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Abstract

Plasmodium falciparum parasites have evolved genetic adaptations to overcome immune

responses mounted by diverse Anopheles vectors hindering malaria control efforts. Plasmo-

dium falciparum surface protein Pfs47 is critical in the parasite’s survival by manipulating

the vector’s immune system hence a promising target for blocking transmission in the mos-

quito. This study aimed to examine the genetic diversity, haplotype distribution, and popula-

tion structure of Pfs47 and its implications on malaria infections in endemic lowlands in

Western Kenya. Cross-sectional mass blood screening was conducted in malaria endemic

regions in the lowlands of Western Kenya: Homa Bay, Kombewa, and Chulaimbo. Dried

blood spots and slide smears were simultaneously collected in 2018 and 2019. DNA was

extracted using Chelex method from microscopic Plasmodium falciparum positive samples

and used to genotype Pfs47 using polymerase chain reaction (PCR) and DNA sequencing.

Thirteen observed haplotypes of the Pfs47 gene were circulating in Western Kenya. Popula-

tion-wise, haplotype diversity ranged from 0.69 to 0.77 and the nucleotide diversity 0.10 to

0.12 across all sites. All the study sites displayed negative Tajima’s D values although not

significant. However, the negative and significant Fu’s Fs statistical values were observed

across all the study sites, suggesting population expansion or positive selection. Overall

genetic differentiation index was not significant (FST = -0.00891, P > 0.05) among parasite

populations. All Nm values revealed a considerable gene flow in these populations. These
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results could have important implications for the persistence of high levels of malaria trans-

mission and should be considered when designing potential targeted control interventions.

Introduction

Plasmodium falciparum is accountable for a majority of malaria infections and deaths in the

African region accounting for 99.7% of estimated malaria cases in 2018 [1]. The endemic Lake

regions (risk class equal to or above 20%) majorly lowlands have most of the malaria burden in

Kenya and transmission occurs throughout the year [2, 3]. The combination of control inter-

ventions used in these regions includes long-lasting insecticidal nets, indoor residual spray

and Artemisinin-based combination treatments [4]. Yet, there is still continuous transmission

of the P. falciparum among the vulnerable populations. The spread of malaria is a result of the

parasites’ adaptation to indigenous vectors in different geographical regions [5]. Hence, over

70 Anopheles species can transmit P. falciparum malaria [6]. The mosquito immune system

can significantly deter successful malaria transmission and is critical for controlling the vector

capacity [7]. For a complete transmission circuit, Plasmodium parasites have to overcome

immune responses mounted by diverse Anopheles vectors [8–10]. Pfs47 is a surface protein in

P. falciparum expressed on the surface of female gametocytes, gametes, zygotes and ookinetes

[11] that interacts with the mosquito midgut making the parasite invisible to the vector’s

immune system thus providing the parasite with an immune evasion mechanism [12] limiting

the efforts to effectively control and eliminate malaria. Hence, Pfs47 is a potential molecular

target of interest in designing appropriate interventions for malaria [12–14].

The Pfs47 gene is exceptionally polymorphic with a strong geographical genetic structure

and diversity [15, 16]. It exhibits haplotypes that are naturally selected by the anopheline vec-

tors in varying geographical regions causing significant variations in malaria transmission [13,

16]. Plasmodium falciparum isolates from African strains have consistently displayed high lev-

els of genetic diversity [14, 17, 18] and a strong geographic structure in the Pfs47 gene from

laboratory and field isolates [16, 19] as well as haplotypes found circulating within the major

malaria vectors; An. gambiae and An. funestus populations. These results were a clear indica-

tion that compatible Pfs47 haplotypes are naturally selected within vector populations in Africa

triggered by the mosquito’s immune pressures [16]. Previous findings identified 42 Pfs47 hap-

lotypes that exhibit high dN/dS worldwide [13] and the evolutionary relationships between

these haplotypes revealed 32 haplotypes exclusively from Africa, Papua New Guinea, the

Americas, and Asia [20]. These polymorphisms may therefore have a significant impact on the

trends in malaria transmission dynamics and the parasite history.

