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1 Department of Psychology Stanford University, 2 Department of Psychology Oberlin College

Abstract

Language comprehension in grounded contexts involves in-
tegrating visual and linguistic information through decisions
about visual fixation. But when the visual signal also con-
tains information about the language source – as in the case
of written text or sign language – how do we decide where to
look? Here, we hypothesize that eye movements during lan-
guage comprehension represent an adaptive response. Using
two case studies, we show that, compared to English-learners,
young signers delayed their gaze shifts away from a language
source, were more accurate with these shifts, and produced a
smaller proportion of nonlanguage-driven shifts (E1). Next,
we present a well-controlled, confirmatory experiment, show-
ing that English-speaking adults produced fewer nonlanguage-
driven shifts when processing printed text compared to spoken
language (E2). Together, these data suggest that people adapt
to the value of seeking different information in order to in-
crease the chance of rapid and accurate language understand-
ing.

Keywords: eye movements; language processing;
information-seeking; American Sign Language

Introduction
The study of eye movements during language comprehen-
sion has provided fundamental insights into the interaction
between conceptual representations of the world and the in-
coming linguistic signal. For example, research shows that
adults and children will rapidly shift visual attention upon
hearing the name of an object in the visual scene, with a
high proportion of shifts occurring prior to the offset of the
word (Allopenna, Magnuson, & Tanenhaus, 1998; Tanen-
haus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). More-
over, researchers have found that conceptual representations
activated by fixations to the visual world can modulate subse-
quent eye movements during language processing (Altmann
& Kamide, 2007).

The majority of this work has used eye movements as a
measure of the output of the underlying language comprehen-
sion process, often using linguistic stimuli that come from a
disembodied voice. But in real world contexts, people also
gather information about the linguistic signal by fixating on
the language source. Consider a speaker who asks you to
“Pass the salt” but you are in a noisy room, making it difficult
to understand the request. Here, comprehension can be facil-
itated by gathering information via (a) fixations to the nonlin-
guistic visual world (i.e., encoding the objects that are present
in the scene) or (b) fixations to the speaker (i.e., reading lips
or perhaps the direction of gaze).

But, this situation creates a tradeoff where the listener must
decide what kind of information to gather and at what time.

How do we decide where to look? We propose that people
modulate their eye movements during language comprehen-
sion in response to tradeoffs in the value of gathering different
kinds of information. We test this adaptive tradeoff account
using two case studies that manipulate the value of different
fixation locations for language understanding: a) a compari-
son of processing sign vs. spoken language in children (E1),
and b) a comparison of processing printed text vs. spoken lan-
guage in adults (E2). Our key prediction is that competition
for visual attention will make gaze shifts away from the lan-
guage source less valuable than fixating the source of the lin-
guistic signal, leading people to generate fewer exploratory,
nonlanguage-driven eye movements.

Experiment 1
E1 provides an initial test of our adaptive tradeoffs account.
We compared eye movements of children learning ASL to
children learning a spoken language using parallel real-time
language comprehension tasks where children processed fa-
miliar sentences (e.g., “Where’s the ball?”) while looking at a
simplified visual world with 3 fixation targets (a center stim-
ulus that varied by condition, a target picture, and a distracter
picture; see Fig 1). The spoken language data are a reanalysis
of three unpublished data sets, and the ASL data are reported
in MacDonald et al. (under review). We predicted that, com-
pared to spoken language processing, processing ASL would
increase the value of fixating on the language source and
decrease the value of generating exploratory, nonlanguage-
driven shifts even after the target linguistic item began un-
folding in time.

