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ABSTRACT OF THE THESIS

Graph Neural Networks Nodes Classcification

of Recommendation

Franchisee Location

by

Hao Zheng

Master of Applied Statistics and Data Science

University of California, Los Angeles, 2024

Professor Yingnian Wu, Chair

This thesis presents a study on location optimization for franchisee restaurants using Graph

Neural Network (GNN) models, namely GCN, GAT, and GraphSAGE. The research em-

ploys these models to analyze geographic coordinates and other relevant data to predict

optimal franchise locations. By incorporating real-world data such as Yelp reviews, census

information, and city demographics, the study attempts to model the significant factors that

influence the success of franchise locations. The primary contribution of this work is the

development of a tool that aids market research teams in making informed decisions about

where to establish new restaurant outlets and optimizing location selection through advanced

data analytics and machine learning techniques. Among the three models, the GraphSAGE

model performed best. It achieved a loss of 0.48, an accuracy of 77%, and an ROC score of

0.78, outperforming the other models across various assessments.
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CHAPTER 1

Introduction

Franchising has emerged as a prevalent economic expansion strategy due to its consistent

quality standards, reasonable pricing mechanisms, and established operational practices.

[Mic03] This is particularly evident in the restaurant industry, where starting from scratch

often entails significant expenditures, including rent, salaries for contractual staff, and time

to fine-tune operational strategies. Critical considerations for a new restaurant include iden-

tifying peak business hours, balancing pricing strategies, and developing popular menu items.

These elements represent just a few of the factors involved. For investors in the restaurant

sector, initiating a new establishment carries considerable risks. At this juncture, franchis-

ing contracts start to capture investors’ interest, as they mitigate many startup challenges.

By adopting a franchising model, investors can avoid most of the complexities associated

with launching a new restaurant. The franchise owner provides all necessary support and

resources, leaving investors to focus primarily on selecting the optimal location for their new

establishment.

Choosing the right location is arguably the most critical and challenging aspect of the

investment process. Eugênio J. S. Bitti describes that location is a major entrepreneurial

choice that has a huge effect on firm performance in retailing. [BFL19] An inappropriate

location choice can lead to the quick closure of the establishment. Consequently, most

franchises include a department dedicated to market research, tasked with analyzing various

factors to determine the most advantageous site for a new outlet. The market research

department often faces the daunting task of making multiple location decisions within a
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limited timeframe. This paper proposes the development of a location optimization tool to

aid the market research department in this decision-making process.

To accurately model real-world scenarios, this study employs several Graph Neural Net-

work models, including GCN, GAT, and GraphSAGE. These models use real-world geo-

graphic coordinates as positional information (POS) to define nodes and establish a spatial

framework. The relationships between nodes are based on proximity, with physical distances

calculated and represented in the models. Each node is weighted according to its proximity

to others. After evaluating the trade-offs between efficiency and the potential loss of critical

information, this paper selects the Nearest Neighbors (KNN) method to define the edge in-

dices. Seokho Kang, validated the construction the kNN graph before passing it through the

graph neural network. [Kan21] By comparing outcomes across various assessments of three

models, to get the outstanding performance model. Then use that model to c Ideally, the

examined model can predict whether a given location is likely to be recommended or not for

a franchising restaurant, based on selected features.
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CHAPTER 2

Data

2.1 Source

The dataset was compiled from three separate sources: Yelp,census.gov, and city-data.com.

[Yel22a][Yel22b][Bur22][Dat22] The primary data consists of Yelp’s top recommended restau-

rants in Los Angeles for 2022, alongside the lowest-rated restaurants as reported by Yelp for

the same year. Due to Yelp’s reporting limitations, this dataset comprises 354 entries, fea-

turing columns such as Location (ZIP code), Rating (ranging from 0 to 5), and Number

of Reviews. Results indicating whether a restaurant is recommended are recorded in the

Recommendation column as ’Yes’ or ’No’.

