
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Heterogeneity in Normal Neurocognition: A Latent Profile Analysis of the Expanded 
Halstead-Reitan Battery Normative Dataset

Permalink
https://escholarship.org/uc/item/1694n2t3

Author
Patt, Virginie

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1694n2t3
https://escholarship.org
http://www.cdlib.org/


 

 

UNIVERSITY OF CALIFORNIA, SAN DIEGO 

SAN DIEGO STATE UNIVERSITY 

 

Heterogeneity in Normal Neurocognition:  

A Latent Profile Analysis of the Expanded Halstead-Reitan Battery Normative Dataset 

 

A dissertation submitted in partial satisfaction of the  

requirements for the degree of Doctor in Philosophy 

 

in 

 

Clinical Psychology 

 

by 

 

Virginie Marie Patt 

 

 

 

Committee in charge: 

 

University of California, San Diego 

 

 Professor Gregory G. Brown, Chair 

 Professor Robert K. Heaton 

 Professor Mark A. Geyer 

 Professor Michael J. Taylor 

  

San Diego State University 

 

 Professor Sarah N. Mattson 

 Professor Scott C. Roesch 

 

 

 

2017 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

Virginie Marie Patt, 2017 

All rights reserved.



iii 

 

 

 

 

 

 

The Dissertation of Virginie Marie Patt is approved, and it is acceptable in quality and form 

for publication on microfilm and electronically: 

 

   

   

   

   

   

 Chair  

 

 

University of California, San Diego 

San Diego State University 

2017 

 



iv 

 

DEDICATION 

 

To Odette, Solange, Genevieve, Laïla, and Cyan, my anchors to the present and masters 

of mindfulness.  

To Leigh, who has inspired this journey. 

And to Dan, who has made it possible. 

 

  



v 

 

EPIGRAPH 

 

 

 

 

 



vi 

 

TABLE OF CONTENTS 

 

Signature Page………………………………………………………………………… 

Dedication……………………………………………………………………………... 

Epigraph……………………………………………………………………………….. 

Table of Contents………………...…………………………………………………..... 

Acknowledgements…………………...……………………………………………….. 

Vita……………………………………………………………………………………. 

Abstract of the Dissertation…………………………………………………………… 

INTRODUCTION…………………………………………………………………….. 

Cognitive Styles………………………………………………………………… 

Dual Coding Theory…………………………………………………….. 

Verbalizers versus Imagers …………………………………………….. 

Right Brain versus Left Brain…………………………………………………... 

Functional Asymmetry of the Brain…………………………………….. 

Right-brainers versus Left-brainers …………………………………….. 

Top Brain versus Bottom Brain………………………………………………… 

Dorsal and ventral pathways ……………………………………………. 

Theory of cognitive modes.……………………………………………... 

This Study: Hypotheses and Implications………………………………………. 

METHOD……………………………………………………………………………... 

Participants……………………………...………………………………………. 

Neuropsychological Test Battery……………………………………………….. 

The Halstead-Reitan Battery (HRB)…………………………………….. 

iii 

iv 

v 

vi 

ix 

xi 

xviii 

1 

4 

5 

6 

10 

11 

13 

19 

19 

20 

22 

27 

27 

29 

29 



vii 

 

The expanded Halstead-Reitan Battery (eHRB)………………………… 

The WAIS and WAIS-R subtests……………………………………….. 

Data Analysis…………………………………………………………………… 

Latent Profile Analysis………………………………………………….. 

Preliminary Factor Analyses…………………………………………….. 

Attrition and Variable Selection………………………………………… 

Demographic and Ability Corrections…………………………………... 

Post-Hoc Analyses ……………………………………………………… 

RESULTS……………………………………………………………………………... 

Factor Analyses Results………………………………………………………… 

Exploratory Factor Analysis…………………………………………….. 

Confirmatory Factor Analysis…………………………………………... 

Demographic Contributions and Corrections of the Factor Scores……... 

Latent Profile Analyses Results………………………………………………… 

First LPA series…………………………………………………………. 

Second LPA series ……………………………………………………… 

Post-Hoc Analyses Results……………………………………………………... 

Comparison of Absolute Neurocognitive Profiles……………………… 

Comparison of Test Scores……………………………………………… 

Demographic Corrections of Test Scores……………………………….. 

Demographic Comparison across Latent Classes……………………….. 

DISCUSSION…………………………………………………………………………. 

The Cognitive Domains Assessed by the eHRB………………………………... 

Factor Structure and Interpretation……………………………………… 

32 

34 

37 

37 

41 

44 

45 

49 

51 

51 

51 

52 

54 

56 

56 

57 

60 

60 

61 

62 

64 

67 

68 

68 



viii 

 

Comparison to Previous Factor Analyses involving the HRB & Wechsler 

Scales…………………………………………………………………….. 

 

Individual Differences in Normal Neurocognition……………………………... 

Absolute Neurocognitive Profiles……………………………………….. 

Relative Neurocognitive Profiles………………………………………... 

Three-Dimensional Continuum of Individual Differences in 

Neurocognition………………………………………………………….. 

 

Dimension 1: general cognitive ability. ………………………………… 

Dimension 2: “verbal” vs. “perceptual”………………………………… 

Dimension 3: “analysis” versus “attention/speed”……………………… 

Dimensions 2 × 3………………………………………………………... 

Demographic Distributions across Neurocognitive Profiles……………………. 

Gender…………………………………………………………………… 

Handedness……………………………………………………………… 

Limitations and Future Studies…………………………………………………. 

Conclusions……………………………………………………………………... 

REFERENCES………………………………………………………………………... 

APPENDIX 1: TABLES….………………..…………………………………………. 

APPENDIX 2: FIGURES....………………..…………………………………………. 

 

72 

 

76 

76 

78 

 

80 

 

81 

83 

88 

91 

94 

94 

96 

100 

104 

108 

129 

155 

 

 

 

 

 

 

  



ix 

 

ACKNOWLEDGEMENTS 

  

I am infinitely grateful to Dr. Gregory Brown and Dr. Robert Heaton, who have guided 

this work, encouraged my initiatives, and supported my professional development. I have been 

most inspired by their scientific insight, principles, simplicity, and genuineness, all contributing 

to fostering an incredibly supportive environment for scientific learning and personal growth.  

I further want to thank the other members of my dissertation committee, Dr. Sarah 

Mattson, Dr. Scott Roesch, Dr. Michael Taylor, and Dr. Mark Geyer, for their review of my 

work and always available encouragements. I am also particularly indebted to Dr. Michael 

Thomas, for his relentless guidance, constructive feedback, and exciting discussions, often 

involving mathematical modeling. 

I have received much support during my years in San Diego, and feel incredibly grateful 

for each encounter. Among many, I especially want to thank Drs. Joshua Madsen, Sandy Brown, 

Marc Norman, Arpi Minassian, and Liz Klonoff, for their mentorship, and Judy Reilly, Jean-

Paul Grasset, Ursula Meyers, Kaitlin Casaletto, Natalia Walsh, Erica Weber, Alexandrea 

Harmell, Leila Glass, Helene Citeau, and Vincent Cotoni for their precious friendships.  

The work presented in this dissertation was supported by the National Institutes of 

Health [5T32DA007315-2012-2014] and by the University of California, San Diego Frontiers 

of Innovation Scholars Program [2015-2016]. I am grateful to Drs. Gregory Brown, Mark 

Geyer, Vivian Hook, and Terry Jernigan, for serving as mentors on these training fellowships.  

The material in this dissertation was, in part, published in the peer-reviewed article: 

Patt, V. M., Brown, G. G., Thomas, M. L., Roesch, S. C., Taylor, M. J., & Heaton, R. K. (2017). 

“Factor Analysis of an Expanded Halstead-Reitan Battery and the Structure of Neurocognition.” 



x 

 

Archives of Clinical Neuropsychology, in press. The dissertation author was the primary 

investigator and author of this material. Part of the material in this dissertation is also currently 

being prepared for submission for publication: Patt, V. M., Brown, G. G., Thomas, M. L., 

Roesch, S. C., Taylor, M. J., & Heaton, R. K. “Heterogeneity in normal neurocognition: A latent 

profile analysis of the expanded Halstead-Reitan Battery normative dataset.” The dissertation 

author will be the primary investigator and author of this material. 

 

 

  



xi 

 

VITA 

 

 

 

EDUCATION 

 

2017   Ph.D. in Clinical Psychology 

San Diego State University / University of California, San Diego  

Joint Doctoral Program in Clinical Psychology, San Diego, CA  

Specialty: Neuropsychology 
 

Dissertation: Heterogeneity in Normal Neurocognition: A Latent Profile 

Analysis of the Expanded Halstead-Reitan Battery Normative Dataset. Final 

defense - June 1st, 2015. (Committee: Drs. Gregory Brown, Robert Heaton, 

Scott Roesch, Michael Taylor, & Sarah Mattson) 

 

2013   M.S. in Clinical Psychology  

San Diego State University, Department of Psychology, San Diego, CA 
 

Thesis: Disentangling Spatial Working Memory Processes: A Modeling 

Analysis of Preferred Eye Movement Strategies during Neurocognitive Testing. 

March, 2013. (Committee: Drs. William Perry, Arpi Minassian, Martin Paulus, 

& Sarah Mattson) 

 

2007  M.A. in Clinical Psychology with an emphasis on Marriage and Family 

Therapy (MFT) 

Pepperdine University, Malibu, CA 

 

2005   Ph.D. in Atmospheric and Space Sciences  

University of Michigan, Department of Atmospheric, Oceanic, and Space 

Sciences, Ann Arbor, MI 
 

Dissertation: Coronal Formation and Heating Efficiencies In Titan's Upper 

Atmosphere: Construction of a Coupled Ion, Neutral and Thermal Structure 

Model To Interpret the First INMS Cassini Data. October 2005. (Committee: 

Drs. Hunter Waite, Andrew Nagy, Stephen Bougher, & Richard Sacks) 

 

2002  M.S. in Atmospheric and Space Sciences  

University of Michigan, Department of Atmospheric, Oceanic, and Space 

Sciences, Ann Arbor, MI 

 

2002  Diplôme d’Ingénieur  

Ecole Nationale Supérieure de l’Aéronautique et de l’Espace, SUPAERO, 

Toulouse, France (The French National School of Aeronautics and Space 

Engineering) 

 

 

 

 



xii 

 

RESEARCH POSITIONS 

 

2010-2016 Graduate Researcher with the Department of Psychiatry at the University of 

California, San Diego Mentors: Gregory Brown, Ph.D., Robert Heaton, 

Ph.D., William Perry, Ph.D., & Mark Geyer, Ph.D. 
 

2008-2010  Research Consultant for the Department of Psychiatry at the University of 

California, San Diego Mentors: William Perry, Ph.D. & Mark Geyer, Ph.D. 
 

2008-2010 Research Consultant for The Neurobehavioral Clinic, Lake Forest, CA 

Employer: David Lechuga, Ph.D. 
 

2006-2008 Research Consultant for the Southwest Research Institute, San Antonio, TX 

Mentor: Hunter Waite, Ph.D. 
 

2001-2006 Graduate Researcher & Research Assistant at the University of Michigan, 

Department of Atmospheric, Oceanic, and Space Science, Ann Arbor, MI 

Mentor: Hunter Waite, Ph.D. 

 

 

CLINICAL POSITIONS 

 

2016-2017 Washington DC Veteran’s Affairs Medical Center – Predoctoral 

Internship in Psychology, Washington DC 

Director of Training: Slavomir Zapata, Ph.D.  

Led program development projects, including (1) the construction of a 

memory-disorders clinic with same day neuropsychological evaluation and 

feedback, and (2) the development of a cognitive screening process on the 

psychiatric inpatient unit. Conducted comprehensive neuropsychological 

evaluations in the outpatient neuropsychology clinic. Conducted group therapy 

with patients with Serious Mental Illnesses, including mindfulness, self-

compassion, and acceptance and commitment therapy (ACT). Conducted 

cognitive processing therapy (CPT) for patients with Post-Traumatic Stress 

Disorder. Provided tiered-supervision to practicum students. 
 

2015-2016 Walter Reed National Military Medical Center, Bethesda, MD 

Supervisor: Wendy Law, Ph.D.  

