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Abstract
Large-scale studies on community ecology are highly desirable but often difficult to accomplish due to the considerable
investment of time, labor and, money required to characterize richness, abundance, relatedness, and interactions.
Nonetheless, such large-scale perspectives are necessary for understanding the composition, dynamics, and resilience
of biological communities. Small invertebrates play a central role in ecosystems, occupying critical positions in the food
web and performing a broad variety of ecological functions. However, it has been particularly difficult to adequately
characterize communities of these animals because of their exceptionally high diversity and abundance. Spiders in
particular fulfill key roles as both predator and prey in terrestrial food webs and are hence an important focus of
ecological studies. In recent years, large-scale community analyses have benefitted tremendously from advances in
DNA barcoding technology. High-throughput sequencing (HTS), particularly DNA metabarcoding, enables
community-wide analyses of diversity and interactions at unprecedented scales and at a fraction of the cost that was
previously possible. Here, we review the current state of the application of these technologies to the analysis of spider
communities. We discuss amplicon-based DNA barcoding and metabarcoding for the analysis of community diversity
and molecular gut content analysis for assessing predator-prey relationships. We also highlight applications of the third
generation sequencing technology for long read and portable DNA barcoding. We then address the development of
theoretical frameworks for community-level studies, and finally highlight critical gaps and future directions for DNA
analysis of spider communities.
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Introduction

Ecological communities are defined by both the organisms
that persist within habitats, and the interactions that shape
the assembly and diversity patterns of these organisms.
Historically, characterizations of abundance, richness, related-
ness, and interactions across entire communities have been
limited to taxa that are readily identifiable or have been done
on a sufficiently small scale that the laborious process of quan-
tifying all community members and their interactions has been
feasible (Gruner 2004; Krushelnycky et al. 2007). Predator-
prey interactions have largely been based on observation
(Binford 2001; Hiruki et al. 1999), detailed morphological
examination of gut contents (Grey et al. 2002; Lafferty and
Page 1997), or the analysis of stable isotope data (Wise et al.
2006). The recent advent of molecular metabarcoding ap-
proaches is just starting to revolutionize our ability to charac-
terize biological communities (Cristescu 2014). In particular,
data on small invertebrates, which make up the foundation of
food webs and play central roles in ecosystem function, can be
obtained on larger scales and in greater detail than ever before.
We use spiders, some of the most phylogenetically and eco-
logically diverse predators on Earth (Foelix 2011), to illustrate
the potential of such approaches for understanding communi-
ty assembly.

In the last two decades, DNA barcoding, the sequencing of
short species-specific amplicons, has considerably simplified
community analyses (Hebert et al. 2003). DNA barcodes can
provide information on genetic variation within and between
species, rapidly assign taxonomic status across divergent lin-
eages (Hebert and Gregory 2005), and identify the prey com-
position of predators’ gut contents (Agustí et al. 2003;
Greenstone and Shufran 2003). However, traditional Sanger
sequencing-based DNA barcoding protocols can be prohibi-
tively expensive and laborious when large community sam-
ples have to be processed. The emergence of high-throughput
sequencing technologies (HTS) has been a significant step
forward in recent years, greatly reducing both the cost and
the labor required for biodiversity studies (Bohmann et al.
2014; Taberlet et al. 2012). These technologies enable simul-
taneous processing of DNA barcodes for thousands of speci-
mens (Shokralla et al. 2015; Srivathsan et al. 2019;Meier et al.
2016) with considerably improved phylogenetic resolution
(Krehenwinkel et al. 2019a). Metabarcoding makes it possible
to characterize the species composition of whole communities
(Cristescu 2014; Yu et al. 2012) and identify the makeup of the
predators’ diets in an unprecedented detail (Piñol et al. 2014;
Verschut et al. 2019). Recent developments even enable mo-
bile DNA barcoding under remote field conditions (Menegon
et al. 2017; Pomerantz et al. 2018).

Here, we provide an overview of available HTS-based
methods, focusing specifically on the use of genetic and ge-
nomic data for characterizing community structure and

function in spiders. Within this context, we first discuss
DNA barcoding for taxonomic and phylogenetic assignments,
metabarcoding for community analysis, recent developments
in long-read sequencing technology, and portable field
barcoding solutions. We then review the application of DNA
barcoding for gut content analysis to assess predator-prey as-
sociations. We additionally discuss the development of theo-
retical models to apply to the DNA-based community analy-
ses. Finally, we address promising avenues of future research.

DNA barcoding and metabarcoding
for community analysis

DNA barcoding in spiders: An overview

As major predators of invertebrates, spiders are a central ele-
ment of terrestrial food webs and perform key roles in com-
munity function and assembly (Nyffeler and Birkhofer 2017).
They provide important ecosystem services, such as pest con-
trol (Riechert and Lockley 1984; Thomson and Hoffmann
2010) and at the same time make upmuch of the diet of higher
order predators such as birds (Nyffeler et al. 2018). Most
habitats harbor diverse communities of spiders with complex
ecological interrelationships (Kennedy et al. 2019; Raso et al.
2014). Consequently, the diversity of spiders and their mani-
fold interactions with other species must be understood in
order to characterize community assembly in terrestrial eco-
systems. Spider communities are usually composed of ecolog-
ically and morphologically distinct taxa, stemming from deep-
ly divergent evolutionary lineages (Cardoso et al. 2011). The
identification of different groups often requires specialized
taxonomic expertise, a skillset which is rapidly disappearing
(Agnarsson and Kuntner 2007).

The task of characterizing the entire spider communities has
been greatly simplified by DNA barcoding (Barrett and Hebert
2005; Čandek and Kuntner 2015; Crespo et al. 2018; Fig. 1).
DNA barcoding of spiders is usually based on the 650-bp
“barcode region” of the mitochondrial COI gene, which pro-
vides good taxonomic resolution in this group (Čandek and
Kuntner 2015). As part of the mitochondrial genome, COI is
maternally inherited and not affected by recombination.
Mitochondria occur in most tissues in high copy numbers
and are thus easily accessible for PCR amplification, even in
degraded samples. The gene also evolves relatively quickly,
making it suitable to distinguish even recently diverged species
and recover intraspecific variation (Hajibabaei et al. 2007).

