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Abstract

The ability to generate physically plausible ensembles of variable sources is critical to the optimization of time
domain survey cadences and the training of classification models on data sets with few to no labels. Traditional
data augmentation techniques expand training sets by reenvisioning observed exemplars, seeking to simulate
observations of specific training sources under different (exogenous) conditions. Unlike fully theory-driven
models, these approaches do not typically allow principled interpolation nor extrapolation. Moreover, the principal
drawback of theory-driven models lies in the prohibitive computational cost of simulating source observables from
ab initio parameters. In this work, we propose a computationally tractable machine learning approach to generate
realistic light curves of periodic variables capable of integrating physical parameters and variability classes as
inputs. Our deep generative model, inspired by the transparent latent space generative adversarial networks, uses a
variational autoencoder (VAE) architecture with temporal convolutional network layers, trained using the OGLE-
III optical light curves and physical characteristics (e.g., effective temperature and absolute magnitude) from Gaia
DR2. A test using the temperature–shape relationship of RR Lyrae demonstrates the efficacy of our generative
“physics-enhanced latent space VAE” (PELS-VAE) model. Such deep generative models, serving as nonlinear
nonparametric emulators, present a novel tool for astronomers to create synthetic time series over arbitrary
cadences.

Unified Astronomy Thesaurus concepts: Time domain astronomy (2109); Time series analysis (1916);
Convolutional neural networks (1938); Periodic variable stars (1213)

1. Introduction

Robust and in-production automated image-based discovery
on streaming survey data has matured significantly, from
random forest-based methods (Bloom et al. 2012; Goldstein
et al. 2015; Förster et al. 2016; Mahabal et al. 2019) to deep
learning approaches (Sánchez et al. 2019). Nonetheless, to
extract new knowledge in the time-domain era, the physical
nature of the variability must be inferred. Retrospective
classification (e.g., after each observing season or after survey
completion) has shown great utility for the study of variable
stars (e.g., Smolec 2005; Drake et al. 2013; Pietrukowicz et al.
2015). However, the scientific impact for ongoing time-domain
surveys such as the Zwicky Transient Factory (ZTF, Bellm
et al. 2018), the Vera Rubin Observatory (VRO-LSST, Ivezić
et al. 2019), and the Wide Field Infrared Survey Telescope
(WFIRST, Spergel et al. 2015) can only be maximized if
additional follow-up resources are appropriately marshaled on
scientifically relevant sources. Beyond its utility in broad
demographic studies, once a source is classified, inference of
the underlying physical state that dictates the observed
variability (and any potential differences of that state from
others in the same class) is often desirable.

Physical models of transient and variable stars provide, in
principle, the most direct path to classification and the inference of
the underlying physical state. As generative models—where the
relevant initial conditions are fed forward through simulations to
obtain the observables—these can be used to solve the inverse

problem: the inference of the physical state from the observables.
Physical models abound in certain time-domain subfields: e.g.,
gravitational-wave chirp signals from binary black hole mergers
(Kumar et al. 2014); the Physics of Eclipsing Binaries (PHOEBE,
Prša et al. 2016) for binary stars; SNANA (Kessler et al. 2009)
software for supernova analysis; the Modular Open Source Fitter
for Transients (MOSFiT, Guillochon et al. 2018) designed for
transients interacting with circumstellar material such as tidal
disruption events, kilonovae, Type II supernovae, and Type I
superluminous supernova; and PyLIMA (Bachelet et al. 2017) for
microlensing events. Wrapping physical models within a
Bayesian inference framework, e.g., through Markov Chain
Monte Carlo (MCMC) modeling, allows one to constrain the
parameters of interest with the data.
Physical models, however, present several disadvantages. First,

producing observables from ab initio parameters can be
computationally expensive. A generative model that requires
even a few seconds of wall-time computation can be prohibitively
long when used as part of traditional MCMC inference. This
challenge compounds when it is necessary to apply this approach
to many sources. Second, current models do not include all
physics (intrinsic and extrinsic), and the physical processes that
are included are often approximated. As such, parameter inference
with physical models is inherently imprecise. Last, physical
models are often known to describe a subset of the transient and
variable star dynamics. In the absence of a physical model,
template fitting based on observed class exemplars may be used.
For example, Sesar et al. (2010) produced templates of RRLyrae
light curves, spanning the range of the observed optical variability.
Classification of a new suspected RRLyrae source is then
tantamount to a model selection process across the template bank
of RR Lyrae subtypes.
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As physical models and templates do not exist generally for
the full diversity of the variable sky, classification requires a
more data-driven approach. Here, classification is established
as a supervised machine learning (ML) challenge, where
existing data for a set of sources with known classes (“labels”)
are used to train an algorithm to predict class membership on
new (unlabeled) sources. The efficiency of ML techniques had
been largely demonstrated in providing robust classification of
variable sources, either by using feature-based approaches
(Richards et al. 2011, 2012; Pichara & Protopapas 2013;
Lochner et al. 2016; Nun et al. 2016; Pichara et al. 2016;
Martínez-Palomera et al. 2018) or by directly using the time-
series data (Naul et al. 2018; Aguirre et al. 2019; Tsang &
Schultz 2019; Jamal & Bloom 2020). These retrospective
classification efforts4 benefited from the use of highly curated
training sets. One principal disadvantage of data-driven (as
opposed to physics-driven) classification, however, is the need
for a large set of training examples. As new surveys begin, no
labeled real data exist with the depth and cadence of the
survey.5 Even after a survey has obtained data and sources are
labeled, few, if any, of the minority subclasses may be
observed and labeled, leading to a large class imbalance that
alters the efficacy of classifiers in correctly identifying the
(often more interesting) minority classes.

To expand the volume of examples in training sets, data
augmentation is often employed (Dieleman et al. 2015;
Cabrera-Vives et al. 2017; Martínez-Palomera et al. 2018;
Boone 2019). This technique synthesizes new data by
generating samples along observational axes believed to be
extrinsic to the source itself. Through a series of simple
transformations (e.g., rotation, translation, scaling, phase
shifting) new instances are generated. Similarly, for observa-
tions with known noise properties, new data can be generated
by bootstrap resampling the light curves from the training and/
or test data sets (e.g., Naul et al. 2018). Although data
augmentation provides a simple and fast path to increase
training examples, the methodology expands upon only the
known exemplars from the training data. Since the technique
exploits a finite set of data, this data augmentation approach
will not generally capture the full continuum of possible
behavior within and between classes. That is, from a physical
perspective, data augmentation does not afford a principled
interpolation nor extrapolation in the way that physics-driven
models can naturally accommodate.