Conducted neuropsychological evaluations for the Inpatient Traumatic Brain 

Injury (TBI) Consult Service, Inpatient Neuropsychiatry/TBI Program, and 

Adult Outpatient Behavioral Health Clinic. 
 

2014  Rady Children’s Hospital, San Diego, CA 

Supervisor: Sandra Brown, Ph.D. 

Conducted neuropsychological evaluations. 
 

2013-2014 San Diego Veteran’s Affairs Medical Center – Neuropsychological 

Assessment Unit, La Jolla, CA 

Supervisors: Dean Delis, Ph.D., Gregory G. Brown, Ph.D., Mark Bondi, Ph.D., 

& Vincent Filoteo, Ph.D. 

Conducted neuropsychological evaluations. 
 

 



xiii 

 

2013-2014 Neuropsychological Laboratory, La Jolla, CA 

Supervisor: Robert Heaton, Ph.D. 

Interpreted extended Halstead-Reitan neuropsychological batteries. 
 

2012-2013 San Diego Veteran’s Affairs Medical Center – Substance Abuse/Mental 

Illness Clinic, La Jolla 

Supervisors: Carol Snowdeal, LCSW & Joshua Madsen, Ph.D.  

Conducted group psychotherapy for substance dependence and depression. 
 

2012-2013 San Diego Veteran’s Affairs Medical Center – Family Mental Health 

Program, La Jolla, CA 

Supervisor: Joshua Madsen, Ph.D.  

Conducted couple psychotherapy. 
 

2011-2012 San Diego State University Psychology Clinic, San Diego, CA 

Supervisors: Ariel Lang, Ph.D. & Steven Thorp, Ph.D.  

Conducted individual and couple psychotherapy. 
 

2006-2008 Pepperdine Resource Youth Diversion Education program (P.R.Y.D.E.) 

(O.C. Sheriff’s Department, Aliso Viejo, CA) 

Supervisor: Robert Hohenstein, Ph.D. 

Conducted evaluations and individual psychotherapy with juvenile first time 

offenders. 
 

2007  School Counselor for the Capistrano Unified School District 

(San Juan Elementary & Bridges Community Day School, San Juan 

Capistrano, CA; employed by Pepperdine University, Irvine, CA).  

Supervisor: Robert Hohenstein, Ph.D. 

Conducted individual psychotherapy with elementary school children and 

emotionally-disturbed adolescents. 
 

 

ACADEMIC HONORS AND AWARDS 
 

2015-2016 Graduate Researcher Fellowship – UCSD Frontiers of Innovation Scholars 

Program (FISP) 
 

2012-2014  T32 Predoctoral Research Award – National Institute on Drug Abuse (NIDA, 

5T32DA007315) 
 

2014  Pilot Grant – UCSD Translational Methamphetamine Research Center  
 

2013 Ted Blau Memorial Award for best student poster presentation, 33nd Annual 

Conference of the National Academy of Neuropsychology (NAN) 
 

2012   Inducted into Phi Kappa Phi, National Academic Honor Society  

2005 Nominated for the Rackham Distinguished Dissertation Award – University of 

Michigan 
 

2005  Student Award for Outstanding Achievement – Michigan Geophysical Union  
 

2001-2002 Tuition Waiver for selective international exchange student program - 

University of Michigan 

 



xiv 

 

PROFESSIONAL ORGANIZATIONS 
 

2016-2017 International Neuropsychological Society (INS) 

2013-2017  American Psychological Association (APA) – Div. 12 and Div. 40 

2013   National Academy of Neuropsychology (NAN) 

2012  The Honor Society of Phi Kappa Phi (Member #12384417) 

2008  California Association of Marriage and Family Therapists (CAMFT) 

 
EDITORIAL EXPERIENCE 
 

2013-2017 Reviewer for Neuropsychology, Gregory G. Brown (Ed.), a peer-reviewed 

journal of the American Psychological Association. 

 

2017 Reviewer for the Journal of the International Neuropsychological Society, 

Stephen M. Rao (Ed.), a peer-reviewed journal of the International 

Neuropsychological Society. 

 
LANGUAGE 
 

Bilingual: English & French 

 

 

PUBLICATIONS IN PSYCHOLOGY 

under the name Patt, V. M 

 

Peer-Reviewed Journal Articles 
 

(1) Patt, V. M., Brown, G. G., Thomas, M. L., Roesch, S. C., Taylor, M. J., & Heaton, R. K. 

(2017). Factor structure of the expanded Halstead-Reitan neuropsychological battery. 

Archives of Neuropsychology, in press. 

(2) Brown, G. G., Thomas, M. L., & Patt, V. M. (2017). Parametric model measurement: 

Reframing traditional measurement ideas in neuropsychological practice and research. The 

Clinical Neuropsychologist, in press. 

(3) Thomas, M. L., Patt, V. M., Bismark, A., Sprock, J., Tarasenko, M., Light, G. A., & 

Brown, G. G. (2017). Evidence of systematic attenuation in the measurement of cognitive 

deficits in schizophrenia. Journal of Abnormal Psychology, 126, 312-324. 

(4) Brown, G. G., Patt, V. M., Sawyer, J., & Thomas, M. L. (2016). Double dissociation of a 

latent working memory process. Journal of Clinical and Experimental Neuropsychology, 

38, 59-75. 

(5) Thomas, M. L., Brown, G. G., Gur, R. C., Moore, T. M., Patt, V. M., Nock, M. K., Naifeh, 

J. A., Heeringa, S., Ursano, R. J., Stein, M. B. (2015). Measurement of Latent Cognitive 

Abilities Involved in Concept Identification Learning, Journal of Clinical and 

Experimental Neuropsychology, 37, 653-669. 

(6) Patt, V. M., Thomas, M. L., Minassian, A., Geyer, M. A., Brown, G. G., & Perry, W. 

(2014). Disentangling working memory processes during spatial span assessment: A 

modeling analysis of preferred eye movement strategies. Journal of Clinical and 

Experimental Neuropsychology, 36, 186-204.  

(7) Henry, B. L., Minassian, A., Patt, V. M., Hua, J., Young, J. W., Geyer, M. A., & Perry, 

W. (2013). Inhibitory deficits in euthymic bipolar disorder patients assessed in the Human 

Behavioral Pattern Monitor. Journal of Affective Disorders, 150, 948-954.  



xv 

 

Manuscripts in Preparation or Under Review 
 

(1) Thomas, M. L., Moore, T. M., Baker, D., Patt, V. M., Risbrough, V., Gur, R. C., & Brown, 

G. G. (submitted). Psychometric Applications of an Item Response-Signal Detection 

Model.  

(2) Patt, V. M., Brown, G. G., Thomas, M. L., Roesch, S. C., Taylor, M. J., & Heaton, R. K. 

(in preparation). Heterogeneity in normal neurocognition: A latent profile analysis of the 

expanded Halstead-Reitan Battery normative dataset. 

 

Peer-Reviewed Abstracts and Oral Presentations 
 

(1) Patt, V. M., Brown, G. G., Thomas, M. L., & Heaton, R. K. (2017, February). Digit 

Vigilance Test: Speed versus Accuracy Tradeoff Revealed, Poster session at the 

International Neuropsychological Society (INS) 45th annual meeting, New Orleans, LO.  

(2) Patt, V. M., Brown, G. G., Thomas, M. L., Roesch, S. C., Taylor, M. J., & Heaton, R. K. 

(2016, February). Characterizing Heterogeneity in Normal Neurocognition, Poster session 

at the International Neuropsychological Society (INS) 44th annual meeting, Boston, MA.  

(3) Patt, V. M., Jernigan, T. L., & Brown, G. G. (2015, November). Heterogeneity in Normal 

Neurocognition, Poster session at the UCSD Frontiers of Innovation Scholars Program 

(FISP) symposium, La Jolla, CA.  

(4) Patt, V. M., Thomas, M. L., Minassian, A., Geyer, M. A., Brown, G. G., & Perry, W. 

(2013, November). Parsing Working Memory Processes: The Impact of Eye Movement 

Strategy on Neurocognitive Test Performance, Poster session at the National Academy of 

Neuropsychology (NAN) 33rd conference, San Diego, CA. 

(5) Kloezeman, K., Henry, B. L., Patt, V. M., Minassian, A., & Perry, W. (2013, November). 

Inhibitory Deficits and Everyday Functional Ability in Bipolar Disorder, Poster session at 

the National Academy of Neuropsychology (NAN) 33rd conference, San Diego, CA. 

(6) Patt V., Minassian A., Henry B.L., Geyer M.A., & Perry W. (2011, December), Objective 

Assessment of Social Disinhibition using the Human Behavioral Pattern Monitor (hBPM) 

in Bipolar Disorder and Schizophrenia Patients, Poster Session at the American College 

of Neuropsychopharmacology (ACNP) 50th meeting, Waikoloa, HI. 

(7) Patt, V., Minassian, A., & Perry, W. (2011, November). Spatial Span Assessment: Beyond 

Target Number, Poster session at the National Academy of Neuropsychology (NAN) 31st 

conference, Marco Island, FL.  

 

 

PUBLICATIONS IN SPACE SCIENCE  

under the name De La Haye, V.  

 

Peer-Reviewed Journal Articles  
 

(1) Mandt, K. E., Gell, D. A., Perry, M., Waite, J. H. Jr., Crary, F. A., Young, D., Magee, B. 

A., Westlake, J. H., Cravens, T., Kasprzak, W., Miller, G., Walhlund, J.-E., Ågren, J., 

Edberg, N. J. T., Heays, A. N., Lewis, B. R., Gibson, S. T., De La Haye, V., & Liang, M.-

C. (2013), Ion densities and composition of Titan's upper atmosphere derived from the 

Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured 

ion densities to photochemical model simulations, Journal of Geophysical Research, 

117(E10006), 22p.  



xvi 

 

(2) Bell, J. M., Bougher, S. W., Waite, J. H. Jr., Ridley, A. J., Magee, B. A., Mandt, K. E., 

Westlake, J., DeJong, A. D., Bar-Nun, A., Jacovi, R., Toth, G., De La Haye, V., Gell, D., 

& Fletcher, G. (2011). Simulating the one-dimensional structure of Titan's upper 

atmosphere: 3. Mechanisms Determining Methane Escape. Journal of Geophysical 

Research. 116(E11002), 16p. 

(3) Bell, J. M., Bougher, S. W., Waite, J. H. Jr., Ridley, A. J., Magee, B. A., Mandt, K. E., 

Westlake, J., DeJong, A. D., De La Haye, V., Bar-Nun, A., Jacovi, R., Toth, G., Gell, D., 

& Fletcher, G. (2010). Simulating the one-dimensional structure of Titan's upper 

atmosphere: 2. Alternative scenarios for methane escape. Journal of Geophysical 

Research. 115(E12018), 20p. 

(4) Bell, J. M., Bougher, S. W., Waite, J. H. Jr., Ridley, A. J., Magee, B. A., Mandt, K. E., 

Westlake, J., DeJong, A. D., Bar-Nun, A., Jacovi, R., Toth, G., & De La Haye, V. (2010). 

Simulating the one-dimensional structure of Titan's upper atmosphere: 1. Formulation of 

the Titan Global Ionosphere-Thermosphere Model and benchmark simulations. Journal of 

Geophysical Research. 115(E12002), 20p. 

(5) De La Haye, V., Waite, J. H., Jr., Cravens, T. E., Bougher, S. W., Robertson, I. P.,  & Bell 

J. M. (2008). Heating Titan’s Upper Atmosphere. Journal of Geophysical Research, 

113(A11314), 314-335. 

(6) De La Haye, V., Waite, J. H., Jr., Cravens, T. E., Robertson, I. P., & Lebonnois, S. (2008). 

Coupled Ion and Neutral Rotating Model of Titan’s Upper Atmosphere. Icarus, 197(1), 

110-136. 

(7) Cravens, T. E., Robertson, I. P., Waite, J.H., Jr., Yelle, R. V., Vuitton, V., Coates, A. J., 

Wahlund, J.-E., Agren, K., Richard, M. S., De La Haye, V., Wellbrock, V. A., & 

Neubauer, F. M. (2008). Model-Data Comparisons for Titan’s Nightside Ionosphere, 

Icarus, 199(1), 174-188. 