The secondary dataset, sourced from census.gov, includes 323 entries detailing ZIP Codes

and Average Income for 2022. The third dataset, obtained from city-data.com, covers all ZIP

codes in and near Los Angeles. It includes 328 entries with data on total population, median

age, gender distribution, business profit or loss, and median gross rent. By aggregating data

from all sources based on ZIP code, the final dataframe was constructed.

3



2.2 Data Processing

Figure 2.1: Histogram After Logarithmic Transformation

Initial data cleaning involved removing rows with missing or zero values to prevent potential

issues with algorithm performance. The analysis began by addressing feature redundancy

within ZIP codes, which could potentially skew the learning patterns of the Graph Neural

Network (GNN) models. To minimize this, random noise with a scale of 0.2 was intro-

duced into the dataset. Subsequent analysis involved plotting the distribution of each vari-

able to identify columns requiring transformation; notably, the Rating and Average Income

columns exhibited significant left skewness. A logarithmic transformation was applied to

these columns to correct this issue, resulting in improved distributions.
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Figure 2.2: Testing the Relationship between Review Number and Rating

Further exploratory data analysis included plotting the relationship between Review

Number and Rating, which indicated that higher ratings were not necessarily correlated

with a higher number of reviews. Considering the challenges investors might face in obtain-

ing review counts for franchised restaurants, and to simplify the model, the Review Number

was subsequently excluded from the dataset. Additionally, after reviewing the distributions

of the total population, total females, and total males, it was decided to retain only the total

population to simplify the features.

A correlation analysis revealed a substantial relationship between Profit or Loss from

Business and Average Income (r = 0.62), which is logical as salary often contributes signifi-

cantly to business outcomes. However, given the data’s broad representation of all business

types within a ZIP code, and to avoid multicollinearity, the Profit or Loss from Business

feature was excluded.
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Figure 2.3: Correlation Test

Finally, the dataset was split into an 80% training set and a 20% testing set to prevent

information leakage. To ensure feature values were on a comparable scale, standardization

was applied to both the training and testing sets using the scaler fitted on the training

set. The final distribution plot confirmed that all features were standardized and ready for

modeling.
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CHAPTER 3

Methology

3.1 Established the Space

3.1.1 Transofrmation into Tensors

In this project, we apply PyTorch tensors as the foundational data structure for Graph

Neural Network (GNN) models. The method of tensor transformation generalizes the form

of vectors through gradient calculations, allowing the automatic differentiation system to

compute backward passes with high efficiency, which demonstrates its compatibility with

GNN models. Here are the compositions and reasons behind the designed tensors:

Position Tensors: The latitude and longitude columns, which represent spatial location

data points, are converted to torch.float tensors. These tensors help to locate each node

in space. The use of real-world latitude and longitude allows for direct visualization in

real-world space, providing clear visual insights to investors.

Feature Tensors: Selected features, including ’Rating’, ’Total Population’, ’Median Age’,

’Average Income’, and ’Median Gross House Rent’, are converted into torch.float tensors.

These features were chosen due to their acceptable correlation (r = 0.1 - 0.6) among them.

This balance helps simplify the models to prevent overfitting problems and provides investors

with a number of interesting inputs for investigation.

Target Tensors: The ’Recommendation’ column, used as the target variable for model

training, is transformed into a torch.long tensor, the required format for the loss function in

classification tasks.
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3.1.2 K-Nearest Neighbors Algorithm

Figure 3.1: Connecting Nodes with K-NNs Method

This project applies the K-Nearest Neighbors (KNN) algorithm rather than directly con-

necting all the nodes with a certain threshold. [Kan21] Due to the clustering pattern of the

point distribution, directly connecting nodes based on weight determined by the distance be-

tween two nodes results in either excessively numerous lines or sparse lines that focus on the

clustering points. As a more optimized algorithm, KNN considers distance and establishes

edges that reflect the data’s clustering.

The K-NN algorithm typically employs non-parametric methods for classification. In

this project, we primarily use this method to create the graph structure. K-NN evaluates an

object’s neighbors, classifies the object based on the most frequent class among its k nearest

neighbors, and applies this understanding in both local and global contexts. This project
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opted for the ’ball tree’ implementation within the ’NearestNeighbors’ function (k = 5) to

query multidimensional spaces for a point’s nearest neighbors. This approach helps avoid

self-connections and prevents excessive edge connections.