To test this prediction, we present traditional behavioral
analyses of first shift Accuracy and RT. We also present
two model-based analyses. First, we use an exponentially
weighted moving average (EWMA) method (Vandekerck-
hove & Tuerlinckx, 2007) to categorize participants’ gaze
shifts as language-driven or random. In contrast to the stan-
dard RT/Accuracy analysis, the EMWA allows us to quan-
tify differences in the accuracy of gaze shifts as a function of
when that shift occurred in time. Next, we use drift-diffusion
models (DDMs) (Ratcliff & Childers, 2015) to quantify dif-
ferences in the underlying psychological variables that might
drive behavioral differences in Accuracy and RT. For exam-
ple, the DDM uses the shape of both the correct and incorrect
RT distributions to provide a quantiative estimate of whether
higher accuracy is driven by more cautious responding or by
more efficient information processing.
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Figure 1: Stimuli for E1 and E2. Panel A shows the layout of
the fixation locations for all tasks: the center stimulus, the tar-
get, and the distracter. Panel B shows the five center stimulus
items: a static geometric shape (Bullseye), a static image of
a familiar object (Object), a person speaking (Face), a person
signing (ASL), and printed text (Text).

Method

Participants Table 1 contains details about the age distri-
butions of children in all of four samples.

Spoken English samples. Participants were 80 native,
monolingual English-learning children divided across three
samples. Participants had no reported history of developmen-
tal or language delay.

ASL sample. Participants were 30 native, monolingual
ASL-learning children (18 deaf, 12 hearing). All children,
regardless of hearing status, were exposed to ASL from birth
through extensive interaction with at least one caregiver fluent
in ASL and were reported to experience at least 80% ASL in
their daily lives. The ASL sample included a wider age range
compared to the spoken English samples because this is a rare
population.

Stimuli ASL linguistic stimuli. We recorded two sets of
ASL stimuli, using two valid ASL sentence structures for
questions: 1) Sentence-initial wh-phrase: “HEY! WHERE
[target noun]?” and 2) Sentence-final wh-phrase: “HEY! [tar-
get noun] WHERE?” Two female native ASL users recorded
several tokens of each sentence in a child-directed regis-
ter. Before each sentence, the signer produced a common
attention-getting gesture. Mean sign length was 1.25 sec,
ranging from 0.69 sec to 1.98 sec.

Task Mean Age Min Age Max Age n
ASL 27.90 16 53 30
Face 26.00 25 26 24
Object 31.90 26 39 40
Bullseye 26.10 26 27 16

Table 1: Age distributions of children in Experiment 1. All
ages are reported in months.

English linguistic stimuli. All three tasks (Object, Bulls-
eye, and Face) featured the same female speaker who used
natural child-directed speech and said: “Look! Where’s the
(target word)?” The target words were: ball, banana, book,
cookie, juice, and shoe. For the Face task, a female native
English speaker was video-recorded as she looked straight
ahead and said, “Look! Where’s the (target word)?” Mean
word length was 0.79 sec, ranging from 0.6 sec to 0.94 sec.

ASL and English visual stimuli. The image set consisted
of colorful digitized pictures of objects presented in fixed
pairs with no phonological overlap (ASL task: cat—bird,
car—book, bear—doll, ball—shoe; English tasks: book-
shoe, juice-banana, cookie-ball). Side of target picture was
counterbalanced across trials.

Design and procedure Children sat on their caregiver’s lap
and viewed the task on a screen while their gaze was recorded
using a digital camcorder. On each trial, children saw two im-
ages of familiar objects on the screen for two seconds before
the center stimulus appeared (see Fig 1). Then they processed
the target sentence – which consisted of a carrier phrase, a tar-
get noun, and a question – followed by two seconds without
language to allow for a response. Participants saw 32 test tri-
als with several filler trials interspersed to maintain interest.

Coding. Participants’ gaze patterns were coded (33-ms res-
olution) as being fixated on either the center stimulus, one
of the images, shifting between pictures, or away. To as-
sess inter-coder reliability, 25% of the videos were re-coded.
Agreement was scored at the level of individual frames of
video and averaged 98% on these reliability assessments.