(8) De La Haye, V., Waite, J. H. Jr., Johnson, R. E., Yelle, R. V., Cravens, T. E., Luhmann, 

J. G., Kasprzak, W. T., Gell, D. A., Magee, B., Leblanc, F., Michael, M., Jurac, S., & 

Robertson, I. P. (2007). Cassini Ion and Neutral Mass Spectrometer Data in Titan’s Upper 

Atmosphere and Exosphere: Observation of a Suprathermal Corona. Journal of 

Geophyical Research, 112(A07309), 309-324. 

(9) De La Haye, V., Waite, J. H., Jr., Cravens, T. E., Nagy, A. F., Yelle, R. V., Johnson, R. 

E., Lebonnois, S., & Robertson, I. P. (2007). Titan’s Corona: The Contribution of 

Exothermic Chemistry. Icarus, 191(1), 236-250. 

(10) Yelle, R. V., Borggren, N., De La Haye, V., Kasprzak, W. T., Niemann, H. B., Muller-

Wodarg, I., & Waite, J. H., Jr. (2006). The Vertical Structure of Titan's Upper Atmosphere 

from Cassini Ion Neutral Mass Spectrometer Measurements, Icarus. 182(2), 567-576. 

(11) Cravens, T. E., Robertson, I. P., Waite, J. H., Jr., Yelle, R. V., Kasprzak, W. T., Keller, C. 

N., Ledvina, S. A., Niemann, H. B., Luhmann, J. G., McNutt, R. L., Ip, W.-H., De La Haye, 

V., Müller-Wodarg, I., Wahlund, J.-E., Anicich, V. A., & Vuitton, V. (2006). The 

Composition of Titan’s Ionosphere. Geophysical Research Letters, 33(7), L07105. 

(12) Waite, J. H., Niemann, H. B., Yelle, R. V., Kasprzak, W. T., Cravens, T. E., Luhmann, J. 

G., McNutt, R. L., Ip, W.-H., Gell, D. A., De La Haye, V.,  Müller-Wordag, I., Magee, B., 

Borggren, N., Ledvina, S., Fletcher, G., Walter, E., Miller,  R., Scherer, S., Thorpe, R., Xu, 

J., Block, B., & Arnett, K. (2005). Ion Neutral Mass Spectrometer Results from the First 

Flyby of Titan. Science, 308(5724), pp. 982-986. 



xvii 

 

(13) Cravens, T. E., Robertson, I. P., Clark, J., Wahlund, J.-E., Waite, J. H., Jr., Ledvina, S. A., 

Niemann, H. B., Yelle, R. V., Kasprzak, W. T., Luhmann, J. G., McNutt, R. L., Ip, W. –

H., De La Haye, V., Müller-Wodarg, I., Young, D. T., & Coates, A. J. (2005). Titan's 

Ionosphere: Model Comparisons with Cassini TA data. Geophysical Research Letters, 

32(12), L12108. 

 

Peer-Reviewed Abstracts and Oral Presentations (sub-selection) 
 

(1) De La Haye, V., Bell, J., Yu, J., Bougher, S., Waite, J. H., Jr., Clark, J., Cravens, T. E., 

Yelle, R. V., Chassefière, E., Leblanc, F., Lebonnois, S. (2004, July). The Thermal 

Structure of Titan's Upper Atmosphere in the Cassini Flyby Regions. Presentation at the 

COSPAR Scientific 35th Assembly, Paris, France. 

(2) De La Haye, V. & Waite, J. H., Jr. (2005, April), Suprathermal Populations in Titan’s 

Upper Atmosphere Extracted from INMS Cassini Data. Poster Session at the Michigan 

Geophysical Union (MGU) conference, Ann Arbor, MI. 

 

 

 

  



xviii 

 

ABSTRACT OF THE DISSERTATION 

 

Heterogeneity in Normal Neurocognition:  

A Latent Profile Analysis of the Expanded Halstead-Reitan Battery Normative Dataset 

 

by 

 

Virginie Marie Patt 

 

Doctor of Philosophy in Clinical Psychology 

 

University of California, San Diego, 2017 

San Diego State University, 2017 

 

Professor Gregory G. Brown, Chair 

 

 

Are you right-brained or left-brained? The belief that individual cognitive differences 

may be characterized in terms of right or left hemispheric dominance is often accepted as 

conventional wisdom, but has never been clearly supported. Perhaps as a result, “normal 

neurocognition” has been almost invariably assumed to constitute one large homogenous group 

and modeled using a flat neuropsychological profile (i.e., using unimodal normal distributions 

across neuropsychological domains). The current project tested this assumption by exploring 

and characterizing heterogeneity in a cognitively healthy population.  

The neuropsychological profiles of cognitively-healthy individuals were characterized 

using latent profile analysis (LPA) on a normative dataset of the expanded Haltstead-Reitan 

neuropsychological Battery (eHRB). Participants were included that had been administered at 

least half of the eHRB measures with a memory test (N=982, age=20-85, education=7-20, 618 



xix 

 

African-American, 364 Caucasian). The neurocognitive domains underlying performance on 

the eHRB were characterized and quantified using exploratory and confirmatory factor analyses 

on demographically-uncorrected eHRB test scores. Two series of LPAs were conducted on 

composite factor scores that were (1) corrected for demographics and (2) corrected for both 

demographics and general cognitive ability. 

 Seven factors were identified: ‘working-memory’, ‘fluency’, ‘verbal episodic 

memory’, ‘language’, ‘visuospatial cognition’, ‘perceptual speed’, and ‘perceptual attention’. 

The first LPA revealed individual differences in general neurocognitive ability, with some 

individuals performing better than others across domains. After correcting for general 

neurocognitive ability, the second LPA revealed patterns of individual differences best 

described by four pairs of latent classes with opposite patterns of relative strengths and 

weaknesses. These patterns were characterized by tradeoffs along two dimensions: verbal-to-

perceptual and analysis-to-attention/speed. 

 When demographic characteristics are controlled, individual differences in normal 

neurocognition are dominated by general cognitive ability. At equivalent general cognitive 

ability, individual differences are characterized by relative tradeoffs along two almost 

orthogonal dimensions, verbal-to-perceptual and analysis-to-attention/speed. These findings 

suggest that different cognitive strategies or neuronal routes may be employed to attain similar 

general performance on neurocognitive testing. Based on brain function theories, these neuronal 

routes may involve differential activation of the left-versus-right cerebral hemispheres and of 

the ventral-versus-dorsal brain pathways, perhaps suggesting right- and left- but also top- and 

bottom-brained phenotypes. 
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INTRODUCTION 

  

The main goals of neuropsychological assessment have been identified as detecting 

acquired brain dysfunction, monitoring neurocognitive functioning over time, and 

characterizing patterns of cognitive strengths and weaknesses that can affect every day 

functioning (Heaton & Marcotte, 2000). These goals have been traditionally achieved through 

the formal administration and interpretation of a battery of tests, ideally covering most domains 

of cognitive function, including attention, memory, executive function, language, visuospatial 

skills, and sensory-perceptual and motor skills (e.g., Benton et al. 1983; Christensen, 1975; 

Heaton, Grant, & Matthews, 1991; Heaton, Miller, Taylor, & Grant, 2004; Luria, 1973; Reitan 

& Wolfson, 1985; Wechsler, 1983). Access to adequate norms has been key to interpreting 

performance on those tests, ideally permitting comparison of raw scores to scores that might be 

expected of any specific individual if they were free of brain disorder, taking into account their 

demographic, cultural, and educational backgrounds (Heaton, Grant, & Matthews, 1986; Heaton, 

Ryan, Grant, & Matthews, 1996). A concerted campaign of effort has been undertaken to 

develop adequate norms for neuropsychological tests, usually now stratified at least by age, and 

often by education and gender (e.g., Strauss, Sherman, & Spreen, 2006). Stratification by 

cultural factors (or ethnicity as its closest proxy) also started being published in the last decade. 

Although still scarcely available or used, this latter stratification has been shown to be important 

to avoid misclassification of large demographic groups as impaired (Heaton et al. 2004; Norman 

et al. 2000, 2011; Taylor & Heaton, 2001).  

It has been strongly suggested that diagnostic interpretations never be based on a single 

impaired test performance (Heaton & Marcotte, 2000). Indeed, intact individuals have been 

shown to obtain impaired scores on average across 10% of all administered tests, with 90% of 
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people obtaining a least one impaired score in a battery of 40 tests (Heaton et al. 1991). This 

seemingly high occurrence of impaired scores has stemmed in part from a well-accepted 

definition of impairment as scores under one standard deviation below the mean. This threshold 

was suggested by Heaton et al. (1991) as bringing the best compromise between sensitivity – a 

test’s ability to detect actual impairment, and specificity – a test’s ability to correctly classify 

intact individuals. Their study examined Average Impairment Ratings, a summary score of the 

Halstead Reitan Battery (e.g., Reitan & Wolfson, 2009), on large samples of healthy subjects 

and verified patients. They reported optimal sensitivity and specificity of 80% and 88% for the 

Average Impairment Ratings. Of course, using a one standard deviation threshold to define 

impairment also means that any single test, taken on its own, will systematically classify about 

15% of intact individuals as impaired. 

Instead of single impaired performances, neuropsychologists have thus been 

encouraged to draw diagnostic impressions based on patterns of scores across tests and domains 

of function (Heaton & Marcotte, 2000; Kaufman, 1994; Meehl, 1950). Such patterns of scores, 

or neuropsychological profiles, have been examined for a wide variety of disorders in hundreds 

of studies. For example, detailed neuropsychological profiles have been published for mild and 

major neurocognitive disorders, including Alzheimer’s disease, alcoholic Korsakoff’s 

syndrome, Huntington’s disease, dementia with Lewy bodies, frontotemporal lobar 

degeneration, and vascular dementia (e.g., Delis, Massman, Butters, Salmon, Cermak, & 

Kramer, 1991; Jak et al. 2009; Smits et al. 2012; Weintraub, Wicklund, & Salmon, 2012); 

movement disorders, including Parkinson’s disease and progressive supranuclear palsy 

syndrome (e.g., Rohrer, Paviour, Bronstein, O’Sullivan, Lees, & Warren, 2010; Zgaljardic, 

Borod, Foldi, & Mattis, 2003); psychiatric disorders, including schizophrenia, bipolar disorder, 

attention deficit hyperactivity disorder, obsessive compulsive disorder, depression, and anxiety 
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(e.g., Castaneda, Tuulio-Henriksson, Marttunen, Suvisaari, & Lönnqvist, 2008; Kim, Jang, & 

Kim, 2009; Kurtz & Gerraty, 2009; McLean, 2004; Tan & Rossell, 2014); developmental 

disorders, including autism, fetal alcohol syndrome, corpus callosum agenesis, and the effects 

of childhood maltreatment (e.g., Kavanaugh, Holler, & Selke, 2015; Mattson et al. 2010, Meyer 

& Minshew, 2002; Siffredi, Anderson, Leventer, & Spencer-Smith, 2013); and infectious 

disorders such as HIV (e.g., Cysique, Maruff, & Brew, 2006). Interestingly, though, among this 

wealth of research, neuropsychological profiles have never been published for intact individuals. 

In fact, a March 2014 PsychINFO search of “neurocognitive profile” or “neuropsychological 

profile” returned 613 results, almost all referring to studies characterizing patterns of 

neuropsychological scores in specific disorders. Therefore, although great resources have been 

available for comparing clinical neurocognitive profiles to profiles for known conditions, 

comparison with neurocognitive normality has remained mostly limited to the use of single test 

norms, one score at a time.  

The lack of research on normal neuropsychological profiles stems, perhaps, from the 

traditional construction of norms for each neuropsychological test independently from the others. 