Machine learning-based generative modeling, showing recent
promise across different domains, provides a more natural
framework for improving training set sizes that combines data
augmentation techniques with the possibility of interpolation/
extrapolation beyond the original training set. In the ML context,
generative models refer to the approach of learning the joint
distribution of low-dimensional (latent) random variables that
describe the studied phenomena. Deep generative models (DGMs)
refer to the use of deep neural network (NN) architectures for the
learning and creation process. Multiple variants of DGMs are
present in the literature—for a comprehensive review see Chapter
20 of Goodfellow et al. (2016)—such as variational autoencoders

(VAEs, Kingma & Welling 2013) and generative adversarial
networks (GANs, Goodfellow et al. 2014). Both have shown
astonishing results in the image domain, where after training they
are able to create realistic new images. Applications of DGMs in
astronomy are numerous, and include the works by Tröster et al.
(2019) that exploited both GAN and VAE models to map the
large-scale gas distribution and temperature of N-body simula-
tions; Ichinohe & Yamada (2019) trained a VAE for anomaly
detection in X-ray spectroscopy data; Gabbard et al. (2019)
implemented a conditional VAE to speed-up the Bayesian
estimation of physical parameters of gravitational-wave progeni-
tors; a GAN model was created for pulsar candidate classification
(Guo et al. 2019); Mustafa et al. (2019) used a GAN that
generates weak lensing convergence maps; and Yi et al. (2020)
trained a VAE model to restore missing data in cosmic microwave
background maps.
A major drawback in standard ML generative modeling lies

in the limitation of interpolation if unconstrained by physical
consideration: generated samples from a learned model may be
acceptable visually but are nonetheless unbound to the physics.
This shortfall constitutes the starting point for this paper: is it
possible to connect the learned latent representation of a
generative model with the characteristic/physical attributes of
the training data to produce realistic samples that connect to our
physical understanding of these sources?
Connecting intrinsic attributes to the latent space has been

attempted in the image domain. Lample et al. (2017) trained an
adversarial encoder–decoder architecture on the CelebA data
set6 to disentangle the latent space and the value attributes. The
latter allow a user of the model to continuously control the
parameters of a generated headshot sample. A similar idea was
explored by S. Guan in his Transparent Latent-space GAN
(TL-GAN),7 where he paired a pre-trained GAN model with a
pre-trained feature extraction model (both trained with CelebA
data set) to then use a linear regression model to connect the
latent space with the predicted features, allowing a smooth
exploration of different feature axes (e.g., gender, age,
hair type).
Generative models of variable stars capable of reproducing

realistic time series can also be an important tool to explore and
plan different observation cadences for future time-domain
surveys (e.g., VRO-LSST). To optimize cadence strategies,
figures of merit must be intercompared with a broad diversity
of simulated time-domain sources/events. The Photometric LSST
Astronomical Time-Series Classification Challenge (PLAsTiCC,
The PLAsTiCC team et al. 2018) generated about 3.5× 106 light
curves, simulated using current physical models and class
templates (Kessler et al. 2019). Despite the known diversity of
galactic variable sources (Gaia Collaboration et al. 2019), the data
set of PLAsTiCC variable stars consisted of just five classes (RR
Lyrae, eclipsing binaries, Miras, microlensing events, and
M-dwarf flares). A rational explanation for this is that these are
the classes for which reliable physical models and templates exist.
The absence of other periodic variables, such as Cepheids and
δ Scuti, represents the lack of precise physical models that can
generate realistic time series. Therefore, this opens a window to

4 In contrast, automated streaming machine-learning classification is
relatively new: Muthukrishna et al. (2019); Carrasco-Davis et al. (2019);
Zorich et al. (2020); and ALeRCE http://alerce.science/.
5 In the ML context, transfer learning can help address this problem by
learning a model using one data set and predicting in a different domain. See
Zhang (2019) for an extensive review and Benavente et al. (2017) for time-
domain astronomy applications.

6 CelebFaces Attributes Dataset (CelebA) is a large-scale face attribute data
set with more than 200,000 celebrity images, each having 40 attribute
annotations such as male/female, hair color and length, presence of eyeglasses
or hats, nose shapes, and smile. http://mmlab.ie.cuhk.edu.hk/projects/
CelebA.html.
7 https://blog.insightdatascience.com/generating-custom-photorealistic-
faces-using-ai-d170b1b59255
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the use of state-of-the-art deep learning algorithms to provide fast
data-driven nonparametric generative models.

Inspired by such challenges faced in massive surveys and the
need to expand the representation across variability classes,
here we propose a DGM based in a VAE architecture to
simulate new irregularly sampled light curves using physically
relevant parameters as input variables. In particular, we train a
conditional VAE (cVAE) using OGLE-III light curves for a
total of eight different variability classes. The cVAE model is
constructed in two parts: the encoder, which compresses the
input time series and metadata into a low-dimensional latent
vector enclosing the relevant information of each source; and
the decoder, which uses the latent code and metadata (the
conditional) to reconstruct the original time series. With this
design, the model learns the underlying distribution behind the
generative process and therefore is able to create new
observations by sampling from the learned distributions. The
conditional information provided to the model consists of the
variability class, physical parameters, and the time-stamp of
each observation. We explore the connection between the latent
and physical space by means of different regression models.
Thus, during the evaluation of the model, the user can specify a
set of class label, physical parameters, and observation cadence
as inputs to the decoder to generate a new realistic light curve.

This paper is structured as follows. Section 2 describes data
selection. Section 3 presents the artificial neural network
architecture and training procedures. Section 4 discusses the
results of the selected generative models. Section 5 presents our
conclusions and further prospects. We include an Appendix that
provides a detailed overview of the extensive validation process in
our cross-match results. Alongside this paper, the scripts, trained
models, and validated training data set used for the analysis shown
in this work are available online8; copies of these (Version 0.1.1)
files were also deposited to Zenodo (Martínez-Palomera 2022).

