to the problem we are interested in solving by replacing c

and ρ with the counterexample xc and formula Φ∧P, respectively.

A simple linear method for computing the minimal sub-cube is described in Algorithm 7.

A literal is dropped from the cube at each iteration of the algorithm; and the satisfiability of the

equation is checked (lines 4−6). If satisfiable (i.e., if a positive example pe is found) we know

that the literal which was dropped is critical for the formula to remain unsatisfiable and thus is

added to the sub-cube (lines 7−8). Dropping a literal from the counterexample cube is equivalent

to setting it as a free variable. As stated earlier, if we want to have the intermediate variables as

free variables we need to modify the design Φ. This is shown in line 5 of the algorithm and is

discussed in more detail in Section 6.4.3.

To reduce the number of SAT queries for computing the minimal sub-cube, we describe a

binary search algorithm based on Bradley et al. algorithm for computing prime implicates [BM07]

for inductive strengthening of properties [Bra11]. Given a disjunctive clause c and formula ρ such

that ρ→ c, the prime implicate problem [BM07] is stated as finding the minimal sub-clause c̄
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Algorithm 7 Given erroneous design Φ(x,s), properties P(x,s), a set of variables v⊆ x∪ s, and
counterexample vc, sub cube linear returns v̄⊆ v such that Φ∧P∧C(v, v̄c) is unsatisfiable.

1: Input: Φ(x,s), P(x,s), v⊆ x∪ s, vc =
∧

vn∈v
(vn = vn

c)

2: Output:v̄⊆ v s.t. Φ∧P∧
∧

vn∈v̄
(vn = vn

c) is unsat.

3: v̄← /0

4: while vc 6= Null do
5: Φ′← extend free vars(Φ,head(vc))
6: pe← SAT (∃x.Φ′∧P∧

∧
vn∈v̄

(vn = vn
c)∧ tail (vc))

7: if pe = sat then
8: v̄← v̄∪head (vc)
9: end if

10: vc← tail (vc)
11: end while
12: return v̄

Algorithm 8 Given erroneous design Φ(x,s), properties P(x,s), a set of variables v⊆ x∪ s, and
counterexample vc, sub cube returns v̄⊆ v such that Φ∧P∧C(v, v̄c) is unsatisfiable.

1: Input: Φ(x,s), P(x,s), v⊆ x∪ s, sup = /0,
vc =

∧
vn∈v

(vn = vn
c)

2: Output: v̄⊆ v s.t. Φ∧P∧
∧

vn∈v̄
(vn = vn

c) is unsat.

3: v̄← v
4: if len(v̄) = 1 then
5: return v̄
6: end if
7: r, l← split (v̄)
8: Φ′← extend free vars(Φ, l)
9: pe← SAT (∃x.Φ′∧P∧

∧
vn∈ sup ∪ r

(vn = xn
c))

10: if pe = unsat then
11: return sub cube(Φ,P,r,sup,vc)
12: end if
13: Φ′← extend free vars(Φ,r)
14: pe← SAT (∃x.Φ′∧P∧

∧
vn∈ sup ∪ l

(vn = vn
c))

15: if pe = unsat then
16: return sub cube(Φ,P,r,sup,vc)
17: end if
18: r̂ := sub cube(Φ,P,r,sup∪ l,vc)
19: l̂ := sub cube(Φ,P, l,sup∪ r̂,vc)
20: return l̂∪ r̂
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such that ρ→ c̄. Our sub-cube minimization problem can be formulated as the dual of computing

prime implicates.

To reduce the number of SAT queries in Algorithm 7, in each iteration of Algorithm 8

half of the literals are constrained by their counterexample value while the rest are free. The split

function divides the variables which have not been analyzed yet to two separate groups r and l of

roughly equivalent sizes. First, r variables are constrained to their counterexample values and l

variables are free. If unsatisfiable, all l variables can be safely removed from the cube. And the

algorithm iterates over r (lines 8−12, ignoring sup for now.). If satisfiable, we cannot make any

decision about l variables. Next, l variables are constrained while r variables are free. Similarly,

if unsatisfiable the algorithm iterates over l (lines 13−17).