That is, even when a battery of tests was administered to the same large group of people, 

Gaussian curves and tables of standard scores or T-scores have been systematically constructed 

for every measure separately, including test performances, comparison indices, and summary 

scores (e.g., difference between Verbal and Performance Intellectual Quotients – Matarazzo & 

Herman, 1984; Wechsler, 1997; Global Deficit Score of the expanded Halstead Reitan Battery 

– Heaton et al. 1991, 2004; discriminability indices in the California Verbal Learning Test, II – 

Delis, Kramer, Kaplan, & Ober, 2000). Perhaps as a result of norm construction using unimodal 

normal distributions for each measure, cognitively healthy individuals have been almost 

invariably modeled as one large group, with an overall flat neuropsychological profile (i.e., a 
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profile characterized by performances centered on T-scores of 50 across cognitive domains). 

These models do not assume, per say, that most people have a flat neuropsychological profile. 

In fact, within-individual variability has been recognized as common across cognitive domains 

(Schretlen & Sullivan, 2013) and “everyone has strengths and weaknesses” is often proposed as 

feedback in clinical settings (Spangenberg Postal, & Armstrong, 2013). However, by gathering 

all healthy individuals together into one large group, most models of neurocognitive normality 

have mathematically assumed a random distribution of those strengths and weaknesses across 

the general population. But is this assumption justified? Or could there be specific patterns of 

individual cognitive differences within the normal population, with particular strengths and 

weaknesses occurring more commonly within subgroups of cognitively intact individuals?  

The present study explores the question of heterogeneity in normal neurocognition, 

starting with a literature review of the theories and empirical research that have contributed to 

examining individual differences in cognition. The review covers research that was undertaken 

in two parallel fields: the field of cognitive psychology, with the development of theories of 

cognitive styles and information processing; and the fields of neuropsychology and cognitive 

neuroscience, with considerations of the brain functional organization and associated cognitive 

processes, investigated under the two traditional right/left and dorsal/ventral brain divisions. 

The present study then proposes to take a neuropsychological approach and contribute to this 

research by characterizing patterns of individual differences across neurocognitive domains, 

using the expanded Halstead Reitan Battery normative dataset. 

Cognitive Styles 

The development of cognitive styles started in the 1930s, reflecting the work of 

experimental psychologists examining individual differences in cognitive and perceptual 
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functioning (Bartlett, 1932). Many cognitive styles have been proposed over the years, often 

defined in terms of a dimension with two poles (Messick, 1976; Rayner & Riding, 1997). 

Examples of these dimensions include: analytical versus non-analytic processing (i.e., the extent 

to which one may focus on specific attributes rather than overarching themes – Kagan, Rosman, 

Day, Albert, & Philips, 1964), field-independency versus dependency (i.e., the ability to 

distinguish structures or forms from their surrounding field – Witkin & Asch, 1948), impulsivity 

versus reflectiveness (i.e., the extent to which one makes decisions quickly or carefully 

deliberates in uncertain conditions – Kagan et al. 1964; Messer, 1976), serialist versus holist 

processing (i.e., the tendency of learning and problem solving by using incremental versus 

global assimilation of details – Pask, 1976), adaptive versus innovative problem solving (i.e., 

the preference for using established procedures versus new perspectives – Kirton, 1976), 

abstract versus concrete thinking (i.e., the extent to which one prefers or is able of using 

abstraction – Harvey, Hunt, & Schroder, 1961), and verbal versus imagery processing (i.e., the 

use of verbal or imagery strategies when processing information – Paivio, 1971). These 

cognitive style dimensions have been noted to overlap significantly. For example, individuals 

with imagery cognitive styles were found to be more holistic and field-independent, whereas 

individuals with verbal cognitive styles were found to be more analytic and field-dependent 

(e.g., Kirby, Moore, & Schofield, 1988). Taking into account these overlaps, an integration of 

the various cognitive styles was proposed into two fundamental dimensions: “verbal-imagery” 

and “wholist-analytic” (Riding & Cheema, 1991). The verbal-imagery dimension – perhaps the 

most relevant to neuropsychological evaluation which traditionally distinguishes between 

verbal and perceptual ability assessment – is developed further in the following sections.  

Dual Coding Theory. The development of the verbal-imagery cognitive style must be 

understood within the framework of Paivio’s (1971) Dual Coding Theory. The theory proposes 
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two systems for the representation and processing of information: the verbal system (or 

symbolic system), which deals with language and concepts that are abstract; and the nonverbal 

system (or imagery-based system), which deals with nonlinguistic concrete objects and events 

(Paivio, 1971, 1991).  Both systems were emphasized to be processing- and not stimulus-

dependent, and may each deal with information presented in different modalities, including 

auditory, visual, tactual, and motor (Paivio 1971, 1991). Per Paivio, the verbal and nonverbal 

systems are assumed be structurally interconnected and functionally independent. The structural 

interconnection assumption implies the efficient spread of information from one system to the 

other, for example permitting evocation of objects from names and names from objects.  The 

functional independence assumption suggests parallel activation of the systems, either one at a 

time or simultaneously, implying advantages such as additive memory effects. Such effect was 

verified in many experiments, where events presented simultaneously using both a name and a 

picture were shown to be more readily remembered than pictures or names alone (Paivio, 1971). 

It was also proposed that the verbal and non-verbal systems may be activated differentially 

depending on three parameters: the stimulus variables (e.g., a concrete word would activate the 

non-verbal system more than an abstract word), the task instructions (e.g., having to remember 

a word might recruit the non-verbal system more than simply reading it), and individual 

differences in terms of verbal and multi-modal imagery abilities (Paivio, 1971, 1991).  

Verbalizers versus Imagers. Individual differences in terms of habits and abilities for 

using verbal versus imagery-based representations have been the subject of much research in 

the early years of the field of psychology. Galton (1883) conducted the first systematic empirical 

investigation of individual differences in symbolic habits, using a questionnaire designed to 

measure imagery vividness. He specifically asked subjects to imagine their breakfast tables, 

inquiring about levels of illumination, definition, and coloring. To his surprise, many people 
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(especially scientists) reported little or no use of visual imagery, likely using abstract and verbal 

thinking instead. Binet (1894) also pursued the question of individual reliance on vivid imagery 

by interrogating blind folded chess players. He noted that amateurs tended to use very concrete 

imagery techniques – for example visualizing the chess board with its black and white squares 

– but that more experimented players used increasingly abstract strategies, mentally retaining 

only the chessmen’s friend or foe characteristics and their geometric configurations. 

On the basis that most people experience a certain degree of both verbal and imagery-

based representations, it was suggested early-on that individual differences should be 

considered on a continuum instead of types, with distributions that were likely normal instead 

of multi-modal (e.g., Thorndike, 1914, pp.272). Ensuing studies have thus divided their subjects 

into groups with varying degrees of verbal or imagery habit or ability, with individual 

differences characterized by predominance of one type (e.g., Fernald, 1912). It is within this 

framework that the relation between cognitive styles and functional abilities has been 

subsequently investigated, often with the examination of representational differences across 

professional groups (Paivio, 1971 for a review). For example, Roe (1951) showed that biologists 

and experimental physicists tended to prefer visual imagery, whereas theoretical physicists, 

psychologists, and anthropologists reported habitual use of verbal symbolization. In a similar 

way, Uznadze (1966, p.131) reported that drama students had higher imagery abilities than other 

students, based on findings that they were more susceptible to a verbally-aroused tactile illusion. 

In his Dual Coding Theory, Paivio (1971,1991) proposed that the verbal and non-verbal 

systems may be activated differentially depending on individual differences in verbal and 

imagery abilities (Paivio, 1971, 1991). The study of Kuhlman (1960) supported this proposition 

by showing a double dissociation in concrete versus abstract task performance in children 

classified as high or low imagers. Findings suggested that high imagers were better at recalling 
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concrete visual stimuli and pairing them with names but worse at categorizing objects into 

abstract categories. By contrast, low imagers were better at categorizing objects into abstract 

categories, but worse in tasks involving concrete visual stimuli. It was thus concluded that 

imagery facilitates the memory and labeling of concrete objects but interferes with abstract 

concept-formation (Kuhlman, 1960). Another example of trade-off between concrete imagery 

and verbal symbolization abilities was presented by Luria (1968). In this rather extreme case 

study, a gifted young man was described with his thoughts being dominated by extremely vivid 

imagery, mostly in the visual modality but also accompanied by tactual kinesthetic and taste 

sensations. After observing for a few seconds tables featuring fifty numbers or letters, this young 

man could remember any designated cell and could do so for years afterwards (Luria, 1968). 

Upon questioning, he explained he could mentally see the tables and simply read off the 

characters. Luria noted, however, that this gift also came with disadvantages, notably due to the 

formation of concrete imagery without his control (e.g., concepts elicited by the word “justice” 

might be dominated by concrete evocations of a court room). As a consequence, extreme deficits 

were also observed in this young man for comprehending abstract concepts and using higher 

levels of cognition. 

One of the greatest challenges for studying individual differences in cognitive styles 

has been to devise instruments that could adequately assess individual utilization of verbal 

versus imaginal modes of thinking. For that purpose, Paivio (1971) devised an individual 

differences questionnaire designed to evaluate preferential habits for using verbal versus 

imaginal representations (Paivio, 1971; Paivio & Harshman, 1983). The questionnaire, 

composed of 86 true-false items, included questions such as “I can easily picture moving objects 

in my mind”, “I find it difficult to form a mental picture of anything”, “most of my thinking is 

verbal, as though talking to myself”, or “I have difficulty producing associations for words” 
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(Paivio, 1971, p. 496). Richardson (1977) later selected the 15 most discriminative items in this 

questionnaire to form the “Verbalizer-Visualizer Questionnaire”, with proposed verbal and 

imagery subscales, and suggested the existence of three groups: “verbalizers” who prefer verbal 

over imagery strategies, “visualizers” who prefer imagery over verbal strategies, and “mixers” 

who do not have preference for one mode over the other. Attempts to relate the questionnaire 

results to cognitive performances have reached mixed conclusions. Although scores on the 

verbal subscale were shown to relate to measures of verbal ability, scores on the imagery 

subscale showed weak or no correlation with performance on visuospatial tasks and ratings of 

imagery vividness (e.g., Alesandrini, 1981; Green & Schroeder, 1990). Another approach 

suggested to rate individuals depending on their self-reported use of imagery while solving 

mathematical problems (Krutetskii, 1976; Lean & Clements, 1981). However, again, no clear 

relationship was found between imagery preferences during mathematical operations and spatial 

performance – in fact a trend was even noted suggesting that verbalizers tended to outperform 

visualizers on both spatial and mathematical tests (Lean & Clements, 1981). 

A group of researchers recently proposed an explanation to the lack of correlation 

between imagery styles and performance on spatial tests, arguing that two types of cognitive 

styles needed to be distinguished, separating imagery strategies based on spatial representations 

from those based on figural representations (e.g., Blazhenkova & Kozhevnikov, 20008; 

Kozhevnikov, Hegarty, & Mayer, 2002; Kozhevnikov, Kosslyn, & Shepard, 2005). Specifically, 

they found that individuals who tended to use imagery for solving mathematical problems rather 

than verbal methods could be divided into two groups: individuals who scored high on spatial 

imagery tasks (e.g., mental rotation and mental paper folding) but poorly on object imagery task 

(e.g., judgment of fine texture and grain density, object identification in a degraded picture, 

ratings of vividness of mental images); and individuals who scored high on object imagery tasks 
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but poorly on spatial imagery tasks (Kozhevnikov et al. 2005). In addition, when interpreting 

scientific graphs, a tendency to generate abstract images was found in imagers with high spatial 

ability, while detailed pictorial images were generated by imagers with low spatial ability 

(Kozhevnikov et al. 2002). Following the tradition started by Galton (1883) and Binet (1894), 

Kozhevnikov et al. (2005) also verified whether individual differences in preferred imagery 

strategies were related to individual differences in occupation. They found that visual artists 

(N=10) preferred and excelled at figural imagery and strategies, whereas scientists (10 

physicists and 4 engineers) preferred and excelled at spatial imagery and strategies. 

Interestingly, inconsistent with observations of possible trade-off between verbal and 

imagery abilities (e.g., Kuhlman, 1960; Luria, 1968), these studies did not report striking 

differences in visuospatial performances when comparing individuals who preferred verbal 

compared to imagery strategies (whether spatial or figural). In fact, verbalizers were found to 

perform at an intermediate level on all visuospatial tasks (Kozhevnikov et al. 2002, 2005). The 

comments provided by Paivio (1971, p.508) three decades prior when discussing Kuhlman’s 

(1960) results may apply again to these recent considerations: “low imagers may have a greater 

preference for verbal thinking without being superior to high imagers in verbal ability.” In other 

words, Paivio suggested that preference for one representational mode over the other may not 

imply greater ability in that domain compared to individuals with the opposite preference.  