2. Data

In order to train a DGM that can generate time series of
variable sources using physical parameters of the sources as
input, we require (a) the light curves of previously classified

variable sources, and (b) a catalog of relevant physical
parameters for these objects, e.g., stellar radius, metallicity,
effective temperature. In this section, we describe both data
sources, as well as data preprocessing.

2.1. Time Series

We construct our training and testing data sets from The
Optical Gravitational Lensing Experiment (OGLE, Udalski
et al. 1992) in its third phase (OGLE-III, Udalski et al. 2008).9

The I-band observed light curves were collected from the
Galactic Bulge, Galactic Disk, and the Large and Small
Magellanic Clouds fields and describe eight variability types:
anomalous Cepheids (ACEP), classical Cepheids (CEP),
δ Scuti (DSCT), eclipsing binaries (ECL), ellipsoidal variables
(ELL), long-period variables (LPV), RR Lyrae (RRLYR), and
Type II Cepheids (T2CEP). Table 1 column (2) summarizes the
total number of light curves available in the data set, as well as
the number counts per variability class.
After a visual inspection of the available light curves, we

decided to keep only time series with sufficient variability
signal. This was assessed by calculating the signal-to-noise
ratio (S/N) between the variability amplitude and the mean
photometric uncertainty. We removed light curves with S/
N< 5, and performed three iterations of 3σ clipping filter over
the magnitude and uncertainty values in order to remove outlier
observations. Some of the variability classes have subtypes
with multiple pulsation modes and/or are semiregular
pulsators, e.g., DSCT-MULTIMODE and LPV-SRV (where
SRVs are semiregular variables); this results in amorphous
shapes in the period-folded (phase) space. We opted to drop
these subtypes in order to maintain only variability subtypes
that define a regular shape in their phase-folded light curve.
The subtypes that most impact the volume of our data set are
LPVs, SRVs, OGLE small-amplitude red giants (OSARGs),
and carbon-rich (C) and oxygen-rich (O) variables.
In order to train our proposed NN (see Section 3), we

required all light curves to have the same number of
observations. After analyzing the distributions of light-curve
lengths of OGLE-III data, we decided to set the sequence

Table 1
OGLE-III Light Curves and Gaia DR2 Stellar Parameters

Variable Total Light Curves Teff R and L

Originala Clean Validated Augmented Validated Augmented Validated Augmented
(1) (2) (3) (4) (5) (6) (7) (8) (9)

ACEP 83 72 71 5000 1 (1.4%) 70 (1.4%) − (0%) − (0%)
CEP 8052 7265 7121 10,045 4931 (69.3%) 6934 (69.0%) 5 (0.1%) 6 (0.1%)
DSCT 2596 44 42 5090 32 (76.2%) 3840 (75.4%) 10 (23.8%) 1166 (22.9%)
ECL 419,868 10,002 9505 10,000 8581 (90.3%) 9035 (90.4%) 1495 (15.7%) 1556 (15.6%)
ELL 25,217 2328 2269 10,365 1908 (84.1%) 8720 (84.1%) 135 (5.9%) 603 (5.8%)
LPV 343,596 4460 4349 10,044 3730 (85.8%) 8638 (86.0%) 6 (0.1%) 15 (0.1%)
RRLYR 44,031 10,028 9322 10,169 2814 (30.2%) 3062 (30.1%) 31 (0.3%) 31 (0.3%)
T2CEP 599 450 436 5047 322 (73.8%) 3746 (74.2%) 3 (0.7%) 32 (0.6%)

Total 844,042 58,049 33,114 65,760 22,319 (67.4%) 44,045 (70.0%) 1685 (5.1%) 3409 (5.2%)

Note. The original number of light curves available from OGLE-III database is shown in column (2). Columns (3) and (4) give the number of sources after the
cleaning and cross-match validation (see the Appendix for details), respectively. Column (5) shows the number of sources after augmentation. Columns (6) and (7)
show the number of sources with Teff values (percentages) for the validated cross-matches and augmented data set, respectively. Similarly, columns (8) and (9) show
the stellar radius and luminosity.
a Includes all variability subtypes.

8 https://github.com/jorgemarpa/PELS-VAE 9 http://ogle.astrouw.edu.pl/main/collections.html
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length to tlen= 300 observations. We phase-folded every time
series using the periods reported by OGLE-III studies and then
we randomly undersample to tlen data points per light curve. All
light curves were normalized using a min–max scaler; this puts
all time series in the range [0, 1] and removes the interclass
brightness dependence, allowing our network to focus on
learning the light-curve features that are relevant to each
variability class. The total number of counts after the
preprocessing step is presented in Table 1 column (3);
examples of light curves are shown in the first column of
Figure 1.

2.2. Data Augmentation

As seen in Table 1 (column (3)), the distributions of
variability classes reflect a clear imbalance, with a conspicuous
lack of sources in the DECT, ACEP, and T2CEP classes. In
order to compensate for this, we artificially augmented the data
set. For a given phase-folded untrimmed light curve we
resampled the photometric measurements following a Gaussian

distribution with mean and variance corresponding to the
photometric magnitude value and its associated uncertainty,
respectively. Then we applied a phase shift sampled from a [0,
1] uniform distribution. Finally, we randomly undersampled
the new light curve to tlen observations. We performed these
steps for a random selection of sources in each variability class
to reach a uniform count of data per class. The total number of
time series per class after data augmentation is shown in
column (5) of Table 1. For classes with more than 2000
examples, we augmented the number counts up to ∼10,000, for
the rest to ∼5000. In the case of ECL, where the initial number
of sources is noticeably larger than for other types, we reduced
the data set to ∼10,000 examples prioritizing sources with
physical parameters (see Section 2.3). Figure 1 shows light
curves for different variability classes, as well as the result of
the three steps followed in our augmentation procedure. This
demonstrates that the important characteristics of each light
curve such as shape, amplitude, and photometric statistics are
reasonably preserved.

