Lawrence Berkeley National Laboratory

LBL Publications

Title

Machine learning in a data-limited regime: Augmenting experiments with synthetic data

uncovers order in crumpled sheets

Permalink

|https://escholarship.orgc/item/1669s3nd

Journal

Science Advances, 5(4)

ISSN
2375-2548

Authors

Hoffmann, Jordan
Bar-Sinai, Yohai
Lee, Lisa M

Publication Date
2019-04-05

DOI
10.1126/sciadv.aau6792

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California

https://escholarship.org/uc/item/1669s3n0
https://escholarship.org/uc/item/1669s3n0#author
https://escholarship.org
http://www.cdlib.org/

arXiv:1807.01437v2 [cond-mat.soft] 3 Jan 2019

Machine Learning in a data-limited regime:
Augmenting experiments with synthetic data uncovers order in crumpled sheets

Jordan Hoffmann,' Yohai Bar-Sinai,'** Lisa Lee,' Jovana Andrejevic,'
Shruti Mishra,! Shmuel M. Rubinstein,!> T and Chris H. Rycroft!:2
YJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

2Computational Research Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
(Dated: January 7, 2019)

Machine learning has gained widespread attention as a powerful tool to identify structure in complex, high-
dimensional data. However, these techniques are ostensibly inapplicable for experimental systems where data
is scarce or expensive to obtain. Here we introduce a strategy to resolve this impasse by augmenting the ex-
perimental dataset with synthetically generated data of a much simpler sister system. Specifically, we study
spontaneously emerging local order in crease networks of crumpled thin sheets, a paradigmatic example of spa-
tial complexity, and show that machine learning techniques can be effective even in a data-limited regime. This
is achieved by augmenting the scarce experimental dataset with inexhaustible amounts of simulated data of rigid
flat-folded sheets, which are simple to simulate and share common statistical properties. This significantly im-
proves the predictive power in a test problem of pattern completion and demonstrates the usefulness of machine
learning in bench-top experiments where data is good but scarce.

INTRODUCTION

Machine learning is a versatile tool for data analysis that
has permeated applications in a wide range of domains [1]. It
has been particularly well suited to the task of mining large
datasets to uncover underlying trends and structure, enabling
breakthroughs in areas as diverse as speech and character
recognition [2-5], medicine [6], games [7, 8], finance [9], and
even romantic attraction [10]. The prospect of applying ma-
chine learning to research in the physical sciences has like-
wise gained attention and excitement. Data-driven approaches
have been successfully applied to data-rich systems such as
classifying particle collisions in the LHC [11, 12], classifying
galaxies [13], segmenting large microscopy datasets [14, 15]
or identifying states of matter [16, 17]. Machine learning has
also enhanced our understanding of soft-matter systems: In a
recent series of works, Cubuk, Liu, and collaborators have
used data-driven techniques to define and analyze a novel
“softness” parameter governing the mechanical response of
disordered, jammed systems [18-20].

All examples cited above address experimentally, compu-
tationally, or analytically well-developed scientific fields sup-
plied by effectively unlimited data. By contrast, many systems
of interest are characterized by scarce or poor-quality data, a
lack of established tools, and a limited data acquisition rate
that falls short of the demands of effective machine learning.
As a result, the applicability of machine learning to such sys-
tems is problematic and would require additional tools. This
would potentially be of high value to the experimental physics
community and would require novel ways of circumventing
the data limitations, either experimentally or computationally.

In this manuscript, we study crumpling and the evolution
of damage networks in thin sheets as a test case for machine-
learning-aided science in complex, data-limited systems that

* Corresponding author: ybarsinai @gmail.com
T Corresponding author: shmuel @seas.harvard.edu

lack a well established theoretical, or even a phenomenologi-
cal, model.

Crumpling is a complicated and poorly understood pro-
cess: As a thin sheet is confined to a small region of space,
stresses spontaneously localize into one-dimensional regions
of high curvature [21-23], forming a damage network of sharp
creases (Fig. 1B) that can be classified according to the sign
of the mean curvature: creases with positive and negative cur-
vature are commonly referred to as valleys and ridges, re-
spectively. Previous works on crumpled sheets have estab-
lished clear and robust statistical properties of these damage
networks. For example, it has been shown that the number
of creases at a given length follows a predictable distribu-
tion [24], and the cumulative amount of damage over repeated
crumpling is described by an equation of state [25]. However,
these works do not account for spatial correlations, which is
the structure we are trying to unravel. The goal of this work is
to learn the statistical properties of such networks by solving
a problem of network completion: Separating the ridges from
valleys, can a neural net be trained to accurately recover the
location of the ridges, presented only with the valleys? For
later use, we call this problem partial network reconstruction.
The predominant challenge we are addressing here is a severe
data limitation. As detailed below, we were unable to per-
form this task using experimental data alone. However, by
augmenting experimental data with computer-generated ex-
amples of a simple sister system which is well understood,
namely rigid flat-folding, we trained an appropriate neural
network with significant predictive power.

The primary dataset used in this work was collected for a
previous crumpling study [25], where the experimental pro-
cedures are detailed and are only reviewed here for complete-
ness. 10 cm X 10 cm Mylar sheets are crumpled by rolling
them into a 3 cm diameter cylinder and compressing them
uni-axially to a specified depth within the cylindrical con-
tainer, creating a permanent damage network of creasing scars
embedded into the sheet. To extract the crease network, the
sheet is carefully opened up and scanned using a custom-made

mailto:ybarsinai@gmail.com
mailto:shmuel@seas.harvard.edu

FIG. 1. Examples of crease networks: (A) A 10 cm x 10 cm sheet
of Mylar that has undergone a succession of rigid flat-folds. (B) A
sheet of Mylar that has been crumpled. (C) A simulated rigid flat-
folded sheet. The sheet has been folded 13 times. Ridges are colored
red, and valleys are blue.

laser profilometer, resulting in a topographic height map from
which the mean curvature is calculated. The sheet is then suc-
cessively re-crumpled and scanned between 4 and 24 times,
following the same procedure. The curvature map is prepro-
cessed with a custom algorithm based on the Radon transform
(for details see Sec. I in the Supplementary Information (SI))
to separate creases from the flat facets and fine texture in the
data (Fig. 2A). The complete dataset consists of a total of 506
scans corresponding to 31 different sheets.