Plasmodium falciparum genetic diversity and population structure determined by various

factors including transmission intensity and levels of inbreeding in varied endemicities [21,

22], human and vector movement [23], geographical features that create barriers or promote

gene flow [21], and locally implemented malaria control interventions [19, 24] are critical in

designing targeted malaria control measures. However, knowledge on the underlying mecha-

nisms that these Plasmodium parasites adapt to major malaria vectors from differing regions

and endemicities is limited. The need to conduct refined local Plasmodium parasites popula-

tion genetics that will significantly improve our understanding of transmission dynamics and

contribute to designing targeted control and management tools against malaria is vital. This

study evaluated the genetic diversity, haplotype distribution, and population structure of Pfs47

and its implications on malaria infections in endemic regions in Western Kenya.
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Materials and methods

Study sites and sampling

Cross-sectional blood screening was conducted in January to August 2018 and January to

March 2019 in three malaria-endemic regions in the lowlands of Western Kenya: Kombewa

(34˚300E, 00˚070N; altitude ranges 1,170–1,300 m above sea level), Chulaimbo, a rural site 19

km west of Kisumu City (0.03572˚S, 34.621˚E, altitude ranges 1328–1381 m above sea level)

and Homa Bay (0.3800 S, 34, 6419 E, altitude 1300 m) (Fig 1). Malaria transmission is peren-

nial in the lowland and the major Plasmodium transmitters in these regions include An.

Fig 1. Map of Western Kenya showing the sampling locations. The map was generated using ArcGIS Pro 2.6 software. Map source: ESRI,

CGIAR, and USGS (available at: www.esri.com).

https://doi.org/10.1371/journal.pone.0260434.g001
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gambiae and An. arabiensis [25]. Malaria incidence in the lowlands is consistently high and is

characterized by flat land with vast malaria breeding habitats especially during the rainy season

[26]. Kombewa is semi-arid with poor drainage and semi-permanent swampy streams and an

average monthly temperature range of 18.4˚C–29.1˚C [27]. Malaria is holoendemic in this region

and transmission occurs throughout the year. The economic activities in Kombewa involve sub-

sistence farming, animal husbandry, and fishing [28]. Chulaimbo has a sporadic water supply

system, and limited sewer and waste disposal, and a mean annual temperature range of 12˚C–

35˚C. The region experiences an average annual rainfall of 1352 mm and an average relative

humidity range of 66–83%. Most residents are small-scale subsistence farmers. Homa Bay has

extensive environmental modifications and human migration and experiences semi-arid climatic

conditions and depends on the Kimira-Oluch irrigation scheme for food production.

Parasitological surveys

Blood samples were collected from participants of different ages (<5, 5–15,>15 years) who

had consented to the study. Dried blood spots (DBS) were collected by finger prick on well-

labeled Whatman1 903 Protein Saver Cards (GE Healthcare WB100014) containing the par-

ticipants’ details. Approximately, 50 μl of blood was drawn and placed onto the Whatman1

903 Protein Saver Cards and allowed to air dry before they were individually stored and pre-

served at -20˚C for molecular analyses. Thick and thin smears were simultaneously prepared

for Plasmodium species identification and parasite counts. Blood films were stained using 10%

GIEMSA and examined in a compound microscope to determine the presence of Plasmodium
parasites. Only the 125 DBS from P. falciparum positive participants were used to genotype

Pfs47 and later sequenced to determine haplotypes distribution.

DNA extraction and Plasmodium species identification

Plasmodium falciparum parasite DNA was extracted from the DBS using Chelex method [29].

Briefly, 3 mm discs were cut from each of the DBS were soaked in 10% Saponin and Phosphate

buffer saline (PBS), and incubated overnight. The preparation was washed twice in 1xPBS and

boiled in 20% (wt/vol) chelex suspension (styrene-divinylbenzene co-polymer containing imi-

nodiacetic acid groups). The mixture was vortexed and centrifuged and used to identify Plas-
modium species as described elsewhere [30]. In brief, multiplex real-time PCR (RT-PCR) was

run in a final volume of 12 μl containing 2 μl of sample DNA, 6 μl of PerfeCTa1 qPCR Tough-

Mix™, Low ROX™ Master mix (2X), 0.5 μl of each species specific probe including P. falcipa-
rum, P. ovale and P. malariae 0.4 μl of each species specific forward primers (10 μM), 0.4 μl of

each species specific reverse primers (10 μM) and 0.1 μl of double-distilled water. (Primers and

probes sequences are shown in S1 Table). The thermal profile used was 50 ˚C for 2 min, (95 ˚C

for 2 min, 95 ˚C for 3 sec and 58 ˚C for 30 sec) for 45 cycles. After species confirmation by

RT-PCR, 125 samples that were infected with P. falciparum parasites only were randomly

selected for genotyping the Pfs47 gene.

