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ABSTRACT OF THE THESIS

Lane-keeping and Adaptive Speed Control
for Robotic Systems

by

Cheng Qian

Master of Science in Engineering Science (Mechanical Engineering)

University of California San Diego, 2020

Professor Mauricio de Oliveira, Chair
Professor Jorge Cortes, Co-Chair

Control Lyapunov functions and barrier functions have been successfully applied to

control the motion of robotic systems as a means to ensure safety and performance. This study

aims at constructing a new approach to the problem of simultaneous lane-keeping and adaptive

speed control problem of a robotic system, and a modified Lyapunov function and barrier setup are

also proposed that fits this problem more naturally than the ones available in the main literature.

Under the new setup, it is possible to offer guarantees of convergence as well as to

explicitly calculate the solution of the associated quadratic program used to determine the control

ix



input. At last, a few examples are provided to illustrate the results, showing how different control

strategies affect the performance of the robot system.
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Chapter 1

Introduction

1.1 Motivation

The techniques of autonomous vehicles have been increasingly developed over the past

few years. Autonomous vehicles, especially indoor/outdoor robots and self-driving cars have

brought significant changes to our life. Although negative news about autonomous vehicles is

there all the time, people still believe that autonomous vehicles have more potential benefits than

disadvantages. Due to the development of higher-accuracy sensors, machine learning techniques

and motion planning algorithms, autonomous vehicles are able to accomplish various tasks.

However, due to the uncertainty of the environment, autonomous vehicles still cannot eliminate

all dangers which might cause serious consequences. To make autonomous vehicles more reliable

and present more benefits for our lives, people are looking for ways to overcome the safety

challenges.

For self-driving cars, most of the accidents are due to human error. Therefore, Advanced

Driver-Assistance Systems (ADAS) are developed and implemented to help minimize human

error and improve the safety of autonomous vehicle systems. In ADAS, there are two main

tasks to achieve: lane-keeping and adaptive speed control, which are the key to the safety and
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performance of autonomous vehicle systems.

• Lane-keeping: Controlling the throttle and steering of the vehicle according to a prescribed

path and stay within the boundaries of a prescribed lane around the desired path.

• Adaptive Speed Control: Allowing the vehicle to drive at a prescribed velocity whenever

possible and reducing the speed if necessary to maintain a safe distance from other vehicles.

Even though ADAS has been widely equipped on modern passenger vehicles, people

should never slow down the pace of developing higher performance algorithms in terms of safety.

1.2 Previous Works

Myriad methods have been reported in the literature that can perform the lane-keeping and

adaptive speed control tasks, e.g. [3, 11, 10]. In the following sections, the Lyapunov and barrier

certificates based approach will be introduced. In this approach, control inputs are calculated by

solving convex Quadratic Programs (QP) [4].

Some relatively new methods that blend Control Lyapunov functions (CLF), for conver-

gence to one or multiple control objectives, and Control Barrier Functions (CBF), for meeting

safety requirements, e.g. [4, 3, 1] are first revisited. Such methodology provides a framework

within which one can deal with safety-critical tasks that might involve potentially conflicting

control objectives and safety constraints [3].

The idea behind the control Lyapunov functions is to first find an appropriate Lyapunov

function to stabilize the nonlinear robotic system in terms of some specific control objectives, and

then by ensuring V̇ (x,u)≤ 0, optimal controls can be generated through constrained optimization

problem.

For barrier functions, [4] introduces two types of barrier functions, which are the Recipro-

cal Barrier Function (RBF) and Zeroing Barrier Function (ZBF). The main difference between
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these two barrier functions is that, for ZBF, the barrier function is defined as:

B = h(x)

which the value of B will vanish as the state x approaches the boundary of a given set C .

For RBF, the barrier function is defined as:

B =
1

h(x)

which B will go to infinity as the state x approaches the boundary. Similar to CLFs, the idea behind

the use of CBFs is that the safety requirements can also be encoded into inequality constraints via

Ḃ(x,u)≥ 0 for generating optimal controls.

In this CLF-CBF framework, the control Lyapunov function acts as a tool to stabilize

the system around the desired control objectives, whereas the control barrier function is used to

enforce the trajectory will remain within prescribed safety boundaries.

The combination of control Lyapunov and control barrier function is often done in an ad

hoc way, guarantee the system to achieve the control objective which, at the same time, satisfy

the safety requirements.

The CLF-CBF approach, enabled by the availability of efficient numerical QP solvers,

has been applied to several real-world robotic problems such as bipedal robot walking [7, 2],

automatic cruise control [10], and lane-keeping [12], collision-free multi-agent system and

obstacle avoidance [6].

1.3 Contributions

Inspired by previous works, this research will mainly focus on the improvement of

the CLF-CBF-QP approach towards the simultaneous lane-keeping and adaptive speed control
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problem.

In previous works, a CLF-CBF-QP framework is used to deal with conflicting control

objectives. To ensure that QP is feasible, relaxation parameters are considered in the conflicting

CLF constraint. However, this approach can never offer guarantees on the asymptotical stability

of the robotic system which will be discussed later.

The starting point in this study is the simultaneous adaptive speed regulation and lane-

keeping CLF-CBF-QP approach proposed in [12]. In that paper, the authors propose an ad hoc

combination of three CLFs and two CBFs using a combination of slack variables and penalties,

treating the inequalities arising from the need to reduce the CLF as soft constraints, to keep the

adherence of CBF based safety constraints for lane-keeping and adaptive speed control.

The drawback of this approach will weaken the performance of lane-keeping and adaptive

speed control, in other words, the control objectives will never converge to zero under this

implementation. In practice, one will always want the control objectives to be achieved as much

as possible while the safety specifications are not violated.