Figure 1. Examples of light curves from the OGLE-III survey. Eight different variability classes are shown in each row. In column 1 the original phase-folded light
curves are shown; column 2 shows the resampled light curves, column 3 shows the phase-shifted light curve, and column 4 depicts the undersampling to tlen = 300
observations.
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2.3. Physical Parameters

To incorporate stellar parameters in our model we cross-
matched the OGLE-III variability catalog with the Gaia Data
Release 2 (Gaia DR2, Gaia Collaboration et al. 2016, 2018)
using a 2″ radius search. We followed a rigorous set of steps in
order to validate the cross-matched sources (more details in the
Appendix), which include compensating for proper motion,
comparison of Gaia and OGLE variability classification, and
positioning of variables in the color–magnitude diagram. This
provides stellar parameters for a fraction of the data set of light
curves, such as effective temperature Teff, stellar radius R, and
luminosity L. Table 1 shows the number of sources with stellar
parameters of all eight variability classes. We would like to
highlight that a sizeable fraction (38%) of our data set is
associated with measurements of effective temperatures,
whereas few measurements of stellar radii and luminosities
from Gaia are made available. The Gaia pipeline only provides
R and L for less than half of the sources with temperature
estimates due to post-processing filtering (Andrae et al. 2018).
Due to the lack of sources with stellar luminosity and radius,
we choose to exclude these physical parameters in our training
process. The Gaia catalog also provides color values based in
the blue and red passbands (GBP−GRP) and parallaxes (Gaia
Collaboration et al. 2019); absolute g-band magnitudes MG

were calculated using distances derived by Bailer-Jones et al.
(2018). Figure 2 shows the joint distribution of the three
physical parameters (period, MG, and Teff) used during model
training; see Section 4.2 for details.

3. Neural Network Model and Training

3.1. Network Architecture

We used the VAE (Kingma & Welling 2013) architecture as
our deep generative model of choice. A VAE provides a
probabilistic approach for calculating a compressed representa-
tion of a set of observations. A VAE is described by two
components. First, an encoder stage transforms training data
into a low-dimensional representation in the so-called latent
space. Then, a decoder processes the latent representation and
expands it in order to reconstruct the original data. In a VAE,

the encoder output describes a probability distribution for each
latent dimension, instead of a deterministic representation as in
the case of classic autoencoders (Hinton & Salakhutdi-
nov 2006). The dimensionality of the latent space is a
hyperparameter of the model to tune. This probability is
assumed to be normally distributed and the encoder predicts its
mean and variance. Later, a latent vector z is sampled from the
learned distribution and fed into the decoder using the
reparameterization trick:

z 1m s= +  ( )

where μ and σ describe the probability distribution returned by
the encoder, and ò is sampled from a unit Gaussian distribution.
This allows backpropagation to be performed during the
training phase.
Our encoder–decoder architecture consists of two types of

layers for each module—a temporal layer processing the
sequential nature of the data, and fully connected layers for
outputs. Figure 3 shows an overview of the VAE network
architecture. The temporal component can be implemented as
either a temporal convolutional network (TCN, Bai et al. 2018)
or a recurrent neural network (RNN).
TCNs refers to a family of 1D convolutional architectures

designed for efficiently handling sequential data. The main
features of TCNs are (1) causal convolutions, meaning that
there is no information leakage from future to past; (2) dilated
convolutions, the equivalent of adding a step between each pair
of adjacent filters to allow for a large receptive field (Yu &
Koltun 2015) and an extensive lookback time; and (3) residual
connections, where the output of each residual block is
constructed by adding the input data and the transformed data
layers (see Figure 2 in He et al. 2016). TCNs are described by
the following hyperparameters: the convolution kernel size
(ksize), the number of hidden units (hsize) in the convolutional
layers, the dilation of convolution (d), and the number of
temporal blocks (nblocks).
Alternatively, RNNs are recursive architectures that combine

operations per cell (time step) in order to calculate a cell state
and output. Such cell states are carried into the next cell (time
step) and contain the relevant historic information learned.
RNNs suffer from several well-known issues such as short-
term memory and vanishing gradient problem during training
(Bengio et al. 1994; Pascanu et al. 2012). There are variants of
RNN architectures designed to prevent such limitations. The
most widely used are long–short term memory (LSTM,
Hochreiter & Schmidhuber 1997) and gated recurrent units
(GRUs, Cho et al. 2014), which proved to be able to prevent
the gradient-vanishing and explosion typically noted in
traditional RNNs by including an internal mechanism called
gates to regulate the flow of information. The network size is
controlled by the number of hidden units per cell (hsize) and the
number of stacked RNNs (nlayers), where the output of each cell
is fed into the next cell in the same RNN layer but also to the
corresponding cell in the next RNN layer.
After the sequential layer(s) in the encoder we include stacks

of fully connected layers followed by an ReLU10 activation and
dropout layer.11 The network then connects to two independent

Figure 2. Joint distributions of physical parameters—period P, effective
temperature Teff, and absolute g-band magnitude Mg—used during training of
the generative model (see Section 4.2) color-coded by variability class.

10 A rectified linear unit (ReLU) function is defined as f x xmax 0,=( ) ( ).
11 Dropout is a regularization technique and refers to the process of randomly
deactivating neurons during training in order to avoid overfitting. The number
of dropped neurons per layer is defined by a probability that is a
hyperparameter of the model.
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fully connected layers, one to predict the mean and the other
the log-variance of the n-dimensional Gaussian distributions of
the latent space.

For the decoder, a sequential network (TCN or RNN)
receives as input a repeated vector of the latent code and
metadata reshaped according to the number of time steps tlen.
Each time step is tagged with the corresponding observed
difference in time Δti= ti− ti−1. This sequential network uses
the same architecture and hyperparameters as the encoder.
After that, a fully connected layer followed by a sigmoid12

activation function returns the reconstructed scaled light curve.
The flow of data through the VAE network (see Figure 3 for

reference, where the arrows represent the flow of data) is as
follows: scaled light curves are first fed into the encoder,
leading to the extraction of representative features. Then the
last time-step state is concatenated with a one-hot encoding of
the label value and the physical parameters. Next, the stack of
fully connected layers is branched into two dense layers that
predict the mean and log-variance of the latent space

distributions. Later, a new latent vector is sampled and
concatenated with the observation times of the light curve (as
in Naul et al. 2018) and with the encoded labels; this vector is
repeated tlen times and presented to the sequential component
of the decoder; finally a fully connected layer processes the
sequential output and returns the magnitude and error of the
reconstructed light curve. Our VAE model accepts nonuni-
formly sampled time series and is time-conditioned, and
therefore only reconstructs the photometric measurements.
Moreover, due to the inclusion of side information into the
network, the latent variables not only encode the relevant
features extracted from the light curves, but also embed the
provided metadata, which enforces a correlation between the
latent space and the physical parameters that can be exploited
after training. We call this architecture the “physics-enhanced
latent space VAE” (PELS-VAE) model.