Results and Discussion
Analysis plan First, we present behavioral analyses of First
shift accuracy and Reaction Time (RT). RT corresponds to
the latency to shift away from the central stimulus to either
picture measured from target-noun onset. Accuracy was the
mean proportion of first gaze shifts that landed on the tar-
get picture out of the total number of shifts. We log trans-
formed all RTs and used the lme4 R package (Bates, Maech-
ler, Bolker, & Walker, 2013) to fit mixed-effects regression
models that included a random intercept for each participant
and item. Since children’s age varied across conditions, we
included age in months as a covariate in all models. All analy-
sis code can be found in the online repository for this project:
https://github.com/kemacdonald/speed-acc.

Next, we present two exploratory model-based analyses to
quantify differences in eye movements across the four sam-
ples. First, we use an EWMA method to model changes in
accuracy as a function of increases in RT. For each RT, the
model generates two values: a “control statistic” (CS, which
captures the running average accuracy of first shifts) and an
“upper control limit” (UCL, which captures the pre-defined
limit of when accuracy would be categorized as above chance
level). Here, the CS is an expectation of random shifting to
either the target or the distracter image (nonlanguage-driven
shifts), or a Bernoulli process with probability of success 0.5.
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Figure 2: First shift accuracy and RTs from E1. Panel A
shows a boxplot representing the distribution of RTs for cor-
rect (orange) and incorrect (blue) shifts for each center stim-
ulus type. Panel B shows the distribution of mean first shift
accuracy scores for each center stimulus type. The solid lines
represent median values, the boundaries of the box show the
upper and lower quartiles, and the whiskers show the full
range of the data excluding outliers.

As the RTs get longer, we assume that participants have gath-
ered more information and should become more accurate, or
a Bernoulli process with probability success > 0.5. Using
this model, we can quantify and compare: a) the cutoff point
when the CS exceeds the UCL, indicating that participants
started to generate language-driven shifts and b) the propor-
tion of shifts that the model categorizes as language-driven
vs. nonlanguage-driven.

Finally, we took the shifts that were categorized as
language-driven by the EWMA and fit a hierarchical
Bayesian drift-diffusion model (HDDM) to quantify differ-
ences in the speed and accuracy of language-driven eye move-
ments. We chose to implement a hierarchical Bayesian ver-
sion of the DDM using the HDDM Python package (Wiecki,
Sofer, & Frank, 2013) since we had relatively few trials from
child participants and recent simulation studies have shown
that the HDDM approach was better than other DDM fit-
ting methods for small data sets (Ratcliff & Childers, 2015).
The model assumes that people accumulate noisy evidence
in favor of one alternative with a response generated when
the evidence crosses a pre-defined decision threshold. Here
we focus on two parameters of interest that map onto mean-
ingful psychological variables: boundary separation, which
indexes the amount of evidence gathered before a response
(higher values suggest more cautious responding) and drift
rate, which indexes the amount of evidence accumulated per
unit time (higher values suggest more efficient processing).

Behavioral analyses RT. Visual inspection of the Fig 2,
panel A suggests that there was a speed accuracy trade-
off in the ASL, Face, and Bullseye conditions, with incor-
rect shifts tending to be faster than correct shifts. To quan-
tify differences across the groups, we fit a linear mixed-
effects regression predicting first shift RT as a function
of center stimulus type, controlling for age, and including
user-defined contrasts to test specific comparisons of inter-
est: Log(RT) ∼ center stimulus type + age + (1 |
subject) + (1 | item). We found that (a) ASL learners
generated slower RTs compared to all of the spoken English
samples (β = -0.97, p < .001), (b) ASL learners’ shifts were
slower compared directly to participants in the Face task (β =
-0.42, p < .001), and (c) participants in the Face task shifted
slower compared to participants in the Object and Bullseye
tasks (β = -0.73, p < .001).