If both queries are satisfiable, no variable can be immediately eliminated from the cube.

In this case, the algorithm first assumes that all l variables are included in the sub-cube and

iterates over r. This is modeled by adding l to the auxiliary set sup which variables are always

constrained by the counterexample (lines 9 and 14) and is initially empty. This result in r̂ ⊆ r,

which is the sub-cube of r computed with respect to l. Next, r̂ is added to the auxiliary set and l̂

is computed by iterating over l. The final sub-cube contains both r̂ and l̂ (lines 18−20).

6.4.3 Computing Sub-Cube on State Variables

The algorithms described in Section 6.4.2 can be used to compute the minimal unsatisfiable

sub-cube on both the input variables and state variables. The only difference between the two

cases is that for finding the sub-cube over the state variables we need to be able to set them as

free variables for analysis. For instance, to check if state variable sn should be included in the

unsatisfiable sub-cube s>, we need to check satisfiability of ψ̃(sn) which requires having sn as a

free variable. To do so we generate temporary design Φ̃(x+ sn,s− sn) which is equivalent to the

original design Φ(x,s) except that sn is turned into a primary input by removing the logic which

defines it.
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Algorithm 9 describes the extend free var(Φ,v) procedure which generates design Φ̃

from Φ by turning a set of state variables v into primary inputs. For each variable vn ∈ v, the

algorithm first finds the hierarchical path p and module g in which vn is defined. Next, it generates

new module gp from g by adding vn
free as a new input which drives vn (lines 4-7). In order to have

vn
free as a primary input of Φ̃, extended module gp replaces the original g in the hierarchical path

p. Lastly, any module on path p which instantiates g is extended with input vn
free (lines 8−11 ).

Algorithm 9 Given design Φ(x,s) and a set of state variables v, extend free vars returns new
design Φ̃ where v variables are turned into primary inputs.

1: Input: Φ(x,s),v⊆ x∪ s
2: Output: Φ̃(x+ v,s− v)
3: Φ̃←Φ

4: for vn ∈ v− x do
5: Find module g and hierarchical path p where vn is defined
6: In Φ̃ define module gp from g by adding new input vn

free
7: In gp replace right hand-side of vn with vn

free
8: for module h on path p instantiating g do
9: In Φ̃ Define module hp by adding new input vn

free
10: Replace each instantiation of g with gp and h with hp
11: end for
12: end for
13: return Φ̃(x+ v,s− v)

6.4.4 Static Information Flow Analysis

The model of information flow [Den76, DD77b] enables analyzing how information

moves in a given design. Information flows from input variable xn to state variable sm if some

change in xn value could alter sm value while all other input variables remain the same. Information

can flow through both the data path and the control path called explicit and implicit flows,

respectively. Explicit flows refer to cases where the source variable (xn here) directly affects

the output of an operation which controls the destination variable (sm here). More subtly and

via implicit flow, variable xn can affect value of sm if it is used in a conditional statement which
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controls sm.

Here, we use information flow analysis to find the set of state variables which are affected

by the critical inputs identified by the reduced counterexample x̄c. More specifically, we collect

the set of state variables s̄⊆ s such that x̄c flows to s̄. Algorithm 10 describes the method used for

finding s̄ which we call the set of tainted state variables. This set initially includes the critical

inputs from the reduced counterexample x̄c and is iteratively extended with tainted state variables.

To do so, for each element sn ∈ s̄ we find all the state variables which computations depend on

sn. This is done by finding all assignments2 where sn is used as a right hand-side or conditional

variable, tracking both explicit and implicit flows. This is done by traversing the data flow and

control flow graphs of the design extracted from its abstract syntax tree (AST) representation.

The set of tainted variables s̄ is then extended by the left hand-side variables of these assignments.