DNA barcodes garnered much enthusiasm after their initial
establishment, with some authors even suggesting that tradi-
tional taxonomic methods be entirely replaced with a DNA
sequence divergence-based taxonomy (Meierotto et al. 2019;
Tautz et al. 2003). However, a divergent barcode sequence
recovered from an unknown specimen is not enough to
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indicate the species status (Moritz and Cicero 2004;
Obertegger et al. 2018). Instead, DNA barcodes can serve as
a valuable complement to traditional taxonomy by facilitating
the identification of divergent lineages, including cryptic spe-
cies (Wang et al. 2018). This has proven to be useful in some
spiders with ambiguous morphological differentiation, which
show sufficiently deep genetic divergence to be considered
separate species (Leavitt et al. 2015; Starrett and Hedin
2007; Crespo et al. 2018).

Multiple primers with various levels of taxonomic specific-
ity are available for DNA barcoding of spiders (Blagoev et al.
2016; Krehenwinkel et al. 2018; Supplementary Table 1). The

resulting barcode sequences can be compared to reference
databases to assign specimens to species (Barrett and Hebert
2005; Robinson et al. 2009). Alternatively, the presence of a
so-called DNA barcode gap between interspecific and intra-
specific genetic divergences in the COI gene (Hebert et al.
2004a, b) can be used to identify putative species from the
DNA barcode data. There is no universal rule for genetic
distances to warrant “species” status; instead, the barcode
gap must be evaluated on a lineage-specific basis. This ap-
proach was demonstrated to workwell in orb-weaver and wolf
spiders (Čandek and Kuntner 2015). Automated approaches
aiding in the discovery of barcode gaps and resulting species

AGTAAATTTTATTTCAACTATTATTAATATACGGAGTGTGATCTGTTTTGATTACTGCGGTTTTA

TATTAATTTTATTTCTGCTATTTTAAATATGCGGAGTGTGATCTGTTTTAATTACTGCTGTGTTA

TATTAATTTTATTTCCACAATTATTAAGATACGAAGTGTGCTCTGTTTTAATTACAGCAGTATTA

TATTAATTTTATTTCCACCATTTTAAATAGACGGAGTGTGATCAGTTTTAATTACTGCTGTATTA

TATTAATTTTATTTCTACAATTATTAATAGACGTAGTGTGAGCTGTTTTAATTACTGCGGTCTTA

AATTAATTTTATTTCTACTAGTATTAATATGCGAAGTTTGATCAGTTCTTATTACGGCTGTTTTG

TATTAACTTTCTTTCTACAATTATTAAGATACGAAGTGTGGTCTGTTTTAATTACGGCAGTTCT

TATTAATTTTATTTCCACAATTATTAAGATACGAAGTGTGCTCTGTTTTAATTACAGCAGTATTA

TATTAATTTTATTTCTACAATTATTAATAGACGTAGTGTGAGCTGTTTTAATTACTGCGGTCTTA

AATTAATTTTATTTCTACTAGTATTAATATGCGAAGTTTGATCAGTTCTTATTACGGCTGTTTTG

ACCCCCCTCTATTACACTATTAATTATCAGTAGTATTGTAGAAAAGGGGGTA

ACCCTCTTCTTTATTTTTATTATTTATTTCTTCAATAGCTGAAATAGGAGTTG

GCCTCCTTCTTTGTTTTTATTATTCATTTCTTCTATAGCTGAAATATGAGTAG

ACCCCCATCTTTATTATTATTGTTTGTTTGATCTACGCTGAAATAGGAGTTG

ACCTCCTTCTCTATTTATATTATTAATTTAGTCTATAGTTGAGTTAGGGGTTG

Bulk DNA extraction

PCR & indexing

Sequencing

amplicon

index barcodes

Pooling & sequencing

Individual DNA extraction

PCR & indexing

PCR & indexing

Individual DNA extraction

Sequencing

a

b

c

Fig. 1 Summary of applications of Illumina amplicon sequencing for
DNA barcoding and metabarcoding of spiders. A) In individual DNA
barcoding, DNA from each specimen is extracted, then the desired
fragment is amplified in a PCR and tagged with a unique combination
of index barcodes before all samples are pooled and sequenced. B) In
bulk metabarcoding, DNA extraction is performed on pools of multiple

specimens. This greatly reduces the number of PCRs and index
combinations needed per specimen. C) For molecular gut content
analysis, DNA is extracted from individual predator specimens, and
PCR primers are chosen to amplify prey taxa while minimizing
amplification of the predator itself
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are available (Puillandre et al. 2012). Yet another approach is
the grouping of barcodes from a community into clusters of
similarity, the so-called operational taxonomic units (OTUs)
(Edgar 2013). These clusters, usually based on a maximum
sequence divergence of 3%, are then treated as biological
entities. Even though OTU clusters do not necessarily corre-
spond to actual species, this approach can be very useful when
reference libraries are incomplete (Dopheide et al. 2019) and
large numbers of sequences need to be processed. Clustering
approaches can also be phylogenetically informed, resulting
in more accurate approximations of real species (Fujita et al.
2012; Zhang et al. 2013).

Problems with DNA barcoding, and approaches
to mitigate problems

A significant obstacle to DNA barcoding is the incompleteness
of the barcode reference libraries. Because many species have
not yet been added to these libraries, often specimens can only
be identified to a relatively coarse taxonomic level such as
order or family. Even though substantial contributions to ref-
erence databases have been made in recent years (Astrin et al.
2016; Blagoev et al. 2016), given the sheer taxonomic diver-
sity of spiders, a large proportion of species is still not repre-
sented. There are two major bottlenecks in the generation of
barcode reference libraries. First, the identification of spe-
cies is time-consuming and requires taxonomic expertise,
which may not be available (Agnarsson and Kuntner
2007). Misidentifications or sequencing of contaminant
DNA can then lead to erroneously assigned barcode se-
quences in the database. Second, many species are rare or
difficult to collect, and thus represented by little more than
type material. Museum collections are therefore an indis-
pensable resource for DNA barcoding. In spiders, this is
particularly feasible because the standard storage medium
for spiders – ethanol – is an effective DNA preservative.
Only slight modifications of DNA extraction and PCR pro-
tocols are needed to recover the reduced and fragmented
DNA from historical specimens (Krehenwinkel and Pekár
2015; Miller et al. 2013). Several primer combinations are
available to target short, so-called mini-barcodes, which
are suitable for amplification of older specimens
(Supplementary Table 1). In spiders, barcode analysis of
historical specimens has provided valuable insights into
the taxonomic assignment of species (Cotoras et al. 2017)
and historical changes in genetic variation (Krehenwinkel
and Tautz 2013).