Accuracy. Next we compared the accuracy of first shifts
across the different tasks by fitting a mixed-effects logistic
regression with the same specifications and contrasts as the
RT model. We found that (a) ASL learners were more ac-
curate compared to all of the spoken English samples (β =
-0.78, p < .001), (b) ASL learners were more accurate when
directly compared to participants in the Face task (β = -0.62,
p = 0.001), and (c) participants in the Face task were numer-
ically more accurate compared to participants in the Object
and Bullseye tasks (β = -0.73) but this effect was not signifi-
cant (p = 0.089).
Model-based analyses EWMA. Figure 3 shows changes in
the control statistic (CS) and the upper control limit (UCL)
as a function of participants’ RTs. Each CS starts at chance
performance and below the UCL. In the ASL and Face tasks,
the CS value begins to increase with RTs around 0.7 seconds
after noun onset and eventually crosses the UCL, indicat-
ing that responses > 0.7 sec were on average above chance
levels. In contrast, the CS in the Object and Bullseye tasks
never crossed the UCL, indicating that children’s shifts were
equally likely to land on the target or the distracter, regard-
less of when they were initiated. This result suggests that first
shifts in the Bullseye/Object tasks were not language-driven
and may instead have reflected a different process such as
gathering more information about the referents in the visual
world.

Next, we compared the EWMA output for participants in
the ASL and Face tasks. We found that ASL learners gener-
ated fewer shifts when the CS was below the UCL (β = -1.61,
p < .001), indicating that a larger proportion of their initial
shifts away were language-driven (see the differences in the
red shaded area in Fig 3). We did not find evidence for a dif-
ference in the timing of when the CS crossed the UCL (β =
-0.04, p = 0.387), indicating that both groups began to gen-
erate language-driven shifts about the same time after noun
onset.

HDDM. Using the output of the EWMA, we compared the
timing and accuracy of language-driven shifts for participants
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in the ASL and Face tasks.1 We found that ASL learners had
a higher estimate for the boundary separation parameter com-
pared to the Face participants (ASL boundary = 1.77, HDI =
[1.64, 1.9]; Face boundary = 1.35, HDI = [1.21, 1.49]), with
no overlap in the credible values (see Fig 4). This suggests
that ASL learners accumulated more evidence about the lin-
guistic signal before generating an eye movement. We found
high overlap for estimates of the drift rate parameter, indicat-
ing that both groups processed the linguistic information with
similar efficiency (ASL drift = 0.64, HDI = [0.44, 0.83]; Face
drift = 0.57, HDI = [0.33, 0.83]).

Taken together, the behavioral analyses and the
EWMA/HDDM results provide converging support that
ASL learners were sensitive to the value of eye movements,
producing fewer nonlanguage-driven shifts and prioritizing
accuracy over speed, but accumulating information at
roughly the same rate. This behavior seems reasonable since
the potential for missing subsequent linguistic information
is high if ASL users shifted prior to gathering sufficient
information. It is important to point out that these were
exploratory findings and that there were several, potentially
important differences between the stimuli, apparatus, and
populations. In E2, we set out to perform a well-controlled,
confirmatory test of our adaptive tradeoffs account.

Experiment 2
In E2, we attempt to replicate a key finding from E1:
that increasing the competition between fixating the lan-
guage source and the nonlinguistic visual world reduces
nonlanguage-driven eye movements. Moreover, we con-
ducted a confirmatory test of our hypothesis that also con-
trolled for the population differences present in E1. We
tested a sample of English-speaking adults using a within-
participants manipulation of the center stimulus type. We
used the Face and Bullseye stimulus sets from E1 and added
two new conditions: Text, where the verbal language in-
formation was accompanied by a word-by-word display of
printed text (see Fig 1), and Text-no-audio, where the spoken
language stimulus was removed. We chose text processing
since, like sign language comprehension, the linguistic infor-
mation is gathered via fixations to the visual world.

Our key behavioral prediction is that participants in the
Text conditions should produce a higher proportion of
language-driven shifts as indexed by the EWMA model out-
put. We did not have strong predictions for the DDM pa-
rameter fits since the goal of the Text manipulation was to
modulate participants’ strategic allocation of visual attention
and not the accuracy/efficiency of information processing.

