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Abstract

Background—Traffic-related noise is a growing public health concern in developing and

developed countries due to increasing vehicle traffic. Epidemiological studies have reported

associations between noise exposure and high blood pressure, increased risk of hypertension and

heart disease, and stress induced by sleep disturbance and annoyance. These findings motivate the

need for regular noise assessments within urban areas. This paper assesses the relationships

between traffic and noise in three US cities.

Methods—Noise measurements were conducted in downtown areas in three cities in the United

States: Atlanta, Los Angeles, and New York City. For each city, we measured ambient noise

levels, and assessed their correlation with simultaneously measured vehicle counts, and with

traffic data provided by local Metropolitan Planning Organizations (MPO). Additionally,

measured noise levels were compared to noise levels predicted by the Federal Highway

Administration’s Traffic Noise Model using (1) simultaneously measured traffic counts or (2)

MPO traffic data sources as model input.

Results—We found substantial variations in traffic and noise within and between cities. Total

number of vehicle counts explained a substantial amount of variation in measured ambient noise

in Atlanta (78%), Los Angeles (58%), and New York City (62%). Modeled noise levels were

moderately correlated with measured noise levels when observed traffic counts were used as

model input. Weaker correlations were found when MPO traffic data was used as model input.

Conclusions—Ambient noise levels measured in all three cities were correlated with traffic

data, highlighting the importance of traffic planning in mitigating noise-related health effects.

Model performance was sensitive to the traffic data used as input. Future noise studies that use

modeled noise estimates should evaluate traffic data quality and should ideally include other

factors, such as local roadway, building, and meteorological characteristics.
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1. Introduction

Exposure to road traffic noise is a major public health concern in urban environments.

According to the World Health Organization (WHO) community noise guidelines (2009),

continuous outdoor noise in residential areas should not exceed 55 dB(A) (16 hours average,

day and evening). This threshold, however, is often exceeded in urban residential areas. A

recent study conducted in Fulton County, Georgia (Seong, Park et al. 2011) found that 48%

of the population is exposed to day time noise levels exceeding 55 dB(A) and 32% of the

population is exposed to night time noise levels exceeding 50 dB(A). According to WHO

community noise guidelines, approximately 20% of European Union populations are

exposed to daytime levels exceeding 65 dB(A) and 30% are exposed to night time levels

greater than 55 dB(A). Ambient noise due to increasing vehicle traffic in developing

countries also contributes to the environmental degradation of urban areas. Noise

assessments conducted in Curitiba, Brazil, identified traffic as the major source of

community noise; the average community noise level near roadways was 73.1 dB(A).

Evidence from epidemiological studies supports the association between noise exposure and

high blood pressure, increased heart rate, hypertension, ischemic heart disease, stress, sleep

disturbance and annoyance, anxiety, and depression (Babisch 2000; Ouis 2002; Ising and

Kruppa 2004). Additionally, an experimental study conducted by Ising et al. (1980) found

decreased working quality, increased heart/pulse frequency, blood pressure and epinephrine

release in subjects exposed to traffic noise compared to unexposed subjects. Moreover,

many studies have found dose-response relationships. For example, a linear dose-response

relationship between road traffic noise and hypertension was found in people who lived

within 100 meters of a highway or major arterial (Bluhm, Berglind et al. 2007). A hospital

based case-control study conducted in Berlin found a higher risk of myocardial infarction

among subjects who lived on streets with day time average noise levels greater than 70

dB(A) compared to less than 60 dB(A) (Babisch, Beule et al. 2005). Children may be

especially vulnerable to the effects of noise. Children exposed to high levels of ambient

noise have shown stress symptoms, reductions in learning ability, language development,

memory, motivation and concentration (Evans, Lercher et al. 2001).