3.2. Training

Let x be the observed training data points, z the latent vector,
qθ(z|x) the encoder network with θ model parameters, and
pf(x|z) the decoder network with f model parameters, then the

Figure 3. Neural network architecture of a conditional variational autoencoder. The left-hand side of the diagram represents the encoder (blue boxes), while the right-
hand side represents the decoder (green boxes). Red boxes show the latent space. Each side, encoder and decoder, uses a sequential architecture (TCN or RNN) and a
fully connected dense layer to map the outputs. Yellow boxes represent input data, such as light curves (LC), variability labels (l), and the corresponding physical
parameters (η).

12 A sigmoid function is defined as f x e1 x 1= + - -( ) ( ) and constrains output
values to the range [0, 1].
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classical VAE objective function is

p x z D q z x p zlog 2z q z x KL= -f q~ q
 [ ( ∣ )] ( ( ∣ )∣∣ ( )) ( )( ∣ )

where the first term is the reconstruction likelihood of the decoder
network given a latent vector; the expectation value is taken with
respect to the encoder’s distribution over the representations. The
second term is a regularization, the Kullback–Leibler divergence
(KL, Kullback & Leibler 1951) between the learned latent
distribution and its prior, which is assumed to be the unit Gaussian

Ip z 0,º ( ) ( ), with I the identity matrix with dimensions
corresponding to the size of the latent space. This loss function
equally treats the reconstruction error and the similarity of the
latent representation with a unit Gaussian. The latter intends to
capture the underlying data generative factors, enforce that similar
data points have a similar latent representation, and aim for a
disentangled representation, meaning that every single latent
direction controls a single aspect of the generative factor. One way
to enforce disentanglement in the latent space would be to
introduce an additional hyperparameter (β) that weights the
importance of the second term in Equation (2) as follows:

p x z D q z x p zlog . 3q z x KL b= - [ ( ∣ )] ( ( ∣ )∣∣ ( )) ( )( ∣ )

Introduced by Burgess et al. (2018), the hyperparameter β plays a
role in disentangling the latent representation. Higher values of β
enforce orthogonality between latent directions due to the
assumption of a diagonal covariance matrix in its prior
distribution. With β= 0, the traditional autoencoder loss is
recovered. We used a slightly modified version of the empirical
expression for Equation (3) when Ip z 0,º ( ) ( ):
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where N is the total number of light curves, x ji , xi
jˆ , i

js , and i
jŝ

are the jth measurements, reconstruction values, measurement
error, and reconstructed errors of the ith light curve,
respectively; μi and σi refer to the mean and dispersion the
latent distributions for the ith light curve. The first term
corresponds to the weighted mean squared error that represents
the reconstruction error, and the second term refers to the KL
divergence. We added a third regularization term that enforces
the proper reconstruction of predicted measurement errors by
calculating the KL divergence between the true and predicted
values. This last term regularizes that the probability distribu-
tion of reconstructed errors i

jŝ follows the true distribution
of i

js .
We partition our data set into three subsamples, the training

(60%), validation (20%), and test (20%) sets. We followed a
stratified split strategy to ensure that class proportions are
preserved for each partition. The test set only contains real
sources that were not used during data augmentation. To search
for the set of hyperparameters of the best-performing model, we
run a hyperparameter sweep and optimization using the Weight &
Biases13 framework. We used a Bayesian optimization search
strategy provided by this framework that employs a Gaussian
process to model the hyperparameter function and then chooses
parameters that improve the probability of minimizing a
specific metric, which in our case was the loss function for
the validation set. The hyperparameter search covered different
combinations and is summarized in Table 2.
After the sweep search, we found the set of optimized

hyperparameters highlighted in Table 2. We treated the latent
space dimension as a model’s hyperparameter and optimized it
for best loss performance, which makes it dependent on the
model and data set. The best latent dimensions are 4 and 6, with
insignificant differences in their loss performance, but with
higher correlation coefficients between embeddings for the
latter. Therefore, a four-dimensional latent space is sufficient to
encapsulate the necessary information to then fully reconstruct
the original time series, while still keeping a low-dimensional
space that can be correlated to a low-dimensional physical
parameter space a posteriori. We did not find a significant
difference between the best configuration of GRU and TCN in
terms of reconstructed light curves and latent space properties
but found a reduced convergence time in training for TCNs,
which were at least three times faster than GRUs, even though

Table 2
Notation for Neural Network Hyperparameters and Grid Search

Parameter Description Grid Searcha

bsize Batch size [32, 64, 128]
lr Learning rate ∼U(0.00005, 0.1), 0.001
lrsch Learning rate scheduler [none, exponential, cosine,

plateau]
β KL divergence weight ∼U(0, 1), 0.75
zdim Latent space dimension [4, 6, 8, 12]
pdrop Dropout probability ∼U(0, 0.5), 0.2

nblocks Number of temporal blocks
in TCN

[5, 7, 9]

ksize TCN kernel size [3, 5, 7, 9]
d Dilation in TCN 2
seq_arch Sequential architecture TCN, GRU, LSTM
hsize Number of hidden units in

TCN/RNN
[16, 32, 48, 64]

nlayers Number of RNN layers [1, 2, 3]

Note.
a Hyperparameter grid. In bold are highlighted the values associated with the
best-performing model.

Figure 4. Validation loss during training epochs for VAE models without
physical parameters and GRU (blue) and TCN (yellow) architectures, while the
red line shows a model with TCN layers that include physical parameters
during training.

13 https://www.wandb.com/
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the TCN network capacity was six times larger. This is
consistent with the recent findings in Jamal & Bloom (2020).

We used the ADAM optimizer (Kingma & Ba 2014) during
training for over 100 epochs. Training and testing loss values
are shown in Figure 4, where convergence is shown to be
achieved. Our models were implemented using Pytorch 1.3
(Paszke et al. 2019).