The procedure terminates when all elements of s̄ have been analyzed. Note that the information

flow analysis does not collect the constants defined in the design since they are not driven by

inputs. However, we add all the constants to the set of suspicious variables as they may potentially

include the bug.

Algorithm 10 Given design Φ(x,s) and a set of design inputs x̄, static ift returns a set of state
variables s̄ which values are influenced by x̄.

1: Input: Φ(x,s), x̄c ⊆ x
2: Output: s̄⊆ s s.t. x̄c flows to s̄.
3: s̄← x̄c
4: for sn ∈ s̄ do
5: sn

exp flow := l-values of assignments where sn is an r-value
6: sn

imp flow := l-values of assignments where sn is a condition
7: s̄← s̄∪ sn

exp flow∪ sn
imp flow

8: end for
9: return s̄− x̄c +Φ.Consts

The described method collects the tainted state variables while preserving their locality.

Hence, variables which are relevant (e.g., if they belong to the same instantiation of a module)

2Assignment here refers to all continuous, procedural (blocking and non-blocking) and module port assignments
in Verilog.
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module vedic2x2(input[1:0] a,b,output [3:0] prod);
wire a1b1 = a[1] & b[1];
wire a0b1 = a[1] & b[1];//The faulty expression
wire a1b0 = a[1] & b[0];
wire a0b0 = a[0] & b[0];
wire carry;

assign prod[0] = a0b0;
half_adder HA0 (a0b1,a1b0,prod[1],carry);
half_adder HA1 (a1b1,carry,prod[2],prod[3]);

endmodule
module half_adder(input a,b, output sum, carry);

assign sum = a ^ b;
assign carry = a & b;

endmodule

module ext_vedic2x2(input a0b1_free,
input [1:0] a,b,output [3:0] prod);

wire a1b1 = a[1] & b[1];
wire a0b1 = a0b1_free; 
//wire a0b1 = a[1] & b[1];//The faulty expression
wire a1b0 = a[1] & b[0];
wire a0b0 = a[0] & b[0];
wire carry;

assign prod[0] = a0b0;
half_adder HA0 (a0b1,a1b0,prod[1],carry);
half_adder HA1 (a1b1,carry,prod[2],prod[3]);

endmodule

module half_adder(input a,b, output sum, carry);
assign sum = a ^ b;
assign carry = a & b;

endmodule

module ext_vedic2x2(input sum_free,
input [1:0] a,b,output [3:0] prod);

wire a1b1 = a[1] & b[1];
wire a0b1 = a[1] & b[1];//The faulty expression
wire a1b0 = a[1] & b[0];
wire a0b0 = a[0] & b[0];
wire carry;

assign prod[0] = a0b0;
half_adder_HA0 HA0 (sum_free, a0b1,a1b0,prod[1],carry);
half_adder HA1 (a1b1,carry,prod[2],prod[3]);

endmodule

module half_adder_HA0 (input sum_free,
 input a,b, output sum, carry);

assign sum = sum_free; 
//assign sum = a ^ b;
assign carry = a & b;

endmodule

module half_adder(input a,b, output sum, carry);
assign sum = a ^ b;
assign carry = a & b;

endmodule

(a) (b) (c)
Figure 6.2: A buggy implementation of a 2bit Vedic multiplier and samples of temporary
modules generated during the error localization process. Highlighted parts show how the
temporary designs are different from the original one. (a) Buggy implementation where fault
is added to the logic driving variable a0b1. (b) Temporary design generated to compute
satisfiability of formula ψ̃(a0b1) by turning a0b1 to a free variable. (c) Temporary design
generated to analyze effect of variable HA0.sum on the failure. This design is used to check
satisfiability of formula ψ̃(HA0.sum) from equation 6.2.

will be next to each other. This helps the binary search algorithm to eliminate groups of variables

as related variables will be roughly grouped together.