To calculate edge weight, we used an exponential decay function based on pairwise dis-

tances. The function’s negative exponent implies that interaction intensity between two

points increases as their distance decreases. Therefore, nodes that are closer together, such

as restaurants, likely exert greater mutual influence. The result of the K-NN edges looks

like efficiently connects the nodes with the consideration numbers of edges and their weight

depends on the length of distances. The Blue dots represent the recommended restaurants,

while the red dots are not recommended.

3.2 Graph Convolutional Network (GCN)

3.2.1 Graph Theory

Graph theory examines the properties and interactions of graphs. In this theory, a graph G

is defined as an ordered pair G = (V, E), where V represents a set of nodes in a dataset, and

E is a set of edges that act as connections or relationships between entities. This concept is

applied in real-world applications such as social networks, where individuals are represented

by nodes and their social interactions by edges. [New10] This demonstrates the possibility of

applying the same framework to individual restaurants, where the nodes are the restaurants

and the edges represent their local interactions.

In graph representation, the adjacency matrix A indicates the graph’s connectivity. In

an unweighted graph, Aij = 1 if an edge exists between nodes and 0 otherwise. In a weighted

graph, Aij represents the weight of the connection between nodes i and j, typically based on

the distance between the two points. [Wes01] After constructing the adjacency matrix, the

feature matrix X captures the attributes of each node. Each row in matrix X corresponds to

a node, and the columns represent the node’s features. Translating graphs into structured
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forms allows them to be processed by Graph Convolutional Networks (GCNs).

3.2.2 Convolutional Neural Networks(CNNs)

Convolutional Neural Networks (CNNs) are capable of processing Euclidean data, such as

images and audio, by utilizing convolutional layers that operate on local patches of an image.

CNNs can apply edge detection learned at one location to other areas in the image, enabling

them to aggregate simple patterns detected by earlier layers into more complex structures.

[KSH12]

However, CNNs may encounter challenges when applied directly to graph data, primarily

because the unfixed shape of graphs results in a variable number of neighbors, which diverges

from the fixed pixel neighborhoods required by CNNs. [BBL17] Additionally, translational

invariance does not always hold in graph structures. [13] These limitations have led to

the development of techniques that more effectively process the data’s intrinsic properties,

including the rise of graph-specific neural network architectures such as Graph Convolutional

Networks (GCNs).

3.2.3 Spectral Graph Theory

Spectral Graph Theory explains the properties of graphs in relation to the eigenvalues and

eigenvectors of matrices such as the graph Laplacian. The graph Laplacian, L, can be

defined as L = D − A, where D represents the diagonal matrix containing the degree of

each vertex, and A is the adjacency matrix of the graph. Typically, in the Laplacian matrix,

the eigenvalues form the spectrum of the graph, and the eigenvectors reveal the graph’s

structure. [Chu97]

By applying eigen decomposition to the graph Laplacian, expressed as L = UΛUT , where

U is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues, we obtain the

Graph Fourier Transform. In this transform, a signal x defined on the vertices of a graph can
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be transformed using the equation x̂ = UTx, which simplifies convolution operations into

straightforward element-wise multiplications.Graph convolution can then be computed as x∗

y = U((UTx)⊙(UTy)), where x and y represent the graph signals, ∗ denotes the convolution,

and ⊙ represents the element-wise multiplication. Utilizing full spectral convolution to

interpret the data forms the foundation of Graph Convolutional Networks (GCNs). [SNF13]

3.2.4 GCNs Backgounrd

Graph Convolutional Networks shift from spectral-based to spatial graph convolutions. Spa-

tial graph convolutions work directly in the spatial domain by aggregating features from the

local neighborhoods of each node. They operate similarly to CNNs but leverage the sparsity

of graphs, gathering information without the overhead of spectral transformations. [BZS14]

The operation of Graph Convolutional Networks is represented by the equation:

h
(l+1)
i = σ

W (l) ·
∑

j∈N(i)

1

cij
h
(l)
j + b(l)

 .