RESULTS

Failures with only experimental data As stated above,
the task we tried to achieve is partial network reconstruc-
tion: inferring the location of the ridges given only the val-
leys (Fig. 2A). Our first attempts were largely unsatisfactory
and demonstrated little to no predictive power. Strategies for
improving our results included subdividing the input data into
small patches of different length scales, varying the network
architecture, data representation, and loss function, and de-
noising the data in different ways. We approached variants
of the original problem statement, trying to predict specific
crease locations, distance from a crease, and changes in the
crease network between successive frames. In all these cases
our network invariably learned specific features of the train-
ing set rather than general principles that hold for unseen test
data, a common problem known as over-fitting. The main cul-
prit for this failure is insufficient data: the dataset of a few
hundred scans available for this study is small compared to
standard practices in machine learning tasks (for example, the
problem of hand-written digit classification, MNI ST, which is
commonly given as an introductory exercise in machine learn-
ing, consists of 70,000 images [5]). Moreover, as creases pro-
duce irreversible scars, images of successive crumples of the
same sheet are highly correlated, rendering the effective size
of our dataset considerably smaller.

Over-fitting can be addressed by constraining the model
complexity through insights from physical laws, geometric
rules, symmetries, or other relevant constraints. Alternatively,
it can be mediated by acquiring more data. Sadly, neither of
these avenues is viable: current theory of crumpling cannot
offer significant constraints about the structure or evolution of
crease networks. Furthermore, adding a significant amount of

A Height data

B in silico

= \/3lleys === Ridges

\

AL

Qu rvature map

7

A

"
14

21\ SN,
b 0
0. 0
0. 0.09

/.

/,
<
X

XA
n

Rado
transform based
denoiser

-
£ %
R 0.06 0.04
.08 || 0.1 . 0.08
0. 0.12

C experimental

Valleys (Input) Ridges w/o ‘ ﬁ
W 7\;\\' \ / >\ \// / } V/ | 3
|| | AR

062 0.3 0.08|f 0.7 017 0.13

>"\\’-* |) \¢ P2 »
NAY | %

04 049 0.11

0.25 0.44 0.31

0.12 0.25 0.63 | 0.1 0.38 0.51

>

Distance from crease:

far near

)) Confusion Matrix accuracy:
Distance from ridge
(Target) 0.0 0.5 1.0

FIG. 2. (A) A schematic of the processing pipeline. From the
height map, a mean curvature map is calculated and denoised with a
Radon-transform based method. Valleys (black) and ridges (red) are
separated. The binary image of the valleys (X) is the input to the
neural network (A). The distance transform of the binary image of
the ridges is the target (Y). Brighter colors represent regions closer
to ridges. These color conventions are consistent through all figures
in this paper. (B) Two samples of predictions on generated data. The
true fold network is superimposed on the predicted distance map. It
is seen that the true ridges (red) coincide perfectly with the bright
colors, demonstrating strong predictive power. Below the predic-
tions we show confusion matrices, with the nearest third of pixels,
the middle third, and the furthest third. (C) Two predictions, and
their corresponding confusion matrices, using the network trained
on generated data (without noise) and applied to experimental scans.

experimental data is prohibitively costly: achieving a dataset
of the size typically used in deep learning problems, say 10*
scans, would require thousands of lab hours, given that a sin-
gle scan takes about ten minutes. Lastly, data cannot be ef-
ficiently simulated since, while preliminary work on simulat-
ing crumpling is promising [26, 27], generating a simulated
crumpled sheet still takes longer than an actual experiment. A
different approach is needed.

Turning to a sister system: rigid flat-folding An alterna-
tive strategy is to consider a reference system free from data
limitations alongside the target system, with the idea that sim-
ilarities between the target and reference systems allow a ma-
chine learning model of one to inform that of the other. This
is similar to transfer learning [28], but in this case rather than

re-purpose a network, we supplement the training data with
that of a reference system. In our case, a natural choice of
such a system is a rigid flat-folded thin sheet, effectively a
more constrained version of crumpling which is well under-
stood. Rigid flat-folding is the process of repeatedly folding
a thin sheet along straight lines to create permanent creases,
keeping all polygonal faces of the sheet flat during folding.
For brevity, we will henceforth omit the word “rigid” and re-
fer simply to flat-folding.

Known rules constrain the structure of the flat-folded crease
network: Creases cannot begin or terminate in the interior of
a sheet—they must either reach the boundary or create closed
loops; the number of ridge and valley creases that meet at each
vertex differs by two (Maekawa’s theorem); finally, alternat-
ing sector angles must sum to 7 (Kawasaki’s theorem) [29].
Given these rigid geometric rules, we expect partial network
reconstruction of rigid flat-folded sheets to be a much more
constrained problem than that of crumpled ones.

However, while experimentally collecting flat-folding data
is only marginally less costly than collecting crumpling data,
simulating it on a computer is a straightforward task, which
provides a dataset of a practically unlimited size. We wrote
a custom code to do this using the Voro++ library [30]
for rapid manipulation of the polygonal folded facets, as de-
scribed in Sec. II of the Supplemental Information. Typical
examples are shown in Fig. 1C, Fig. 2B and Fig. S1.

Having flat-folding as a reference system provides foremost
a convenient setting for comparing the performance of differ-
ent network architectures. The vast parameter space of neu-
ral networks requires testing different hyperparameters, loss
functions, optimizers, and data representations with no stan-
dard method for finding the optimal combination. This prob-
lem is exacerbated when it is not at all clear where the failure
lies: Is the task at all feasible? If so, is the network archi-
tecture appropriate? If so, is the dataset sufficiently large?
Answering these questions with our limited amount of experi-
mental data is very difficult. In contrast, for flat-folded sheets
we are certain the task is feasible and our data is comprehen-
sive, so experimentation with different networks is easier. In-
deed, after testing many architectures, we identified a network
capable of learning the desired properties of our data, repro-
ducing linear features and maintaining even non-local angle
relationships between features.

Network structure The chosen network is a modified ver-
sion of the fully-connected SegNet [31] deep convolutional
neural net. As outlined in Fig. 2A, each crease network is sep-
arated into its valleys and ridges. The neural net, A, is given
as an input a binary image of the valleys, denoted X (“in-
put” in Fig. 2). The output of the network, N (X), is the pre-
dicted distance transform of the ridges, Y. That is, for each
pixel, Y is the distance to the nearest ridge pixel (“target”
in Fig. 2). Training is performed by minimizing the Ly dis-
tance (the “loss”) between the predicted distance transform,
Y = N (X) and the real one,

q

where the summation index ¢ represents image pixels. The
motivation for this choice of representation is that creases are
sharp and narrow features, and therefore if we require N to
predict the precise location of a crease, even slight inaccura-
cies would lead to vanishing gradients of L, making training
harder. See Materials and Methods below for full details of
the implementation.