Another challenge for DNA barcoding is that short-
mitochondrial amplicons such as COI can yield biased biodi-
versity assessments when used in isolation (Krehenwinkel
et al. 2018). Mitochondrial divergence patterns do not neces-
sarily parallel species divergence but are influenced by numer-
ous different factors. For example, male-biased gene flow can

lead to highly divergent mitochondrial genomes in the ab-
sence of nuclear differentiation (Krehenwinkel et al. 2016).
Conversely, introgression can result in complete homogeniza-
tion of the mitochondrial gene pools, despite divergent nuclear
genomes (Irwin et al. 2009). Infections with endosymbiotic
bacteria can mimic various demographic scenarios of over-
and under-differentiation of mitochondrial genomes com-
pared to the nuclear background (Hurst and Jiggins 2005).
Moreover, nuclear mitochondrial pseudogenes (NUMTs) can
be recovered as barcode sequences, leading to incorrect taxo-
nomic assignments and biased phylogenetic inferences
(Bensasson et al. 2001). To avoid these pitfalls, it is often
recommended to use multiple loci for DNA barcoding
(Dupuis et al. 2012). Information from the unlinked loci in
the nuclear genome is particularly important and can aid with
DNA barcode-assisted taxonomic discoveries, e.g., for testing
hypotheses on cryptic species (Satler et al. 2013). Although
many popular nuclear markers evolve much more slowly than
COI, they still show comparable patterns of genetic diver-
gence when intraspecific and interspecific divergence rates
are compared (Supplementary Fig. 1). Multilocus data can
also increase the phylogenetic resolution of DNA barcoding,
which is very limited when analyses are based on a single
mitochondrial amplicon (Krehenwinkel et al. 2018).

High throughput sequencing-based DNA barcoding

DNA barcoding is traditionally based on Sanger sequencing,
requiring separate sequencing reactions for every sample. With
a total cost of $ 5–10 per sequence, this method can be prohib-
itively expensive for community-level studies. A cost-efficient
alternative is high-throughput amplicon sequencing (Kozich
et al. 2013). Illumina technology, for example the MiSeq, with
its maximum read length of 2 × 300 bp, is highly suitable for
DNA barcode generation (Shokralla et al. 2015). Due to limi-
tations in read length, HTS-basedDNAbarcoding usually relies
on shorter amplicons than the complete 650 bp barcode (Leray
et al. 2013). Alternatively, the complete barcode can be recov-
ered by sequencing multiple overlapping amplicons.

Illumina amplicon sequencing is distinguished by a very
simple library preparation process. Most commonly, a two-
step PCR is used, in which the target sequence is amplified
in the first round of PCR (Fig. 2). Dual indexes for unique
sample tagging and the necessary adapters for sequencing are
then incorporated in the second round of PCR (Lange et al.
2014). This approach accommodates thousands of samples in
a single sequencing run. Multiplex PCRs targeting multiple
unlinked loci can additionally reduce the necessary number of
PCRs (Krehenwinkel et al. 2018; Macías-Hernández et al.
2018), and inline barcodes attached to the first-round PCR
primers allow for a further increase in sample number
(Sternes et al. 2017). Alternatively, fusion primers including
sample tags and sequencing adapters can be used. This allows
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library preparation to be accomplished in a single PCR
(Kozich et al. 2013; Fadrosh et al. 2014) but limits the flexi-
bility to target multiple amplicons. Further reductions in pro-
cessing cost can be achieved by limiting the number of DNA
extractions. This can be done by pooling specimens of diver-
gent lineages, then performing bulk extractions (de Kerdrel
et al. 2020). PCR and library preparation are then performed
on the pooled extract, and the resultant sequences are assigned
back to their specimens using a reference database. One other
option is to omit DNA extraction entirely and instead use
direct PCR (Wong et al. 2014). Here, specimens are dropped
directly into the PCR buffer, and the traces of DNA they
release are sufficient for barcode amplification. This method
has been tested and established in different insect groups
(Thongjued et al. 2019; Yeo et al. 2018) but has yet to be
optimized for spiders.

By limiting the number of DNA extractions, using multi-
plex PCRs, and using multiple levels of sample indexing,
barcodes can now be generated at a cost of $ 0.2–1 each and
with a considerable reduction of workload (de Kerdrel et al.
2020; Meier et al. 2016; Srivathsan et al. 2019). This enables
researchers to generate barcode sequences for thousands of
specimens, thereby allowing estimates of both abundance

and taxonomic richness within a community (see below).
Recent reductions in cost have even led to the suggestion
of a reverse DNA barcoding workflow, in which all spec-
imens in a collection are barcoded and only divergent lin-
eages are selected for further morphological analysis
(Wang et al. 2018).

Using multiplex PCR approaches, sequences for multiple
independent loci can be generated in parallel, greatly improv-
ing the phylogenetic resolution of the generated data.
Knowing the evolutionary relationships among taxa in a com-
munity is critical for understanding the processes underlying
community assembly (Barker 2002). Currently, phylogenetic
analyses often rely on information from hundreds or thou-
sands of loci, for example, inferred from whole transcriptome
sequencing (Foley et al. 2019) or the targeted enrichment of
ultra-conserved elements (Kulkarni et al. 2020). While such
data offer unprecedented phylogenetic resolution, their gener-
ation is expensive and laborious. These methods are thus not
feasible for phylogenetic analyses at the community level,
where information for thousands of specimens has to be gen-
erated in parallel. This makes multiplexed amplicon sequenc-
ing an attractive alternative to phylogenomic approaches for
community phylogenetic analyses.

Primary PCR

Indexing PCR

      Primary PCR 
using inline barcodes

Indexing PCR

Pooling & sequencing of indexed products

Single PCR using fusion primers

a

b

c

......