Right Brain versus Left Brain 

Research on the brain’s anatomy and functional organization has rather closely 

paralleled the research efforts on the verbal versus imagery cognitive styles, notably with 

considerations that associated brain functions may be lateralized to the right or left cerebral 

hemisphere. A review of these lateralized brain functions is provided here and the question of 
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whether functional differences across hemispheres may translate into individual differences is 

addressed. 

Functional Asymmetry of the Brain. Asymmetry between the right and left brain 

hemispheres has been demonstrated in decades of scientific studies in terms of structure, 

neurochemistry, and function (e.g., Springer & Deutsch, 2001; Toga & Thompson, 2003). In 

the vast majority of right-handers and in many left-handers, the left hemisphere has been shown 

to be dominant in mediating language functions, while the right hemisphere dominates for 

processing spatial relations and emotional control (e.g., Broca, 1861; Milner, 1971; Sperry, 

1975; Spring & Deutsch, 2001). The production and understanding of language were initially 

proposed to be left lateralized by Broca (1861) and Wernicke (1874), respectively, based on 

their observation of patients who had lost those abilities following lesions of the left middle 

frontal gyrus and of the left upper posterior temporal lobe. The lateralization of language 

production was perhaps most strikingly confirmed in the first human split brain experiments 

(Sperry, 1975). In those studies, epileptic patients who had undergone a corpus callosum 

resection were presented with objects in either their right or their left visual field.  Results 

showed that objects presented to the right visual field could be readily named (left hemisphere 

processing), whereas objects presented to the left visual field could not be named but could be 

identified in an array by left hand pointing (right hemisphere processing). During that time 

period, groups of researchers also started pointing out the unique and essential specialization of 

the right hemisphere in visuospatial and tactile-perceptual processing (e.g., Milner, 1971). For 

example, Milner & Taylor (1972) tested subjects in a delayed matching-to-sample task, with 

stimulus consisting of four tactile shapes made of wire. They found that patients with a corpus 

callosum resection were able to learn tactile matching-to-sample more efficiently with their left 

hand (right hemisphere processing) compared to their right hand (left hemisphere processing).  
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Examination of learning and working memory abilities in patients with lateralized brain 

lesions confirmed a left/right and verbal/visuospatial double-dissociation: that is, patients with 

left-lesions were shown to be impaired in verbal but not visuospatial tasks, and patients with 

right lesions were shown to be impaired in visuospatial but not verbal tasks (e.g., Corsi, 1972; 

Milner, 1971). The lateralization of verbal and visuospatial working memory processes to the 

left and right hemispheres was also confirmed by imaging, with reliable demonstrations of 

differential left activation for the short term retention of verbal information, compared to right 

activation for the retention of visuospatial information such as locations, line orientation, and 

faces (e.g., McDermott, Buckner, Petersen, Kelley, & Sanders, 1999; Owen, McMillan, Laird, 

& Bullmore, 2005; Rothmayr et al. 2007; Rämä, Sala, Gillen, Pekar, & Courtney, 2001; Smith 

& Jonides, 1997). Interestingly, consistent with Paivio (1971, 1991)’s dual coding theory, 

hemispheric specialization has been shown to be processing-dependent (i.e., making verbal 

versus visuospatial decisions) rather than stimulus-dependent, with lateralization of cognitive 

control operations such as response selection, response inhibition, or conflict monitoring to the 

same hemisphere as task execution (Stephan et al. 2003).  

Although right lateralization has been reliably demonstrated for processing spatial 

information and faces, findings have been rather mixed for processing information pertaining 

to object feature such as shape and color, with suggestions of bilateral activation and even 

sometimes left lateralization of those processes (e.g., Brown, Sawyer, Nathan, & Shatz, 1987; 

Owen, McMillan, Laird, & Bullmore, 2005; Ragland et al. 2002; Smith & Jonides, 1997). For 

example, using position emission tomography, Smith & Jonides (1997) showed a double 

dissociation of visual and spatial working memory to the left and right hemispheres, with left-

lateralized activation demonstrated during the retention of abstract shapes, compared to right-

lateralized activation during the retention of spatial information. Further, in an n-back study 
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requiring the short term retention of fractal shapes, differential left activation was demonstrated 

in the lingual gyrus (Ragland et al. 2002). These demonstrations of bilateral and even left brain 

activation during figural information processing have remained poorly understood, with the 

leading tentative explanations suggesting some degree of verbalization or symbolization of 

figural information (e.g., Smith & Jonides, 1997). Interestingly, the distinction between spatial 

and figural information processing is consistent with the finding of two distinct types of 

imagery-based cognitive styles, separating individuals preferring strategies based on spatial 

representations from those preferring strategies based on figural representations (Kozhevnikov 

et al. 2005). The distinction between spatial and figural processes will be further examined in a 

subsequent section on the functions of the brain’s dorsal and ventral pathways. 

Functional specializations have also been attributed to the left and right cerebral 

hemispheres beyond verbal and visuospatial processing (Bogen, 1969; Bradshaw & Nettleton, 

1981). Notably, analytic and serial information processing have been shown to involve the left 

hemisphere differentially, while gestalt and synthetizing processing have been shown to involve 

the right hemisphere (e.g., Cohen, 1973; Efron 1963; Levy 1974; Nebes, 1978). Left 

hemispheric specialization has also been associated with abstract categorization (e.g., Levy, 

1974); while right hemispheric specialization has been associated with emotional judgment and 

face recognition (e.g., Benton, 1980; Carey & Diamond, 1977).  

Right-brainers versus Left-brainers. Although it is clear that the right and left 

cerebral hemispheres hold different functional specialty; it is less clear whether these anatomic 

differences translate into individual cognitive differences. Following Sperry’s (1975) human 

split brain experiments, a surge of enthusiastic lay articles were published, extrapolating from 

his research and suggesting differences between people as being either left-brained or right-

brained (e.g., Time magazine, 1974). In particular, it was suggested that left-brained individuals 
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were more verbal, logical, and analytical whereas right-brained individuals were more intuitive, 

artistic, and creative. Despite warnings from Sperry himself, reminding readers that his research 

was based on patients and that “the two hemispheres in the normal intact brain tend regularly to 

function closely as a unit” (Sperry, 1984, p.668), the popular-culture version of the left/right 

brain theory built on itself through a wealth of magazine and book publications and became 

widely accepted (Kosslyn & Miller, chapter 5). Today, dozens of popular self-help books, 

websites, and apps can still be found, for example aiming at self-diagnosing whether one is more 

right-brain or left-brain or providing methods for re-establishing hemispheric equilibrium (e.g., 

Buzan, 1991; Edwards, 2012; Meindl, 2012; Psychtests, 2014). 

Contrasting with widely held popular theories, scientific evidence has remained scarce 

supporting clear cut right-brained versus left-brained differences in terms of personality or 

cognitive styles within the general population. In fact, a recent fMRI study that examined resting 

state functional connectivity concluded against a left-brained versus right-brained phenotype 

(Nielsen et al. 2013). In that study, publically-available scans of 1011 individuals (ages 7 to 29) 

were analyzed. Nielsen et al. (2013) reported significant lateralized functional connectivity at 

rest in several regions of the brain, including regions specializing in language (left-lateralized) 

and attention control (right-lateralized). However, they found no evidence of greater left versus 

right network strength across individuals and concluded against left-brained versus right-

brained individual characteristics. 

Within the field of neuropsychology, the properties associated with the functional 

asymmetry of the brain have been mostly used to identify neurocognitive impairment rather 

than characterizing individual differences in the general population. This emphasis on 

impairment in neuropsychology may have naturally unfolded from the focus of its early pioneers. 

For example, Halstead, who published seminal studies of the brain basis of human higher 
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cognitive functions, dedicated his life’s work to studying individuals with known brain lesions, 

selecting his initial battery of tests on the sole basis of sensitivity to brain damage (Halstead, 

1947). Following in the same spirit, Reitan, who was Halstead’s student, undertook the 

challenging task of expanding and modifying the battery until it could provide correct diagnostic 

inferences for an entire range of known brain damage and diseases (Reitan & Wolfson, 1985, 

2009). This process, which took 15 years and involved the systematic testing of thousands of 

cases, resulted in the early 1960s in the comprehensive instrument known as the Halstead Reitan 

Battery (HRB). During this process, tests were only added or kept if they contributed 

significantly to inferences for distinguishing between known patients and controls. Notably, 

tests were selected based on their sensitivity in indicating right versus left hemispheric 

involvement, anterior versus posterior involvement, focal versus diffuse lesion localization, 

acute versus chronic course, and type of damage or disease (Reitan & Wolfson, 2009). Among 

other summary indices, an intra-individual lateralization index was devised based on 

performance comparison across tests involving left versus right hemispheric cognitive 

specialties (i.e., verbal versus visuospatial abilities) and across tests of sensory-perceptual and 

motor functions involving the right versus left side of the body. Again, this lateralization index 

was solely used for the purpose of detecting brain dysfunction, based on the rationale that “many, 

if not most, brain disorders affect one hemisphere to a greater extent than the other hemisphere” 

(Reitan, 1955a; Reitan & Wolfson, 2009, p.8).  

The Wechsler intelligent scales, another set of widely employed neuropsychological 

assessment tools introduced by Wechsler (1939), also looked into using lateralized brain 

function to help diagnose neurocognitive impairment (Kaufman & Lichtenberger, 2006, 

Chapter 11). Notably, in the original and revised versions of the Wechsler Adult Intelligent 

Scale (WAIS, WAIS-R, WAIS-III, Wechsler, 1955, 1981, 1997), two summary indices were 
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proposed: the verbal intelligence quotient (VIQ) that averaged performances across all verbal 

subtests, and the performance intelligence quotient (PIQ) that averaged performances across all 

visuospatial subtests. An enormous amount of research has been conducted that related 

disparities between VIQ and PIQ performances to lateralized brain lesions and disorders 

(Kaufman & Lichtenberger, 2006, Chapters 8 & 9). In general, profiles with PIQ lower than 

VIQ have been associated with unilateral right hemisphere lesions, whereas VIQ lower than 

PIQ has been associated with unilateral left hemisphere lesions (e.g., Fields & Whitmyre, 1969; 

Satz, 1966). Profiles with VIQ lower than PIQ have also been related to conditions such as 

mental retardation, autism, learning disability, delinquency, and bilingualism (Kaufman & 

Lichtenberger, 2006, Chapter 9). Based on these findings, clinicians were initially taught that a 

“significant” VIQ/PIQ difference (i.e., 10 points and above from an instrumental reliability 

perspective) had diagnostic utility in identifying brain damage (e.g., Jones & Butters, 1983; 

Walsh, 1978). Kaufman (1976) and Matarazzo & Herman (1984, 1985), however, cautioned 

that a distinction should be made between “significant” and “abnormal” differences. That is, 

they pointed out that VIQ/PIQ differences that were reliably measured (or “significant”) said 

nothing about their rates of occurrence in the normal population. In fact, using the WAIS-R test 

scores of 1880 cognitively healthy subjects, Matarazzo & Herman (1984, 1985) calculated base 

rates for VIQ/PIQ differences and found that discrepancies between indices were larger and 

more common than previously anticipated. They reported VIQ/PIQ differences that were strictly 

greater than 0 in 96% of the subjects, > 3 in 74% of the subjects, > 9 in 37% of the subjects, 

>15 in 15% of the subjects, > 21 in 6% of the subjects, and > 25 in 2% of the subjects. These 

results were striking, suggesting that 37% of intact individuals presented with a “significant” 

difference between their VIQ and PIQ scores, and that a minimum of 22 points were necessary 

to define unusual differences (i.e., occurring in less than 5% of the standardization sample).  
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Beyond issues of cutoff, the predictive validity of the VIQ/PIQ difference for 

identifying lesion lateralization has also been questioned (e.g., Iverson, Mendrek, & Adams, 

2004; Lezak, 1995). Lezak (1995) noted that PIQ subtests, which consist mostly of activities 

that are unusual and timed, tend to be more sensitive than VIQ subtests to diffuse 

neuropathologies, thus making a PIQ<VIQ profile more likely as a result of traumatic brain 

injury or dementia. Further, Iverson et al. (2004) directly examined the sensitivity of the 

VIQ/PIQ difference in diagnosing lesion lateralization by testing 49 patients with cleanly 

lateralized right or left hemispheric lesions on the WAIS-R. Although they reported overall 

VIQ/PIQ differences in the expected direction when averaging across each patient group, they 

found that 61% of right-lesion patients had “significant” PIQ<VIQ differences (13% using the 

base rate cutoff) and only 23% of left-lesion patients had “significant” VIQ<PIQ differences 

(4% using the base rate cutoff). They concluded that VIQ/PIQ differences had no diagnostic 

predictive validity for left hemispheric lesions and had only very limited predictive validity for 

right hemispheric lesions. Taking into account these more recent studies, clinical interpretations 

of VIQ/PIQ differences continue to be encouraged, but with a strong caution that base rates be 

considered for abnormality interpretations and that this index never constitute the sole basis of 

a diagnosis (Kaufman & Lichtenberger, 2006, Chapter 11). 