In this study, the simultaneous adaptive speed regulation and lane-keeping problem is

reconstructed by proposing the use of a single CLF that is capable of simultaneously ensuring

convergence to a target trajectory and adaptive speed control, and a single CBF for lane-keeping.

With this modification, the relaxation parameters are no longer necessary in this problem since

the control objectives have become compatible, and it is possible to asymptotically stabilize the

robotic system. The resulting QP requires no artificial penalties as well.

A Karush-Kuhn-Tucker (KKT) condition based constrained optimization problem is

solved to get the optimal controller. The advantage of the simpler problem is utilized to derive

analytic formulas for the calculation of control inputs that do not require the use of an online

solver. Simulation examples are also provided to illustrate the corresponding results.
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1.4 Thesis Organization

The structure of this thesis is as follows. Chapter 2 briefly reviews the CLF-CBF-QP

approach of [12] including the robot kinematic model, the CLF and CBF constraints, and the

prescribed trajectory. Chapter 3 introduces the formal definitions of the Exponentially Stabilizing

Control Lyapunov Function (ES-CLF) and Zeroing Control Barrier Function (ZCBF) that are

used in this study. The discussion on the drawbacks of this approach is also provided in this

chapter. In Chapter 4, the new CLF and CBF is proposed, and the discussion on the non-smooth

analysis regarding to the new CLF is also presented. Chapter 5 calculates explicit solution to the

resulting QP. Finally, Chapter 6 presents two simulation examples that illustrate the proposed

methods, followed by brief Conclusions in Chapter 7.
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Chapter 2

Modeling

Before moving forward to the simultaneous lane-keeping and adaptive speed control

problem, an approximate model must be selected first to represent the physical robotic system.

One commonly used robotic model is the standard unicycle model.

2.1 State Space Representation

In this study, a differential-drive ground robotic system which contains one leading robot

and one following robot is considered. Each of the robots has two independent driving wheels.

Our goal is to steer the robot by controlling the left and right wheel’s angular velocity to achieve

the control objectives. The original kinematic model of this robotic system is defined as follows:


ẋ

ẏ

θ̇

=


R
2 (ωr +ωl)cos(θ)

R
2 (ωr +ωl)sin(θ)

R
L (ωr−ωl)

 (2.1)

where

6



R radius of wheels

ωr angular velocity of right wheel

ωl angular velocity of right wheel

L length of wheel axis

(x,y) robot position

θ robot orientation

According to previous works, a standard unicycle model is often used to simplify this

two-wheeled robot model without any loss. Namely, by taking the mapping:

v =
R
2
(ωr +ωl)

ω =
R
L
(ωr−ωl)

the control inputs become the linear velocity v and the angular velocity ω of the robot, and the

kinematics of the standard unicycle model is given by:


ẋ

ẏ

θ̇

=


vcos(θ)

vsin(θ)

ω

 (2.2)

Additionally, in practice, it is more natural in taking the longitudinal force and torque as

inputs, as in [12], [9]. To coincide with these control inputs, a constant a > 0 is used to locate

(x,y) ahead of the wheel axis, as shown in Figure 2.1.
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Figure 2.1: Robot state and a distance ahead of the wheel axis

The corresponding dynamics is given by:



ẋ

ẏ

v̇

θ̇

ω̇


=



vcos(θ)−aωsin(θ)

vsin(θ)+aωcos(θ)

ul/m−aω2

ω

ua/Iz


= f (x)+g(x)u (2.3)

where

ul tangential force input

ua angular torque input

Iz moment of inertia about the z-axis

m mass of the robot

v robot tangential velocity

ω robot angular velocity

a a distance ahead the wheel axis

8



and the functions f and g can be calculated from the model above, which are:

f (x) =



vcos(θ)−aωsin(θ)

vsin(θ)+aωcos(θ)

−aω2

ω

0



g(x) =



0 0

0 0

1/m 0

0 0

0 1/Iz


The state x of the robot and the input u are defined as:

x =



x

y

v

θ

ω


u =

ul

ua



2.2 Lane-keeping and Adaptive Speed Control Constraints

The goals of Lane-Keeping (LK) problem are to keep the robot driving on the desired

path which is considered as a ”soft” constraint, and to avoid driving across the inner and outer

boundaries of the lane, which is considered as a ”hard” constraint. Similarly, the ”soft” constraint

for Adaptive Speed Control (ASC) is to make the robot drive at the desired speed while the ”hard”

9



constraint is to keep a safe distance with the leading robot.

2.2.1 ASC Control Constraints

The hard constraint for the ASC problem ensures avoiding collision between the leading

robot and the following robot. Hard constraints always have the highest priority, which means

they should not be violated at all times. There are numerous ways to represent this constraint, as

in [4], the rule for ASC can be stated as:

D≥ τv (2.4)

where

D safe distance between the leading and following robot

v forward velocity of the following robot

τ time-scaled parameter

and more specifically, τ is a pre-defined parameter that defines the time for safe distance reducing

to zero under current velocity.

The soft constraint can be stated as when the distance between the two robots is ”safe”,

the controlled robot should drive at the desired speed. Namely:

v→ vd (2.5)

where

v forward velocity of the following robot

vd desired forward velocity

10



2.2.2 LK Control Constraints

The hard constraint for LK problem can be considered as the lateral displacement y of the

robot from the center of the path should not exceed a pre-defined constant dmax which represents

the inner and outer edge of the path, namely:

| y |≤ dmax (2.6)

To encode this rule to a more general pattern, the techniques in [4] is used here. Consider

at time zero, the lateral displacement is y(0) and the lateral velocity is ẏ(0). Assume that under

the maximum allowable acceleration amax, it takes time T for the robot to reduce the lateral

velocity to zero, this can be formed by an equation:

y(T ) = y(0)+T ẏ(0)− sign(ẏ(0))
2

T 2amax

Take T = |ẏ(0)|
amax

the above equation becomes:

y(T ) = y(0)+
|ẏ(0)|
2amax

ẏ(0)

together with (2.6), the following inequality is generated to represent the hard constraint in the

same manner:

sign(ẏ)y+
ẏ2

2amax
≤ dmax (2.7)

There are two soft constraints in the LK problem, one is the position of the controlled

robot converges to the center of the desired path:

(x,y)→ (xd,yd) (2.8)

11



and the angular velocity converges to the desired angular velocity to smooth the trajectory:

ω→ ωd (2.9)

Note that in [12], the author set ωd = 0 in order to make the trajectory much more

smoother. With a relaxation parameter δ take into consideration, this choice is easy to implement.