......

......

......

......

......

......

TATTAATTTTATTTCCACAATTATTAAGATACGAAGTGTGCTCTGTT

TATTAATTTTATTTCCACCATTTTAAATATACGGAGTGTGATCAGTT

AATTAATTTTATTGCTACTAGTATGAATATGCGAAGTTTGATCAGTT

TATTAACTTTCTTTCTACAATGATTAAGATACGAAGTGTGGTCTGT

TATTAATTTTATTTCTGCTATTTTAAATATGCGGAGTGTGATCTGTT

ACCCCCCTCTATTACACTATTAATTATCAGTAGTATTGTA

ACCCTCTTCTTGACTTTTATTATGTATTTCTTCAATAGCT

GCCTCCTTCTTTGCTTTTATTATTCATTTCTTCTATAGCT

TATTAATTTTATTTCCACAATTATTAAGATACGAAGTGTGCTCTGTT

TATTAATTTTATTTCCACCATTTTAAATATACGGAGTGTGATCAGTT

AATTAATTTTATTGCTACTAGTATGAATATGCGAAGTTTGATCAGTT

TATTAACTTTCTTTCTACAATGATTAAGATACGAAGTGTGGTCTGT

TATTAATTTTATTTCCACAATTATTAAGATACGAAGTGTGCTCTGTT

TATTAATTTTATTTCCACCATTTTAAATATACGGAGTGTGATCAGTT

AATTAATTTTATTGCTACTAGTATGAATATGCGAAGTTTGATCAGTT

TATTAACTTTCTTTCTACAATGATTAAGATACGAAGTGTGGTCTGT

Fig. 2 Dual indexing strategies for Illumina sequencing. A) Library
preparation can be accomplished in two separate PCRs. In the first
PCR, the DNA barcode specific primers contain added tails (in brown).
Second PCR primers then bind to those tails and incorporate unique
barcode identifiers as well as sequencing adapters to each sample. A
unique barcode combination is used for each sample. B) Throughput
can be increased with the use of inline barcodes (light green and indigo)

attached to the 5′-end of the first-round PCR primer. They multiply the
number of unique barcode combinations available. Here, we show inline
barcodes only on the forward primer, but they can also be incorporated
into the reverse primer. C) Fusion primers can be used so that only one
round of PCR is necessary. The desired fragment is amplified and indexed
simultaneously
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Community metabarcoding

Reductions in cost and processing effort have made DNA
barcoding suitable even for the analysis of large community
samples. However, processing all specimens individually still
amounts to a considerable workload and cost. Metabarcoding
offers a simple alternative to a single-specimen DNA
barcoding and is therefore quickly increasing in popularity
(Gibson et al. 2014; Yu et al. 2012). In metabarcoding, bulk
samples are extracted and DNA barcode sequences generated
for the pooled community. Based on the sequence similarity,
the recovered barcodes are then clustered into OTUs.
Community diversity is estimated based on the number of
recovered OTU sequences. In order to achieve a comprehen-
sive taxon recovery in metabarcoding experiments, the use of
more than one amplicon is advisable (Krehenwinkel et al.
2018; Zhang et al. 2018). Recent developments in clustering
algorithms (Edgar 2018) also allow the inference of
haplotypic information from bulk metabarcoding data. This
way, even the intraspecific genetic variation can be estimated
within whole biological communities (Elbrecht et al. 2018).

Due to its speed, accuracy, and cost efficiency,
metabarcoding is now often the method of choice for arthro-
pod community analysis. A major drawback of this approach,
however, is that it only yields a list of OTU sequences, which
cannot be linked back to individual specimens because the
DNA is bulk-extracted from mixed samples. As sequences
cannot be assigned back to specimens, individual sequences
from multilocus barcoding cannot be linked together, limiting
the phylogenetic resolution of this approach unless the speci-
mens can be linked to an extensive reference library (de
Kerdrel et al. 2020). Metabarcoding can also lead to inflated
diversity estimates, as spurious sequences coamplify with the
targeted specimen’s DNA barcodes. These include NUMTs,
non-target species such as parasitic fungi or nematodes asso-
ciated with the specimen, and chimeras resulting from linking
of incomplete PCR products of different taxa (Elbrecht et al.
2017). Chimeras can be removed efficiently with appropriate
software solutions (Edgar 2013) and non-target taxa by com-
paring the resulting data against a reference database.
However, the removal of NUMTs is more challenging and
has not been fully resolved, especially when NUMTs retain
an intact reading frame.

Another issue with metabarcoding is that many current
protocols are performed destructively, i.e., specimens are
crushed in order to maximize the amount of DNA released
for extraction. This inevitably leads to the loss of morpholog-
ical information. This issue, however, can be circumvented by
subsampling tissue from specimens before extraction. In spi-
ders, it is common to extract DNA from one or more legs
while leaving the rest of the specimen intact (Gillespie et al.
2018; Krehenwinkel et al. 2018). In addition, several nonde-
structive protocols have been developed to isolate DNA from

specimens without compromising their morphological integ-
rity, e.g., via a brief soak in lysis buffer (Andersen and Mills
2012; Porco et al. 2010). DNAmay even be extracted directly
from the collectionmedium (e.g., ethanol), because specimens
leave trace amounts of DNA in the medium (Hajibabaei et al.
2012;Martins et al. 2019). However, the DNA recovered from
nondestructive extraction of community samples may be bi-
ased toward those taxonomic groups that release DNA more
readily than others, e.g., soft-bodied animals (Carew et al.
2018; Marquina et al. 2019).

Quantitative metabarcoding and PCR-free
metagenomics

While metabarcoding has been able to provide a highly accu-
rate overview of a community’s species composition, it has not
been possible to obtain accurate measures of abundance using
this approach. This is because varying PCR efficiencies be-
tween different taxa inevitably lead to biased recovery of spe-
cies abundances, sometimes by several orders of magnitude
(Elbrecht and Leese 2015). Besides simple primer-template
mismatches (Piñol et al. 2015), the GC content of the template
and even the polymerase type can bias taxon recovery (Nichols
et al. 2018). The effects of these biases are condition dependent
and difficult to quantify. Even the effect of primer-template
mismatches does not simply accumulate with mismatch num-
ber. Instead, position and type of mismatch can have widely
different effects on amplification efficiency (Kwok et al. 1990).
Nevertheless, the accurate quantification of relative abun-
dances of taxa is critical for many biodiversity analyses, and
much effort is therefore being made to optimize methods for
quantitative metabarcoding (Krehenwinkel et al. 2017a; Piñol
et al. 2019; Saitoh et al. 2016).