Genotyping Pfs47

Genotyping Pfs47 was performed following the method as described by Anthony et al. [16]

with modifications. Briefly, forward 5’ATGTGTATGGGAAGAATGATCAG3’ and reverse

5’ACAAGTTCATTCATATGCTAACATA3’ primers were used to amplify the entire coding

region 1320 bp from the DNA of the 125 P. falciparum positive samples. A final reaction vol-

ume of 12 μl was prepared by addition of 6 μl of Dream Taq Green PCR Master Mix (2X),

0.5 μl of each of the forward and reverse primer, 3 μl of double distilled PCR grade water, and

2 μl of sample DNA. The PCR conditions were set as follows; 95˚C for 3min, 35X (94˚C for30
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sec, 50˚C for 30 sec, 68˚C for 90 sec), and 72˚C for 6 minutes before sequence, amplicons qual-

ity and size were determined by visualization of PCR products in 1.5% w/v gel under UV trans-

illuminator. The amplicons were cleaned and sequenced directly using BigDye terminator

chemistry v3.1, PCR primers, and PRISM1 3730xl genetic analyzer (Applied Biosystems, CA,

USA). Paired reads from the sequencer were edited and assembled using BioEdit software

(version 7.2.5) before further analysis.

Ethics approval

The study was approved by the Maseno University Ethics Review Committee (MUERC proto-

col No. 00456) and the University of California, Irvine Institutional Review Board (UCI IRB)

and received authorization from the Ministry of Health, Kenya. All volunteers or their guard-

ians gave written informed consent to participate in providing blood samples for the study.

Data analysis

The 125 assembled sequences were aligned with reference to Pf3D7_1346800 using ClustalW

algorithm (in-built in Mega X software) and DnaSP Version 6.12.03 was used to compute

genetic diversity indices such as nucleotide diversity, mean pairwise differences, polymorphic

sites, haplotype diversity, and linkage disequilibrium. Population Analysis with Reticulate

Trees (Popart) version 1.7 software was used to construct haplotypes network showing the dis-

tribution of haplotypes per study site. MEGA software was used to construct the UPGMA

(unweighted pair group method with arithmetic mean) tree based on the Kimura 2-parameter

(K2P) distance model with 1,000 bootstrap replicates. Allelic, genotypic frequency, and popu-

lation genetics (fixation index, gene flow, and Analysis of molecular variance) were inferred

using GenAlEx version 6.5 software. The analysis of molecular variance (AMOVA) was cate-

gorized into among populations/groups representing the three lowland sites P. falciparum
populations (Kombewa, Chulaimbo, and Homa Bay), among populations within populations

and individuals within groups.

Results

A total of 1518 participants were screened for malaria parasites from the three study sites. Out

of 1518, 20.5% (309/1518) were positive for P. falciparum. The P. falciparum prevalence was

25.5%, 8.9%, and 56.8% from Chulaimbo, Homa Bay, and Kombewa respectively. One hun-

dred and twenty five samples (67 were female and 58 males) were randomly selected for Pfs47

gene sequencing and analyses.

Genetic diversity indices of Pfs47 across Western Kenya

Plasmodium falciparum parasites (n = 125) from Homa Bay (n = 62), Chulaimbo (n = 30), and

Kombewa (n = 33) were successfully sequenced from Western Kenya lowlands (Fig 1). Nucleo-

tide sequence analysis of the Pfs47 gene compared to Pf3D7_1346800 revealed 8 segregating

sites, (6 parsimony informative sites, and 2 singletons or SNPs). Single nucleotide polymor-

phisms (SNPs) were observed at mutation loci 581 and 814 whereas 81, 564, 718, 742, 815, and

910 were parsimony informative. Generally, Pfs47 from parasites populations in Homa Bay

and Kombewa displayed relatively high genetic diversity as compared to the Chulaimbo region

(Table 1). The distribution and relative frequencies by population have been shown in Table 2.