However, it cannot guarantee asymptotically stable of the system. See the upcoming chapters for

further discussion.

2.3 Target Trajectory

Our goal is to steer the robot as close as possible to a prescribed path, Rpath, which is

assumed here to be given in the polar form, that is, Rpath(φ) is a radial distance and φ is an angle

as shown in Figure 2.1. The particular trajectory can be defined as:

Rpath(φ) = R+bsin(nφ) (2.10)

with parameters, n and R, given in Table 6.1 will be used in the illustrative examples later. One

should also note that φ is a function of (x,y).

With the above target trajectory, xd and yd in (2.8) can be represented as:

xd = Rpath(φ)cosφ

yd = Rpath(φ)sinφ

12



and the control objective (2.8) can be rewrite as η→ 0 where the output η is defined given by:

η =

x−Rpath(φ)cosφ

y−Rpath(φ)sinφ
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Chapter 3

Combined CLF-CBF Control

This chapter mainly focuses on the CLF-CBF-QP framework based control method. The

process that the controller is constructed under this method is shown in detail. The pros and cons

of this approach have also been discussed, and a modified version to overcome these drawbacks

will be presented in the next chapter.

3.1 Quadratic Program based Safe Control Design

In this section, the definitions and lemmas related to the combined control Lyapunov and

barrier function will be presented. The Lyapunov function is encoded into the soft constraints

(2.5), (2.8) and (2.9) to generate controls for achieving control objectives, whereas the barrier

function is encoded into the hard constraints (2.4) and (2.7) to ensure safety. Particularly, define a

continuously differentiable function h : Rn→ R, the barrier function can be defined as:

hs(x) = D− τv (3.1)

hl(x) = dmax− ylat sign(vlat)−
1
2

v2
lat

amax
(3.2)

14



where in this study, D can be calculated by the Euclidean distance between two robots, and

under the polar trajectory assumption the lateral displacement and velocity can be calculated by

ylat =
√

x2 + y2−Rpath and vlat = vcos(θ−φ), respectively.

As in [4], consider an admissible set C of safe states of the controlled robot, which is

defined by

C = {x ∈ Rn : h(x)≥ 0} (3.3)

∂C = {x ∈ Rn : h(x) = 0} (3.4)

Int(C ) = {x ∈ Rn : h(x)> 0} (3.5)

It is clear that when the state of the robot is in the interior of C , Int(C ), the robot is said

to be ”safe” and any actions of the robot will be accepted. When the robot state is close to the set

boundary ∂C , we need to constrain the actions of the robot using the barrier function in order to

ensure the robot stay in the safe set C .

In general, while the hard constraints cannot be violated at all times, the constraints

generated by Lyapunov functions that representing control objectives can be violated which

means they should be achieved as much as possible.

3.1.1 Zeroing Control Barrier Function

The author in [4] proposed two kinds of barrier functions: reciprocal barrier function and

zeroing barrier function. As stated in chapter 1, the main idea behind reciprocal barrier function B,

is that as x→ ∂C , B(x)→ ∞. With Ḃ(x)≥ 0 will guarantee that the set C = {x ∈ Rm : h(x)≥ 0}

is invariant [4]. Instead of allowing barrier function to grow to infinity at the boundary of set C ,

the zeroing barrier function will vanish as the robot state x approaches the boundary of C . This

study will only focus on zeroing barrier function for two reasons: First of all, either of these two

15



types of barrier functions will guarantee set invariant; Secondly, the unbounded function B might

cause bad consequences numerically when implemented in practice.

To construct the control barrier functions for lane-keeping and adaptive speed control

problem, some basic definitions in [4] is presented:

Definition 3.1.1. A continuous function α: (−b,a)→ (−∞,∞) is said to belong to extended class

K for some a,b > 0 if it is strictly increasing and α(0) = 0.

Definition 3.1.2. For the dynamical system (2.3), a continuously differentiable function h : Rn→

R is a zeroing barrier function (ZBF) for the set C defined by (3.3) - (3.5), if there exist an

extended class K function α and a set D with C ⊆D ⊂ Rn such that, for all x ∈D ,

L f h(x)≥ −α(h(x)) (3.6)

Note that the previous condition ḣ(x)≥ 0 is sometimes undesirable since it might be too

restrictive to constrain the robot’s motion, therefore the author in [4] relaxes the condition to

(3.6). Followed by the above definition and a Lyapunov-like condition, the definition for zeroing

control barrier function is as follows [4]:

Theorem 3.1.1. Given a set C ⊂ Rn defined by (3.3) - (3.5) for a continuously differentiable

function h : Rn→R, the function h is called a zeroing control barrier function (ZCBF) defined

on set D with C ⊆D ⊂ Rn, if there exists an extended class K function α such that:

inf
u∈U

[L f h(x)+Lgh(x)u+α(h(x))]≥ 0,∀x ∈D (3.7)

Given the above definitions, for a ZCBF h(x), a set for control u can be defined as:

Kh(x) = {u ∈U : L f h(x)+Lgh(x)u+α(h(x))≥ 0}

and selecting an input u in the above set will guarantee that the set C = {x ∈ Rm : h(x)≥ 0} is

16



invariant which is concluded into the following corollary:

Corollary 3.1.1.1. Given a set C ⊂ Rn defined by (3.3) - (3.5) for a continuously differentiable

function h : Rn→ R, if h is a ZCBF on D, then any Lipschitz continuous controller u : D→U

such that u(x) ∈ Kh(x) will render the set C forward invariant.