Research aimed at characterizing base rates of abnormal VIQ/PIQ discrepancies has 

provided valuable information for characterizing normal VIQ/PIQ differences with the general 

population. Notably, Matarazzo & Herman (1984) published a distribution of VIQ - PIQ scores, 

showing a frequency curve that was deemed overall normal and centered on zero, but that was 

flatter (with greater standard deviation) than previously expected. Further, Matarazzo & Herman 

(1985) examined factors that might impact the distribution of VIQ/PIQ differences. They found 

that greater overall intellectual abilities, as measured by the Full Scale Intelligent Quotient 
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(FSIQ), were associated with greater base rates of large VIQ/PIQ differences. For example, they 

reported VIQ/PIQ differences of more than 9 points in 33% of individuals with FSIQ=80-89, 

46% of individuals with FSIQ=90-109, and 49% of individuals with FSIQ=110-119; and 

differences of more than 15 points in 10% of individuals with FSIQ=80-89, 19% of individuals 

with FSIQ=90-109, and 25% of individuals with FSIQ=110-119.  With the goal of fitting these 

base rate data, a mathematical model of the VIQ-PIQ distribution was constructed more recently, 

assuming quadratic FSIQ dependence and normal VIQ-PIQ distributions at fixed FSIQ (Hsu, 

Hayman, Koch, & Mandell, 2000). The model provided a good fit of Matarazzo & Herman’s 

(1985) data, and suggested distributions of VIQ-PIQ scores that were sharp and centered on 

zero at low FSIQs and became rapidly flatter with increasing FSIQ. These results, specifically 

the normal properties of the VIQ-PIQ distributions, appear also inconsistent with the existence 

of a dichotomous right brain versus left brain phenotype. It is notable, however, that a bimodal 

distribution model was never tested and the possibility that it could have provided a better fit of 

the flatter VIQ-PIQ distribution profiles at higher FSIQ may not be discarded. 

In summary, lateralized brain functions appear to map rather well on the “verbal-

imagery” and “wholist-analytic” fundamental cognitive style dimensions suggested by Riding 

& Cheema (1991); with the left hemisphere specializing in verbal and analytic information 

processing and the right hemisphere in spatial and gestalt processing. However, cognitive styles 

defined in terms of preferred strategy for processing information, have failed to reliably translate 

into individual differences in cognitive ability (e.g., Lean & Clements, 1981) or hemispheric 

dominance (e.g., Arndt & Berger, 1978). In fact, despite popular beliefs, solid evidence has been 

lacking for a right- versus left-brained phenotype (e.g., Nielsen et al. 2013) or for a bimodal 

classification of individuals in terms of verbal- versus perceptual-dominant cognitive abilities 

(e.g., Kozhevnikov et al. 2002, 2005; Matarazzo & Herman, 1984; Paivio, 1971). 
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Top Brain versus Bottom Brain 

Having considered the limitations associated with the right-brained versus left-brained 

distinction, a new theory was recently proposed suggesting that individual cognitive differences 

may be understood along a vertical rather than lateral brain axis (Kosslyn & Miller, 2013). 

Kosslyn’s theory of “cognitive modes” notably suggests that individuals may be divided into 

four groups depending on their differential usage of their “top-brain” versus “bottom-brain” 

systems. The foundation of the theory is examined in this section, followed by a description of 

these proposed cognitive modes. 

Dorsal and ventral pathways. Kosslyn’s theory of cognitive modes takes roots in 

decades of neurological and neuropsychological research aiming at identifying and 

characterizing the functions of the dorsal versus ventral portions of the brain, roughly separated 

by the Sylvian fissure. The ventral and dorsal pathways were first distinguished within the field 

of visual processing, with the functional and anatomic identification of brain regions 

specializing in object property versus spatial relations (e.g., Haxby et al. 1991; Ungerleider & 

Mishkin, 1982). The ventral system, or “what” pathway, was shown to process information such 

as shape, size, color, or texture, and to project from the primary visual cortex in the occipital 

lobe to the inferior temporal lobe. By contrast, the dorsal system, or “where” pathway, was 

shown to specialize in object location and orientation in space and to project from the primary 

visual cortex to the posterior parietal lobe.  

Since the publication of those studies, the definition of the ventral and dorsal pathways 

has been extended both in terms of brain region and function. First, the dorsal and ventral 

pathways have been found to project actively to the dorsolateral and ventrolateral prefrontal 

cortices, where they have been shown to mediate object and spatial working memory, 

respectively (e.g., Wilson, Scalaidhe, and Goldman-Rakic, 1993). These findings were also 
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supported by demonstrations of independent store and rehearsal mechanisms in working 

memory for remembering figural information such as shape and color compared to location and 

orientation in space (Della Sala, Gray, Baddeley, Allamano, & Wilson, 1999; Klauer & Zhao, 

2004). The dual pathway of information processing was also shown to generalize to other 

modalities. For example, in the auditory modality, a dorsal stream was proposed, projecting 

from the primary auditory cortex (Heschl’s gyrus within the lateral sulcus transverse to the 

superior temporal gyrus) to the inferior parietal and posterior frontal regions, and specializing 

in auditory-motor integration; and a ventral stream was proposed, projecting from the primary 

auditory cortex down to the middle and inferior temporal cortices, and specializing in processing 

the meaning of sounds (Hickok & Poeppel, 2004, 2007). Finally, the dorsal and ventral 

pathways have also been distinguished as mediators of top-down versus bottom-up processes. 

For example, dorsal fronto-parietal connections have been proposed to mediate actions 

(Goodale & Milner, 1992) and to play an essential role in the voluntary allocation of attention 

(e.g., Posner, 1980; Sereno, Pitzalis, & Martinez, 2001). By contrast, ventral fronto-parietal 

connections, especially in the right hemisphere, have been proposed to control attention to 

unexpected stimuli as detected by the senses (Corbetta & Shulman 2002; Vossel, Geng, & Fink, 

2013).  

Theory of cognitive modes. Kosslyn proposed a summary and extension of the 

research on the brain dorsal and ventral pathways by using an information processing model 

(Borst, Thompson, & Kosslyn, 2011; Kosslyn & Miller, 2013). As part of the theory of 

“cognitive modes”, a “bottom-brain system” was suggested, encompassing the occipital, 

temporal, orbito-frontal, and ventromedial frontal cortices, that deals with organizing 

information perceived by the senses, comparing it with memory content, and classifying and 

interpreting that information to form an input signal. The inclusion of the limbic system was 
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also proposed as part of the bottom-brain system, subserving the transmission of information 

pertaining to emotional reactions and needs (e.g., eating, drinking). Interacting closely with this 

bottom-brain system, a “top-brain system” comprising the parietal and remaining portion of the 

frontal lobes was suggested as manager of executive functions, including devising goals and 

plans, generating expectations, and monitoring and adjusting the carrying-out of plans. Such a 

summary of the brain functional organization in terms of two interacting systems is not new. In 

fact, in 1970, Luria had proposed a division of the higher cortex into blocks with very similar 

functions and reasonably close neuroanatomy. Luria’s “block 2”, composed of the parietal, 

occipital, and temporal lobes, was suggested to play a central role in the analysis, coding, and 

storage of information; and his “block 3”, consisting of the frontal lobes, was proposed to 

mediate attention regulation and the generation of intentions and behavioral programs (Luria, 

1970). It is notable that Luria had also proposed a subcortical “block 1”, comprising the brain 

stem, thalamus, and hypothalamus, with function to regulate wakefulness and the intensity of 

the brain’s response to stimuli.  

Kosslyn went yet a step further in his theory by proposing that individuals could be 

categorized depending on their utilization of their top- versus bottom-brain systems on a low-

to-high continuum (Kosslyn & Miller, 2013). Four cognitive modes were defined, each with 

implications for the personality of individuals who tend to preferably think with this pattern: (1) 

the “mover mode” (i.e., high top- and bottom-brain use), encompassing individuals likely to 

make plans, act on them, see the consequences of their actions, and adjust plan accordingly; (2) 

the “perceiver mode” (i.e., low top-brain versus high bottom-brain use), encompassing 

individuals that are good at perceiving and making sense in depth of their experiences, but 

display less of a tendency to initiate plans; (3) the “stimulator mode” (i.e., high top-brain versus 

low bottom-brain use), encompassing individuals who tend to initiate plans, but display limited 
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awareness and adjustment of their behavior, and may therefore present as creative and original 

but also disruptive; and (4) the “adaptor mode” (i.e., low top- and bottom-brain use), 

encompassing individuals with low tendency for initiating plans or interpreting and classifying 

their experiences, but may adapt without resistance to new environmental demands. As pointed 

out by Kosslyn & Miller (2013), if their description of the brain functional organization into 

top- and bottom-brain systems was derived based on a wealth of research, their categorizing of 

individuals into groups depending on their dominant cognitive mode is purely theoretical and 

has yet to be supported by data. The current project proposes to utilize neuropsychological data 

to evaluate this theory. 

This Study: Hypotheses and Implications  

The present study proposes to identify and characterize patterns of individual 

differences in neuropsychological abilities within the general population. Specifically, it is 

proposed to characterize the neuropsychological profiles of cognitively-healthy individuals by 

using latent profile analysis on the expanded HRB normative database (Heaton et al. 2004). This 

method will test the general assumption that normality is homogeneous by deciphering whether 

healthy individuals all belong to one group with average cognition and random between-subject 

variability or whether they can be separated into a number of smaller homogeneous groups with 

well-defined neurocognitive profiles. 

The proposed work is suggested to have significant implications for validating theories 

of brain function, as well as potential applications in domains including education, 

neuropsychological assessment, and neuropsychological research methods. First, if as 

hypothesized, cognitively intact individuals can be separated into homogeneous groups with 

well-defined neurocognitive profiles, the patterns of those profiles may allow inferences on 
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dominant theories of brain function. For example, Kosslyn’s theory of cognitive modes may 

suggest that four separate groups will be found, distinguished in terms of their high/high, 

high/low, low/high, and low/low performances on tests involving information perception, 

organization, classification, memory, and interpretation (“bottom-brain” tests) compared to tests 

involving voluntary attention allocation, executive function, and spatial skills (“top-brain” tests). 

By contrast, Paivio’s dual coding theory and research on lateralized brain functions and 

VIQ/PIQ differences may suggest four groups distinguished in terms of their high/high, 

high/low, low/high, and low/low performances on tests involving verbal versus perceptual 

abilities.  

As an alternate hypothesis, it is also possible that individual differences within the 

general population may be better characterized by horizontal divisions separating groups of 

individuals with high, average, or low abilities in all cognitive domains. Such a ladder-like 

configuration would support the hypothesis that flat neuropsychological profiles represent the 

cognitive norm within the general population. In that case, cognitive heterogeneity would be 

essentially defined in terms of level of general cognitive ability, with some individuals simply 

having more brain reserve capacity (Satz, 1993), pool of mental energy (Spearman, 1904), or 

intelligence (Wechsler, 1955) than others. Such a ladder-dominated configuration has been 

reported in previous studies that performed cluster analysis on the normative samples of child 

or adult neurocognitive batteries (e.g., Donders, 1996; Konold, Glutting, McDermott, Kush, & 

Watkins, 1999; McDermott, Glutting, Jones, & Noonan, 1989). For example, McDermott et al. 