To overcome the amplification biases of metabarcoding,
PCR-free approaches have been suggested (Jones et al. 2015).
The simplest is shotgun sequencing of bulk samples, after
which the generated reads are processed and compared against
a reference database, an approach called metagenomics.
However, this may not work well in spiders because very few
spider genomes (nine, representing seven families) are currently
available (Supplementary Table 2), making it difficult to iden-
tify the majority of sequences. A refinement of this method is
“genome skimming,” in which mitochondrial sequences are
filtered from the recovered reads after shotgun sequencing
(Papadopoulou et al. 2015). The filtered reads can then be as-
sembled into longer contigs sometimes even spanning the
whole mitochondrial genome, allowing community analysis
with considerable phylogenetic support (Crampton-Platt et al.
2016). However, although mitochondria are abundant in cells,
mitochondrial DNA sequences usually do not exceed 1% of the
read population of genomic libraries (Zhou et al. 2013).
Genome skimming thus requires a very high sequencing cov-
erage. Capture assays are another option: DNA barcode probes
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are used to capture barcode sequences from a community sam-
ple, allowing sequencing without PCR amplification (Shokralla
et al. 2016). However, hybridization bias due to probe-target
dissimilarities may also result in skewed abundance estimates;
furthermore, a capture approach adds considerable cost and
workload.

PCR-based metabarcoding is therefore still the most cost-
effective and simple method for community analysis of spi-
ders. Although PCR amplification bias can theoretically lead
to skewed taxon abundances, this bias can be considerably
mitigated using optimized protocols. Amplification with de-
generate primers, or with primer binding in conserved DNA
stretches, greatly improves taxon recovery while decreasing
amplification bias (Krehenwinkel et al. 2017a). Furthermore,
the response of individual taxa during a PCR is predictable,
i.e., the relative abundance of a taxon in a community is lin-
early correlated with the recovered read abundance (Fig. 3).
Only the slope of this correlation differs among taxa. If the
slopes are known, then correction factors can be applied to
estimate the relative abundance of taxa in a community
(Thomas et al. 2016). The downside is that correction factors
must be developed individually for different taxa.

Environmental DNA metabarcoding of spiders

A popular application of metabarcoding is the analysis of en-
vironmental DNA (eDNA). Every organism leaves traces of
DNA in the environment, for example, from feces, skin frag-
ments, or saliva. These traces can be enriched, amplified, and
sequenced, allowing characterization of whole communities
without needing to collect the organisms. Much work on
eDNA has focused on aquatic ecosystems, usingDNA extracts
from filtered water (Valentini et al. 2016). However, terrestrial
organisms can also be detected using eDNA, for example from

soil DNA extractions. Arthropods were recently shown to
leave eDNA traces on wildflowers (Thomsen and Sigsgaard
2019). Thus, by washing eDNA off of plants, it may be possi-
ble to reconstruct associated arthropod communities.

Third generation sequencing-based barcoding
and metabarcoding

DNA barcoding and metabarcoding applications are currently
limited by the relatively short read length of second generation
HTS applications, which cannot recover the whole 650-bp
COI barcode region as a single sequence (Piper et al. 2019).
A solution to this limitation is provided by the third generation
sequencing technologies. Oxford Nanopore Technologies
(ONT) and Pacific Biosciences (PacBio) offer sequencing
platforms that achieve read lengths superior to any previous
sequencing technology, with reads of close to 2 megabases for
ONT’s MinION platform (Payne et al. 2018). Both technolo-
gies are well suited for amplicon sequencing, and dual indexes
can be easily incorporated during PCR, allowing processing
of thousands of DNA barcodes in a single sequencing run.
The PacBio Sequel (Hebert et al. 2018) and ONT’s MinION
(Srivathsan et al. 2019) were recently suggested as cost-
efficient alternatives to Sanger sequencing for the generation
of DNA barcodes. ONT and PacBio platforms have also re-
cently been used to sequence near complete nuclear ribosomal
DNA clusters (Krehenwinkel et al. 2019a; Tedersoo et al.
2018). The advantage of rDNA barcoding is that conserved
gene regions of the rDNA cluster can be used to design uni-
versal primers (anchored in the highly conserved 18S and 28S
rDNA), which can resolve very old divergences (Hillis and
Dixon 1991), while at the same time fast-evolving internal
transcribed spacers (ITS) can be used to resolve relationships
of closely related taxa (Schoch et al. 2012). Our work on

Fig. 3 Association of the relative abundance of spider species from seven
different families in mock communities of 46 different arthropod species,
with the relative read count recovered for the species after sequencing.
The plots show the association for A) nuclear 18SrDNA, B) nuclear
28SrDNA and C) mitochondrial COI. The abundance of the species in

the respective communities is generally well correlated to the recovered
read abundances. However, depending on marker and species, the slope
of the association is very variable, such that accurate abundance estimates
from read data would require careful calculation. Based on data from
Krehenwinkel et al. 2017a
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spiders suggests that such long rDNA amplicons are a well-
suited complement to COI-based DNA barcoding
(Supplementary Fig. 2; Krehenwinkel et al. 2019a). Long
rDNA amplicons also offer very good phylogenetic support
and thus may constitute a cost-effective alternative to the
multiplexed Illumina amplicon sequencing for the
community-wide phylogenetic analysis.