3.1.2 Control Lyapunov Function

This section will provide the basic definitions of control Lyapunov function, and the

Lypunov functions related to the simultaneous lane-keeping and adaptive speed control problem

will be given later. First, the definition of control Lyapunov function in [2] is presented below

Definition 3.1.3. A continuously differentiable function V : X × Z → R is an exponentially

stabilizing control Lyapunov function (ES-CLF) if there exist positive constants c1,c2,c3 > 0

such that for all x ∈ X×Z, the following inequalities hold:

c1||x||2 ≤V (x)≤ c2||x||2 (3.8)

inf
u∈U

[L fV (x)+LgV (x)u+ c3V (x)]≤ 0 (3.9)

and we follow the same method in generating the control barrier function, a set for control u is

defined as:

KV (x) = {u ∈U : L fV (x)+LgV (x)u+ c3V (x)≤ 0}

in which any proper selection of control u will exponentially stabilize the system. In the

simultaneous lane-keeping and adaptive cruise control problem, the appropriate control u will

drive the robot velocity, position, and angular velocity in (2.5), (2.8) and (2.9) to the desired

values.
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To simultaneously make the robot drive at the desired velocity and track the desired path,

as in [12], the adaptive speed control Lyapunov function can be defined as:

V1(x) = (v− vd)
2 (3.10)

where vd is the desired forward velocity.

For the lane keeping control Lyapunov function, the input-output linearization technique

can be used to generate a valid Lyapunov function. Consider the output η(x):

η =

x−Rpath(φ)cosφ

y−Rpath(φ)sinφ


which has a relative degree two. According to the input-output linearization in [2]:

η̈ = L2
f η+LgL f ηu

u =−(LgL f η)−1(L2
f η+Kpη+Kdη̇)

and the linearization of the output is:

η̈ =−Kpη−Kdη̇

where η̇ can be calculated as:

η̇ =

ẋ− Ṙpath(φ)cosφ+ φ̇Rpath(φ)sinφ

ẏ− Ṙpath(φ)sinφ− φ̇Rpath(φ)cosφ
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Define a new variable ηn:

ηn =

η

η̇


the linear output dynamics can be written as:

d
dt

ηn(t) = Alηn(t)

where Al is Hurwitz:

Al :=

 0, I

−Kp, −Kd


Therefore, for any symmetric and positive definite matrix Q, there exists a positive definite

matrix P satisfies the Lyapunov equation:

AT
l +PAl =−Q

By choosing Kp, Kd and Q, we can solve the above Lyapunov equation. Using the

techniques in [], the following valid Lyapunov function can be defined, namely:

V3(x) = [ηT , η̇T ]P[ηT , η̇T ]T , (3.11)

which satisfies the exponentially stabilizing control Lyapunov function conditions [2].

To try to smooth the path, the author in [12] also defined a Lyapunov function for angular

velocity:

V2(x) = ω
2, (3.12)

which corresponds to make the robot trajectory as straight as possible.
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3.1.3 Quadratic Programming Control Solution

The problem of calculating a control input u belonging to the sets KV and Kh leads

to a quadratic programming problem. Because the choices of the above Vi, i = 1,2,3, cannot

be simultaneously zero (more on this in the next section), slack variables δ j, j = 1,2,3, were

introduced in [12] leading to the augmented control vector ũ and the following associated

Quadratic Program (QP):

ũ∗ = argmin
ũ

ũT H̃ũ

s.t. L fV1(x)+(LgV1(x),−1,0,0)ũ+α1V1(x)≤ 0

L fV2(x)+(LgV2(x),0,−1,0)ũ+α2V2(x)≤ 0

L fV3(x)+(LgV3(x),0,0,−1)ũ+α3V3(x)≤ 0

L f hs(x)+(Lghs(x),0,0,0)ũ+αshs(x)≥ 0

L f hl(x)+(Lghl(x),0,0,0)ũ+αlhl(x)≥ 0

(3.13)

where

ũ =



ul

ua

δ1

δ2

δ3


H̃ =



p1 0 0 0 0

0 p2 0 0 0

0 0 p3 0 0

0 0 0 p4 0

0 0 0 0 p5


the p j elements on the diagonal of H̃ act as penalties and the α’s are all positive parameters. The

solution to this optimization problem is always in Kh and is in KV ∩Kh if all δ’s are positive.
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3.2 Drawbacks

The combined control Lyapunov and barrier function of [4] offers a flexible and efficient

framework for the design of control laws for vehicles. However, the particular choice of functions

in [12] discussed above has two major drawbacks, namely:

• The components of the Lyapunov functions Vi, i = 1,2,3 are not compatible. The vehicle

cannot converge to the desired trajectory, i.e.

η̇ = η→ 0 =⇒ V3→ 0

with the desired longitudinal velocity, i.e.

v→ vd =⇒ V1→ 0

while the angular velocity converges to zero, i.e.

ω→ 0 =⇒ V2→ 0

except when the target trajectory is a straight line.

• When the leading vehicle velocity, vl , is lower than the desired velocity, vd , the function

V1 cannot converge to zero. That is the barrier function hs and the function V1 are not

compatible.

The above incompatibilities make the use of slack variables a necessity rather than a

luxury. It also means that even with the control barrier function constraint is inactive, the control

law cannot guarantee V̇ (x)< 0 at all times.