In silico flat-folding For exclusively in silico generated
flat-folding data, the trained network performs partial network
reconstruction with nearly perfect accuracy, as demonstrated
in Fig. 2B: The agreement between the true location of the
valleys (red lines) and their predicted location (bright colors)
is visibly flawless. As a means of quantifying accuracy, we
present the confusion matrices of the predicted and true out-
put (Fig. 2B).

Confusion matrices are a common way to quantify classifi-
cation errors, and since we are predicting the distance from a
crease, the problem can be thought of as a classification prob-
lem: choosing some thresholds according to typical values of
the distances, we can ask for each point in space whether it
close to a crease, far from it, or at an intermediate distance.
The confusion matrix measures what percentage of each class
is correctly classified, and if not, what class it is wrongly clas-
sified as. We define three equal bins, based on the relative
distance from the predicted ridges. The upper row in the ma-
trix corresponds to pixels which are closest to ridges, and the
lower row to farthest pixels. Similarly, the first and last col-
umn correspond to the closest and farthest predicted distances.
Thus, the top left entry in the matrix contains the probability
of correctly predicting regions closest to a ridge, which is ap-
proximately 90%.

Partial network reconstruction of in silico flat-folded sheets
is itself a non-trivial task requiring the knowledge of a com-
plicated set of geometrical rules. Tasked to a human, inferring
these rules from the data would require non-negligible effort
in writing an explicit algorithm. The neural network, however,
solves this problem with relative ease.

Experimental flat-folding As an intermediate step be-
tween in silico flat-folding and experimental crumpling data,
we next examine the performance of the neural network on
experimental flat-folding scans. Fig. 2C reveals that the re-
sulting prediction weakens by comparison, a consequence of
noise present in experimental data that is absent from the in
silico samples. Noise occurs in the form of varying crease
widths, fine texture, and missing creases that are undetected in
image processing. In some cases, even the true creases that are
missed during processing are correctly predicted, which also
introduces error to our accuracy metric (see for example, the
center of the second panel of Fig. 2C). While sufficient data
of experimental flat-folding would likely allow the network to
distinguish signal from noise, in our data-limited regime noise
must be added to the generated in silico data in order to help
the network learn to accurately predict experimental scans and
avoid over-fitting.

We examine the effect of adding several types of noise on
the prediction accuracy on experimental input (Figs. 3A-E).
We observe significant improvement and find that adding ex-
perimentally realistic noise (Fig. 3E) is more effective than

1% random Larger scale

noise + random noise +
random blur

No noise 5% random noise Random blur

random blur

Training example

Prediction

07 01 . ||0.76 0.19 0.05

02 056 024

Experimental data

Confusion matrix

0.72 0.18 0.1

o
)

| 0.24 055 0.22

o
o

0.05 0.25 0.7

Confusion matrix

o
o

Expected upper left value in
confusion matrix
o
=

FIG. 3. Effect of noise type on prediction (A)-(E) An example
noised image (top), an example prediction (middle) and the corre-
sponding confusion matrix (bottom) for different types of artificial
noise. Noise types are described concisely in the title of each panel
and complete specifications are given in Materials and Methods. (F)
The upper left value of the confusion matrix when each pixel of
the near perfect prediction from Fig. 2B was randomly toggled with
probability P (G) The network from (E) applied on an additional ex-
perimental scan (from left panel of Fig. 2C). The average confusion
matrix on all experimental scans is shown.

toggling individual pixels randomly (Figs. 3B,D). We found
that the noise type that leads to optimal training is to randomly
add and remove patches of input that are approximately the
same length scale as the noise in the experimental scans. We
also find that it is important to provide input data with lines
of variable width, to prevent the network from expecting only
creases of a particular width. For complete details of the dif-
ferent noise properties, see Materials and Methods.

While the values in the confusion matrices in Fig. 3E might
seem low, it is important to note that the metric used here is
not trivial to interpret: it compares the Lo distance from a
distance map, which is particularly sensitive to noise since a
localized noise speckle in a region remote from valleys per-
turbs a large region of space (essentially, of the size of its
Voronoi cell). To gauge the effect of noise on the accuracy
metric, we randomly toggle a fraction P of pixels in an oth-
erwise perfect flat-folding example and recompute the entries
of its confusion matrix, as presented in Fig. 3F. With realistic
noise levels, i.e. P ~ 1073, we can expect accuracy values
between 0.75 and 0.80 in the upper left and lower right entries
of the confusion matrix, comparable to the values reported in
Fig. 3E. That is, for experimental flat-folding we achieve ac-
curacy levels that are comparable to what is expected for a

perfect prediction with noisy preprocessing.

Experimental crumpling For crumpling, we train the neu-
ral network using a combination of 30% experimental crum-
pling and 70% in silico flat-folding data, that was noised as
described above. We also tried pre-training on in-silico data
prior to training on crumpling data, but observed no improve-
ment. Training on this combined dataset, the resulting pre-
dictions accurately reconstruct key features of the crease net-
works in crumpled sheets, that were not achieved in prior at-
tempts. In Figure 4, we present predictions on entire sheets
(Fig. 4A) as well as a few close ups on selected regions
(Fig. 4B). The confusion matrices suggest that the network is
often relatively accurate in predicting regions that are directly
near a crease (upper left entry) as well as large open spaces
(lower right entry), classifying such regions with 50%—-60%
accuracy. In addition, Fig. S3 shows the prediction on each
of 16 successive crumples of the same sheet held out from
training.

The ratio of 70% in silico data was chosen since it provides
optimal predictions, as shown in Fig. SA. We present three
different metrics to quantify the predictive power: the Ly loss
of Eq. 1, the Pearson correlation between the prediction and
the target, and the average of the upper left and lower right
of the confusion matrix (classification accuracy). We find that
all accuracy metrics are optimized for training on 50%-70% in
silico data. It is also interesting to see in what way this affects
the prediction: In Fig. 5D we show that when trained solely
on experimental data the neural network produces a blurred
and indecisive prediction, while for 100% flat-folding data the
network predicts only unrealistic straight and long creases.

In addition to these metrics, one can compare the network’s
output to “random” network completion, i.e. to a network that
construes a pattern having the statistical properties of a crease
network, but is only weakly correlated with the input image.
Though a generative model for crease networks is not avail-
able, we can sample crease patterns from the experimental
data and compare the predicted distance maps to those mea-
sured from such randomly selected samples. This is discussed
in Sec. V of the SI, where it is seen that our prediction for a
given crease pattern is overwhelmingly closer to the truth than
any sampled patch from other experiments (Fig. S5).