As the number of vehicles and vehicle miles traveled has increased in urban settings,

concern for the adverse health effects associated with transportation-related noise has

motivated policy efforts to address noise. In the United States, the Federal Highway

Administration (FHWA) established regulation 23 CFR772 in 1973 that requires assessment

and abatement of noise in areas affected by highway traffic and construction. The policy

encourages state and local governments to prepare their own policies and procedures using a

three-part approach to reducing highway traffic noise (i.e., control at the source, effective

land use planning, and highway project noise mitigation). For example at the state level, the

California Department of Transportation developed a Traffic Noise Analysis Protocol,
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which requires noise assessment for all highway projects. At the city and county level, San

Francisco included a Noise Element in their General Plan to determine and predict the

impact of transportation-related noise in urban communities.

Despite documented associations with health effects, and the existence of policies at

multiple governmental levels, community noise is rarely systematically and routinely

monitored in U.S. cities. Moreover, only a few recent studies in the United States have

investigated the health effects of chronic exposure to traffic noise. Seto et al. (2007)

developed a GIS-based model to estimate the spatial distribution of surface transportation

noise exposure and its relation to annoyance for different neighborhoods in San Francisco.

In Georgia, county-wide community noise exposures were estimated by using a 3-

dimensional model, Soundplan, which incorporates road traffic data, building geometry, and

terrain elevation (Seong, Park et al. 2011).

The primary goal of this paper was to (1) identify the association between automobile and

noise in urban areas in the United States, and (2) assess sensitivity of models for predicting

noise with traffic data from different sources. This paper represents the first step toward

estimating noise exposures for a national cohort of 54,000 African American women in the

United States. These assessments were carried out as part of an ongoing longitudinal

epidemiological study of the association between noise and air pollution exposure and

incident hypertension or diabetes in the Black Women’s Health Study. Our next step will be

to estimate noise exposures using Traffic Noise Model (TNM) and to assess the influence of

noise on the health outcomes.

2. Materials and Methods

2.1 Noise and Traffic Field Measurements

To assess noise levels, we measured 10-minute equivalent continuous sound pressure levels

(Leq) in downtown and midtown Atlanta (20 sites), downtown Los Angeles (26 sites) and

New York City, Manhattan (26 sites) from November 2011 to January 2012 (72 sites in

total) (Figure 1). Measurement locations were selected based on primary land use

(residential, commercial, or industrial) and proximity to different classes of roadway

representing a diverse set of land use and traffic locations. Noise measurements were

collected between the weekday hours of 9AM to 5PM to capture daytime noise when traffic

levels are highest as well as when most noise exposures occur. Noise was measured using

the 3M SD-200, set for slow-response and A-weighting for a range of 40-100 dB with the

field technician standing in the middle of the pedestrian walkway and holding the noise

meter with the microphone tilted towards the roadway. Each site was geocoded with a GPS

measurement obtained using the Garmin GPSMAP 62s. Unexpected activities and incidents

such as building or road construction, noise from parking garages, truck loading, and

background noise such as intermittent pink noise, loud music from stores, ambulance and

fire trucks passing nearby were noted. In the case of ambulance and fire trucks, we paused

and re-started the measurement after they drove away. At each site, simultaneously with the

noise measurement, we conducted a 10-minute traffic count. We counted the number of

passenger vehicles, medium trucks, and heavy trucks passing along the roadway, as well as

the field technician’s estimate of the average speed of the traffic.
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2.2 Traffic Data from Metropolitan Planning Organizations (MPOs)

In addition to our own field-measured traffic counts, we obtained Annual Average Daily

Traffic (AADT) traffic data from the Metropolitan Planning Organizations (MPO) for each

of the cities. MPOs are mandated by the FHWA and state agencies to facilitate traffic

planning and roadway funding initiatives and are charged with developing transportation

plans for their regions. As part of the transportation planning process, MPOs develop travel

demand forecast models that include AADT estimates on major roads in the region. From

each of the three relevant MPOs we obtained the link files and traffic estimates and used

them to assign AADT values to the noise measurement locations. In addition, continuous,

hourly traffic counts were collected from the state departments of transportation. These

continuous counts were used to compute an average diurnal pattern within the urban areas

and this data was used to adjust the MPO AADT values to hour-of-day specific traffic

counts for each of our noise monitoring sites.