More specifically, assume there’s only one CLF and one CBF constraint and consider a

more general QP:
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u∗ = argmin
u

1
2
(u2 + pδ

2)

s.t. L fV (x)+LgV (x)u+αV (x)≤ δ

L f h(x)+Lgh(x)u+αhh(x)≥ 0

and we have:

u =−
L fV (x)+αV (x)

LgV (x)2− 1
p

LgV (x)

which is a similar expression to the point-wise minimum norm (PMN) controller that is asymp-

totically stabilizing the system [8]. Note that the above expression can only approximate the

PMN controller since no matter how large p is, the controller cannot asymptotically stabilize the

system.
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Chapter 4

Proposed Control Lyapunov and Barrier

Function

One drawback of the combined CLF-CBF approach is that sometimes it uses all control

inputs to guarantee safety specification ignoring the performance of the system even though they

can be handled simultaneously [8]. The CLF-CBF-QP framework could overcome this problem

with relaxation parameters taking into account to make QP feasible. However, this framework can

not offer guarantees on stability of the robotic system which is not as desired in the simultaneous

lane-keeping and adaptive speed control problem. To overcome this problem, a modification

based on the compatibility of the CLF constraints is considered.

4.1 Control Lyapunov Functions for Lane-keeping

Inspired by the polar target trajectory, the curvature of the trajectory can be naturally taken

into consideration. A vehicle traversing a curve r = r(φ) with tangential velocity v has as angular

velocity:

ω = c(φ)v
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where c(φ) is the curvature:

c(φ) =
|r2 +2(r′)2− rr′′|

(r2 +(r′)2)
3
2

(4.1)

here expressed in polar coordinates, in which r′ and r′′ denote first- and second-derivatives taken

with respect to φ. Give the polar trajectory (2.10), the first and second derivatives are:

r′ = nbcos(nφ)

r′′ =−n2bsin(nφ)

With the above formulations, the V2(x) in (3.12) can be replaced by:

V2(x) = (ω−ωd)
2 (4.2)

ωd = cv (4.3)

where ωd plays the role of the desired angular velocity. Note that v is used here, which is the

vehicle’s tangential velocity instead of the desired velocity, vd , which may differ from v if adaptive

speed control is engaged. The calculation of c requires only the additional evaluation of the first-

and second-derivatives of the path with respect to φ, which is readily available.

4.2 Control Lyapunov Functions for Adaptive Speed

Control

By the above modification, as V2→ 0, the robot desired trajectory is no longer a straight

line and the compatibility holds for V3 and V2. However, even after the above replacement of V2,

it is still not possible that all the Vi’s to converge to zero simultaneously, even when the vehicle

lies perfectly on its desired trajectory if the adaptive cruise control is engaged.
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Since the barrier function should always remain positive i.e.

hs = D− τv f > 0

a new approach can be proposed to combine the barrier function into the first control objective:

v→ min(vd,
D
τ
) (4.4)

When two robots are relatively far away i.e.

D
τ
> vd

the following robot will try to drive at the desired velocity:

v→ vd

which is the original control objective, and when the safety distance eventually arrives, the

following robot velocity will follow:

v→ D
τ

in order to obey the barrier constraint i.e. maintain the safe distance.

With this is mind, the barrier function (3.1), hs can be eliminate ,and V1 can be replaced

by:

V1(x) =
(

v−min
(

vd,
D
τ

))2

. (4.5)

One should notice that V1(x) is not smooth, the following section will provide further discussion

on non-smooth control Lyapunov functions.
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4.3 Non-smooth Analysis on Proposed CLF

From the above modification, a non-smooth Control Lyapunov Function is needed to deal

with the change of the desired velocity. One famous non-smooth analysis literature [5] is revisited

here to provide some important definitions and propositions on non-smooth control Lyapunov

functions.

First of all, the definition of generalized gradient is stated as follows:

Definition 4.3.1. Let f : Rd → R be a locally Lipschitz function, and let Ω f ⊂ Rd denote the set

of points where f fails to be differentiable. The generalized gradient ∂ f : Rd → B(Rb) of f is

defined by:

∂ f (x), co{lim
i→∞

∇ f (xi) : xi→ x,xi 6∈ S∪Ω f }

where

co convex hull

S a set of measure zero

The definition is saying that the generalize gradient f at x is the convex combinations of

all limits of f at differentiable point.

The following propositions in [5] are also useful for analysing the non-smooth Control

Barrier Functions:

Proposition 4.3.1. If f : Rd → R is locally Lipschitz at x ∈ Rd , then the following statements

hold:

(i) ∂ f (x) is nonempty, compact, and convex.

(ii) The set-valued map ∂ f : Rd → B(Rd),x 7→ ∂ f (x), is upper semi-continuous and locally

bounded at x.

(iii) If f is continuously differentiable at x, then ∂ f (x) = {∇ f (x)}.
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Proposition 4.3.2. For k ∈ {1, . . . ,m}, let fk : Rd → R be locally Lipschitz at x ∈ Rd , and define

the functions fmax, fmin : Rd → R by:

fmax(y), max{ fk(y) : k ∈ {1, . . . ,m}},

fmin(y), min{ fk(y) : k ∈ {1, . . . ,m}},

and the following statements hold:

(i) fmax and fmin are locally Lipschitz at x.

(ii) Let Imax(x) denote the set of indices k for which fk(x) = fmax(x). Then

∂ fmax(x)⊆ co∪{∂ fi(x) : i ∈ Imax(x)}.

Furthermore, if fi is regular at x for all i ∈ Imax(x), then equality holds and fmax is regular

at x,

(iii) Let Imin(x) denote the set of indices k for which fk(x) = fmin(x). Then

∂ fmin(x)⊆ co∪{∂ fi(x) : i ∈ Imin(x)}.