Here, h
(l)
i is the feature vector of node i at layer l. N(i) denotes the neighbors of node i, W (l)

and b(l) are parameters of the layer, cij is a normalization constant, and σ is a non-linear

activation function such as ReLU. The use of edge weights allows the model to capture the

importance of different nodes within a neighborhood, enhancing the model’s ability to learn

the complex structures of the input data. [HYL17]

By eliminating the necessity for the Laplacian’s eigendecomposition, spatial convolutions

enable the application of deep learning across multiple domains, such as network analysis and

recommendation systems. A weighted Graph Convolutional Network (GCN) model could

be an effective approach for classifying nodes in restaurant recommendation systems.
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Table 3.1: GCNs Layer Configuration

Type
Input

Features

Output

Features
Parameters

GCNConv 5 32 Uses edge weights

BatchNorm1d - - Normalizes 32 features

Activation - - -

Dropout - - 0.65

GCNConv 32 16 Uses edge weights

BatchNorm1d - - Normalizes 16 features

GCNConv 16 2 Uses edge weights

3.2.5 GCNs Model Architecture

During fine-tune the GCNs model, the GCNs weighted model is designed as a total of three

convolution layers. The model transforms the input from five selected features into a higher-

dimensional space of 32 dimensions to construct the representation of each node’s attributes

in the network. Subsequently, the model reduces the dimensionality first to 16 and then to

2, allowing it to learn the relevant patterns for the classification task. During each convolu-

tional layer in the GCN, batch normalization was applied to stabilize the learning process.

Theoretically, if the feature distribution has a mean of zero, batch normalization can reduce

the internal covariate shift, thus saving processing time. ReLU activation, added after each

batch normalization, enables the model to learn complex patterns. This approach may also

reduce the likelihood of vanishing gradient issues. To prevent the model from overfitting,

a dropout rate of 0.65 was implemented after each ReLU activation. This randomly deac-

tivates some subsets of neurons, enabling the network to learn more robust features, thus

enhancing the model’s generalization capabilities.

To achieve optimal performance, selecting an appropriate optimizer is critical to efficiently

reducing loss and ensuring stable training. As a final decision, the Adam optimizer (r = 0.01)

12



was used due to its adaptive learning rate capabilities. The Adam optimizer maintains a

per-parameter learning rate, potentially improving the handling of sparse data from the

restaurant network and automatically adjusting the learning rate based on the averages of

the gradients. Additionally, we integrated L2 regularization (V alue = 5 ∗ 10−4) into the

optimization process. This adds a penalty equal to the square of the magnitude of weights

to the loss, aiming to prevent potential overfitting. Providing a balance between the strength

of the regularization and the model’s ability to comprehend complex patterns.

We chose CrossEntropyLoss as the loss function, which is likely suitable for node classi-

fication problems with multiple classes. This function combines LogSoftmax and Negative

Log Likelihood Loss, making it appropriate for binary classification—in this case, classifying

restaurants as recommended or not recommended.

13



3.2.6 GCNs Result

Figure 3.2: t-SNE visualization for GCNs model

The t-SNE visualization plot shows distinct clustering patterns of the nodes, suggesting that

the GCN model can effectively group similar data nodes based on proximity. Additionally,

we observed dense areas that highlight differences in feature similarity among the nodes,

indicating that the GCN model captures complex interrelations. Some nodes appear to be

outliers, which the GCN model struggles to group due to their extreme values. Overall,

the lack of high overlap in the t-SNE plot suggests that the parameter settings of the GCN

models are appropriately fine-tuned.
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Figure 3.3: GCNs Loss

During the 50 epochs, the training loss began with a high value but rapidly decreased

after a few epochs. This indicates that the model was quickly learning the patterns from

the input features. After this initial rapid decline, the training loss continued to decrease,

albeit at a slower rate, with some minor peaks. It might show the model is improving over

time. The testing loss started at a lower value compared to the initial training loss and

maintained a decreasing trend throughout the epochs. The testing loss exhibited a period

of stability with small variance throughout the training process, suggesting that the model

is well-trained on unseen data. This also suggests that the model may have reached its

optimal performance on the test dataset relatively early. Since neither the testing loss nor

the training loss diverged, and both decreased simultaneously, this suggests that there may

not be a serious overfitting problem. The converging losses indicate that the model is stable,

and additional training epochs may not further improve the model’s performance.