(1)

Where, Tij is traffic count on roadway i for specific hour j, MPO24hri is the 24-hour total

traffic count for roadway i, Tj is traffic count of hour j, and T24hr is daily total traffic.

MPO data supplied by each city was based on different travel demand models. For example,

the New York City model was based on the best practices model (BPM) using the BPM

covers 28 counties and 3500 transportation analysis zones in NY, NJ and CT and includes

roads from minor arterials and above. We used BPM base 2005. The travel demand forecast

for the Los Angeles model used by the Los Angeles Department of Transportation and the

City Planning Department generates citywide PM peak hour traffic volumes. The model was

constructed on the widely-used EMME/2 (see Gan et al., 2012 for detailed description of

EMME/2). Estimates were based on the Southern California Association of Governments

(1990) regional transportation model (see Los Angeles City Planning, 2013 for details on

input data and model structure). The MPO data for Atlanta were generated using the Atlanta

Regional Commission (ARC) travel demand model. The model conforms with the U.S.

Environmental Protection Agency (EPA) Transportation Conformity Rule and with models

based on travel surveys in 2001 and 2002. Consequently, although based on similar

modeling approaches, each MPO estimate was derived based on different modeling

programs and input data.

2.3 Traffic Noise Model

At each of our 72 measurement sites, we compared our noise measurements with noise

levels predicted by the FHWA Traffic Noise Model (TNM), which was developed in 1998

to comply with 23 CFR 772. TNM-based traffic noise analyses are typically conducted for

federally-funded highway projects. The model has also been used for city noise assessments

(Seto, Holt et al. 2007).

The TNM model with vehicle speed, distance of receptor point from center of the road,

ground classification (soft vs. hard ground), and counts of different vehicle types (i.e.,
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passenger cars (VAuto), medium trucks (VMT), and heavy trucks (VHT)) to estimate the

hourly equivalent noise level (LAeq1h):

(2)

We developed two TNM predictions at each of the 72 sites: (1) using the observed vehicles

counted in the field during our noise survey (LeqTNM_Obs) and (2) using vehicle counts from

the local MPO (LeqTNM_MPO).

2.4 Data Analysis

2.4.1 Summary Statistics and Linear Regression Models—For each city, we

computed means and standard deviations of 10-minute noise measurements, vehicle counts

observed at field locations, and noise levels estimated by TNM models. Linear regression

models were used to assess (1) the association between (log) traffic counts and the measured

noise levels, (2) the association between TNM-predicted noise and the measured noise

levels, and (3) the relationship between field-observed traffic counts and MPO traffic

counts. Residuals of the linear model comparing TNM-predicted noise with measured noise

were plotted in ESRI ArcMap 10.0 to display spatial distribution of over- and under-

predicted levels. All statistical analyses were performed in R 2.15.0.

2.4.2 Analysis of Covariance (ANCOVA): testing slopes and intercepts—The

analysis of covariance (ANCOVA) with single factor and single covariate was applied to

compare the linear relationships derived from the multiple regressions with 10-minute

measured noise in Atlanta, Los Angeles and New York. To test the null hypothesis of

homogeneous slopes of the regression lines, an interaction term of the categorical predictor

(city effect) with the continuous independent variable (log traffic volume) was created to

examine how number of vehicles is related to noise level in different cities. A full model

with interaction (3) and a reduced model with no interaction (4) were compared to determine

whether the regression coefficients were the same for all three cities.

H0: the effects of traffic volume on noise level does not depend on city (β1=β2=β3)

Ha: the effects of traffic volume on noise level depend on city (at least one of the slopes is

different)

3. Results

The measured 10-minute equivalent continuous sound pressure level (Leq) and traffic

volumes observed during noise assessments are presented in Table 1. The mean noise levels

measured in New York City, Los Angeles, and Atlanta were 69.2, 66.4, and 65.1dBA,

respectively.