(1989) performed sequential minimum-variance cluster analysis using the scaled scores of the 

WAIS-R normative dataset (N=1,880, Age=16-74). They reported 9 core profile types 

essentially distinguished by their overall ability levels, with 6 flat profiles characterized as 

“Low”, “Below average”, “Slightly below average”, “Average”, “Above average”, and “High”, 
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and 3 profiles with some variations characterized as “Slightly below average with higher Digit 

Symbol”, “Slightly above average with VIQ>PIQ”, and “Above average with VIQ>PIQ”. In a 

similar fashion, Konold et al. (1999) performed a multistage cluster analysis using the normative 

dataset (N=2,200, Age=6-17) of the Wechsler Intelligence Scale for Children – Third Edition 

scaled scores (WISC-III, Wechsler, 1991). They reported 8 core profile types also essentially 

distinguished by ability levels, including four types displaying some profile pattern (“High 

ability”, “Above average”, “Above average and VIQ>PIQ”, “Average and VIQ>PIQ”, 

“Average and PIQ>VIQ”, “Below average and VIQ>PIQ”, “Below average”, and “Low”). 

Methodological limitations associated with cluster analysis have been argued to be partially 

responsible for these ladder-like findings, with large differences in profile elevations commonly 

obscuring more subtle differences in profile patterns (Moses, Pritchard, & Faustman, 1994). To 

circumvent these problems, other techniques were subsequently suggested, including modal 

profile analysis (MPA), a mixture of cluster analysis and Q-factor analysis, and profile analysis 

via multidimensional scaling (PAMS), which solely reflect differences in profile shape rather 

than profile elevation, (e.g., Davidson, Gasser, & Ding, 1996; Kim, Frisby, & Davison, 2004; 

Moses et al. 1994; Pritchard, Livingston, Reynolds, & Moses, 2000). However, a downside of 

these methods has been indeed the loss of information in overall ability levels, which likely 

rightfully represent a non-negligible portion of between-individual variance in cognitive 

abilities. Another possible explanation for the ladder-like findings in previous cluster analyses 

may be the presence of confounding factors, such as education and culture, which might have 

impacted cognitive test performance beyond cognitive ability (e.g., Heaton et al. 1986, 1996; 

Manly et al. 2005; Reynolds, Chastain, Kaufman, & McLean, 1987). For example, Konold et 

al. (1999) found that their “high ability” group tended to be over-represented by Caucasian 

children and have parents with higher educational levels. In other words, it is possible that by 
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failing to control for demographic factors beyond age, previous studies have clustered together 

individuals that had similar demographic and cultural backgrounds rather than solely similar 

cognitive styles.  

Characterizing normal neuropsychological profiles has evident applications to the field 

of clinical neuropsychology. First, in clinical settings, the description and frequency of 

normative profiles could provide information at the pattern level on how unusual a patient’s 

profile may be, beyond considerations of single scores being within normative expectations. 

Such comparison would be especially important if, as hypothesized, normal cognition is better 

described by clusters of individuals sharing similar patterns of strengths and weaknesses rather 

than by a continuous ladder of homogeneous flat profiles. Second, in research settings, 

normative profiles may provide new points of comparison for evaluating neuropsychological 

patterns associated with specific disorders. For example, it is possible that neurocognitive 

profiles associated with certain psychiatric illnesses may differ significantly from the flat profile 

obtained after averaging indiscriminately over all comparison subjects, but may be similar to 

the profile of one cluster of comparison subjects.  

 Various methodological applications may also be envisioned. First, neuropsychological 

studies frequently encounter difficulties with the recruitment of their comparison subjects, who 

often consist of undergraduate students and unemployed individuals due to scheduling 

constraints. The characterization of clusters of normative neuropsychological profiles could 

help decipher whether a group of recruited healthy comparison subjects is indeed representative 

of cognitive normality, or whether it is only representative of a subset of clusters. Further, in 

brain imaging studies where between-subject variability represents a great source of signal noise 

(e.g., Wong et al. 2008), the proposed profile analysis may permit classification of healthy 
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comparison subjects into cognitively homogeneous groups and thus contribute to signal 

improvement. 

The material in this dissertation was, in part, published in the peer-reviewed article: Patt, 

V. M., Brown, G. G., Thomas, M. L., Roesch, S. C., Taylor, M. J., & Heaton, R. K. (2017). 

“Factor Analysis of an Expanded Halstead-Reitan Battery and the Structure of Neurocognition.” 

Archives of Clinical Neuropsychology, in press. The dissertation author was the primary 

investigator and author of this material. Part of the material in this dissertation is also currently 

being prepared for submission for publication: Patt, V. M., Brown, G. G., Thomas, M. L., 

Roesch, S. C., Taylor, M. J., & Heaton, R. K. “Heterogeneity in normal neurocognition: A latent 

profile analysis of the expanded Halstead-Reitan Battery normative dataset.” The dissertation 

author will be the primary investigator and author of this material. 
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METHOD 

Participants 

The present study uses the extensive dataset collected as part of the expanded HRB 

(eHRB) normative effort, a multi-center collaborative effort conducted over a period of 25 years 

(Heaton et al. 1991; 2004). The subjects were recruited from both urban and rural areas in the 

context of several studies that took place in various North American states, including California, 

Washington, Colorado, Texas, Oklahoma, Wisconsin, Illinois, Michigan, New York, Virginia, 

and the Canadian province of Manitoba. Among others, these studies included a large multisite 

study on supplemental oxygen treatment for severe chronic obstructive pulmonary disease 

(Heaton, Grant, McSweeny, & Adams, 1983), an epidemiologic study of organophosphate 

pesticide poisoning (Savage et al. 1988), studies on neuropsychological functioning associated 

with HIV infection (Heaton et al. 1995), and work specifically conducted for the eHRB norming 

project, associated with the construction of African American norms (Norman et al. 2000, 1011). 

The same standardized procedures and testing and scoring guidelines were promoted and 

emphasized across studies, with close supervision carried out by senior staff members and 

systematic double-checking of scores by experienced examiners (Heaton & Heaton, 1981). 

Most participants were paid for their time. Subjects were excluded based on structured 

interviews if they endorsed any history of neurological disorder, medical condition that might 

affect the brain, significant head trauma, learning disability, serious psychiatric disorder, and 

substance use disorder. Effort during testing was also assessed to be sufficient based on formal 

effort testing and/or examiner’s ratings.  

Among individuals who were administered at least half of the eHRB measures (N= 

1319, age=20-85, education=7-20), the normative sample consisted of 580 female and 739 male 
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participants, and of 628 African American and 691 Caucasian participants, with sizeable 

representation of all age and education groups. This sample composition has constituted the 

largest African American recruitment by far of any neuropsychological normative study, 

permitting demographic corrections pertaining to age, education, and gender, but also ethnicity 

(Heaton et al. 2004). Because memory was deemed a potentially important criteria of 

classification, only the participants that had been administered at least one of the three possible 

eHRB memory measures were included in the present study. The final sample – N= 982, age = 

47.2 years (SD = 18.0), education = 13.7 years (SD = 2.5) – was composed of 443 female and 

539 male participants, and 618 African American and 364 Caucasian participants. Because 

memory tests were more systematically administered during the second wave of the eHRB 

normative effort which also focused on establishing African American norms (Heaton et al. 

2004) as compared to the first wave (Heaton et al. 1991), the focus sample of the present study 

is notable for including 26% more African American than Caucasian participants. This 

distribution, although not representative of the overall U.S. population in terms of proportions, 

provides a unique framework for comparing neuropsychological profiles across ethnicity and 

culture. Information on handedness was also available, and the final sample included 876 right-

handed and 106 left-handed individuals with demographically similar compositions (i.e., left-

handers were 64 male / 42 female, 62 African American / 44 Caucasian).  

The demographic distribution of the sample was examined using Pearson Chi-square 

tests and univariate analyses of variance on age and education with gender, ethnicity, and 

handedness as independent variables. The proportion of females was significantly greater 

(χ2=44.4, p<.001) in the African American sample (329 females / 289 males) compared to the 

Caucasian sample (114 females / 250 males). The sample did not differ significantly in age 

across ethnicity (F(1,974)=2.327, p=.127, η2=.002) or handedness (F(1,974)=1.578, p=.209, 



29 

 

 

 

η2=.002), but there was a small-effect age difference (F(1,974)=13.289, p<.001, η2=.013) 

between males (M=44.3, SD=17.2) and females (M=50.8, SD=18.4). Further, the sample did not 

differ significantly in education across gender (F(1,974)<.001, p=.983, η2<.001) or handedness 

(F(1,974)=.001, p=.971, η2<.001), but there was a small-effect education difference 

(F(1,974)=21.538, p<.001, η2=.022) between Caucasian (M=14.4, SD=2.5) and African 

American (M=13.4, SD=2.5). There was no significant interaction between gender, ethnicity, or 

handedness on the distributions of age and education (ps=.148 to .893). Because corrections for 

age and education are carried out in the study, the small effect-differences noted in the 

demographic composition of the sample are not expected to have affected the conclusions of 

the study. 

Neuropsychological Test Battery 

The number of tests that were systematically administered to the same individuals as 

part of the eHRB normative effort was considerable, likely constituting the most comprehensive 

neuropsychological dataset available to date. This section describes these tests, dividing them 

into three parts: the tests that were part of the original HRB (Reitan & Wolfson, 1985, 2009), 

the tests that were added to form the eHRB (Heaton et al. 1991, 2004), and the Wechsler scales’ 

subtests (Wechsler, 1955, 1981). The measures derived from each test are presented in Table 1 

with a breakdown of the abilities they likely represent. 

The Halstead-Reitan Battery (HRB). The HRB has been one of the first widely used 

test batteries for assessing brain dysfunction (Reitan & Wolfson, 1985), and continues to enjoy 

widespread utilization with a 6th place rank in 2005 among instruments most frequently used in 

clinical neuropsychological evaluations (Rabin, Barr, & Burton, 2005). The HRB is unique in 

that it was developed with a solely practical intent of detecting brain disorder, rather than based 
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on a theory. A model of neuropsychological functioning – the Reitan-Wolfson model – was 

only later related to it, essentially derived from the selection of tests that had emerged as 

sensitive indicators of brain damage (Reitan & Wolfson, 1993). The tests that constitute the 

HRB are described and organized in this section following the theoretical framework of the 

Reitan-Wolfson model (Reitan & Wolfson, 2009). Interestingly, this model suggests steps of 

information processing that are representative of both the right-left and top-down models of 

brain function described in previous sections. 

The first phase of central information processing in the Reitan-Wolfson model is the 

“registration phase”, involving alertness, attention, concentration, and the ability to sort 

information relative to prior experiences using immediate, intermediate, and remote memory. 

To evaluate alertness and attention, two HRB tests were proposed: the Speech-Sounds 

Perception Test, consisting of 60 trials requiring discrimination between four tape-recorded 

nonsense syllables (e.g, “weem”, “weer”, “weez”, or “weeth”); and the Seashore Rhythm Test, 

consisting of 30 trials requiring discrimination between two rhythmic beats. 