Recently, several information flow tracking tools have been introduced to enable secu-

rity verification of hardware designs [TWM+09, JM12, ZWSM15, AHMK, AHK, JDSZ18].

These tools provide a precise technique for capturing flow of information by dynamically

analyzing the Boolean values of design’s variables (e.g., the branch directions are precisely

computed) [HBA+16]. Here we rely on a light-weight static information flow tool which only

analyzes connectivity of different variables. This lack of precision is by intention as we later need

to analyze the design by setting some variables as free and considering all possible values.

Example 6.4.1. Take as an example a 2bit Vedic multiplier where a bug is manually added to its

RTL implementation as shown in Fig. 6.2 (a). The output of the error localization tool analyzing

the buggy design is shown in Fig. 6.3. In this simple example both inputs are critical for the
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Figure 6.3: Output of the error localization tool analyzing the buggy 2bit Vedic multiplier from
Fig. 6.2 (a). “Critical inputs” are the input variables which appear in the reduced counterexample.
“Tainted state variables” are variables which are driven by the critical inputs and are collected by
the information flow tracking unit. “Suspicious state variables” are the variables which the tool
has marked as potentially buggy and include the faulty state. The variables are reported by their
hierarchical names.

property violation. “Tainted state variables” (i.e., s̄) are wires and registers which are driven by

these inputs. In this small example all state variables are marked as tainted. “Suspicious state

variables” (i.e., s>) are the state variables which should be inspected for debugging the design.

In this example the tool can precisely locate the bug. However, in most cases several benign

variables are also included in s> as the tool conservatively eliminates irrelevant variables.

Two samples of the temporary files generated while computing the unsatisfiable sub-cube

on the state variables are shown in Fig. 6.2(b) and (c). The difference between the original

modules and the temporary versions are highlighted. In Fig. 6.2(b), new input a0b1 free is added

which drives a0b1. Thus, a0b1 can be seen as a free variable which could take any value as is

not constrained by the inputs a and b. This modified design corresponds to Φ̃ from equation 6.2

and is used to compute ψ̃(a0b1). In this example ψ̃(a0b1) is satisfiable since modifying the

value of a0b1 can eliminate the bug. Thus, a0b1 is included in the set of suspicious variables

s>. Fig. 6.2(c) shows the temporary design generated to analyze the effect of HA0.sum on the

observed error. In this case an extended version of the half adder module is generated by adding

new input sum free which drives its sum output. In the top level module the half adder which

drives HA0.sum (i.e., instantiation HA0) is replaced by the new extended half adder. By adding

sum free as input to the top level module, the output sum of the half adder HA0 can be seen

as free variable. This new design is used to check satisfiability ψ̃(HA0.sum). In this case ψ̃ is

unsatisfiable and hence HA0.sum is not included in the set of suspicious variables s>.
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Table 6.1: Summary of error localization experiments on benchmarks from OpenCores [ope].
“#of Suspicious Variables” shows the number of RTL expressions which are marked as potentially
buggy by the tool.

Design SVA Property
#of Design
Variables

#of Suspicious
Variables

Time
sec.

Arbiter – TDMA
4 cores, 2 shared units

Grant given to at most n cores
assert ( $ Countones (grant) ≤ n) 26 3 3.4

Arbiter – TDMA
4 cores, 2 shared units

Equal share between cores n and m accessing unit i over K time steps

assert
(
Σ

K−1
k=0 $Past(granti[n],k) ==Σ

K−1
k=0 $Past(granti[m],k)

)
26 1 2.1

Arbiter – Round Robin
4 cores, 2 shared units

Grant given to at most n cores
assert ( $ Countones (grant) ≤ n) 64 3 34.3

Arbiter – Round Robin
4 cores, 2 shared units

Grant only given to a core which requested
assert ($Past(reqi,n)→ granti & $Past(reqi,n)) 64 1 27.7

12bit Ripple Adder assert(a + b + cin == sum + cout * 212) 44 1 1.3
12bit Ripple Adder assert(a + b + cin == sum + cout * 212) 44 4 4.5