15



Figure 3.4: GCNs Accuracy

The training accuracy starts around 50% and quickly increases to above 60% within the

first 10 epochs. This corresponds with the training loss, indicating that the model is learning

patterns during the first 10 epochs. However, following this peak, the training accuracy

exhibits volatility without a clear trend, ultimately stabilizing around 60%. Similarly, the

testing accuracy initially starts at around 45% and experiences a sharp rise within the first

few epochs. It peaks around epoch 10 and then stabilizes at 62% thereafter. This might

indicate that the model has likely reached its capacity to handle unseen data. Therefore,

it appears that both the testing and training data achieve stable performance after certain

epochs. Additionally, the lack of a downward trend in testing accuracy suggests that the

model might not have serious overfitting issues.
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Figure 3.5: GCNs Confusion matrix

The confusion matrix indicates a preference in the model to predict restaurants as rec-

ommendable, with only three true negatives compared to 24 false positives, suggesting a

potential bias towards positive predictions. Additionally, the AUC plot shows a score of

0.55, which is slightly better than random guessing. The trend continues to move closely

following the diagonal line. This indicates that with the weighted GCN models tuned there

is still a struggle, in effectively grasping the patterns of both categories.

17



Figure 3.6: GCNs ROC Curve

GCNs may face challenges in treating all neighboring nodes uniformly, as they differen-

tiate them based on fixed weights such as node degrees. However, in restaurant scenarios,

node characteristics could be more complex and may not be accurately represented by fixed

weights.

3.3 Graph Attention Networks (GATs)

3.3.1 GATs Backgounrd

To find the solution of fixed weight in Graph Convolutional Networks (GCNs), one solution is

the attention mechanism used in Graph Attention Networks (GATs). It begins by calculating

18



the attention coefficient, which can be defined as:

eij = a(Whi,Whj)

Here, eij represents the raw attention score between nodes i and j, and hi and hj denote the

features of those nodes. W is the weight matrix which is applied to the nodes.

After the calculation of attention coefficients, they are normalized using the softmax

function across all nodes connected to a particular node. The formula for this normalization

is:

αij = softmaxj(eij) =
exp(eij)∑

k∈N (i) exp(eik)

The updated feature h′
i of node i is a blend of its neighbors’ features, defined by:

h′
i = σ

 ∑
j∈N (i)

αijWhj


Here, σ represents a non-linear function such as LeakyReLU, with each neighbor’s contri-

bution weighted by its attention coefficient. [Vel18] This entire process of the attention

mechanism allows the network to focus more on important neighbors.

Based on the previous formula, when adding the attention heads, the new equation will

be revised as:

h′
i =

∥∥∥∥∥
K

k=1

σ

 ∑
j∈N (i)

αk
ijW

khj

 (3.1)

Here, K denotes the number of heads, and αk
ij and W k represent the attention coefficients

and weight matrices for the k-th attention head. Dropout was used during the calculation

of the weights αij, which helps introduce variation and prevents the model from becoming

overly fixated on specific patterns, thereby reducing the risk of overfitting.

3.3.2 GATs Model Architecture

In the GAT model the initial GATConv layer uses 8 attention heads enabling the model to

explore patterns within the input features. Similar to the GCNs model Batch Normalization
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Table 3.2: GATs Layer Configuration

Type
Input

Features

Output

Features
Parameters

GATConv 5 8 heads=8,dropout=0.6

BatchNorm1d - - Normalizes features from 64 features

Activation - - -

Dropout - - 0.3

GATConv 32 16 heads=1, concat=False, dropout=0.6

and ReLU activation functions are included in the layers to enhance learning stability and

facilitate the identification of patterns. Moreover the GAT model employs two dropout rates

for managing overfitting; a dropout rate of 0.6 is implemented before the first GATConv

layer and, after the second one while a dropout rate of 0.3 is utilized throughout these two

layers. This strategy helps in mitigating overfitting by randomly omitting different portions

of the features during training.