The similarity of flat-folding and crumpling These results
demonstrate that augmenting the dataset with in silico gen-
erated flat-folding data allows the network to discern some
underlying geometric order in crease networks of experimen-
tal crumpling data. This suggests that the two systems share
some common statistical properties, and it is interesting to ask
how robust this similarity is. One may suspect that the main
contribution of the in silico data is merely having a multitude
of intersecting straight lines, which are the main geometric
feature that is analyzed, but that the specific statistics of these
lines is not crucial.

As explained above, flat-folding networks are characterized
by two theorems: Maekawa’s theorem that constrains the cur-
vatures (ridge/valley) of creases joined in each vertex, and
Kawasaki’s theorem which constrains the relative angles at
vertices. We tested the sensitivity of our prediction to re-
placing the in silico data used in training with crease net-

Crumple 4

Crumple 7

Crumple 4

0.54 ‘ 0.32 0.14

035 04 025

0.09 0.25

Crumple 7

0.58 ‘ 0.31 0.12

0.33 0.39 0.28

0.09 027 0.64
B
c
je]
=
O
e}
[0]
j
o
+
e
S
52
o8
o
o
+
[=
25
0 Qo
5 £
(0]
—_
Q A far
g 059 027 0.14 0.57 031 0.12 0.56 0.37 0.08 055 0.29 0.16 056 0.29 0.15 048 0.34 0.18
= X I |
2 x
=) '% 0.34 034 0.32 032 04 0.28 0.36 042 022 0.32 0.37 0.31 033 04 027 0.37 0.36 0.27
cE
Q
O 0.07 0.37 0.57 0.11 028 0.61 0.07 0.2 0.12 0.34 0.54 0.1 0.31 0.59 015 0.3 0.55

FIG. 4. Predictions on crumpling (A) One sheet that was successively crumpled, shown after 4 and 7 crumpling iterations. Color code follows
Fig. 2. (B) Close-ups on selected smaller patches from the same image, broken down to prediction, prediction and target, and prediction and

input.

works that violate these rules: We obtained crease networks
that violate Maekawa’s theorem by taking flat-folding net-
works and randomly reassigning curvatures to each crease,
and crease networks that violate Kawasaki’s theorem by per-
turbing all vertex positions. Finally, we obtained crease net-
works that violate both rules by performing both perturbations
simultaneously. Examples of perturbed networks are shown

in Fig. S6 of the Supplementary Information, with additional
details about the perturbation process.

The effect is quantified in Fig. 5B and Fig. 5C. We define,
for a given sheet, the “Deterioration” as the ratio between the
loss of a network trained on 70% experimental data and 30%
perturbed flat-folding data, to that of a network trained on the
same ratio of experimental and unperturbed data. It is seen

A
1.0 —0.64 —0.61
0.8
1)
3 0.6 S >
o 0. (]
3 5 |8
[[} 3
S s o
o 0.4 S g
<<
& (&
02= Rescaled Loss
== Correlation
== Accuracy
0.0 —0.44—-0.52
0.2 0.4 0.6 0.8 1.0

Fraction of in-silico data

Pure Crumpling

Violate
Kawasaki

Violate

c
kel
©
kel
&
Q
o
[Violate Kawasaki : z::::::::: ; 10
. Violate Maekawa [0 Validation 3
[viotate Both A Validation 4
0
0 0.5 1.0 1.0 15 20
Rescaled loss with unperturbed data Deterioration
Pure
Flat-Folding

»

Violate
Maekawa Both

FIG. 5. Effect of fraction generated data (A) Three quantifications of the predictive power of the model when trained on a varying amount of
generated data and a constant amount of crumpling data. Strong predictive power corresponds to low loss (red) and large Pearson correlation
and classification accuracy (blue and green respectively). (B) The Deterioration (see text) for each sheet in the validation set, as a function of the
rescaled loss. Colors correspond to different perturbations and marker styles to cross-validation sample. It is seen that all tested perturbations
lead to worse predictive power (above the gray reference line). The few points below the reference line occur at high crumple number, and low
absolute loss. (C) Histogram of all points in panel B. Values to the right of the red line corresponds to deterioration when using unphysical
data. (D) Example target and predictions for the various models considered in previous panels.

that breaking the flat-folding rules leads to consistently worse
performance, for all types of perturbations.

We cross-validated with 4 different experiments covering a
total of 198 sheets. While for some small fraction (< 5%) of
the sheets perturbed data has led to marginally better perfor-
mance, this happened mostly in sheets with low loss and the
improvement is negligible. On average, the network trained
on perturbed data has a loss approximately 35% higher than
that of the network trained on unperturbed data.

These results, namely that training on perturbed flat-folding
networks led to inferior performance, again suggest a simi-
larity between crumpled crease networks and flat-folded net-
works. We did not quantitatively study the detailed effect of
the different kinds of perturbations — i.e. whether violating
Kawasaki’s rule, Maekawa’s rule, or both, results in more or
less accurate predictions. Instead, equipped with this physical
insight, we propose to directly probe the statistical similar-
ity with traditional methods by measuring vertex properties in

crease networks, a study which will be reported elsewhere.

DISCUSSION

Experimental data is paramount to our understanding of the
physical world. However, prohibitive data acquisition rates
in many experimental settings require augmenting experimen-
tal data in order to draw meaningful conclusions. In particu-
lar, computer simulations now play a significant role in ex-
ploratory science; many experimental conditions can be accu-
rately simulated to corroborate our understanding of empirical
results.

Despite these advances, the simulation of certain phenom-
ena is inhibited by insufficient theoretical knowledge of the
system, or by demanding computational resources and devel-
opment time. For crumpling, without a deeper understand-
ing which would allow the use of simplified/reduced models,

simulations require prohibitively small time steps, small do-
main discretization, or both [26]. In this manuscript, we show
that even with a small experimental training set, augmenting
the dataset by computer generated, artificially noised data of
flat-folding, salient features of the ridge network can be pre-
dicted from the surrounding valleys: the network successfully
predicts the presence of certain creases, as well as their pro-
nounced absence in certain locations (see Fig. 4B). Moreover,
our results demonstrate a statistical similarity between flat-
folding and crumpling, evidenced by the fact that when flat-
folding data is replaced with data of similar geometry but dif-
ferent statistics, the algorithm does not succeed in learning the
underlying distribution to the same extent (Fig. 5SB).