The third generation sequencing platforms offer an unprec-
edented read length, but their major downside is a high raw
read error rate. At about 5–30% (Tedersoo et al. 2018; Wick
et al. 2018), ONT and PacBio sequencers’ raw read error rate
is much higher than that of Illumina (error rate: 0.1–1%;
Manley et al. 2016) and Sanger sequencing (error rate:
0.001–1%; Noguchi et al. 2006). However, highly accurate
consensus sequences can be generated from ONT and
PacBio data even at low coverage (Krehenwinkel et al.
2019a; Pomerantz et al. 2018). Recent advances show prom-
ise for further minimizing error. PacBio HiFi sequencing
mode produces highly accurate reads using their circular con-
sensus sequencing (CCS) technology, reducing raw read error
to < 1% (Wenger et al. 2019). Similarly, rolling circle ampli-
fication can be used in metabarcoding applications to mitigate
error rates of the nanopore-based sequencing platforms (Calus
et al. 2018).

The possibility of long-read metabarcoding was also re-
cently explored (Callahan et al. 2019; Krehenwinkel et al.
2019a; Tedersoo and Anslan 2019). Barcode sequences of
several thousand base pairs for a whole community would
greatly improve the phylogenetic resolution of metabarcoding
and allow community-level phylogenetic analysis. However,
the high raw read error rate poses a significant obstacle for
accurate community characterization, as it is hard to distin-
guish whether a rare sequence variant belongs to a separate
species in the community or is simply caused by sequencing
error. Nonetheless, advances such as CCS and rolling circle
amplification may soon solve this problem. One other issue is
that community compositions of rDNA metabarcoding stud-
ies can be highly skewed, likely due to favorable PCR ampli-
fication of shorter rDNA fragments (Krehenwinkel et al.
2019a). Although the length of the nuclear rDNA region is
relatively stable within spiders, biases can occur when addi-
tional taxa are included (Krehenwinkel et al. 2019a).

Mobile DNA barcoding by third generation
sequencing

A particular strength of ONT’s MinION is its portability. With
the size of a USB stick, the device can be run outside of
conventional laboratories (e.g., Menegon et al. 2017;
Pomerantz et al. 2018). Using a mobile laboratory of minia-
turized equipment, all steps from DNA extraction to PCR,
library preparation and sequencing can be performed in the
field using the MinION (Pomerantz et al. 2018; reviewed in

Krehenwinkel et al. 2019b). While field-based DNA
barcoding is an exciting perspective, it is unlikely to become
the method of choice for community barcoding. Researchers
usually have access to molecular laboratories that allow for
more standardized and higher throughput sample processing
than field-based assays. Yet, a minimalistic and mobile DNA
barcoding system can be of great advantage when field sites
are remote or hard to access, or when time is of the essence for
swift generation of biodiversity information (reviewed in
Krehenwinkel et al. 2019b). Examples include monitoring of
disease outbreaks (Quick et al. 2016; Walter et al. 2017) or
documenting the immediate effects of ecological disasters
such as forest fires or pipeline spillages. Another advantage
of mobile barcoding is that it allows for in situ species mon-
itoring without having to remove organisms from their habitat
or send samples internationally (Pomerantz et al. 2018). This
is especially relevant for endangered species. In the case of
spiders, non-lethal sampling protocols could be applied for
site-based monitoring without directly affecting the popula-
tion (Longhorn et al. 2007; Petersen et al. 2007).

Trophic niche analysis by DNA barcoding

DNA barcoding for gut content analysis:
toward community-level food webs

Surprisingly little is known about the dietary ecology of spi-
ders. While most spiders have long been understood as gen-
eralist predators, recent work also highlights many examples
of dietary specialists, like termite feeders (Petráková et al.
2015), araneophages (Benavides et al. 2017; Wood et al.
2012) and even herbivorous species (Meehan et al. 2009;
Nyffeler et al. 2016). The compilation of dietary information
for spiders from observational data is very time-consuming
and often inaccurate. The sheer diversity of spiders addition-
ally complicates the task. More detailed dietary information is
available chiefly for species being considered as potential bio-
control agents (Schmidt et al. 2014; Roubinet et al. 2017).

Molecular gut content analysis has simplified the task of
characterizing spider prey communities and associated
strengths of predator-prey interactions, thereby allowing a
more accurate reconstruction of the often-cryptic arthropod
food web (Sint et al. 2019). In the simplest case, spiders can
be tested for consumption of specific prey taxa by subjecting a
spider’s gut content to PCR assays using prey-specific primers
(Schmidt et al. 2014; Whitney et al. 2018). This can be useful
for determining whether a spider could serve as a biocontrol
agent against a particular pest species. However, the limitation
of this method is that the expected prey taxa must be known a
priori, and specific PCR assays must be developed for every
prey taxon. Multiplex PCR approaches (King et al. 2011;

192 Dev Genes Evol (2020) 230:185–201



Roubinet et al. 2017) can broaden taxonomic coverage of prey
detection but are still limited in their taxonomic breadth.

A more complete prey spectrum can be recovered via
metabarcoding of the gut contents (Deagle et al. 2009; Leray
et al. 2013). In principle, the sameDNA barcoding approaches
used for community characterization can be applied to gut
content analysis, i.e., by treating the prey DNA inside the
gut as a “community.” However, there are some additional
considerations for tailoring these approaches to the specific
conditions affecting DNA extracted from the gut. PCR inhib-
itors may coprecipitate with the DNA, requiring additional
purification of DNA from gut extractions. Also, prey DNA
from the predator’s guts is often degraded and present at much
lower concentrations than the DNA of a single specimen in a
bulk community extract. Hence, short PCR amplicons are
usually targeted to achieve a complete prey spectrum (Zeale
et al. 2011; Kamenova et al. 2018). Gut content
metabarcoding has become increasingly popular and has re-
cently provided numerous novel insights into the trophic ecol-
ogy of spiders. Examples include trophic niche differentiation
within an adaptive radiation (Fig. 4; Kennedy et al. 2019), the
effect of grazers on prey communities (Schmidt et al. 2018),
ontogenetic shifts in diet (Verschut et al. 2019), and a stable
diet despite differences in available prey communities along
an elevational gradient (Eitzinger et al. 2019). Improved res-
olution is often achieved by combining HTS-based gut con-
tent screening with stable isotope analysis (Hambäck et al.
2016; Kennedy et al. 2019).