Furthermore, if fi is regular at x for all i ∈ Imin(x), then equality holds and fmin is regular at

x,

The Proposition 4.3.2 gives the generalized gradient of the minimum and maximum value

of a finite set of functions which can be used on the analysis of the non-smooth CLF (4.5).

The CLF (4.5) can be rewritten as:

V1(x) = max{V 1(x),V 2(x)}
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where

V 1(x) = (v− vd)
2

V 2(x) = (v− D
τ
)2

Both functions are continuously differentiable which means they are also locally Lipschitz and

regular.

According to (i) and (ii) in Proposition 4.3.2, V1(x) is locally Lipschitz and regular, and

its generalized gradient is:

∂V1(x) =


V̇ 1(x) ,vd < D

τ

[V̇ 1(x),V̇ 2(x)] ,vd = D
τ

V̇ 2(x) ,vd > D
τ

(4.6)

Note that in practice, the intermediate condition vd = D/τ happening is very rare, and

either the other two conditions can be take into consideration in the simulation part without any

loss.
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4.4 Combination of New Control Lyapunov

Functions

With the above mortification, the control Lyapunov functions become:

V1(x) = (v−min(vd,
D
τ
))2

V2(x) = (ω−ωd)
2

V3(x) = [ηT , η̇T ]P[ηT , η̇T ]T

Since the second and third control objectives are not conflicting to each other anymore, δ2

and δ3 can be canceled. Additionally, since the speed barrier function has been integrated into the

first control objective, δ1 can be canceled as well.

Rewrite the constraints in (3.13) as:

L fVi(x)+LgVi(x)u+ ciVi(x)≤ 0 (4.7)

L f hlk(x)+Lghlk(x)u+ γhlk(x)≥ 0 (4.8)

for i = 1,2,3 and

u =

ul

ua


To form a more natural optimization problem, a combination of these three CLF constraints

is designed. First of all, the CLF constraints can be rewritten as:

Ci(x,u) = LgVi(x)u+L fVi(x)+ ciVi(x)

= Ai
cl f (x)u−bi

cl f (x)≤ 0
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Because it is now possible for all Vi’s to converge to zero at the desired trajectory, one can

combine all of the Vi’s into a single control Lyapunov function:

V (x) =
N=3

∑
i=1

kiVi(x) (4.9)

with ki > 0, i = 1,2,3. This control Lyapunov function ensures convergence to the desired

trajectory and to either the desired speed vd or a safe distance from a leading vehicle. The

combined CLF constraints can be rewritten as follows:

C (x,u) =
N=3

∑
i=1

ki(LgVi(x)u+L fVi(x)+ ciVi(x))

=
N=3

∑
i=1

ki ·Ci(x,u)

=
N=3

∑
i=1

kiAi
cl f (x)u−

N=3

∑
i=1

kibi
cl f (x)

= ACLFu−BCLF ≤ 0

and in the next section, the formulations of a more general inequality constrained optimization

problem will be presented to calculate the explicit solution for the QP problem.
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Chapter 5

Explicit Solution of the QP Problem

A quadratic program (QP) is a constrained optimization problem with an objective function

being quadratic. Quadratic programming has been widely studied over the past few decades and

applied to many non-linear optimization based fields of study.

This section starts with the basic formulation of the quadratic program, followed by the

study of Karush-Kuhn-Tucker (KKT) conditions for the optimization problem with multiple

inequality constraints and how it is related to the simultaneous lane-keeping and adaptive speed

control problem.

5.1 Inequality Constrained Optimization with KKT

Conditions

5.1.1 Problem Statement

Recall that the general quadratic program is in the form of:
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Minimize f (u) =
1
2

uT Qu+ cu

sub ject to Au≤ b (5.1)

where Q is a symmetric matrix whose diagonal elements represent the penalties of the quadratic

terms, and the elements of c are the penalties of the linear terms in the objective function.

The optimal variable is denoted as u, and the inequality constraints are defined by a linear

inequality Au≤ b. The quadratic program is said to be feasible if there is a solution under the

above constraint.

When Q is positive definite, the objective function f (u) is strictly convex which means

the problem is able to find the global minimum.

5.1.2 Karush-Kuhn-Tucker conditions

Combining the inequality constraint in (5.1) into the quadratic objective function, a

Lagrangian can be defined as:

L(u,λ) = f (u)+λ(Au−b) (5.2)

The Karush-Kuhn-Tucker conditions for a local minimum are stated as follows:

∇uL(u,λ) = 0

λ≥ 0

λg(u) = 0

g(u)≤ 0

∇uuL(u,λ)� 0

(5.3)
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Note that the Lagrangian (5.2) also satisfies multiple inequalities which can be rewritten

as:

L(u,λλλ) = f (u)+
N

∑
i=1

λigi(u)

= f (u)+λλλg(u) (5.4)

which in our case, the two inequality constraints are (4.7).

5.2 KKT condition-based Optimization Problem

After combining the adaptive speed control into the control Lyapunov function, the

problem is only left with the barrier function, hl , for lane-keeping. This leads to a much simplified

QP, with only two constraints, namely:

u∗ = arg min
u=(ul ,ua)

1
2

uT Hu

s.t. L fV (x)+LgV (x)u+αV (x)≤ 0

L f hl(x)+Lghl(x)u+αshl(x)≥ 0

(5.5)

Note that there is no need for slack variables since the barrier and control Lyapunov

functions are now compatible. Since Lghl(x) 6= 0, LgV (x) and Lghl(x) are linearly independent.