4. Results

4.1. Light-curve Reconstruction

First, we explore the basic form of our cVAE model,
trained with light-curve data and conditioned only with
variability labels, excluding physical parameters, in order to
explore the capabilities of the model to capture the necessary
information to reconstruct light curves of periodic variable
sources. Figure 5 shows reconstructed light curves from the
selected best model, with three examples for each variability
class. The overall shape and small details characteristic of

each variability class are recovered by the generative model.
Due to the variational nature of the model, stochasticity
introduced when sampling from the latent variables, the
reconstructed light curves are not completely equal to their
original counterparts. As expected, the model is optimized to
learn a smooth latent space that facilitates the generative
process rather than the reconstruction.
Figure 6 shows the joint distributions of all four latent

dimensions, particularly the predicted mean values (μ) that
describe the Gaussian distribution of the latent space. Due to the
regularization term added to the objective function, the KL
divergence term in Equation (2), the learned latent space
resembles a normal distribution in each dimension. The clustering
of different variability classes is not strong, due to this
regularization, which drives toward a smooth and dense latent
space. The latter is particularly useful when generating new
instances, especially when interpolating between different loci of
the latent space that were not explored during training.

Figure 5. Displays of reconstructed phase-folded light curves obtained at the decoder level by the best-performing model trained only with time series (cVAE). Three
examples per variability class are shown. Gray markers denote the observed photometric OGLE-III I-band light curve, while in blue are the decoder reconstructions.
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4.2. Embedding Physical Parameters

Using the same network architecture described in Figure 3,
we trained a second model (cVAE-P) that includes three
physical parameters: effective temperature, absolute magnitude,
and period. Figure 7 shows the reconstructed light curves.

In order to compare the capability of our model to learn and
encode physical parameters in the latent space, we compared two
instances of the same model: (1) a cVAE network trained with
light curves and labels, but without physical parameters as
discussed in the previous section; (2) a similar network
architecture (cVAE-P) that also includes physical parameters
during training, concatenated to the label vector and provided to
the encoder component of the network. After both models were

trained, we establish a relation between the latent space and the
physical parameters by fitting a multivariate regression between
them. This allows us to select a given set of Teff, period, and
absolute magnitude that are mapped to the latent space and later
fed to the decoder in order to generate new light curves.
We evaluate three regression models:14 linear, random forest

(RF regressor), and a basic multilayer perceptron (MLP). All
three regressors are fitted using the same training set, and the
rms errors (RMSE) of the validation set (20% of the total data
set) for each method are presented in Table 3. Both the linear

Figure 6. Joint distributions of all μ (encoded features) values for the four dimensions of the latent space obtained by the best-performing model trained only with
time-series data (cVAE). Color coding corresponds to the eight variability types.

14 We used the scikit-learn (Pedregosa et al. 2011) implementation for
all three regression models.
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and MLP regressions achieve similar RMSE, as expected,
while the random forest regressor outperforms the others.
Though the RF achieves a lower RMSE, tree-based regressors
are restricted to predictions within the training set range. When
comparing the two generative models, with and without seeing
physical parameters during training, RMSE values are not
substantially different but are consistently better for the model
that includes physical parameters (cVAE-P).

In order to keep the variational power of our generative model
and avoid obtaining the exact copy of the light curve when
selecting a fixed vector of physical parameters, we added an extra
“dummy” dimension to the physical space. Afterwards, the
regression model is fitted with a collection of 100 repeated
physical vectors per instance in the data set that only differs in the
value of the extra dimension, which is sampled from a uniform
distribution. In the latent space, thanks to the variational
architecture that encodes the parameters μ and σ of the latent
distributions, each latent vector is sampled 10 times from∼N(μ, σ)

for each instance of the data set. This allows the model to generate
slightly different time series for the same set of physical vectors
while keeping them consistent.

4.3. Generating New Light Curves

The process of generating a new light curve is described as
follows: a vector of physical parameters is constructed given a

Figure 7. Reconstructed light curves obtained at the decoder level by the best-performing network (cVAE-P) exploiting physical parameters as auxiliary inputs.
Displays of three objects per variability class are shown. Gray markers denote the observed photometric OGLE-III I-band light curve, and in blue are the decoder
reconstructions.

Table 3
Latent–Physical Space Regression

Generative Model cVAE cVAE-P

Linear 0.863 0.794
Random forest 0.299 0.289
Multilayer perceptron 0.863 0.798

Note. Values correspond to the rms error for a validation set. Values in bold are
the best achieved for each generative model.
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set of values for effective temperature, absolute magnitude, and
period; an extra dimension is added by sampling from∼U(0,
1); this vector is projected into the latent space by means of the
regression function, which returns a latent vector; this latent
vector is tagged with the user-defined observed time-stamps
calculated from the period and a zero-time value; this extended
latent code is fed into the decoder network, which returns a new
phase-folded light curve, where phase values can be converted
to time using the previously selected period and zero-time.
With a model conditioned to the observed phases, it is possible
to change the effective observational cadence of the light curve.
This provides an opportunity to explicitly explore different
observing cadences and how such cadences might impact the
discovery and characterization potential of different variability
classes.

Figure 8 presents a sequence of generated RR Lyrae light
curves for different values of effective temperature as they
increase in value. RR Lyrae light curves morph in shape with
increasing temperature, transitioning from a sawtooth shape
characteristic of Bailey type ab to a more sinusoidal shape
typically found in hotter Bailey type c. This change in the light-
curve shape is clearly shown when using the RF regressor
(middle row), but there is minimal change in the shape for the
other two regressors.

4.4. Limitations and Future Explorations

Incorporating a fixed number of physical parameters in
learning the generative model limits its capacity to use other
stellar parameters without retraining. On the other hand, the
model trained only on light curves provides for the possibility
of including post facto additional (physical) variables that were
not explored in this study. This can done by fitting a new
regression model to connect the latent space with the new space
of physical parameters, avoiding the retraining of the VAE
model. For instance, adding metallicity, stellar mass, and
surface gravity of the stars will provide a more complete
generative model. The challenge here is to obtain a
comprehensive training catalog of variable stars with respective
stellar parameters, across a variety of variability classes. Our
VAE models and physical-to-latent space mapping do not
explicitly include the Gaia measurement uncertainties, particu-
larly for Teff; this introduces a form of label noise that will
require further exploration.