Enrichment of prey DNA

Dissecting the gut of a spider for prey recovery is time-
consuming and laborious. A highly simplified approachwas thus
suggested by Piñol et al. (2014). In their study, the authors used
DNA extractions from whole spider bodies and amplified DNA
barcodes using universal primers. Predator barcodes, which co-
amplified during PCR, were removed from the analysis, and the
prey spectrum is reconstructed from the remaining sequences. As
universal primers are needed in order to recover a full prey spec-
trum, a serious problem of this approach is that both predator and
prey will be amplified. Consequently, the overabundant predator
DNA can completely outcompete the prey DNA during PCR.
Recent work suggests the use of predator-specific blocking
primers, but due to the close relatedness of prey and predator,
this approach has had only limited success in spiders (Michálek
et al. 2017; Toju and Baba 2018). Another option is to enrich
prey DNA from spider extracts. Prey DNA is quickly degraded
in the spider’s digestive tract. By separating intact highmolecular
weight DNA from degraded DNA fragments, prey DNA can be
significantly enriched (Fig. 5; Krehenwinkel et al. 2017b).
However, this method will only work well if the predator DNA
is not degraded; therefore, it is not suitable for old or poorly
preserved specimens. An additional enrichment of prey DNA
can be achieved by extracting DNA from the spider’s
opisthosoma only, which contains the majority of the animal’s
digestive tract (Krehenwinkel et al. 2017b; Macías-Hernández
et al. 2018).

Fig. 4 Order-level prey compositions for four sympatric Tetragnatha
species from the Hawaiian island of Maui, as recovered by molecular
gut content analysis based on a short COI amplicon. The different
lifestyles of the web builders (T. acuta and T. stelarobusta) and free-
hunting species (T. quasimodo and T. waikamoi) are reflected in divergent
prey spectra. However, prey community differences also become

apparent within web builders and free hunters. This effect may be due
to interspecific differences in microhabitat and prey capture strategy. The
green T. waimamoi resides and hunts on green leaves, while the brown
T. quasimodo occurs on tree bark or dead leaves. The two web builders
are distinguished by different web mesh widths, selectively catching dif-
ferent arthropod groups. Based on data from Kennedy et al. 2019
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To further optimize prey recovery and reduce the necessary
sequencing depth, lineage-specific PCR was recently sug-
gested (Fig. 5; Krehenwinkel et al. 2019c). Single mismatches
at the 3′-end of a PCR primer can lead to a massive drop in
amplification efficiency (Kwok et al. 1990). If primers are
designed in very conserved regions but end at a lineage-
diagnostic SNP, which distinguishes spiders from their insect
prey, spiders will be mostly blocked from amplification. At
the same time, the primer still amplifies a wide variety of
arthropod prey. Blocking spiders from amplification also en-
ables detection of prey for very long time periods, possibly up
to a month after feeding (Krehenwinkel et al. 2019c). A down-
side of this approach is that spider-spider predation cannot be
detected. While prey enrichment can now be routinely per-
formed from spider gut content, further standardizations of
the protocol may be necessary to integrate the resulting data
into previously generated prey community data.

Non-lethal monitoring of spider prey communities

All methods mentioned above rely on DNA extraction from
spiders or their body parts. Corse et al. (2019) suggest the use
of DNA extracts from spider webs as an alternative source of
prey DNA, without harming the spider. This method has sev-
eral drawbacks. First, spider webs can collect airborne DNA
from the environment, in addition to “bycatch” of insects that
the spiders do not eat. This can lead to false positives if DNA
from webs is used as a proxy for the spider’s diet. Also, many

spiders rebuild their webs on a daily basis. Web DNA then
only allows detection of the daily prey catch (as well as the
bycatch described above), in contrast to several weeks recov-
ered by gut content analysis. Many spiders do not spin capture
webs but are active hunters, additionally limiting the broad
applicability of this method. Another alternative was sug-
gested by Sint et al. (2015), who used DNA extracted from
spider feces as source of prey DNA. This is a promising ap-
proach but may be logistically challenging, as spiders must be
kept in captivity until feces can be collected. Moreover, recent
work in carabid beetles has shown that feces recover a less
diverse, and therefore biased, prey spectrum compared to gut
content extractions (Kamenova et al. 2018).

Pitfalls of HTS-based gut content analysis and how
to avoid them

HTS-based gut content analysis has been shown to yield reliable
and comprehensive prey spectra, allowing exploration of food
web structure in whole communities of spiders. However, the
method still has several issues. PCR-based amplification of prey
DNA is very sensitive to contamination. Theoretically, a few
molecules of insect DNA are sufficient to be amplified. This
DNA can also derive from external sources, e.g., from insects
caught or stored together with the spider specimen. This con-
tamination can be minimized by bleach treatment of the collect-
ed specimens before gut content analysis (Greenstone et al.
2012). Another source of contamination is parasitoid larvae,

Fig. 5 Enrichment of prey DNA from extractions of spiders. A) The
recovered relative amount of prey DNA of Hololena adnexa in relation
to spider DNA increases significantly when DNA extractions are
performed from the opisthosoma rather than the prosoma. The yield can
be further increased by using a bead protocol to enrich the low molecular
weight DNA from the DNA extract. This works because prey DNA

rapidly degrades in the spider’s digestive tract. B) Enrichment of prey
DNA in 12 spider species from seven families by using different lineage-
specific primers and in comparison to a commonly used COI primer pair.
Based on spider-specific 3′-primer mismatches, the amplification of spi-
ders can be considerably reduced, enriching the prey DNA during PCR.
Based on data from Krehenwinkel et al. 2017b, 2019c
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which may be located inside the spider but are not actual prey.
Additional organisms inside the spider’s tissue, such as nema-
todes, fungi, and bacteria, can also be coamplified alongwith the
prey. Prey data must therefore be carefully analyzed to identify
such potentially confounding factors.

Amplification bias can also strongly affect taxon recovery
in HTS-based gut content analysis. This problem can be mit-
igated using multiplex PCR assays targeting several loci
(Krehenwinkel et al. 2019c), which enables a good qualitative
recovery of prey. Accurate quantitative assessments of prey
communities, however, are not possible. This is partly due to
biased amplification of different taxa, and partly to the timing
of prey consumption. DNA of the recently ingested prey will
outweigh that of earlier meals, which will already be mostly
degraded. However, by completely omitting quantitative in-
formation, the prey spectrum is artificially biased toward very
rare taxa; thus, the number of reads obtained for different prey
taxa should be taken into account even if abundance per se
cannot be reliably inferred (Deagle et al. 2019).