Table 2 compares the average noise levels computed in the three cities: the average 10-

minute noise levels measured in the field (Leq10min, from Table 1), modeled noise levels
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computed via TNM using traffic counts from field data (LeqTNM_Obs), and modeled noise

levels from TNM using MPO traffic (LeqTNM_MPO). Overall, the mean values of TNM-

predicted noise levels (both LeqTNM_Obs and LeqTNM_MPO) underestimated the noise levels

when compared to field measurements in all three cities, but were consistently ordered in

rank (i.e., regardless of whether field-measured or TNM-predicted, Atlanta was ranked the

lowest, Los Angeles was ranked second, and New York City was ranked the highest in

average noise).

Results of statistical testing of the difference between slopes of regression lines for the three

cities are presented in Table 3. The first ANCOVA Model is a full model with an interaction

term. The results demonstrate that traffic is associated with Leq10min, whereas city is not a

significant factor in determining noise level. The interaction term between traffic and city

was not significant (P=0.114). The slope of the regression lines between traffic and 10-

minute Leq was similar for all three cities (Table 4 and Figure 2).

The second ANCOVA Model was fitted without an interaction term to test significant

differences in the slope. Total traffic was still a significantly associated with Leq10min,

while the effect of city was not. Model 1 and Model 2 were compared (Table 3) to examine

if removing the interaction term significantly affects model fit. Based on the model outcome,

there was no significant difference between Models 1 and 2 (P=0.11). Therefore, Model 2

without an interaction term was the most parsimonious model. Findings from model

outcomes above were consistent with the regression lines shown in Figure 2 indicating that

the total traffic is positively related with 10-minute average Leq for all three cities. The

slopes of regression lines for three cities were not significantly different indicating there is

no city effect (interaction).

The linear relationship between (log) traffic and measured noise for each city are displayed

in Figure 4a-b. Total number of vehicles observed in the field explained a substantial

amount of variation in measured noise levels in Atlanta ((R2=0.78), Los Angeles (R2=0.58)

and New York City (R2=0.62). MPO traffic counts explained a relatively smaller amount of

noise variation in Atlanta (R2=0.06) and New York (R2=0.11), and a moderate amount of

noise variation in Los Angeles (R2=0.49).

We also evaluated the relationship between 10-minute average noise measurements and

TNM-predicted values (LeqTNM_Obs and LeqTNM_MPO) within each city. The TNM-

predicted noise levels based on field-observed traffic data (LeqTNM_Obs) explained a large

amount of noise variation in all three cities; 73% in Atlanta, 56% in Los Angeles, and 72%

in New York (Figure 4c). The amount of variation explained by the MPO TNM model

(LeqTNM_MPO) was substantially less: 1.6%, 42% and 8% in Atlanta, Los Angeles, and New

York City, respectively (Figure 4d). The higher correlation for Los Angeles may be

explained by the better correlation between MPO traffic and observed vehicle counts during

our 10-minute survey in that city (Figure 4e).

We explored the spatial variation of the residuals for the relationship between TNM-

predicted noise levels and measured noise by plotting them over land use maps. In Atlanta,

noise levels were generally over-predicted in the downtown area near major roadways and
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highways. In the midtown area, where land use is more residential, noise levels tended to be

under-predicted. No systematic spatial patterns in the residuals were identified for Los

Angeles. Overall, noise predictions were higher than the measured noise samples regardless

of roadway type or proximity to major highways. Similarly, for New York City, when MPO

traffic data was used as input, the TNM tended to over-predict noise levels.

4. Discussion

Our measurements in three cities in the United States revealed considerable variations in

noise within and between urban environments. Our results show that noise levels are

surprisingly high in all three cities, at or above thresholds associated with adverse health

impacts found in other studies (WHO, 2009). This finding suggests the need for more

systematic monitoring of noise exposures and potential health impacts in North American

cities.