Overall haplotype diversity (Hd) and nucleotide diversity (π) values were 0.74±0.03 and 0.11

±0.01, respectively. Population-wise, haplotype diversity values ranged from 0.69 to 0.77 and
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0.10±0.02 to 0.12±0.01 for nucleotide diversity which was generally low across all sites

(Table 1).

Dimorphic locus 81 was the most predominant with>0.5 allele frequency across Pfs47

sequences from the three sites (Table 2). In Homa Bay, 61.29% of sequences had mutations at

locus 81 while 6.45%, 1.61%, 20.97%, 6.45%, 1.61% and 4.84% sequences had mutations at loci

564, 581, 718, 742, 815 and 910 respectively. None of the sequences had a mutation at locus

814. Sequences from Chulaimbo lacked mutations at locus 581, 814, and 910 but had muta-

tions at loci 81, 564, 718, 742, 815 at frequencies of 70%, 13.33%, 13.33%, 3.33%, and 3.33%

respectively. The P. falciparum populations from Kombewa lacked mutations at locus 581 but

had mutations at loci 81, 564, 718, 742, 814, 815, and 910 at frequencies of 66.67%, 9.09%,

9.09%, 9.09%, 3.03%, 6.06% and 3.03% respectively.

All the observed base substitutions on the 8 loci resulted in 8 nonsynonymous changes

E27D, E188D, P194H, L240I, I248L, N272I, N272Y, and I304L on the Pfs47 amino acid chain.

Homa Bay and Kombewa populations had the highest number of segregating sites, unlike the

Chulaimbo parasite populations. Homa Bay parasites displayed a slightly higher nucleotide

diversity of 0.12±0.01 compared to Kombewa and Chulaimbo parasites (Table 1). Sequences

from all study sites deviated from the standard neutral and displayed negative Tajima’s D val-

ues upon subjection to the neutrality test. The Tajima’s D values were however not significant

thus displaying a weak selection within and among all study sites. Other neutrality tests result

for each study site Homa Bay Fu and Li’s D -0.39 and Fu and Li’s F test -0.49, Kombewa Fu

and Li’s D -0.16 and Fu and Li’s F -0.44, Chulaimbo Fu and Li’s D -0.61 and Fu and Li’s F

Table 1. Genetic diversity indices and neutrality tests based on Pfs47 sequences.

Population n S H Hd π (10−2) k Fu’s Fs Tajima’s D Fu and Li’s D Fu and Li’s F
Homa Bay 62 7 11 0.77±0.04 0.12±0.01 1.22 -4.95� -0.46 -0.39� -0.49�

Kombewa 33 7 10 0.76±0.07 0.11±0.02 1.21 -5.47� -0.87 -0.16� -0.44�

Chulaimbo 30 5 7 0.69±0.08 0.10±0.02 1.05 -2.58� -0.47 -0.61� -0.66�

Overall in Western Kenya 125 44 13 0.74±0.03 0.11±0.01 1.17 -5.90� -0.49 -0.42� -0.53�

n, number of samples sequenced; S, number of polymorphic (segregating) sites; H, number of Haplotypes; Hd, Haplotype diversity; π, nucleotide diversity; k, mean

number of pairwise differences.

� indicates the significance P<0.05.

https://doi.org/10.1371/journal.pone.0260434.t001

Table 2. Pfs47 allele frequencies per mutation loci.