4bit Vedic Multiplier assert(a * b == prod) 72 9 23.5
4bit Vedic Multiplier assert(a * b == prod) 72 10 25.8
8bit Vedic Multiplier assert(a * b == prod) 88 2 29.6
8bit Vedic Multiplier assert(a * b == prod) 88 6 31.5

6.5 Soundness Analysis

Theorem 6.5.1 (Soundness). Given design Φ with single fault model, specification P, and

counterexample xc such that xc falsifies P; state variable si which should be modified in order to

eliminate the error represented by xc is included in s>.

Proof. We show this via proof by contradiction. As contradiction hypothesis assume that si /∈ s>.

Consider Φ′ representing a design which differs from Φ only in a single state. Using the theorem

obligation and the single fault error model (Def. 6.3.6) we can write:

∃Φ′.Φ′∧P∧ xc∧Φ.si 6= Φ
′.si∧

∧
s j 6=si

Φ.s j = Φ
′.s j

Hence, the following equation which checks the satisfiability of Φ̃ with respect to P and xc when

si is set as free variable is satisfiable:

Φ̃(x,si,s− si)∧P∧ xc

From this we know that ψ̃(si) as defined by equation 6.2 is satisfiable. Hence, si is included in s>

by definition of the sub cube algorithm. This falsifies the contradiction hypothesis.
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Proposition 6.5.2 (Upper Bound). To compute s> ⊆ s̄, sub cube algorithm described in Algo-

rithm 8 makes at most O
(
(|s>|−1)+ |s>|lg |s̄||s>|

)
SAT queries.

The proof of the above proposition along with the lower bound on the number of queries

required to compute minimal subset s> can be found in [BM07]. Note that s> can be directly

acquired from a SAT solver in form of the unsatisfiable core. However, such set is not necessary

minimal [BM07].

6.6 Evaluation

We have implemented the described methodology in Python and using open source

verification tools as shown in Fig. 6.1. The developed framework analyzes hardware designs

written in Verilog RTL along with a set of System Verilog Assertion properties. Before each SAT

query, Yosys [Wolb] is called to translate the Verilog design and properties to SMT-LIB2 [smt]

format which can be analyzed by any SMT solver. We have used Yices2 [Dut14] as the SMT

solver in our experiments due to its good support for theory of bit-vectors. The information flow

analysis unit also uses Yosys front-end parser to translate the Verilog design to its abstract syntax

tree (AST) representation. The final output of the tool, as shown by the simple example in Fig. 6.2

is a set of suspicious state variables where the logic assigned to them includes the bug.

We have tested our error localization framework on multiple designs acquired from Open-

Cores [ope]. We have written a set of SVA formal properties for each design and verified them by

bounded model checking (BMC). Next, we manually add a bug to the RTL implementation and

locate the bug using our framework. These bugs include errors in the logical expressions, wrong

module port assignments, and incorrect state encoding and state transition in finite state machines

(FSM). Note that each RTL bug could potentially result in several faults in the gate-level netlist.

We use SVA properties to state high level design expectations and to automatically search for a
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counterexample trace which triggers the added bug. However, the SVA properties can be easily

replaced by a set of test vectors which model the expected input/output relation.

Table 6.1 shows the results of our experiments in terms of the number of state variables

reported as suspicious and the required time. In all cases, the actual bug is contained in the set

of suspicious state variables. In most cases the set of suspicious variables includes some correct

variables as well. This is expected as some variables besides the faulty one could potentially

affect the property, and the tool is conservative in eliminating them. In our experiments, the tool

marks around 6% of the state variables as suspicious on average. This could considerably reduce

the time that the designer needs to spend on debugging as she only needs to focus on a small part

of the design. In Table 6.1, “# of Design Variables” refers to the total number of RTL wires and

registers (with various bitwidths) and are counted from the AST representation. The reported

time includes the time spent on all steps of Algorithm 6 including the time required for finding

the counterexample in the verification round. All experiments are run using a desktop computer

and 2.3 GHz Intel Core i5 CPU.