Our sampling of sites was limited, so more complete sampling of streets and citywide noise

modeling is necessary to more thoroughly assess differences in population exposures to

noise in these three cities. As expected, we found that urban noise is highly correlated with

simultaneously measured traffic. Moreover, from our regression models, we found no

evidence of differences in the relationship between traffic and noise between cities. This

suggests that predictions from noise models that are based on measured traffic data, such as

the FHWS’s TNM model, should correlate well with measured noise levels. Indeed, we

found this to be true for TNM-predicted noise in all three cities using the field-measured

traffic counts. In contrast, measured traffic did not correlate well with the MPO traffic data

and we found weaker correlations with TNM-predicted noise levels based on MPO data.

We found that the TNM model tended to under-estimate the average noise levels compared

to measured noise levels in each of the three cities, although the maps of residuals suggest

that noise may be under or over-predicted depending on land use. However, the measured

and modeled rank orderings of mean noise levels were consistent, with Atlanta having the

lowest and New York City the highest average noise levels. Because the rankings of TNM-

modeled noise levels were consistent with the measured noise levels, TNM models might be

appropriate for use in studies whose goal is to estimate the association between noise levels

and health outcomes. However, the tendency of TNM models to underestimate noise

exposures may lead to underestimates of the size of populations at risk of health impacts

from noise.

The reason for TNM’s tendency to underestimate measured noise may be related to a variety

of factors. In our study, we only modeled the street being measured. Because sound decay

from a linear source is approximately 3 dB per doubling of distance (Harris, 1979), nearby

roadways and other sound sources will contribute to noise measured in the field. In most

cases, our noise measurements were conducted within 10 m of the primary roadway being

measured. Yet, traffic on cross streets and nearby freeways may have contributed to ambient

noise measured at our sites. In a recent study of noise in Singapore, the noise-reflecting

building façade effect was found to be significant contributor to noise levels (Chew and Lim

1994). In our case, buildings in New York City and Atlanta are generally more compact and
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higher density than in downtown Los Angles, which resulted in greater TNM underestimates

of noise for New York City and Atlanta. In addition, lower correlation between traffic

counts and noise levels observed in downtown Los Angeles may have been influenced by

streets being wider than the two other cities. With more sophisticated 3-dimensional noise

models, such as Soundplan, it is possible to account for reflected sound energy found in

urban street canyons. Also, meteorology, which we did not control for in our study, may

have an effect on community noise, as it has been documented that under certain

atmospheric conditions (e.g., temperature inversions) ambient noise levels may increase

(Heimann 2003). Low-speed truck traffic may also contribute to higher measured noise

levels in urban environments. The magnitude and spectrum of noise generated from tire-

pavement interaction by automobile versus truck are different with varying vehicle speeds.

Tire noise becomes a dominant source for trucks once they pass a critical speed of 30 mph,

with the sound level increasing approximately 10 to 12 dB(A) per doubling of vehicle speed

(Harris 1979).For automobiles, tire/road surface becomes dominant source of noise at both

low and high vehicle speeds, whereas the propulsion system (engine, exhaust, cooling

system and other auxiliary components in the engine compartment) is the dominant source at

low speeds for trucks. On local streets, such as those measured in our study, trucks travel at

relatively low speeds, and therefore propulsion noise is an important contributor to ambient

noise. Thus propulsion noise may not be fully captured in model, such as TNM that were

originally developed for higher-speed freeway planning studies. Also, tire-roadway friction

and different pavement types and surface texture can affect noise levels (Wayson, National

Cooperative Highway Research Program. et al. 1998).

Our study found that measured sound levels are less correlated with TNM model results

based on MPO traffic data than with field-measured traffic. However, MPO data are meant

to serve as long term traffic averages for transportation planning activities, and may be the

better dataset to use for noise modeling, and for estimating exposures experienced over long

periods. MPO data do not account for short-term traffic variations that may arise from road

closures, detours, accidents, and such – all of which may have affected our field traffic and

noise measurements. If the goal is to estimate long-term exposures and resulting health

effects, it may be reasonable to use models based on MPO data, with the caveat that it is

assumed that MPOs routinely check their traffic sensors, employ quality assurance protocols

to filter out bad data, have robust methods for inferring traffic counts for roads without

actual sensor data, and that they conduct validation studies to ensure the overall quality of

their reported traffic data.