In the GAT model, we continue to use the Adam Optimizer with a learning rate of 0.005

and weight decay set at 1X10−4 to address sparse gradients and to regularize the model. The

CrossEntropyLoss function is also applied as the loss criterion for the binary classification

task.
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3.3.3 GATs Result

Figure 3.7: t-SNE visualization for GATs model

The t-SNE visualization displays some clusters that are dispersed, with overlapping regions

indicating that the GAT model might effectively group similar nodes. However, the bound-

aries between the categories in the binary classification are not clearly defined. Additionally,

a few nodes appear to be separated from the main clusters, which might represent unique

data points that do not share strong similarities with the majority of nodes. Despite this,

the limited amount of overlap among points suggests that the GAT model has likely achieved

a good level of parameter tuning.
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Figure 3.8: GATs Loss

The training loss starts at approximately 0.90, and quickly decreases to around 0.75

within the first 10 epochs, indicating that the GAT model has rapidly adapted to the pat-

terns from the training features. Subsequently, it shows fluctuations but generally follows a

downward trend until it stabilizes around 0.70. In contrast, the test loss begins at a lower

value compared to the training loss, around 0.73, and unlike the training loss, it appears to

be more stable and becomes consistent after epoch 20. This suggests that the model is both

learning the training features and generalizing well to unseen data. Furthermore, the narrow

gap between the training and testing losses indicates that the L2 regularization and dropout

may have effectively mitigated potential overfitting problems.
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Figure 3.9: GATs Accuracy

From the accuracy plot, both training and testing accuracies increase from the beginning

during the first few epochs. The training accuracy increases to around 58%, with the testing

accuracy rising to approximately the same level. After the initial epochs, the training accu-

racy fluctuates, peaking up and down around 63%, suggesting that the training data may

contain some complex structures. Observing the testing accuracy, it demonstrates a more

stable improvement after the first few epochs and continuously appears to follow the trend

of the training accuracy. Ultimately, the testing accuracy stabilizes at around 66%.
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Figure 3.10: GATs Confusion Matrix

The confusion matrix for the GAT model still shows a tendency to predict nodes as rec-

ommendable restaurants. However, the presence of 4 true negatives and 23 false positives

indicates that the GAT model, with its adjustable weights, has improved the bias towards

positive classifications seen in the GCNs model. From the ROC plot, the ROC curve, which

progresses from the bottom left to the top right, appears to perform better compared to the

GCNs model. Combined with an area under the AUC of 0.61, this suggests that in approx-

imately 61% of cases, the GATs model can correctly differentiate between recommendable

and non-recommendable restaurants.
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Figure 3.11: GATs ROC Curve

We find that the use of flexible weights with attention heads appears to successfully en-

hance the model’s ability to learn complex patterns from the selected input features. How-

ever, there are still limitations observed in the GATs model’s performance in classification

tasks. These limitations may stem from the requirement of the GATs model for sufficient

data to effectively train these sophisticated models with multiple attention heads.

3.4 Graph Sample and Aggregate(GraphSAGE)

3.4.1 GraphSAGE Background

GraphSAGE introduces a novel neighbor sampling method that selects a constant number

of neighbors for each node during the process. For a given node v, a fixed number S of

its neighbors is randomly chosen, and the node’s new feature vector h
(k+1)
v is computed by
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aggregating features from these sampled neighbors NS(v) at layer k:

h(k+1)
v = σ

(
W (k) · AGGREGATEk

({
h(k)
u | ∀u ∈ NS(v)

}))
(3.2)

where σ is a non-linear activation function, W (k) is the weight matrix at layer k, and