Our results demonstrate the capacity of a neural network
to learn, at least partially, the structural relationship of ridges
and valleys in a crease pattern of crumpled sheets. The next
step is to understand the network’s decision process, with the
aim of uncovering the physical principles responsible for the
observed structure. However, while interpretation of trained
weights is currently a heavily researched topic, see [32-34,
among many others], there is not yet a standard method to
do so. Our ongoing work seeks to probe the network’s in-
ner workings by perturbing the input data. For example, we
can individually alter input pixels and quantify the effect of
perturbation on the prediction relative to the original target.
Alternatively, we can examine the effect of adding or remov-
ing creases, or test the prediction on inputs that do not occur
naturally in crumpled sheets. Some preliminary results are
discussed in Sec. IV of the SI.

Improving the experimental dataset by performing dedi-
cated experiments, or replacing the simulated flat-folding with
simulated crumpling data are also promising future directions.
While we have only demonstrated the advantages of data aug-
mentation for one problem, it is tempting to imagine how it
may apply to other systems in experimental physics. In addi-
tion to providing insights into the structure of crease patterns,
a quantitative predictive model (i.e. an oracle) could serve as
an important experimental tool that allows for targeted experi-
ments, especially when experiments are costly or difficult. As
shown above, a trained neural network is able to shed light
on where order exists, even if the source of the order is not
apparent.

Replacing the scientific discovery process with an auto-
mated procedure is risky. Frequently hypotheses which were
initially proposed are not the focal points of the final works
they germinated, as observations and insights along the way
sculpt the research towards its final state. This serendipitous
aspect of discovery has been of immense importance to the
sciences and is difficult to include in automated data explo-
ration methods, which is an area of ongoing research [35-37].
By showing that data-driven techniques are able to make non-
trivial predictions on complicated systems, even in a severely
data-limited regime, we hope to demonstrate that these tools
should become a valuable tool for experimentalists in many
different fields.

MATERIALS AND METHODS

Experiments Experimental flat-folding and crumpling
data were performed on 10 cm x 10 cm sheets of 0.05 mm
thick Mylar. Flat folds were performed successively at ran-
dom, without allowing the paper to unfold between succes-
sive creases. Crumpled sheets were obtained by first rolling
the sheet into a 3 cm diameter cylinder and then applying axial
compression to a specified depth between 7.5 mm and 55 mm.
Sheets were successively crumpled between 4 and 24 times.

To image the experimental crease network, crumpled/flat-
folded sheets were opened up and their height profile was
scanned using a home-built laser profilometer. The mean cur-
vature map was calculated by differentiating the height profile,
and then denoised using a custom Radon-based denoiser, the
implementation details of which are given in Sec. I of the SI.
A total of 506 scans were collected from 31 different experi-
ments.

Network architecture and training Data was fed into a
fully convolutional network, based on the SegNet architec-
ture [31] with the final soft-max layer removed, as we did not
perform a classification problem. The depth of the network
allows for long-range interactions to be incorporated with-
out fully connected layers. The network was implemented
in Mathematica and optimization was performed using the
ADAM optimizer [38] on a Tesla 40c GPU with 256 GB of
RAM and a computer with a Titan V GPU and 128 GB of
RAM. Code is freely available.

For training, the in silico generated input data was aug-
mented with standard data-augmentation methods: symmet-
ric copies of each original were generated by reflection and
rotation. All images were down-sampled to have dimensions
of 224 x 224 pixels. For crumpling data, creases were also
linearized to look more similar to the experimental input. An
example of the effect of linearizing is shown in Fig. S2 of the
SI.

Noise Noise was added to the input in a few different
ways, presented In Fig. 3B. The noise of each panel was gen-
erated as follows:

A. No noise.

B. “White” noise: Each pixel was randomly toggled with 5%
probability.

C. Random Blur: Input was convolved with a Gaussian with
a width drawn uniformly between 0 and 3. The array was
then thresholded at 0.1. Here and below “thresholded at
2” means a pointwise threshold was imposed on the array,
such that values smaller than z were set to 0 and otherwise
setto 1.

D. Each pixel was randomly toggled with 1% probability,
then passed through Random Blur (C).

E. Input was Random Blurred (as (C)) but thresholded at
0.55. We denote the blurred-and-thresholded input as X.
Then, X was noised using both additive and multiplicative
noise, as follows: Y and Z are two random fields drawn
from a pointwise uniform distribution between 0 and 1

and convolved with a Gaussian of width seven (pixels) and
thresholded at 0.55. Finally, the “noised” input is

min (X + (1 -Y), 1)(1 - 2).

ACKNOWLEDGMENTS

We thank an anonymous referee for this suggestion to per-
turb the in-silico input data. This work was supported by the
National Science Foundation through the Harvard Materials
Research Science and Engineering Center (DMR-1420570).
SMR acknowledges support from the Alfred P. Sloan research

foundation. The GPU computing unit was obtained through
the NVIDIA GPU grant program. JH was supported by a
Computational Science Graduate Fellowship (DOE CSGF).
YBS was supported by the JSMF post-doctoral fellowship for
the study of complex systems. CHR was partially supported
by the Director, Office of Science, Computational and Tech-
nology Research, U. S. Department of Energy under Contract
No. DE-AC02-05CH11231.

Data availability Source code is available at https:
//github.com/hoffmannjordan/Crumpling. All
data needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplementary Materials. Ad-
ditional data available from authors upon request.

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521,
436 (2015).

[2] A.-R. Mohamed, G. Dahl, G. Hinton, Deep belief networks for
phone recognition, NIPS workshop on deep learning for speech
recognition and related applications 1, 39 (2009).

[3] G. Dahl, D. Yu, L. Deng, A. Acero, Large vocabulary con-
tinuous speech recognition with context-dependent dbn-hmms,
2011 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) pp. 4688-4691 (2011).

[4] L. Deng, et al., Recent advances in deep learning for speech
research at microsoft, 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) pp. 8604—
8608 (2013).

[5] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based
learning applied to document recognition, Proceedings of the
IEEE 86, 2278 (1998).

[6] K. Shameer, K. W. Johnson, B. S. Glicksberg, J. T. Dudley, P. P.
Sengupta, Machine learning in cardiovascular medicine: are we
there yet?, Heart (2018).

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, M. Riedmiller, Playing atari with deep reinforce-
ment learning, arXiv preprint arXiv:1312.5602 (2013).

[8] D. Silver, et al., Mastering the game of go without human
knowledge, Nature 550, 354 (2017).

[9] J. Heaton, N. Polson, J. H. Witte, Deep learning for finance:
deep portfolios, Applied Stochastic Models in Business and In-
dustry 33, 3 (2017).