Furthermore, since u has dimension 2, Problem (5.5) is generically solvable, which means that it

is possible to simultaneously enforce exponential stability as well as the barrier function. Note

that such properties can not be enforced with the setup of [12].
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The above problem can be cast in the standard QP form:

min
u

1
2

uT Hu

s.t. aT
V u≤ bV

aT
h u≤ bh

(5.6)

where

aV = LgV (x)T

ah =−Lghl(x)T

bV =−L fV (x)−αV (x)

bh = L f hl(x)+αshl(x)

H =

p1 0

0 p2



u =

ul

ua


In this form, it is possible to explicitly characterize all optimal solutions. The key is to

write the associated Karush-Kuhn-Tucker (KKT) conditions as discussed above in terms of the

primal variable u and the dual variable λλλ = (λV ,λh). First, the Lagrangian towards this form can

be defined as:
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L(u,λλλ) =
1
2

uT Hu+λV (aT
V u−bV )+λh(aT

h u−bh)

According to the KKT condition (5.1.2), the following equations can be generated:

Hu+aV λV +ahλh = 0

λV (aT
V u−bV ) = 0

λh(aT
h u−bh) = 0

λ≥ 0

(5.7)

5.3 Explicit Solution To the Simultaneous Lane-Keeping and

Adaptive Speed Control Problem

According to the above analysis, all possible solutions to the condition 5.7 are analyzed

as follows:

• Case 1: Both constraints are inactive. This is a trivial case in which the robot motion is

neither satisfying the soft nor hard constraint. In this case:

aT
V u∗ < bV

aT
h u∗ < bh

λV = 0

λh = 0

and since H is positive definite, the solution is:

u∗ = 0, (5.8)
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• Case 2: The control barrier function is inactive, namely, the robot motion is far from

violating the hard constraint. In this case:

aT
V u∗ = bV

aT
h u∗ < bh

λV > 0

λh = 0

and the corresponding Lagrangian is:

L(u,λV ) =
1
2

uT Hu+λ1gV (u)

=
1
2

uT Hu+λV (aT
V u−bV ) (5.9)

and the KKT condition gives:

Hu+aV λV = 0 (5.10)

aT
V u−bV = 0 (5.11)

since aV is a column vector, the derivative ends up in the form of (5.10). The equation (5.10)

yields:

u =−H−1aV λV (5.12)

substitute back to (5.11) gives:

aT
V u =−aT

V H−1aV λV

= bV
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therefore:

λV =− bV

aT
V H−1aV

plug back to (5.12) and finally yields:

u =
bV

aT
V H−1aV

H−1aV

therefore the solution (5.8) for Case 1 is generated, which is:

u∗V =
bV

aT
V H−1aV

H−1aV , (5.13)

• Case 3:The control Lyapunov function is inactive. This case corresponds to when the robot

needs to ignore the soft constraint in order to satisfy the barrier constraint; in this case:

aT
V u∗ < bV

aT
h u∗ = bh

λV = 0

λh > 0

and the solution can be calculated in the same manner:

u∗l =
bl

aT
l H−1al

H−1al. (5.14)

The optimal control is:

u∗ = argmin(u∗V
T HuV ,u∗l

T Hul), (5.15)
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• Case 4: Both functions are active; in this case:

aT
V u∗ = bV

aT
h u∗ = bh

λV > 0

λh > 0

and

u∗ = A−1b, (5.16)

where

A =

aT
V

aT
h

 , b =

bV

bh

 .

The expressions obtained in the above 4 cases come from an analysis of the solutions to

the KKT conditions (5.7) under the assumptions that H is positive definite and, in Case 4 only,

that A is non-singular. This will be the case under the previously discussed linear independence

property. When this property does not hold, an ad hoc least-squares solution exists and is well

defined and may be used instead.

In order to distinguish each case is to be considered, one should progress in order from

Case 1 to Case 4, substituting the optimal control u∗ and verifying whether the associated

constraints are indeed active or inactive. Most of the time, either Case 2 or Case 3 is the one that

leads to the optimal control.
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Chapter 6

Examples

This chapter presents two simulation examples to illustrate how the proposed simultaneous

lane-keeping and adaptive cruise control strategies perform. The simulation setups for this

problem are also discussed in details.

6.1 Simulation Setups

Even though the calculations here are performed for a continuous-time setup, to make

the simulation more realistic, a fixed time step ode45 is designed. The main idea is that,

after calculating the optimal control using the above formulations, a fourth-order Runge-Kutta

integration method (ode45) is called in MATLAB, and calculating for a fixed time period starting

from the initial time t0.

The control calculation during the simulation is done at a rate of 100Hz and kept constant

between the sampling interval. Then the latest time t will be considered as the new t0, and the

latest robot state will be considered as the new initial state x0.

To coincide with the modified robot model 2.2, the initial position of the robot needs to be
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shifted by:

xshi f t = x0 +acos(φ)

yshi f t = y0 +asin(φ)

The flowchart of the simulation is shown in Figure 6.1:

Figure 6.1: The Simulation Flowchart
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6.2 Example A: Asymptotic Convergence with lane-keeping

and Adaptive Speed Control

In this example, the result of simultaneous lane-keeping and adaptive speed control

problem is provided under the above formulations. The the following robot is placed exactly on

the path at:

(x,y) = (0,−Rpath(−
π

2
))

with orientation θ = 0. A leading robot is placed ahead of the following robot as shown in Fig. 6.2.

Both robots have the same physical parameters, shown in Table. 6.1, with the only difference

being that the leading robot’s desired speed is half the desired speed of the following robots.

This means that somewhere along the path the adaptive speed control should be active for the

following robot.

The initial speed of the following robot is set to be twice. With these settings, a non-zero

initial value can be expected for the Lyapunov function that should converge to zero as well as

observe a change in the speed of the following robot when it approaches the prescribed safety

distance.