Method

1We report the mean and the 95% highest density interval (HDI)
of the posterior distributions for each parameter. The HDI represents
the range of credible values given the model specification and the
data. We chose not to interpret the DDM fits for the Bullseye/Face
tasks since there was no suggestion of any non-guessing signal.

Figure 3: Output for the EWMA guessing model in E1. The
black curve represents the evolution of the control statistic
(CS) as a function of reaction time. The grey curve represents
the upper control limit (UCL). The vertical dashed line is the
median cutoff value (point when the control process shifts
out of a guessing state). The grey shaded area represents the
95% confidence interval around the estimate of the median
cutoff point. And the shaded areas represents the proprotion
of responses that were flagged as guesses (red) and language-
driven (green).

Participants 25 Stanford undergraduates participated (5
male, 20 females) for course credit. All participants were
monolingual, native English speakers and had normal vision.

Stimuli Audio and visual stimuli were identical to the Face
and Bullseye tasks in E1. We included a new center fixation
stimulus type: printed text. The text was displayed in a white
font on a black background and was programmed such that
only a single word appeared on the screen, with each word
appearing for the same duration as the corresponding word in
the spoken language stimuli.

Design and procedure The design was nearly identical to
E1, with the exception of a change to a within-subjects ma-
nipulation where each participant completed all four tasks
(Bullseye, Face, Text, and Text-no-audio). In the Text con-
dition, spoken language accompanied the printed text. In the
Text-no-audio condition, the spoken language stimulus was
removed. Participants saw a total of 128 trials while their eye
movements were tracked using automated eye-tracking soft-
ware.

Results and Discussion

Behavioral analyses RT. Visual inspection of Figure 5,
panel A suggests that there was a speed-accuracy tradeoff for
all conditions: incorrect gaze shifts tended to be faster than
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Figure 4: Posterior distributions for the boundary and drift
rate parameters for children in E1 (Panel A) and adults in E2
(Panel B).

correct shifts. We fit a linear mixed-effects regression with
the same specification as in E1, but we added by-subject in-
tercepts and slopes for each center stimulus type to account
for our within-subjects manipulation. We did not find evi-
dence that RTs were different across conditions (all p > .05).

Accuracy. Next, we modeled accuracy using a mixed-
effects logistic regression with the same specifications (see
Panel B of Fig 5). We found that adults’ first shifts were
highly accurate, and, in contrast to the children in E1, their re-
sponses were above chance level even in the Bullseye condi-
tion when the center stimulus was not salient or informative.
We also found that participants tended to be less accurate in
the Text conditions compared to conditions without text (β
= 1.18, p = 0.002). We did find not any other statistically
significant differences.
Model-based analyses EWMA. For all four conditions, the
CS crossed the UCL (see Fig 6), suggesting that for all tasks
some proportion of adults’ shifts were language-driven. Inter-
estingly, we found a graded effect of condition (see the shift
in the vertical dashed lines in Fig 5) on the point when the CS
crossed the UCL such that the Text-no-audio condition oc-
curred earliest (Mtext−no−audio = 0.39), followed by the Text
and Face conditions that were not different from one another
(Mtext = 0.44, M f ace = 0.45, p > .05), and finally the Bullseye
condition (Mbullseye = 0.54). We also found the same graded
difference in the proportion of shifts that occurred while the
CS was below the UCL (see the red vs. green shaded area
in Fig 5), indicating a higher proportion of first shifts were
language-driven in the Text conditions, with the highest pro-
portion in the Text-no-audio condition when tested against
the three other conditions (Mtext−no−audio = 3.88, β = 1.74, p
< .001). These results provide strong evidence for our key
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Figure 5: Behavioral results from E2. All plotting conven-
tions are the same as in Figure 2.

prediction: that increasing the value of fixating the language
source reduces exploratory gaze shifts to the nonlinguistic vi-
sual world.