AGGREGATE is a function that combines the features of the neighbors. [HYL17]

Unlike GCNs and GATs, GraphSAGE provides customized aggregation methods for vari-

ous graph data and tasks, such as the aggregator, LSTM aggregator, and pooling aggregator,

each serving different purposes. The GraphSAGE model can dynamically select the appro-

priate aggregation method based on the context. It also has the ability to generate node

embeddings that can potentially enrich the training data. The feature vector for a node,

hnew, is calculated by aggregating the feature vectors of its neighboring nodes, expressed as

hnew = σ(W · AGGREGATE({hu | u ∈ N(new)})). This aggregation uses a weighted sum

with a trainable matrix W and a non-linear activation function σ. [Zho20]

3.4.2 GraphSAGEs Model Architecture

Table 3.3: GraphSAGEs Layer Configuration

Type
Input

Features

Output

Features
Parameters

SAGEConv 5 64 -

BatchNorm1d - - Normalizes features 64 features

Dropout - - p=0.5

SAGEConv 64 32 -

BatchNorm1d - - Normalizes features 32 features

SAGEConv 32 2 -

Log Softmax - - Applied to output, dim=1

Within the first layer in the GraphSAGE model increases the input features into 64
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dimensions. Then, Subsequent layers reduce the dimensions further—first to 32 and then

to 2 for binary classification. This structure is designed to aggregate neighborhood features

and capture local structural information around each restaurant’s representatives.

Batch normalization is applied after the first and second layers to accelerate the learn-

ing process. Dropout, with a probability of 0.5, is also applied after the first and second

SAGEConv layers to prevent overfitting. A ReLU function is used following each batch

normalization to facilitate the learning of complex patterns from the input features.

The final output of the layers in the GraphSAGE model is processed by the log soft-

max function, designed to transform the output node features into log probabilities. This

transformation facilitates the calculation of the CrossEntropyLoss. Similarly to the GAT

model, the GraphSAGE model employs the Adam Optimizer (r = 0.001) with a weight

decay (value = 5X10−4), which is aimed at addressing sparse gradients and regularizing

the model. The CrossEntropyLoss function is applied as the loss criterion for the binary

classification task.
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3.4.3 GraphSAGE Result

Figure 3.12: t-SNE visualization for GraphSAGE model

After investigating the t-SNE plot for the GraphSAGE model, it appears to depict a complex

network structure with several connected clusters. Unlike with GCNs and GATs, the cluster

points in the GraphSAGE model seem to be more clearly separated, which might indicate

an improved capability of the model to classify the positive and negative outcomes for rec-

ommended restaurants. These results could suggest that the parameters and architecture

of the GraphSAGE model are well-tuned. Although most nodes are densely packed, a few
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outstanding outliers might be caused by unusual features from the restaurants, warranting

further investigation.

Figure 3.13: GraphSAGE Loss

Examining the loss change plot, there is a clear decline in both training and testing loss

during the first 10 epochs. The training loss starts at around 0.8, and the testing loss starts

at 0.7. While the training loss shows some variability, it generally displays a downward

trend and seems to converge after epoch 55, reaching around 0.45. The testing loss mirrors

the major changes in the training loss, exhibiting a more stable movement overall, with no

upward trend. This indicates that the current parameter settings might successfully avoid

serious overfitting issues.

29



Figure 3.14: GraphSAGE Accuracy

From the accuracy plot, the training accuracy presents a sudden increase in the initial

epochs, rising from approximately 55% to nearly 78% before the 10th epoch. It then main-

tains a relatively small magnitude of fluctuations compared to the GCNs and GATs models,

with an overall upward direction, and finally stabilizes at around 80%. The testing accu-

racy also rapidly increases to approximately 75% within the first 10 epochs. After the 10th

epoch, the testing accuracy shows more stable variability compared to the training accuracy,

ultimately converging around 77%. The small gap between training and testing accuracies

overall indicates that the model handles unseen data well and seems to avoid overfitting

problems.
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Figure 3.15: GraphSAGE Confusion Matrix

The GraphSAGE model appears to have improved its performance over the GCNs and

GATs models, as evidenced in the ROC plot. The plot reveals that the model correctly

predicted 12 non-recommendable restaurants, although 15 non-recommendable restaurants

were incorrectly predicted. Despite more incorrect than correct predictions in this category,

this still represents a significant improvement compared to the GCNs and GATs models.