6.7 Conclusion

This work presents a formal approach for localizing single faults in Verilog RTL designs.

The proposed error localization framework receives a buggy hardware design and a set of formal

properties which are violated. And it identifies a set of source code expressions which includes the

error. The proposed technique simplifies debugging at a high-level of abstraction by allowing the

designer to focus on a substantially smaller portion of the design (around 6% in our experiments)

which is marked as suspicious. The proposed solution relies on formal solvers to soundly eliminate

the code segments which do not contain the error.

Chapter 6 is being prepared for the publication of the material. Armaiti Ardeshiricham,

Christie Lincoln, Alvin Zhang, Lisa Luo, Amir Uqdah, Sicun Gao, Ryan Kastner. The dissertation
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author was the primary investigator and author of this material.
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[ESW12] Evren Ermis, Martin Schäf, and Thomas Wies. Error invariants. In International
Symposium on Formal Methods, pages 187–201. Springer, 2012.

[FAK+12] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. Clearing the clouds: A study of emerging scale-out
workloads on modern hardware. Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2012.

[Fen06] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou and Youfeng
Wu. LIFT: A Low-Overhead Practical Information Flow Tracking System for De-
tecting General Security Attacks. In Annual IEEE/ACM International Symposium
on Microarchitecture, December 2006.

[FJJ+12] Matthew Fredrikson, Richard Joiner, Somesh Jha, Thomas Reps, Phillip Porras,
Hassen Saı̈di, and Vinod Yegneswaran. Efficient runtime policy enforcement using
counterexample-guided abstraction refinement. In International Conference on
Computer Aided Verification, pages 548–563. Springer, 2012.

[FMBD18] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using
conflict-driven learning. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 420–435. ACM, 2018.

[FMVG+17] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
Component-based synthesis of table consolidation and transformation tasks from
examples. ACM SIGPLAN Notices, 52(6):422–436, 2017.

131



[Fos08] Harry Foster. Assertion-based verification: Industry myths to realities (invited
tutorial). In International Conference on Computer Aided Verification, pages 5–10.
Springer, 2008.

[FSW99] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa. Model-based diagnosis
of hardware designs. Artificial Intelligence, 111(1-2):3–39, 1999.

[GJJ06] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. Retrofitting legacy code for
authorization policy enforcement. IEEE, 2006.

[GJTV11] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthe-
sis of loop-free programs. ACM SIGPLAN Notices, 46(6):62–73, 2011.

[Gul10] Sumit Gulwani. Dimensions in program synthesis. In Proceedings of the 12th
international ACM SIGPLAN symposium on Principles and practice of declarative
programming, pages 13–24. ACM, 2010.

[HAAK16] W. Hu, A. Althoff, A. Ardeshiricham, and R. Kastner. Towards property driven
hardware security. In 2016 17th International Workshop on Microprocessor and
SOC Test and Verification (MTV), pages 51–56, Dec 2016.

[HBA+16] Wei Hu, Andrew Becker, Armita Ardeshiricham, Yu Tai, Paolo Ienne, Dejun
Mu, and Ryan Kastner. Imprecise security: quality and complexity tradeoffs for
hardware information flow tracking. In Computer-Aided Design (ICCAD), 2016
IEEE/ACM International Conference on, pages 1–8. IEEE, 2016.

[HJR10] William R Harris, Somesh Jha, and Thomas Reps. Difc programs by automatic
instrumentation. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 284–296. ACM, 2010.

[HJRS17] William R Harris, Somesh Jha, Thomas W Reps, and Sanjit A Seshia. Program
synthesis for interactive-security systems. Formal Methods in System Design,
51(2):362–394, 2017.

[HMOK16a] W. Hu, B. Mao, J. Oberg, and R. Kastner. Detecting hardware trojans with gate-
level information-flow tracking. Computer, 49(8):44–52, Aug 2016.