HDDM. Using the output of the EWMA, we fit the same
HDDM as in E1. There was high overlap of the posterior dis-
tributions for the drift rate parameters (see Fig 4, panel B),
suggesting that participants gathered the linguistic informa-
tion with similar efficiency. We also found high overlap in
the distribution of credible boundary separation estimates for
the Bullseye, Text, and Text-no-audio conditions. Interest-
ingly, we found some evidence for a higher boundary separa-
tion in the Face condition compared to the other three center
stimulus types (Face boundary = 1.72, HDI = [1.47, 1.97];
Bullseye boundary = 1.42, HDI = [1.21, 1.65]; Text boundary
= 1.38, HDI = [1.16, 1.6]; Text-no-audio boundary = 1.36,
HDI = [1.15, 1.58]), suggesting that adults higher accuracy in
this condition was driven by accumulating more information
before generating a response.

Together, these results suggest that adults were sensitive to
the tradeoff between gathering different kinds of information.
When processing text, people generated fewer nonlanguage-
driven shifts (EWMA results) but their processing efficiency
of the linguistic signal itself did not change (HDDM results).
Interestingly, we found a graded difference in the EWMA re-
sults between the Text and Text-no-audio conditions, with the
lowest proportion of early, nonlanguage-driven shifts occur-
ring while processing text without the verbal stimuli. This
behavior makes sense; if the adults could rely on the auditory
channel to gather the linguistic information, then the value of
fixating the text display decreases. In contrast to the children
in E1, adults were highly accurate in the Bullseye condition,
perhaps because they construed the Bullseye as a center fix-
ation that they should fixate, or perhaps they had better en-
coded the location/identity of the two referents prior to the
start of the target sentence.
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Figure 6: EWMA model output for E2. All plotting conven-
tions are the same as Figure 3.

General Discussion
Language comprehension can be facilitated by fixating on
relevant features of the nonlinguistic visual world or on the
speaker. But how do we decide where to look? We pro-
pose that eye movements during language processing reflect
a sensitivity to the tradeoffs of gathering different kinds of
information. We found that young ASL-learners generated
slower but more accurate shifts away from a language source
and produced a smaller proportion of nonlanguage-driven
shifts compared to spoken language learners. We found the
same pattern of behavior within a sample of English-speaking
adults processing displays of printed text compared to spoken
language. These results suggest that as the value of fixating
on a location to gather information about the linguistic sig-
nal increases, eye movements to the rest of the visual world
become less useful and occur less often.

Our work here attempts to synthesize results from differ-
ent populations and stimuli in a single framework, but it has
several limitations that we hope will pave the way for future
work. First, we have not performed a confirmatory test of
the DDM findings: both ASL-learners (E1) and adults pro-
cessing language from a person (E2) prioritize accuracy over
speed. So these findings, while interesting, are preliminary.
Second, we do not know what might be driving the popula-
tion differences in E1. It could be that ASL-learners’ massive
experience dealing with competition for visual attention leads
to changes in the deployment of eye movements during lan-
guage comprehension. Or, it could be that the in-the-moment
constraints of processing a visual language cause different
fixation behaviors. Finally, we used a very simple visual
world, with only three places to look, and very simple linguis-
tic stimuli, especially for the adults in E2. Thus it remains an
open question how these results might scale up to more com-

plex language information and visual environments.
This work attempts to integrate top-down, goal-based

models of vision (Hayhoe & Ballard, 2005) with work on
language-driven eye movements (Allopenna et al., 1998).
While we chose to start with two case studies – ASL and
text processing – we think the account is more general and
that there are many real world situations where people must
negotiate the tradeoff between gathering more information
about language or about the world: e.g., processing spoken
language in noisy environments or at a distance; or early in
language learning when children are acquiring new words and
often rely on nonlinguistic cues to reference such as point-
ing or eye gaze. Overall, we hope this work contributes to
a broader account of eye movements during language com-
prehension that can explain fixation behaviors across a wider
variety of populations, processing contexts, and during differ-
ent stages of language learning.
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