Notably, the GraphSAGE model achieved 44 correct predictions for recommendable restau-

rants, with zero incorrect predictions. This shows that GraphSAGE has not only gotten

better at spotting negative outcomes but has also kept up its knack for predicting positive

outcomes.
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Figure 3.16: GraphSAGE ROC Curve

Moreover, the ROC curve ponits strongly towards the top right corner, with an AUC

score of 0.78, highlighting the GraphSAGE model’s high probability of correctly classifying

restaurant recommendations.
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CHAPTER 4

Disscusion

4.1 Result & Disscusion

Metric GCNs GATs GraphSAGE

Loss 0.6761 0.6469 0.48

Accuracy 0.62 0.66 0.77

ROC Score 0.55 0.61 0.78

Table 4.1: Performance of different Graph Neural Networks

Among the GCNs, GATs, and GraphSAGE models, GraphSAGE seems to yield the most

promising outcomes across various assessments, such as testing accuracy, t-SNE plots, and

AUC scores. GraphSAGE’s sampling strategy, randomly selecting a set number of neighbors

for each node, could mitigate overfitting in smaller datasets. Conversely, GCN and GAT

models’ utilization of all neighbors may heighten overfitting risks, despite fine-tuning efforts.

Moreover, GraphSAGE benefits from its capability to employ different aggregation functions,

which enables it to adapt more flexibly to diverse characteristics of graph data. Given the

apparent influence of geography in the distribution of nodes, the mean aggregator was applied

to capture the average influence of neighboring restaurants. Moreover, the GraphSAGE

model has the capability to generate embeddings for new nodes by collecting features from

their neighbors, which potentially helps utilize limited data more effectively and improve the

sparsity of the node representation. This feature of GraphSAGE is particularly relevant in

scenarios where data scarcity is prevalent, such as in the restaurant industry where businesses
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often compete without sharing critical data. Maximizing the efficiency of using limited data

to yield accurate classification results is one of the primary goals outlined in this report.

4.2 Applicable Tools

Figure 4.1: Demo Tool Exhibition

Users have the opportunity to test the trained model using interactive tools. The tool

requests users to input geolocations via latitude and longitude, along with other optional

features such as average population, median income, average age, gross median rent, and

ratings. If the users do not input these optional features, the tool will automatically pop-

ulate them with average values for the specified geolocation. Users need not worry about

logarithmic transformations and standardization; the program will automatically process

the real-world data into a form suitable for model input. After entering all the features, the

model will process the data and deliver a result, recommending or not recommending the

location. As a prototype, this tool has the potential to assist marketing departments and

franchising investors in selecting geographically advantageous locations.
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4.3 Limitation & Feature works

One of the primary limitations highlighted in this paper is the sparse and limited amount of

data available. Restaurant data often constitutes a business secret, potentially dangerous if

competitors access it. Currently, the most accessible sources are Yelp and citizen-generated

data, which is why we initially chose to classify restaurants as recommended or not. Looking

ahead, should we gain access to more comprehensive data concerning restaurant expansion

and earnings, we could refine the response variables of the GNN models to distinguish be-

tween profitable and unprofitable ventures, offering more direct insights for investors.

Additionally, in this paper, input features are primarily based on ZIP codes. However,

even for geographically close restaurants, actual customer flow can differ. In the future,

we might integrate population flow data from Google APIs, assuming such functionalities

become available. Another improvement could involve using specific building prices for the

gross median renting fee instead of relying on ZIP code averages. With more detailed data, we

could address the issue of sparse nodes, potentially reducing overfitting risks and enhancing

model performance. This would not only improve the effectiveness of GCNs and GATs

models but also provide alternative models to handle datasets with different structures.
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