Mutated loci Pfs47 Domains Genotypic frequencies % (n)

Homa Bay (n = 62) Chulaimbo (n = 30) Kombewa (n = 33)

81 D1 61.29 (38) 70 (21) 66.67 (22)

564 D2 6.45 (4) 13.33 (4) 9.09 (3)

581 D2 1.61 (1) 0 0

718 D2 20.97 (13) 13.33 (4) 9.09 (3)

742 D2 6.45 (4) 3.33 (1) 9.09 (3)

814 D3 0 0 3.03 (1)

815 D3 1.61 (1) 3.33 (1) 6.06 (2)

910 D3 4.84 (3) 0 3.03 (1)

n is the total number tested.

https://doi.org/10.1371/journal.pone.0260434.t002
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-0.66, all sites Fu and Li’s D -0.42 and Fu and Li’s F -0.53 were significant (Table 1). The Fu’s

Fs statistics were however significant across all the study sites indicating the presence of excess

frequency of rare haplotypes across sites in Western Kenya.

Overall, 13 different haplotypes were identified across sampled sites. A total of 11 haplo-

types were identified circulating within P. falciparum parasites in Homa Bay whereas 10 and 7

were observed in the Kombewa and Chulaimbo populations respectively (Table 1). The TSC

network shows haplotype distribution among the three regions (Fig 2; S2 Table). The haplo-

type distribution shows that Hap_1, 2, 3, 5, 6, and 11 are shared across all populations. Hap_3

is widely spread and is likely to be the ancestral variant. A slightly high Hd (0.77±0.04) was

observed in Homa Bay. Hap_7, 9, and 10 were exclusively identified in the Homa Bay popula-

tions whereas Hap_13 was only observed in Kombewa. All other haplotypes were found circu-

lating in respective study sites at different proportions. TCS network profile of 13 haplotypes

indicated that all haplotypes were connected by one mutation step between haplotypes (Fig 2).

S2 Table shows the mutations between the haplotypes identified in this study.

Phylogenetic relationship of Pfs47 haplotypes

A UPGMA phylogenetic tree of the Pfs7 haplotypes was generated from 1,000 bootstrap repli-

cates of the K2P distance matrices (Fig 3). Phylogenetic analysis showed that all P. falciparum

Fig 2. TCS-network of Pfs47 haplotypes showing all variants identified in Western Kenya regions (Hap_1-Hap_13). The size of the circle corresponds to

haplotype frequency and the hatch mark represents the number of mutations observed. Colors represent circulating haplotypes identified in Homa Bay, Chulaimbo,

and Kombewa.

https://doi.org/10.1371/journal.pone.0260434.g002
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haplotypes clustered into three major haplogroups (Africa, Latin America, and Southeast Asia)

with moderate to high bootstrap support values, ranging from 55% to 99%, suggesting strong

geographic structure in natural P. falciparum populations from different continents. Out of

the sequences retrieved from the gene bank, Pfs47 haplotypes from western Kenya have a com-

mon ancestral lineage with haplotypes from other African countries. Hap_1, the most com-

mon haplotype is clustered with haplotypes from East Africa (Sudan and Kenya) and South

Africa, whereas Hap_3, the second most common haplotype is grouped with those from West

Africa (Ghana and Senegal). Hap_7 and Hap_10 each were identified in one sample and clus-

tered with LR137236 (Kenya) and NC_004331 (3D7), respectively. Overall, there was poor

bootstrap support (<50%) for the grouping of the rest haplotypes.

Fig 3. Phylogenetic inference using UPGMA method. The percentage of replicate trees (>50) in which the associated pfs47 haplotypes

clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The evolutionary distances were computed using the

Kimura 2-parameter method and are in the units of the number of base substitutions per site. The tree was rooted to a reference sequence from

P. reichenowi and the scale axis presented under the tree. Green dots represent the haplotypes identified in this study in Western Kenya, values

in parentheses indicate the number of sequences, red dots represent haplotypes previously identified from other studies in African countries,

blue filled squares represent haplotypes from Latin America, the aqua diamond represents haplotypes from Southeast Asia, and the black dot

represents the outgroup. Eighteen sequences were retrieved from GenBank: (NC_004331, EF137232, EF137233, EF137234, EF137235,

EF137236, EF137238, EF137239, EF137240, EF137241, LR131414, KT892038, KT892060, KT892036, KT892039, LR131366, KT892021,

EF123273).

https://doi.org/10.1371/journal.pone.0260434.g003
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Plasmodium falciparum population structure and differentiation based on

Pfs47 sequences

There was no significant difference in P. falciparum parasite populations circulating in the

three regions. All the inter-population comparison chi-squares values (Kombewa vs Chu-

laimbo x2 = 4.232, df = 1, P = 0.895, Kombewa vs Homa Bay x2 = 10.91, df = 1, P = 0.618,

Homa Bay vs Chulaimbo x2 = 10.39, df = 1, P = 0.582) were not significant (P>0.05) (Table 3).