[10] S. Joel, P. W. Eastwick, E. J. Finkel, Is romantic desire pre-
dictable? Machine learning applied to initial romantic attrac-
tion, Psychological science 28, 1478 (2017).

[11] W. Bhimji, et al., Deep neural networks for physics analy-
sis on low-level whole-detector data at the lhc, arXiv preprint
arXiv:1711.03573 (2017).

[12] P. Baldi, P. Sadowski, D. Whiteson, Searching for exotic par-
ticles in high-energy physics with deep learning, Nature Com-
munications §, 4308 (2014).

[13] M. Banerji, O. Lahav, C. J. Lintott, F. B. Abdalla, K. Schaw-
inski, S. P. Bamford, D. Andreescu, P. Murray, M. J. Rad-
dick, A. Slosar, A. Szalay, D. Thomas, J. Vandenberg, Galaxy
z00: reproducing galaxy morphologies via machine learning,
Monthly Notices of the Royal Astronomical Society 406, 342
(2010).

[14] C. Sommer, C. Straechle, U. Koethe, F. A. Hamprecht, Ilastik:
Interactive learning and segmentation toolkit, 2011 IEEE In-
ternational Symposium on Biomedical Imaging: From Nano to

Macro pp. 230-233 (2011).

[15] V. Gulshan, et al., Development and validation of a deep learn-
ing algorithm for detection of diabetic retinopathy in retinal
fundus photographs, JAMA 316, 22 (2016).

[16] J. Carrasquilla, R. G. Melko, Machine learning phases of mat-
ter, Nature Physics 13, 431 (2017).

[17] M. Spellings, S. C. Glotzer, Machine learning for crystal iden-
tification and discovery, AIChE Journal 64,2198 (2018).

[18] E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone,
J. Rottler, D. J. Durian, E. Kaxiras, A. J. Liu, Identifying struc-
tural flow defects in disordered solids using machine-learning
methods, Physical Review Letters 114, 108001 (2015).

[19] D. M. Sussman, S. S. Schoenholz, E. D. Cubuk, A. J. Liu, Dis-
connecting structure and dynamics in glassy thin films, Pro-
ceedings of the National Academy of Sciences 114, 10601
(2017).

[20] S. S. Schoenholz, E. D. Cubuk, E. Kaxiras, A. J. Liu,
Relationship between local structure and relaxation in out-
of-equilibrium glassy systems, Proceedings of the National
Academy of Sciences 114, 263 (2017).

[21] M. B. Amar, Y. Pomeau, Crumpled paper, Proceedings of the
Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences 453, 729 (1997).

[22] T. A. Witten, Stress focusing in elastic sheets, Reviews of Mod-
ern Physics 79, 643 (2007).

[23] H. Aharoni, E. Sharon, Direct observation of the temporal and
spatial dynamics during crumpling, Nature Materials 9, 993
(2010).

[24] C. A. Andresen, A. Hansen, J. Schmittbuhl, Ridge network in
crumpled paper, Physical Review E 76, 026108 (2007).

[25] O. Gottesman, J. Andrejevic, C. H. Rycroft, S. M. Rubin-
stein, A state variable for crumpled thin sheets, Communica-
tions Physics 1, 1 (2018).

[26] R. Narain, T. Pfaff, J. F. O’Brien, Folding and crumpling
adaptive sheets, ACM Transactions on Graphics (TOG) 32, 51
(2013).

[27] Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, J. Teran, A ma-
terial point method for thin shells with frictional contact, ACM
Transactions on Graphics (2018).

[28] S.J. Pan, Q. Yang, A survey on transfer learning, /EEE Trans-
actions on knowledge and data engineering 22, 1345 (2010).

[29] N. Turner, B. Goodwine, M. Sen, A review of origami applica-
tions in mechanical engineering, Proceedings of the Institution
of Mechanical Engineers, Part C: Journal of Mechanical Engi-
neering Science 230, 2345 (2016).

https://github.com/hoffmannjordan/Crumpling
https://github.com/hoffmannjordan/Crumpling
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1711.03573

[30] C. H. Rycroft, Voro++: A three-dimensional Voronoi cell li-
brary in C++, Chaos 19, 041111 (2009).

[31] V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep
convolutional encoder-decoder architecture for image segmen-
tation, /[EEE transactions on pattern analysis and machine in-
telligence 39, 2481 (2017).

[32] D. Smilkov, N. Thorat, C. Nicholson, E. Reif, F. B. Vi’egas,
M. Wattenberg, Embedding projector: Interactive visual-
ization and interpretation of embeddings, arXiv preprint
arXiv:1611.05469 (2016).

[33] N. Frosst, G. Hinton, Distilling a neural network into a soft
decision tree, arXiv preprint arXiv:1711.09784 (2017).

[34] M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for
deep networks, arXiv preprint arXiv:1703.01365 (2017).

[35] P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny,
A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, A. J. Norquist,
Machine-learning-assisted materials discovery using failed ex-

S1

periments, Nature 533, 73 (2016).

[36] E.A. Baltz, E. Trask, M. Binderbauer, M. Dikovsky, H. Gota,
R. Mendoza, J.C. Platt, P.F. Riley, Achievement of sustained
net plasma heating in a fusion experiment with the optometrist
algorithm, Scientific Reports 7, 6425 (2017).

[37] F. Ren, L. Ward, T. Williams, K. J. Laws, C. Wolverton,
J. Hattrick-Simpers, A. Mehta, Accelerated discovery of metal-
lic glasses through iteration of machine learning and high-
throughput experiments, Science Advances 4, 4 (2018).

[38] D. P. Kingma, J. Ba, Adam: A method for stochastic optimiza-
tion, arXiv preprint arXiv:1412.6980 (2014).

[39] J. Lehman et. al., The Surprising Creativity of Digital Evolu-
tion: A Collection of Anecdotes from the Evolutionary Compu-
tation and Artificial Life Research Communities, arXiv preprint
arXiv:1803.03453 (2018).