Our noise measurement methodology may not be applicable to research on chronic health

effects, because 10-minute measurement may not represent long-term exposure and the

noise samples were not collected systematically within the 9-5 period. Subsequently our

results may not reflect the differences in traffic volumes during rush, noon, in-between hours

and night time. The relatively high correlations in our short-term measurement and TNM

results indicate that the model results are capable of predicting noise levels in downtown

areas in major American cities. Our measurement also has relevance to acute exposures to

noise. For example, a case-crossover study conducted in Beijing found that exposure

duration has been linked to changes in heart rate variability (HRV) with an incremental

change in noise (dB) at five-minute interval (Huang et a, 2013).
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The travel demand models used in each city are based on demographics, household travel

surveys, and economic activities, which are used to apportion household trips from origins

to destinations. The more sophisticated models use congestion factors on main roads to

begin apportioning traffic to smaller streets. There are three main limitations in these models

for the purpose of noise modeling in the United States: (1) there is no accepted best practice

model used in all locations, which may result in considerable heterogeneity between cities;

(2) the models are often calibrated for the purpose of transportation planning and as such are

based on simplified road networks that are topologically inaccurate – meaning the roads are

not placed in accurate geographic position or the network is missing many of the smaller

links (we found many problems of this kind in Los Angeles); and (3) the models are

generally calibrated to predict traffic on major roads and highways and as a result may miss

many smaller roads that contribute importantly to noise variation over smaller areas in

residential neighborhoods. As a result, differences in MPO data may introduce substantial

difference in traffic levels and subsequent noise in different cities.

Moreover, for noise studies seeking to assess health impacts, living on the street versus the

garden or court yard side of a building makes a significant difference in noise levels.

Although our sampling strategy took into consideration different land use types, our noise

samples and models do not capture the differences in noise levels due to building design.

This limitation is inherent in most noise studies.

Currently there are no standardized approaches to noise monitoring for chronic health

studies in the United States. Thus adopting the European Directive that requires 24-hour

measurements of noise levels and the use of specific noise indicators for the assessment of

noise-related health effects, could lead to more effective surveillance and tracking of noise

and associated health outcomes in the United State. Adoption of this or other similar

directives would also require specification of acceptable travel demand and noise models.

5. Conclusion

Based on noise surveys conducted in downtown areas in Atlanta, Los Angeles, and New

York, we were able to explain substantial variability in ambient noise by instantaneous

traffic counts. The correlation between urban traffic and noise highlights the importance of

ongoing traffic monitoring and planning activities to mitigate noise-related health effects.

Field measurements and model predictions indicate New York City had the greatest number

of vehicles and highest noise levels, followed by Los Angeles and Atlanta. We were best

able to predict noise levels at sample locations by applying the TNM model and traffic data

gathered from our field study. TNM noise estimates based on MPO traffic data, while not

well correlated with our short-term noise measurements, may reflect longer-term noise

exposures. Because modeled noise predictions are one of the important tools for noise

assessment, and are sensitive to traffic data used as input, future noise studies should

evaluate traffic data quality and other factors such as local roadway, building, and

meteorological characteristics.

Our study showed that association between traffic and ambient noise levels in three major

cities in the United States. The results, however, varied depending on the estimates of traffic

Lee et al. Page 9

Environ Res. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



use to calibrate noise models. It is likely that noise levels are influenced by other factors

such as street width, height and surface material of buildings, presence of sound wall, green

space, slope of roadway, tire-pavement interaction, and weather conditions. For future

research, these factors need to be addressed explicitly to elucidate the unexplained

variability between automobile and ambient noise.
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Figure 1.
Community noise levels were measured in downtown Atlanta (top left), Manhattan New

York (top right), and downtown Los Angeles (bottom left). Red dots represent where noise

measurements were conducted.
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Figure 2.
Linear relationship of log_Total traffic and 10- minute Leq. Total traffic is positively related

with 10-minute Leq for all three cities.