A future extension of this generative model would consist of
finding a more complex and accurate connection between the
latent space and the space of physical variables. Recent work
has used flow-based models coupled to VAE models: Böhm
et al. (2019) found, in an image-based domain, that by training
a normalizing flow (NF, Jimenez Rezende & Mohamed 2015)
to the encoded data distribution the sample quality improved
when generating new images; both models provided compe-
titive results with very little hyperparameter tuning. Moreover,
the NF model also allows sampling from a true normal
distribution and then mapping to the latent distribution, which,
while regularized to be Gaussian, in practice does not strictly
follow a Gaussian distribution. An important characteristic of
flow-based models is that the transformations are invertible
(bijectors), by construction, allowing one to solve the inverse
problem of inferring physical parameters from the latent code.
Even more, a flow-based model could capture better the
covariance between physical parameters to find an even more
physically constrained mapping to the latent space. The latter is
specifically important for our purposes as each type of variable
star tends to occupy a specific locus in the low-dimensional
manifold of physical space. For instance, RR Lyrae are located
in the intersection of the horizontal branch and the instability
strip of the H-R diagram; this bounds the physically allowed
values of effective temperature and luminosity to the
[6000–7250] K range and ∼102 Le, respectively.

5. Summary

To date, the most prominent uses of deep generative models
have been in the image and spatial domains, with models that
can tractably generate realistic landscapes, faces (Karras et al.
2019), galaxies (Dia et al. 2019), and dark matter distributions
(Mustafa et al. 2019). Sequential data, primarily for natural
language (Rajeswar et al. 2017) and music (Engel et al. 2019),
have also been modeled with deep generative networks.
However, previous to this work, we are not aware of the prior
use of deep generative models in the astronomical time
domain.
In this work, we presented a deep generative model based on

a variational autoencoder architecture that, after being trained
with irregularly sampled and noisy light-curve data, is able to
reproduce and generate realistic periodic variable sources, such
as RR Lyrae, eclipsing binaries, and Cepheids. This model

Figure 8. Generated light curves of RR Lyrae stars as effective temperature Teff increases (column direction). The three rows show the results from the three regression
models: linear, random forest, and multilayer perceptron. The RF regressor, second row, shows a better representation along the temperature series for RR Lyrae
variables, which agrees with its comparative RMSE performance.
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includes an encoder module to extract relevant information
from the light curves and auxiliary metadata (i.e., physical
parameters) and condense it into a low-level representation in
latent space, and a decoder network that expands the latent
code to the reconstruction of the original time series. Both
networks make use of temporal convolutional network layers
followed by fully connected (dense) layers (Figure 3).

We trained this model with OGLE-III light curves and stellar
parameters from the Gaia DR2 catalog. Our trained models are
capable of recovering the distinctive characteristics of the light-
curve shapes for eight different types of periodic variables. We
present a preliminary version of the model trained only with
light curves and a second model that includes physical
parameters as ancillary inputs. For the first approach, the latent
space only encodes the information on light-curve shape, while
for the second the latent space includes the information from
physical parameters such as effective temperature, brightness
(absolute magnitude), and period, highlighting the correlation
between the latent and physical space by means of multioutput
regression. In that regard, we explored tree-based, linear, and
multilayer perceptron regression. Despite the limitations of
tree-based aggregate learners to predict near the extrema of the
target output variables, when using an rms error loss, the
random forest regressor showed a better result than a simple
linear model or a one-hidden-layer perceptron model.

With PELS-VAE, we introduce the methodology of
generating new light curves by first selecting a vector of
physical parameters that is projected into the latent space by
means of a regression function. Afterwards, the latent vector is
tagged with the desired observing time-stamps and fed into the
decoder network, which creates a new light curve. The
complete process of generating a batch of 100 new light
curves on a modern CPU takes ∼1.3 s, independent of the
regression method, without parallelization. The two generative
models each present distinct advantages. The first model
trained solely on the information from the phase-folded light
curves is adjustable to include ancillary metadata (i.e., physical
parameters) at a later stage without the need to retrain the
model anew. The second model processes jointly the photo-
metric observables and the metadata, leading to a better
mapping between the latent space and the physical space. The
exploration of highly-sophisticated models, such as autore-
gressive flows, which connect the space of physical parameters
to the latent space, constitutes future work.

This research used the Exalearn computational cluster
resource provided by the IT Division at the Lawrence Berkeley
National Laboratory (supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE–
AC02–05CH11231). J.M.P. and J.S.B. were partially sup-
ported by a Gordon and Betty Moore Foundation Data-Driven
Discovery grant. E.S.A. was supported by a National Science
Foundation (NSF) Graduate Research Fellowship, under grant
DGE 1752814, and a Two Sigma Ph.D. Fellowship.

Software: numpy (van der Walt et al. 2011), matplotlib
(Hunter 2007), jupyter (Kluyver et al. 2016), pytorch
(Paszke et al. 2019), Weight & Biases,15 scikit-learn
(Pedregosa et al. 2011), and pandas (Wes McKinney 2010).

Appendix
Gaia DR2 Cross-match Validation with OGLE-III

The cross-match between the OGLE-III and Gaia DR2
catalogs uses a 2″ search radius. This radius encloses all
sources with proper motion (PM) up to 130 mas yr−1 given the
δt= 15.5 yr difference between the effective epochs of the
catalogs. The resulting cross-matched sources are constrained
to the range [−34, 40] mas yr−1. (We found that a modest
increase in this radius did not result in the addition of more
matches.) This supports the selection of a 2″ search radius
without the need for compensation due to high-PM sources.
To validate the resulting cross-matched sources, we first look