All Nm values were more than two suggestive of a considerable gene flow in these populations

(Table 3). Kombewa and Chulaimbo had similar GammaSt Nm values when the populations

were each compared to Homa Bay. The two study sites, Chulaimbo and Kombewa are within

proximity and approximately equally far from Homa Bay study sites. Pairwise FST values

between populations were zero suggesting that there was no genetic differentiation among the

populations (Table 3).

The analysis of molecular variance (AMOVA) results indicate that 100% of the observed

variations in allele frequency were among individuals within respective populations, and no

variation (0%) was observed among populations and within individuals (Table 4). Wright’s F-

statistic indicated an insignificant population structure and the overall genetic differentiation

index (FST) was -0.00891 (P>0.05) among parasite populations from all the sites.

Discussion

The genetic diversity of P. falciparum immune selected antigens is critical in the parasite’s abil-

ity to circumvent or evade its host immune system [8]. The selection pressure from Anopheles

mosquitoes is hypothesized to shape the distribution of Pfs47 haplotypes in regions with vary-

ing transmission intensities. Pfs47 displayed a high haplotype diversity with a varying number

of haplotypes circulating within the human population per studied region. Due to the lack of

geographical barriers among the three regions with varying transmission intensities, there

were high levels of gene flow and low parasite population structure. The neutrality test results

revealed that the Pfs47 gene may be under purifying selection pressures suggestive of a recent

population expansion in malaria endemic areas.

Table 3. Population structure and gene flow among Plasmodium falciparum across Western Kenya regions.

Populations χ 2 P-value df FST GammaSt Nm

Kombewa Chulaimbo 4.232 0.895 9 -0.023 51.000

Kombewa Homa Bay 10.911 0.618 13 -0.004 34.200

Homa Bay Chulaimbo 10.394 0.5815 12 -0.003 34.620

χ 2 Chi-square; df, degrees of freedom; FST, fixation index; Nm, gene flow estimate.

https://doi.org/10.1371/journal.pone.0260434.t003

Table 4. Analysis of molecular variance of Pfs47 gene in P. falciparum population circulating in Homa Bay, Chulaimbo and Kombewa.

Global AMOVA results

Source of variation df Sum of squares Mean Square Established Variation Percentage of variation

Among populations 2 1.681 0.841 0.000 0

Among Individual 122 143.439 1.176 0.588 100

Within Individuals 125 0.000 0.000 0.000 0

Total 249 145.120 0.588 100

df, degrees of freedom.

https://doi.org/10.1371/journal.pone.0260434.t004
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Plasmodium falciparum is diverse and has varying patterns of population genetic character-

istics that correlate with local endemicities and transmission intensity [21]. Reports have

shown that the population genetic diversity of P. falciparum tends to be low in hypo to meso-

malaria endemic regions and high in hyperendemic regions [21, 31]. These results also demon-

strate similar trends where parasites from Chulaimbo a meso-endemic region had the lowest

genetic diversity compared to the Homa Bay and Kombewa P. falciparum populations. In this

study, the Pfs47 gene has displayed relatively diverse haplotypes with low nucleotide diversity

being observed across sites within Western Kenya. Homa Bay (hyperendemic) had the highest

nucleotide diversity followed by Kombewa (holoendemic) then Chulaimbo (mesoendemic).

The high diversity corresponds to the observed mean pairwise differences and haplotype diver-

sity per study site. The variation in genetic diversity indices of Pfs47 per site corroborates pre-

vious results that linked various parasite genetics to levels of malaria transmission intensities

[32, 33]. Most (50%) of the observed mutations occurred within immunogenic domain two

(D2) of Pfs47 antigen which is in agreement with findings from previous studies [13]. The var-

iations within D2 of Pfs47 antigen has been hypothesized to be vital and aid parasite in escap-

ing nitration or TEP1 mediated killing [34]. Domain 3 had only three mutations while domain

1 had one which was much pronounced or had high allele frequencies across the three study

regions. All the sequences from each site except one from Homa Bay had at least one of the

loci mutations. The sequence lacking mutation corresponds to NF54 wild strains that were

reported to have over 90% chance of survival in the An. gambiae R strain mosquitoes [13, 34].