Another shortcoming of current HTS-based protocols is
that they fail to detect cannibalism. The short amplified
barcode sequences for gut content analysis are usually shared
within a species, making it impossible to distinguish the DNA
of cannibalized prey from that of the predator. Recent work
(Michálek et al. 2017) suggests using intraspecific haplotypic
variation to identify cannibalism events, but this method only
works if the spider population has very high-haplotypic vari-
ation. Hence, in most spider species, the number of cannibal-
ism events would be considerably underestimated.

Secondary predation is yet another issue, particularly for
protocols with a long detection half-life of prey DNA. For
example, gut DNA extracts of a spider that has fed on a
ladybird (Coccinellidae) may also contain DNA of the
ladybird’s own aphid prey. However, secondary prey DNA is
expected to bemore degraded and less abundant than the DNA
of an actual prey item, so a careful analysis of prey community
data and the development of sequence coverage cutoffs may
mitigate this issue. Such sequence coverage cutoffs will have
to be derived experimentally in the future to enable accurate
assignments of real prey taxa in gut content studies.

Future outlook: practical and theoretical
developments in the field

Development of laboratory and field protocols

Recent technological developments have greatly contributed
to the field of DNA barcoding. Whole communities can now
be routinely characterized for manageable cost and effort.
However, the field is still in its infancy, and further develop-
ments are warranted. One important focus is the completion of
DNA barcode reference libraries. Only with complete

reference databases can DNA barcoding be used to its full
potential. Museum collections are a promising source of spec-
imens from which to generate barcode data for the world’s
spider biota. Also, future species descriptions should be
coupled with the deposition of a DNA barcode sequence.
Considering the limitations of the single-locus DNA
barcoding, new unlinked barcode loci should additionally be
developed. These should include information from the nuclear
genome and be variable enough to distinguish species but also
include conserved sequences which allow the design of uni-
versal primers. A set of multiple, unlinked DNA barcoding
loci would greatly facilitate taxonomic discoveries in spiders
and may aid in community phylogenetic analysis.

A focus of future research should also be on the optimiza-
tion of quantitative taxon recovery from metabarcoding.
Alternatively, further developments in amplification-free ap-
proaches may lead to a drop in cost, allowing this method to
be applicable to the whole-community samples. Further opti-
mizations should be performed on long read protocols so that
they can be used for accurate metabarcoding analyses. This
would considerably improve the phylogenetic resolution of
metabarcoding data. With future simplifications to the proto-
col, portable barcoding could develop into a routine method-
ology for the exploration of remote ecosystems around the
world. Gut content sequencing is currently revolutionizing
our understanding of cryptic prey-predator interactions in ar-
thropod communities. With further experimental develop-
ments, for example, into the avoidance of false positives and
the enrichment of prey DNA, the methodology will enable an
in-depth understanding of the arthropod food web structure,
which is also critical for understanding the food web relation-
ships at higher trophic levels.

Linking theoretical biology and DNA barcoding

High throughput sequencing-based DNA barcoding and
metabarcoding have provided scientists with community-
level datasets of unprecedented completeness and resolution.
Nevertheless, the theoretical tools available for analyzing these
data are still somewhat limited. Recent efforts, however, show
great promise for improving the power and accuracy of DNA
barcode data for the analysis of community species richness,
abundance, phylogenetics, and interactions. Here we provide
an overview of the current developments and future perspec-
tives of integrating DNA barcoding data into theory.

Theoreticians are facing new opportunities for making infer-
ences about past processes that have contributed to structuring
communities using community-scale sequence data. Events at
different timescales are recorded in different aspects of these data,
with abundance distributions reflecting short, ecological time-
scales, population genetic variation reflecting medium time-
scales, and phylogenetic diversity reflecting long timescales.
For example, if abundances can be estimated from bulk-
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sampled sequence data using metabarcoding, then a variety of
methods can be applied to differentiate neutral from non-neutral
processes (Harpole and Tilman 2006; Tilman 2004), estimate
assembly model parameters (Haegeman and Etienne 2017), or
infer equilibrium state of the community using mechanistic the-
ory (Jabot and Chave 2011) or tools from statistical mechanics
(Harte and Newman 2014; Rominger and Merow 2017).

The distribution of genetic variation within a community
provides another axis of information which is complementary
to the abundance distribution (Vellend 2005; Vellend et al.
2014). Recently, Overcast et al. (2019) described a mechanistic
model of community assembly that can generate linked pat-
terns of abundance and genetic diversity under an assumption
of joint ecological (Hubbell 2011) and evolutionary (Kimura
1983) neutrality to estimate community abundance structure
using only intraspecific genetic variation. This method can
serve as an alternative or a complement to estimates of abun-
dance distributions from metabarcode data, which are con-
founded by PCR amplification bias as described above. As a
proof of concept for this method, Overcast et al. (2019) ana-
lyzed the densely sampled abundances and community-scale
population genetic data (COI sequences) from a community of
spiders on La Réunion (Emerson et al. 2017) and demonstrated
that the abundance structure of the community could be accu-
rately estimated using only the intraspecific genetic variation.

Analysis of the community phylogenies provides a deep-
time lens on community structure which can be used to esti-
mate speciation and extinction rates (Manceau et al. 2015) and
make inferences about diversification processes (Emerson and
Gillespie 2008; Morlon 2014; Pearse et al. 2014). Recent
methods have also been developed to simultaneously model
trait evolution and species diversification (Weber et al. 2017)
to investigate the importance of competition in shaping evo-
lutionary radiations (Aristide and Morlon 2019), and the joint
contribution of competition and environmental filtering in
structuring ecological communities (Ruffley et al. 2019).
Community-scale trait data can also be analyzed along with
metabarcoding data in a hierarchical modeling framework to
further account for feedbacks among processes happening at
disparate timescales (Overcast et al. n.d.). Such theoretical
developments enable increasingly reliable and detailed infer-
ences on past processes in shaping present-day patterns, yield-
ing many exciting new perspectives on community assembly.
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