for possible contaminating sources within the 2″ search radius.
A total of 19,545 out of 34,653 sources do not have other
neighbors within 2″, and each corresponding Gaia source has a
calculated offset over δt that is within the angular distance of
the search. There are 15,108 stars that have multiple sources
within 2″ of the OGLE source. Of these, 1113 objects do not
have neighbors within the angular distance of the OGLE source
and the PM radius of the nearest Gaia source, and we accept
these as valid matches. We acknowledge that this assumes that
the nearest-neighbor match is correct in order to rely on Gaia
PM values, which can be supported by the analysis presented
above. Only six of 15,108 objects have a cross-match angular
distance larger than their own PM radius value. We visually
inspect those cases using the Aladin Sky Atlas platform
(Bonnarel et al. 2000). Five of these are valid cross-matches,
while one source failed a by-eye confirmation of the Gaia DR2
catalog overlaid on Pan-STARRS images as the baseline.
The remaining 13,989 sources had more than one object

within the PM radius of the nearest star. Of these, 3835 are
listed with variable star classifications in the Gaia Variability
Catalog (Rimoldini et al. 2019). In particular, 3732 have
matching variability classification (without considering sub-
types) between the OGLE and Gaia variability catalogs. The
remainder (103) have mismatched classification labels, from
which 89 are sources either classified as RR Lyrae or Cepheids
by one catalog or the other with measured periods of <1 day. A
similar result was obtained for nine of 103 objects, which are
labeled as eclipsing binary systems by OGLE but have a
different label in Gaia catalogs. This confusion is expected due
to the small number of observations (∼30 data points) and
uneven windowing present in Gaia light curves when compared
to the denser and longer-baseline OGLE time series. Therefore,
after a visual inspection of light curves from both OGLE and
Gaia, we confirmed 98 cross-matches and adopted the OGLE
classification. We discarded the remaining five sources due to a
catastrophic mismatch in their classification type and visual
inspection of the light curves between the two catalogs. A
further 461 of 13,989 sources are flagged as variables in the
Gaia DR2 catalog but have no assigned variability subtype. For
this subsample, we check the Gaia colors (GBP−GRP) and
effective temperatures (Teff) against the corresponding ranges
per class for the 19,545 confirmed objects, informed by the
known value ranges available in the literature (Catelan &
Smith 2015), allowing us to validate the 461 sources as likely
correct matches.
Finally, the remaining 9693 sources, from the previous count

of 13,989 variable stars, have more than one neighbor within
their PM radius and their nearest-neighbor match has no
variability information provided by Gaia. To validate this
subset, we first filtered following the same temperature and15 https://www.wandb.com/
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color criteria described in the previous paragraph. However,
without additional information on the variability of these
sources from Gaia, we further analyzed these sources by
inspecting the position of the nearest Gaia source in the color–
magnitude diagram (CMD), using the confirmed sample and
the locus for known pulsating variables (Gaia Collaboration
et al. 2019) as a ground truth comparison. There are 8374 of
9693 sources that have GBP and GRP measurements in Gaia

DR2, which we combined with the estimated distances from
Bailer-Jones et al. (2018; hereafter the Bailer-Jones catalog) in
order to account for known issues with Gaia parallax
measurements in crowded areas like the plane of the Galaxy.
To avoid color and magnitude degeneracies with possible
mismatches, we remove 775 sources within the main-sequence
region that could contaminate our sample, validating 7620
nearest-neighbor cross-matches. We reject the 465 objects with

Figure 9. Distributions of Gaia color (GBP − GRP, upper row) and absolute g-band magnitudes (MG, lower row) color-coded by variability classes. The left two panels
show the confirmed cross-matches (sources with only one match within PM radius and with matching variability class), while the right panels show the sources
validated by CMD comparisons (last group in Table 4).

Table 4
Cross-match Validation Summary

Count Description

34,653 Size of 2″ cross-match between OGLE and Gaia
19,545 Objects that only have 1 match in 2″ radius
1,113 Objects that have >1 match in 2″ radius but only 1 match in PM radius of nearest neighbor
5 Objects with a cross-match angular distance outside the nearest neighbor’s PM radius that passes visual inspection
1 Object with an angular distance outside the PM radius that does not pass visual inspection

4,296 Objects with >1 match in both 2″ radius and nearest-neighbor PM radius and variability information

3,732 Objects with the same variability class in OGLE and Gaia
461 Objects flagged as variable with no assigned class, similar Teff and colors to 19,545 confirmed
98 Objects with adjacent variability classes and visually similar light curves
5 Objects with fatally different classes and visually dissimilar light curves

9,693 Objects with >1 match in both 2″ radius and nearest-neighbor PM radius and no variability information

7,620 Objects that have GBP and GRP measurements in Gaia DR2, validated by CMD placement
539 Objects whose nearest neighbor lacks GBP and GRP measurements, second-closest neighbor validated by CMD placement
2 Objects whose second-closest neighbor has the same variability class in OGLE and Gaia
755 Objects that have GBP and GRP measurements in Gaia DR2, degenerate with the main sequence
465 Objects with three or more Gaia sources within the nearest-neighbor PM radius
162 Objects whose second-closest neighbor is degenerate with the main sequence or Gaia colors too blue for the OGLE class
151 Objects do not have inferred distances in the Bailer-Jones catalog for any stars in the cross-match radius

Note. Lines in bold font were dropped from the cross-match as definite or possible mismatches. For lines in italic font, the second-closest neighbor provided the
correct match.
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three or more sources in the search radius, except for the two
objects whose second-closest neighbor has matching Gaia and
OGLE classes. The 853 objects that remain are missing GBP

and GRP for the nearest-neighbor match, but the only other star
in the cross-match radius had measured colors. There are 151
of 853 objects that do not have estimated distances in the
Bailer-Jones catalog and we reject these cross-matches. Since
none of the objects in our catalog with confirmed Gaia classes
were missing Gaia colors, we placed the second-closest Gaia
match on the CMD for the remaining 701 sources and found
that 539 sources were in the correct place on the CMD for their
OGLE classes. We reject the 162 sources that were degenerate
with the main sequence or had Gaia colors that were too blue
for the OGLE class. Lastly, after all validation steps, we
consolidate our data set with 33,114 valid cross-matches. There
are 32,573 of these matches that were with the nearest neighbor
and 541 matches were with the second nearest neighbor, all
within the PM radius of the Gaia source. Figure 9 shows the
distribution of Gaia color and absolute g-band magnitude for
confirmed cross-matches and sources validated using the CMD
comparison decribed above. We make the OGLE-III/Gaia
DR2 cross-match publicly available on Zenodo: doi:10.5281/
zenodo.3820679.
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