Out of the 13 observed Pfs47 haplotypes, 6 haplotypes were shared in the three regions rep-

resenting the different transmission intensities. However, haplotypes harboring mutation

codon E27D were predominant in each site and seem to be highly selected or most infective

within the Western Kenya P. falciparum populations. This finding reaffirms parasites having

mutation codon E27D to be the most predominant Pfs47 haplotype only found in P. falcipa-
rum parasites circulating in Africa [13]. Consistent with findings from another study [13],

other common haplotypes most of which had mutations in D2 and were found in parasites

from the three study regions were E188D, L240I, I248L, and N272Y. Among the four mutation

codons, I248L is more conservative and results in a change of methyl group position within

the side chain also identified by Canepa et al. [34] and Eldering et al. [35] in P. falciparum Afri-

can strains. The mutations are shown to slightly increase infection rates to 4% non-silenced

and further 75% in A. albimanus with silenced LRIM1 [34]. Apart from mutation codon I304L

described here for the first time, the other seven have been described in parasites circulating in

Africa, Asia, America, and Papua New Guinea [13]. Haplotypes with mutation codon I304L

were unique to the Kombewa and Homa Bay parasite populations whereas those with muta-

tion codon P194H and N272I were private to Homa Bay and Kombewa populations respec-

tively. Compared to the Pfs47 orthologue Pvs47 (PVX_083240), both share a 38.5%-38.7%

amino acid identity, and the haplotype distribution exhibit a geographical population structure

indicative of alleles favored by natural selection in a given region [36]. Not all the observed

mutations in Pfs47 were present in Pvs47, however, in amino acid sequences Pfs47 from West-

ern Kenya had two mutation sites (27 and 240) at same loci position as the one described in

Pvs47 [36].

All the inter-population comparisons displayed non-significant differences across the three

P. falciparum populations thus confirming a weak population structure. The weak population

structure or lack of significant difference in nucleotide diversity indices may be as a result of

considerable gene flow, lack of geographical barriers, and inbreeding characterizing parasites

at various sites in Western Kenya. Furthermore, Western Kenya has a vast network of roads

that facilitate movement and trade across these study regions. Human movement may also

affect the parasite population structure by introducing an admixture of P. falciparum strains
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[37, 38] as a result of a weak structure as illustrated in this study. Plasmodium falciparum pop-

ulations from Homa Bay and Kombewa showed the strongest evidence of endemic structure.

This is consistent with other studies conducted in the African continent where P. falciparum is

diverse and has varying patterns of population genetic characteristics that correlate with local

endemicities and transmission intensity [21]. These results also demonstrate similar trends

where parasites from Chulaimbo a mesoendemic region had the lowest genetic diversity com-

pared to the Homa Bay and Kombewa P. falciparum strains.

There were no observed variations among populations, the only notable variations were

among individuals in the population which is a product of other factors such as natural selec-

tion. This was confirmed by the negative non-significant Tajima’s D results that pointed to the

existence of weak positive selection. Pfs47 may not only be selected against by the mosquito

immune system which has been described to preferentially target D2 but also hosts antibodies

[13, 34, 39]. The significant negative Fu’s Fs demonstrated that most of these observed rare

alleles were in excess suggestive of a recent population expansion in the Western Kenya low-

lands. In conclusion, there was no genetic differentiation among the three P. falciparum para-

site populations. The excess of low frequency alleles may result from a population expansion

or a positive selection. Significant negative values of Fu’s Fs are evidence for an excess of new

haplotypes, a recent population expansion, or a selective sweep caused by genetic hitchhiking.

Understanding interactions between circulating Pfs47 variants and mosquito immunity genes

having implications on malaria transmission is crucial and should be considered when design-

ing potential molecular targeted control interventions.
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