Supplemental Materials

S-I. RADON TRANSFORM BASED DETECTION
METHOD

Here we detail the detection method used to identify crease
networks from maps of mean curvature prior to machine
learning. We refer to our technique as a Radon-based detec-
tion method, as it repurposes the key principle behind a Radon
transform—recovering a signal through integration along di-
rected paths—for crease detection. By integrating a quantity
of interest, in our case the mean curvature, along paths of reg-
ularly spaced orientations within local regions of the curvature
map, we construct a signal array that enhances the signature
of creases and reduces noise. A strong signal is recovered if
an integration path coincides with the direction of an extended
structure such as a crease; a weak signal is produced by fea-
tures that are point-like or isotropic, representative of noise
and fine texture in the data. The raw curvature maps of each
10 cm X 10 cm sheet are 3000 x 3000 pixels. Prior to pro-
cessing, curvature maps are downsampled for computational
efficiency. A downsampling factor of 4 was found to preserve
the integrity of the crease pattern while providing a useful
speedup in computation for a final resolution of 75 pixels per
cm. Next, a linear integration path is centered about a given
pixel of the curvature map, traversing the diameter of a fixed
circular local window. The average curvature along a particu-
lar direction is computed by exact numerical integration of the
bicubic interpolant on the grid defined by pixel centers. The

integration direction is systematically rotated about the central
pixel, and the maximum average curvature over all path orien-
tations is selected as the signal. This process is repeated for all
pixels in the curvature map, resulting in a signal array of only
the average curvatures that are a maximum along local, lin-
ear paths. Integrals along 24 equally spaced path orientations
on the interval of 0 to 180 degrees were considered at each
pixel and the maximum selected as the signal. We examined
a range of integration path lengths up to 8 mm, as the inte-
gration window defines a length scale that must accommodate
features of varied sizes. While smaller integration paths can
detect finer details particularly at low crease densities, they
sacrifice some of the advantage afforded by longer paths in
accruing a strong signal that is well separated from noise. An
integration path length of 3.2 mm suitably mediated such ef-
fects and provided a clear crease network. Finally, global and
local thresholds are applied to the signal array to separate the
real creases from the background noise. A combination of
the two was observed to work well in retaining the desired
crease network: The global threshold is more permissive of
noise but acts uniformly across the signal array, while the lo-
cal threshold accommodates variations in signal intensity, and
thus provides sensitivity to softer (less sharp) creases. We use
a global threshold of 0.12 as the minimum signal intensity re-
tained as a crease (0.12 is approximately 10% the magnitude
of the largest creases), and set the local threshold to label as
noise any pixel whose intensity falls below 20% of the max-

http://arxiv.org/abs/1611.05469
http://arxiv.org/abs/1711.09784
http://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1803.03453

No Inward With Inward
% | \
i | \\\\ \
N \
s
\
\)
\ | N 5

SR
I / x \”7\\“ ;;i\r;> /

FIG. S1. In-silico generated flat-folded crease networks. Two
random flat-folding patterns, with (left) and without (right) inward
folding. Ridge folds are colored red and valley folds are colored in
blue.

imum signal in a 3.2 mm x 3.2 mm neighborhood centered
about the pixel. In training with crumpled sheets, the crease
networks were also linearized as shown in Fig. S2. This was
done with a custom script that skeletonized the input and used
the Mathematica function MorphologicalGraph.

S-II. IN SILICO GENERATION OF FLAT-FOLDING DATA

A custom code was written in C++ to simulate flat folding.
The code makes use of the VORO++ software library [30],
which provides routines for fast manipulation of polygons. To
begin, the sheet is represented as a single square. To simu-
late a simple flat fold on a given chord, the square is cut into
two polygons, and one polygon is reflected about the chord.
Subsequent flat folds are simulated by taking the collection
of polygons representing the folded sheet, cutting them by a
given chord, and reflecting those on one side about the chord.
Throughout the process, each polygon keeps track of an affine
transformation from its current configuration back to its posi-
tion in the original square sheet. By transforming all polygons
back to the original sheet, the flat folding map of valleys and
ridges can be constructed. The code can also simulate inward
folds where a ray is selected and the sheet is pinched in along
this ray. For computational efficiency, the code computes a
bounding circle during the folding process, whereby the col-
lection of polygons representing the folded sheet is wholly
within the circle.

While folding along a given chord is strictly well-defined,
there is no natural way to draw a random chord from a dis-
tribution (e.g. Bertrand’s paradox in probability theory) and a
choice must be made regarding the way a chord is drawn. Our
choice is the following: A fold is determined by a straight
line in R? and therefore can be parameterized by its angle and
offset. At each iteration the angle is drawn uniformly in the
range [0, 27) radians and the offset uniformly over the bound-
ing circle. If the chosen fold line does not actually create a
fold (because the line misses all polygons) then a new angle
and displacement are chosen and so forth. For inward folds,
we first choose a point uniformly inside the bounding circle,

S2

[l Radon transform ridges
B Radon transform valleys
[Linearized ridges
[l Linearized valleys

FIG. S2. Comparison between the preprocessed curvature map
and the linearized version. The denoised curvature map of an entire
crumpled sheet with three enlarged insets (a-c) for better visibility.
Red and blue are creases retained after the Radon-based denoising,
green and orange are the linearized representation.

then determine if the point is inside any polygon; if not, we
keep choosing new points until we find one that is. We then
choose a random orientation for the ray from this point and
two random angles o and 3 uniformly from (0, 7) for the first
two folded segments that are counter-clockwise from the ray,
after which the remaining two angles at the point are given by
y=m—aandd =7 — .

Our data set was generated by folding the sheet n times,
where n is chosen uniformly in the range from 7 to 15. Each
fold has a random sign (ridge or valley) with equal probabil-
ity. For each sheet, the probability of inward folds was chosen
uniformly over the range [0%, 50%]. Figure S1 shows a selec-
tion of generated crease patterns.

S-III. PREDICTION ON 16 SHEETS

The validation set (an experiment held out from training)
consists of 17 successive crumples of the same sheet of pa-
per. In Fig. S3, we show the prediction on the first sixteen of
these sheets. For each prediction of an entire sheet, the im-
age was computed in overlapping patches of size 224 x 224.
Each pixel was considered to be the average value based on
a sequence of predictions. Preliminary work was done on au-
tomatically detecting regions that were the best and the worst
predicted. This along with aspects discussed below, are the
topic of ongoing work.

S3

058 0.24 0.18
03 043 027

0.11 0.31 0.58

056 03 014
033 039 028

01 03 061

058 031 0.12

055 03 0.15

035 04 025

01 03 086

054 032 0.14

0.24

05 033 017

0.5

=

035 0.14
038 0.39 0.23

01

=7

0.25 ‘

.64

FIG. S3. Prediction on a sheet that was crumpled 16 times. The prediction is shown in blue for a given set of valleys (black). The true
creases are overlaid in red .Confusion matrices for 8 of the 16 matrices are shown in the right. The color corresponds to the outline of the

matrix.