Lee et al. Page 13

Environ Res. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Lee et al. Page 14

Environ Res. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Analysis of model residuals: (a) Residual of oberved and modeled noise levels in Altanta

(TNM model vs observed traffic); (b) Residual of observed and modeled noise levels in

Atlanta (TNM model vs MPO traffic);(c) Residual of observed and modeled noise levels in

LA (TNM model vs observed traffic); (d) Residual of observed and modeled noise levels in

LA (TNM model vs observed traffic); (e) Residual of observed and modeled noise levels in

Manhattan (TNM model vs observed traffic); (f) Residual of observed and modeled noise

levels in Manhattan (TNM model vs MPO traffic)
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Figure 4.
Regression Models: (a)10-min Leq vs log _total traffic; (b)10-min Leq vs log _MPO; (c) 10-

min Leq vs LeqTNM_OBS; (d) 10-min Leq vs LeqTNM_MPO; (e). Regression model of

Total traffic vs MPO
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Table 1

10 minute average traffic counts and Leq (dBA) measured in major cities in U.S.

City N Leq10min Traffic Counts10min

Car Medium Truck Heavy Truck

Atlanta 20 65.1±7.4 114.6±95 2.1±3 3.0±4.7

Los Angeles 26 66.4±4.6 120.6±84.2 2.8±3.0 4.2±4.3

New York 26 69.2±4.1 167±98.5 5.3±4.5 4.9±4.6
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Table2

New noise levels were computed at sample locations by applying TNM equation and values obtained from

TNM-lookup table (Leq10min = average sound pressure level during 10 minute field measurement,

LeqTNM_OBS = observed traffic counts incorporated into TNM model, LeqTNM_MPO = MPO modeled traffic

counts incorporated into TNM model.

City Leq10min LeqTNM Obs LeqTNM MPO

Atlanta 65.1±7.4 60.0±8.8 57.1±7.0

Los Angeles 66.4± 4.6 62.3±7.6 60.8±4.0

New York 69.2±4.1 62.7±5.0 67.3±5.7
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Table 3

Testing interaction: Analysis of Covariance (ANCOVA) with single factor and single covariate.

MODEL 1 (Dependent Variable: Leq10min)

Predictor DF Sum Sq Mean Sq F-value Pr(>F)1

TotalTraffic_log 1 1324.6 1342.6 155.103 <2e-16

City 2 15.5 7.7 0.893 0.414

TotalTraffic_log:City 2 38.9 19.4 2.244 0.114

Residuals 66 571.3 8.7

MODEL 2 (Dependent Variable: Leq10min)

Predictor DF Sum Sq Mean Sq F-value Pr(>F)1

TotalTraffic_log 1 1324.6 1342.6 149.6 <2e-16

City 2 15.5 7.7 0.861 0.427

Residuals 68 571.3 8.7

MODEL 3 ANCOVA (MODEL1, MODEL2)

Res.DF RSS Df Df Sum of Sq F Pr(>F)1

66 571.32

68 610.2 −2 −38.85 2.244 0.11
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Table 4

Regression Models between traffic (independent variable) and 10-minute Leq (dependent variable) of Atlanta,

Los Angeles, and Manhattan.

Atlanta (Leq10min= a+b*TotalTraffic_log)

Estimate Std.Error t-value Pr(>∣t∣)

intercept 47.00 2.56 18.32 1.25e-12

TotalTraffic_log 10.13 1.31 7.68 6.29e-07

LA(Leq10min=a+b* TotalTraffic_log)

Estimate Std.Error t-value Pr(>∣t∣)

intercept 53.43 2.32 22.94 < 2e-16

TotalTraffic_log 6.77 1.17 5.77 5.96e-06

NYC (Leq10min= a+b*TotalTraffic_log)

Estimate Std.Error t-value Pr(>∣t∣)

intercept 49.3 3.0 16.0 1.20e-14

TotalTraffic_log 9.3 1.4 6.5 7.23e-07
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