Table 6.1: Prameters

R 0.9 m
b 0.23 m
n 3 m

dmax 0.15 m
τ 1.8 .

vd f 0.2 m/s
vdl 0.1 m/s
m 0.69 kg
a 0.02 m
Iz 1.46e-3 kg ·m2

amax 0.3g m/s2

Fig. 6.2 shows the following robot trajectory. Red (blue) dot and arrow indicate position
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and orientation of the following (leading) robot; the following robot remains above the safety

distance while in the green marked path; red and blue dots mark the point in which the safe

distance is reached; the following robot keeps the safe distance while in the red marked path. In

this example, both robots remain very close to the desired trajectory (the center line in the path)

and never activate the barrier function. The velocity and orientation of the following robot quickly

converge to the desired velocity and orientation (Figs. 6.3 and 6.5), and so does the Lyapunov

function Fig 6.6, which quickly converges to zero and remain very small even after the following

robots reaches the minimum safe distance. Small fluctuations in the value of the Lyapunov

function come from the fact that we insisted on a (more realistic) discrete-time implementation

for the controller.

Figure 6.2: Example A: Asymptotic Convergence with lane-keeping and Adaptive Speed
Control

Fig. 6.3 shows more details on the following robot’s longitudinal velocity. The red dashed
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curve represents the desired velocity vd f when the distance between two robots are relatively

large which is set to be a constant, and the blue dashed curve is the desired safety speed D/τ used

in (4.5) when two robots reach the safe distance. The black solid curve is the following robot

longitudinal velocity. Note that since the following robot initial velocity is set to be twice as vd f ,

it will quickly converge to the desired velocity if the safe distance is not reached. Then when the

safe distance is arrived, the following robot longitudinal velocity will converge to the minimum

safe speed at around 14s.

Figure 6.3: Example A: longitudinal velocity of the following robot (black solid), safe distance
(blue dashed) and desired longitudinal velocity (red dashed).

Fig. 6.4 (a) is another demonstration of how the proposed Lyapunov function ensure the

adaptive speed control safety specification. As we can see, the distance between two robots will

remain around a constant once the safe distance is arrived. Fig. 6.4 (b) shows the force and torque

control inputs calculated by the explicit solution of QP.

Fig. 6.5 shows the angular velocity of the robot together with the desired angular velocity.

43



(a) Distance

(b) Force/torque inputs

Figure 6.4: Example A: Distance between two robots and force/torque control inputs

The red curve represents the desired angular velocity calculated by the curvature equation (4.1)

and (4.2). One can see that the robot angular velocity (black curve) matches ωd (red curve) as

desired. Fig 6.6 shows the value of combined CLFs which is able to converge to zero when barrier
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function is inactive.

Figure 6.5: Example A: following robot angular velocity (black solid), desired angular velocity
(red dashed).

Figure 6.6: Example A: Lyapunov function V (x).
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6.3 Example B: Activating the Barrier Function

In this example, the following robot is placed near the center of the desired trajectory

(dashed) is initialized, and with an ”aggressive” orientation angle θ =−π

3 as the red arrow shown

in Fig. 6.7. With these settings, the following robot will tend to move outside of the lane. Two

simulations will be used to illustrate how the barrier function restrict the behaviour of the robot.

In the first, the barrier function is artificially kept inactive at all times. The control

Lyapunov functions are the only constraints that stabilizing the robot system to achieve control

objectives. With this aggressive orientation, which, as seen in Fig. 6.7 will lead to a robot

trajectory that leaves the prescribed safety lane. The barrier function takes negative values which

means the barrier function is violated, as seen in Fig. 6.8.

Figure 6.7: When control barrier function is inactive
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Figure 6.8: Values of control barrier function

In the second, the barrier function is active and the controls are affected by the barrier

function. In this case, even though the robot is moving towards the outside of the lane at first, it

will then make a turn before arriving the boundary of the lane. This results in the trajectory shown

in Fig. 6.9, in which the robot’s trajectory remains well within the boundaries of the prescribed

lanes and the barrier function shown in Fig. 6.10 remains positive at all times thus satisfying the

safety requirement. Fig. 6.11 shows the control inputs of example B calculated by the proposed

explicit solution.
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Figure 6.9: When control barrier function is active
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Figure 6.10: Values of control barrier function

Figure 6.11: Force/torque control inputs
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Chapter 7

Conclusion

In this thesis, a new control Lyapunov and barrier function method for simultaneous

lane-keeping and adaptive speed control is proposed and implemented. Two simulation examples

are constructed to illustrate the robot safety behavior under the proposed method.

In particular, the control Lyapunov function and two types of control barrier functions are

introduced first, and a CLF-CBF-QP framework is also revisited. In this framework, relaxation

parameters are considered to make QP feasible according to the previous works. This approach has

benefits on implementation and can deal with potentially conflicting control objectives. However,

the incompatibility will weaken the stability of the robotic system and the control performance.

To overcome this challenge, a compact formulation is proposed which allows the robotic system

to ensure convergence to the desired control objectives in the simultaneous lane-keeping and

adaptive speed control problem. The advantage of this implementation is that the QP problem is

much simpler with only one CBF constraint and one CLF constraint. Additionally, this approach

can also improve the efficiency of the control input calculation by explicitly solving the associated

quadratic program. To demonstrate the advantages of the proposed approach, two simulation

examples are implemented in MATLAB, as seen in Chapter 6. According to the result, the control

objectives represented by Lyapunov functions have a better convergence under the proposed
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approach while satisfying the safety specifications.

Future works include three main parts. First of all, the robot dynamics can be noisy or

inaccurate according to different types of real-world robots, therefore take noise or error into

account can help generate more reliable controls. Secondly, both the robot dynamic model and

barrier functions can be estimated via sensors equipped on the robot. Machine learning algorithms

are very useful tools for learning robot dynamics or barrier functions. Again, to ensure satisfying

the safety specifications, the control barrier function condition should be modified to encode

error terms. Finally, with the above improvement, the proposed algorithm is expected to be

implemented on a real-world robotic system for experimental validation.
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