S-IV. PROBING THE NETWORK: ONGOING WORK

In their paper, Lehman et al. discuss some computational
oddities in the field of computational evolution [39]. They
present a series of important ideas through short tales where
the computer produced unexpected behavior that, when un-
derstood, were a key step in learning how to successfully use
the computational tools. We think examples similar to these

are important to share as the use of machine learning in the
experimental sciences is still in its infancy. In this spirit, we
discuss some of our attempts to tie the predictions of the net-
work back to the underlying physics of crumpling.

A potential pitfall of using neural networks is that they will
provide an output for any input, no matter how absurd either
the input or output is. No warning appears. This is powerful,
but requires caution, as neural networks allow for predictions

S4

M Large

Small s

AS D
Small M | lLarge

FIG. S4. Additional test results. A The result of approximate differentiation (see text in Sect. S-IV) on flat-fold (A) and crumpling (A’)
inputs. Unfortunately, experimentally testing these results or correlating them with other physical quantities proved difficult. B Creases colored
by the magnitude of the change caused by their removal (Eq. S1). Cooler colors correspond to weaker change and warmer colors to stronger
change. While some trends are clearly discernible (e.g. there is a strong correlation between the change magnitude and the crease length), we
are still trying to interpret these results in terms of the underlying physics.

A B
0020 /\

/ \ [
. mean: 237 ,!' \ 03] [4
sd: 28 | \
0010 2:36 [\ 02
/ 5
0005 / \ =

PDF
PDF

FIG. S5. Prediction Accuracy. A The loss (orange line) of a given
reconstruction (bottom) compared to the of losses distribution from
all other patches from similarly crumpled sheets. From this data we
calculate the z-score of this patch to be 3.6. B Repeating this pro-
cedure for all patches, we calculate the distribution of z-scores, giv-
ing an average z-score of nearly 3. Three representative patches are
shown at their z-score location.

on inputs that are physically impossible to create. Thus, one
should take all the following probing attempts with a grain of
salt.

It is tempting to “differentiate” the input signal to see if per-
turbations at any particular location cause large changes in the
neural network’s prediction. In Fig. S4 A and A’ we do this,
perturbing the input (empty space and white lines) by making
each pixel slightly more crease-like if it is not a crease or less
crease-like if it is a crease. The background color shown is
the magnitude of the change relative to the original prediction.
Our hope was that this map may correlate with some known
aspect of the physics. However, we do not think that this is
the case. We tried aligning sequential images and estimat-
ing whether new creases tend to form with higher probability
in regions that correlate with this sensitivity map—we do not

find this to be the case. We are currently exploring more so-
phisticated ways of differentiating the trained network.

Similarly, we can ask questions such as: What would hap-
pen if we translate a particular crease 5 mm to the left? What
if we artificially remove parts of folds in flat-folding? What if
we remove entire creases? In Fig. S4B, we present the results
of removing entire creases form a crumpled sheet. The ridges
are colored by their total effect on the prediction, that is, if
the original input is X and the perturbed input is X (after re-
moving a crease), we define the total magnitude of the change
as

S (V) - N (S

where 7 runs over all pixels. The hope is that these unphysical
perturbations to the input can provide insight into the working
of the network. However, as stated above, interpreting them
should be done with care, since in these cases the input to the
neural net might be too dissimilar to anything in the training
data, making predictions less reliable.

S-V. ANOTHER APPROACH TO ERROR
QUANTIFICATION

It is common to benchmark Machine Learning prediction
accuracies with respect to a suitably-defined random guess.
For example, in the MNIST digit recognition task, making
random choices will achieve a 10% accuracy, because there
are only ten classes to choose from. In our case, however,
there exists no generative model for crease networks, so there
is no random guess that we can compare the output of our
network to. As a surrogate, we can draw a random crease
network from our data. That is, we compare our predictions

on a given patch to many patches from other, similar exper-
iments. This is presented in Fig. S5: For a given patch, we
compute the loss of our prediction (Eq. 1 in the main text)
compared to the true value. In Fig. SSA we compare this loss
with the distribution of losses obtained by comparing other
patches to the true value. Examining hundreds of different
predictions, in Fig. S5B, we find that our predictions have an
average z-score of nearly 3. The z-score for a patch is defined
as z = (u — L)/o where L is the loss for this patch and p, o
are, respectively, the mean and standard deviation of all losses
calculated from other patches on the same true value. We find
that the prediction returned by the net is substantially better
than patches taken from other experiments.

Additionally, we can compute the Pearson correlation be-
tween the distance transform of the input and target, as well
as between our prediction and the target. In the following ta-
ble we show, for four representative crumple iterations, the
Pearson correlation between the target distance map and ei-
ther the distance map of the input or the network prediction.

Iteration Input distance map Prediction
1 0.44 0.68
3 0.35 0.66
6 0.31 0.54
11 0.52 0.74

It is seen that our prediction is significantly better than simply
returning the distance transform of the input.

S-VI. PERTURBING THE IN SILICO DATA

As discussed in the main text, we assessed the sensitivity of
the prediction accuracy to perturbing the in silico data. In
Fig. S6 we present examples of perturbed crease networks
(panels A-D) and the resulting validation loss as a function
of the number of times the sheet was crumpled. It is seen that
all perturbations lead to inferior predictions.

Perturbations were performed in the following manner:

1. Maekawa’s theorem was violated by taking flat-
folding networks and randomly reassigning curvatures
(ridge/valley) to each crease. On average, Maekawa’s
rule is violated in 50% of the vertices.

2. Kawasaki’s theorem was violated by perturbing the po-
sition of the vertices, while keeping the topology of the
network fixed and ensuring that creases do not cross
each other. This results in alternate angles that no
longer sum to w. The average absolute deviation of
from 7 is 0.4, amounting to ~ 13% change. The code
is available on GitHub.

3. Finally, both rules were violated by combining both
procedures 1-2.

S5

A Violate Maekawa B Violate Kawasaki C Violate Both

y N/

FIG. S6. Examples of perturbed in silico data. A-C One realiza-
tion of each perturbed in silico data set, corresponding to the pertur-
bations described in Sec. S-VI. Code to generate all types of pertur-
bation available online.

	Machine Learning in a data-limited regime:Augmenting experiments with synthetic data uncovers order in crumpled sheets
	Abstract
	 Introduction
	 Results
	 Discussion
	 Materials and Methods
	 Acknowledgments
	 References
	S-I Radon transform based detection method
	S-II In silico generation of flat-folding data
	S-III Prediction on 16 sheets
	S-IV Probing the network: Ongoing work
	S-V Another approach to error quantification
	S-VI Perturbing the in silico data