[HMOK16b] W. Hu, B. Mao, J. Oberg, and R. Kastner. Detecting hardware trojans with gate-
level information-flow tracking. Computer, 49(8):44–52, 2016.

[HSSA16] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. Stratified synthesis:
automatically learning the x86-64 instruction set. In ACM SIGPLAN Notices,
volume 51, pages 237–250. ACM, 2016.

[Hu92] Wei-Ming Hu. Reducing timing channels with fuzzy time. Journal of computer
security, 1(3-4):233–254, 1992.

132



[JDSZ18] Zhenghong Jiang, Steve Dai, G Edward Suh, and Zhiru Zhang. High-level syn-
thesis with timing-sensitive information flow enforcement. In 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE,
2018.

[JGST10] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pages 215–224.
ACM, 2010.

[JHS02] James A Jones, Mary Jean Harrold, and John Stasko. Visualization of test informa-
tion to assist fault localization. In Proceedings of the 24th International Conference
on Software Engineering. ICSE 2002, pages 467–477. IEEE, 2002.

[JM11] Manu Jose and Rupak Majumdar. Cause clue clauses: error localization using
maximum satisfiability. ACM SIGPLAN Notices, 46(6):437–446, 2011.

[JM12] Y. Jin and Y. Makris. Proof carrying-based information flow tracking for data
secrecy protection and hardware trust. In 2012 IEEE 30th VLSI Test Symposium
(VTS), pages 252–257, 2012.

[KDK09] Hari Kannan, Michael Dalton, and Christos Kozyrakis. Decoupling dynamic
information flow tracking with a dedicated coprocessor. In 2009 IEEE/IFIP Inter-
national Conference on Dependable Systems & Networks, pages 105–114. IEEE,
2009.

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre attacks: Exploiting speculative execution. arXiv preprint arXiv:1801.01203,
2018.

[KKSAG18] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. Spectre returns! speculation attacks using the return stack buffer.
In 12th {USENIX} Workshop on Offensive Technologies ({WOOT} 18), 2018.

[Koc] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. Advances in Cryptology - CRYPTO’96.

[KW18] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer overflows: Attacks
and defenses. arXiv preprint arXiv:1807.03757, 2018.

[LAZJ03] Ben Liblit, Alex Aiken, Alice X Zheng, and Michael I Jordan. Bug isolation via
remote program sampling. In ACM Sigplan Notices, volume 38, pages 141–154.
ACM, 2003.

133



[LCL+17] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
S3: syntax-and semantic-guided repair synthesis via programming by examples. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineer-
ing, pages 593–604. ACM, 2017.

[LKO+14] Xun Li, Vineeth Kashyap, Jason K Oberg, Mohit Tiwari, Vasanth Ram Ra-
jarathinam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T
Chong. Sapper: A language for hardware-level security policy enforcement. ACM
SIGARCH Computer Architecture News, 42(1):97–112, 2014.

[LNZ+05] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jordan. Scalable
statistical bug isolation. Acm Sigplan Notices, 40(6):15–26, 2005.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown. arXiv preprint arXiv:1801.01207, 2018.

[LTO+11a] Xun Li, Mohit Tiwari, Jason K Oberg, Vineeth Kashyap, Frederic T Chong, Timo-
thy Sherwood, and Ben Hardekopf. Caisson: a hardware description language for
secure information flow. In ACM SIGPLAN Notices, volume 46, pages 109–120.
ACM, 2011.

[LTO+11b] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong,
Timothy Sherwood, and Ben Hardekopf. Caisson: A hardware description language
for secure information flow. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’11, pages 109–120,
New York, NY, USA, 2011. ACM.

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level
cache side-channel attacks are practical. In 2015 IEEE Symposium on Security and
Privacy, pages 605–622. IEEE, 2015.

[MFF16] Jan Malburg, Alexander Finder, and Görschwin Fey. Debugging hardware designs
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