The second phase in the Reitan-Wolfson model suggests verbal information processing 

in the left hemisphere and visuospatial processing in the right hemisphere. To evaluate verbal 

functions, the Reitan-Indiana Aphasia Screening Test was proposed, consisting of short tasks 

such as naming common objects, reading, writing, and repeating simple words, explaining a 

short sentence, and performing simple arithmetic calculations. To evaluate visuospatial 

functions, Spatial Relations tasks were proposed, consisting of spontaneously drawing simple 

shapes (e.g., a square and a triangle) and copying drawings (e.g., a cross and a key) – these tasks 

were also administered as part of the Reitan-Indiana Aphasia Screening Test. The WAIS verbal 

and performance subtests were also suggested to be included as part of the evaluation of verbal 

and visuospatial abilities (Reitan & Wolfson, 1985, 2009).  
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To further assess right versus left hemisphere functioning, a series of sensory-perceptual 

and motor tests was also included in the HRB, with the idea of comparing performances on the 

left versus right sides of the body. Two sensory-perceptual tests were proposed: the Reitan- 

Kløve Sensory-Perceptual Examination (SPE), which assesses tactile, auditory, and visual 

perception through the presentation of stimuli on either or both sides of the body; and the Tactile 

Form Recognition Test (TFR), requiring identifying shapes successively held in one hand. Two 

tests of gross motor skills were also proposed: the Finger Tapping Test, requiring quickly 

tapping a lever with the forefinger of each hand; and the Grip Strength Test, involving squeezing 

a handle forcefully. The Tactual Performance Test (TPT) was also proposed as part of the 

assessment of lateralized functions. The test requires quickly fitting a number of wood or foam 

shapes into their proper spaces on a vertical board while blindfolded. It is carried out in three 

trials, successively testing the dominant hand, non-dominant hand, and both hands. After the 

blindfold is removed, participants are asked to remember the shapes and their spatial location 

by drawing the vertical board with its cut-out shapes. This test was suggested to involve a series 

of complex abilities, including tactile form discrimination, kinesthesis, motor coordination, 

manual dexterity, the association of shape configurations with spatial locations, problem-

solving and organizational skills, and memory (Reitan & Wolfson, 2009). 

The third phase in the Reitan-Wolfson model is suggested to be the highest level of 

processing, consisting of abstract reasoning, concept formation, and logical analysis. Two tests 

were proposed to assess these skills: the Category Test and Trail Making Test. In the Category 

Test, participants are presented with geometric figures and must decide whether they remind 

them of the numbers 1, 2, 3, or 4. The test is divided into four 52-picture subtests, each with a 

different principle to uncover. Feedback is provided after each response. The test has been 

suggested to recruit complex abilities including abstraction, problem solving, logical analysis, 
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organized planning, and organized memory (Reitan & Wolfson, 2009). In the Trail Making Test, 

participants must trace lines as fast as possible linking circled numbers or letters scattered on a 

page. The test is divided into two parts, the first one requiring simple number sequencing (Part 

A), and the second requiring number and letter sequencing and set-switching (Part B). The test 

was suggested to involve simultaneous integration of several key abilities, including visual 

scanning, processing speed, and cognitive flexibility; and was identified as one of the best 

indicator of general brain function (Reitan, 1955b; Reitan & Wolfson, 2009). 

The expanded Halstead-Reitan Battery (eHRB). One of the main aims of the eHRB 

normative effort was to improve diagnostic accuracy in neuropsychological assessment by 

providing simultaneous corrections for demographic variables known to impact 

neuropsychological test performance (Heaton et al. 1991, 2004). In the context of this effort, a 

series of tests was added to the HRB, including tests of language, executive function, attention, 

processing speed, and memory. 

 The added language tests included the Boston Naming Test (BNT), requiring naming 60 

visually-presented pictures (Kaplan, Goodglass, & Weintraub, 1983); the Complex Ideational 

Material Subtest of the Boston Diagnostic Aphasia Examination (BDAE), a test of auditory 

comprehension requiring yes/no responses to 12 two-part questions, including four questions 

about commonly known facts and 8 questions about brief read-aloud stories (Goodglass & 

Kaplan, 1972); and the Reading Recognition, Spelling, and Reading Comprehension subtests of 

the Peabody Individual Achievement Test (PIAT) (Dunn & Markwardt, 1970), respectively 

requiring reading words aloud, choosing correct word spelling among multiple-choices, and 

choosing scenes best depicting a short story presented in writing immediately before among 

four picture-drawings. Beside language abilities, the PIAT Reading Comprehension subtest was 
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also suggested to involve memory processes, making this subtest particularly sensitive to 

acquired brain dysfunction (e.g., Heaton, Schmitz, Avitable, & Lehman, 1987). 

Several fluency tests were added assessing language production skills but also 

fundamentally involving executive function: the Thurstone Word Fluency Test, a test of written 

fluency, requiring writing down as many words as possible first starting with the letter “S” and 

then both starting with the letter “C” and composed of four letters (Pendleton, Heaton, Lehman, 

& Hulihan, 1982); and Letter and Category Fluency, tests of oral fluency, requiring saying as 

many words as possible either starting with a specific letter (“F”, “A”, and “S”) or representing 

names of animals (Gladsjo et al. 1999). Another test involving high attentional and executive 

demands was also added, the Paced Auditory Serial Addition Test (PASAT), a test of verbal 

working memory and processing speed, requiring continuously adding the two most recent 

digits in a series of audio-taped digits presented at increasing speeds (Diehr, Heaton, Miller, & 

Grant, 1998; Gonzalez et al. 2006; Tombaugh, 2006). 

To assess simple attention and psychomotor speed, the Digit Vigilance Test was added, 

requiring crossing out as rapidly as possible the number 6 in two large digit arrays. The two 

measures derived from this test – number of errors and completion time– were found to be 

essentially unrelated, reflecting abilities of visual attention and processing speed, respectively 

(Lewis, 1995). The Grooved Pegboard test was also added as part of the eHRB to assess fine 

motor skills and psychomotor processing speed; the test requires placing 25 pegs into a board 

using either the dominant or non-dominant hand (Reitan & Davison, 1974). 

Finally, three comprehensive memory tests were added as part of the eHRB, assessing 

abilities for learning and recalling verbal and figural material after a delay. First, in the 

California Verbal Learning Test (CVLT, Delis, Kramer, Kaplan, & Ober, 1987), a word list 

(List A) is presented in five learning trials, each time requiring immediate recall of as many 
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items as possible. A single interference trial is then administered, requiring immediate recall of 

a second word list (List B). Delayed recall of the first word list is assessed twice, immediately 

after the interference trial (short delay) and after a 20 minute delay (long delay). Second, in the 

Story Memory Test (Berry, Heaton & Kirby, 1977), a short story authored by Reitan and 

containing 29 pieces of information is presented requiring immediate recall. The story is 

repeated until retention of at least 15 out of 29 pieces of information is demonstrated with a 

maximum of 5 allowed trials. Delayed recall is assessed four hours later. The Figure Memory 

Test employs a procedure similar to that of the Story Memory Test, but requiring remembering 

material consisting of figures from the Visual Reproduction subtest of the Wechsler Memory 

Sale (Wechsler, 1945). During the learning trials, the entire visual material is presented on three 

successive cards up to five times, until participants are able to draw the figures with a level of 

accuracy of at least 15 points. Delayed recall is again assessed four hours later. 

The WAIS and WAIS-R subtests. Over the 25 year course of the eHRB normative 

effort, two versions of the Wechsler scales were administered, the WAIS (Wechsler, 1955) and 

the WAIS-R (Wechsler, 1981). Both versions consist of 11 subtests divided into two subscales, 

the Verbal and the Performance subscales. 

In the Verbal subscale, the three first subtests involve skills highly related to general 

knowledge and past experiences. These subtests include: Information, requiring answering 

questions of general factual knowledge; Vocabulary requiring defining words presented visually 

or orally; and Comprehension, assessing understanding of general principles and social 

situations, requiring common sense and the ability to use past experiences. The Similarities 

subtest may be distinguished from the three previous ones for recruit abstraction and reasoning 

skills beyond sheer word knowledge. In this test, participants are presented with pairs of words 

and required to perceive common elements between them and find underlying common concept. 
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Answers are rated on a scale varying between 0, 1, and 2 based on level of abstraction. The two 

last subtests included as part of the verbal subscale involve higher levels of attention, 

concentration, and working memory. These tests are the Digit Span subtest, requiring 

participants to repeat increasingly long series of digits, first forward and then backward; and the 

Arithmetic subtest, requiring mental solving of orally-presented arithmetic problems. The 

Arithmetic subtest was shown to be particularly related to educational and occupational 

attainments (Kaufman & Lichtenberger, 2006). 

The Performance subscale first includes two tests shown to significantly relate to 

individual experiential and cultural backgrounds: Picture Completion, a test of essential detail 

differentiation requiring identifying missing parts in a series of pictures in a timely manner (e.g., 

a slit in a screw); and Picture Arrangement, a test of nonverbal social intelligence requiring 

arranging a set of pictures in order so that they tell a sensible story. Two tests of visuospatial 

assembly are also included, both involving organizational abilities: Block Design, which 

requires arranging bi-color blocks together in a timely manner so that they form patterns similar 

to presented pictures; and Object assembly, which requires assembling parts of cut-up drawings 

of objects (similar to puzzles). The last test forming the Performance subscale is Digit Symbol-

Coding, a test of processing speed requiring efficiently copying symbols paired with specific 

digits.  

The WAIS-R has been described as an improved version of the WAIS with a new 

standardization sample (Kaufman & Lichtenberger, 2006, Chapter 3). The content of the 

subtests was indeed very similar between the WAIS and WAIS-R, with percentage of items 

retained of 69% for Information, 83% for Vocabulary, 86% for Comprehension and Arithmetic, 

77% for Similarities, 67% for Picture Comprehension, 75% for Picture Arrangement, 90% for 

Block Design, and 100% for Object Assembly, Digit Symbol-Coding, and Digit Span (Kaufman 
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& Lichtenberger, 2006). Several correlation studies were carried out by testing individuals on 

both the WAIS and WAIS-R administered after a 3 to 6 week interval in a counterbalanced 

order (Ryan, Nowak, & Geisser, 1987). From these studies (N=420 in eight groups), it was 

concluded that nine of the 11 subtests correlated sufficiently well to support continuity of 

measurement from the WAIS to the WAIS-R. Highest correlations were reported for 

Information, Vocabulary, Arithmetic, Similarities, and Block Design. Only two subtests, Picture 

Completion (.68) and Picture Arrangement (.58), showed inadequate correlations across WAIS 

and WAIS-R versions, likely related to greater change in subtest content across versions. 

Considering this lack of supported measurement continuity across WAIS versions, caution 

should be exercised in the current project when interpreting results from these two subtests in 

analyses involving merging the WAIS and WAIS-R databases.  

In terms of normative samples, differences are noted between the WAIS and WAIS-R 

education level distributions. For example, 36% of individuals in the WAIS normative sample 

compared to 16% in the WAIS-R had 8 years of education or less; and 14% of individuals in 

the WAIS sample compared to 25% in the WAIS-R had some college education or more 

(Kaufman & Lichtenberger, 2006). Differences in education levels between the WAIS and 

WAIS-R normative samples were verified to match the 1950s and 1970s U.S. Census data, and 

are thus representative of a real increase in the population’s educational level between those 

times. Nonetheless, these differences must be kept in mind when comparing age-corrected 

scaled scores between the WAIS and WAIS-R. Indeed, if one was to administer both the WAIS 

and WAIS-R to similar groups of people in the 1980s using the raw to scaled score conversion 

tables published in Wechsler (1955) and Wechsler (1981), respectively, higher IQ scores might 

be expected in individuals who were administered the WAIS compared to those who were 

administered the WAIS-R, for the sole reason that they would be compared to an overall less 
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educated population. Such findings were reported in a study comparing performance on British 

versions of the WAIS and WAIS-R in two U.K. samples matched for age, gender, and education 

(Crawford et al. 1990). Results suggested Full Scale IQs higher by 8.2 points on average when 

using the WAIS compared to the WAIS-R version. This point will be particularly relevant to 

the current project in considerations of merging the WAIS and WAIS-R databases. (Further 

discussion is provided in the Data Analysis section.)  

Data Analysis  

To test the hypothesis of heterogeneity in cognitive normality, the present project used 

latent profile analysis on the extensive dataset collected over the course of the eHRB normative 

project. A series of preliminary factor analyses and complementary post-hoc analyses was also 

carried out to evaluate the domains of cognitive functions covered by the various test measures, 

limit methodological confounds, and provide demographic comparison of resulting profiles. 

Latent Profile Analysis. Mixture modeling techniques such as latent profile analysis, 

latent class analysis, or latent growth modeling are statistical methods that aim to uncover 

unobserved heterogeneity in a population by identifying meaningful groups of people sharing 

similar patterns of scores on measured variables (e.g., Lazarfeld, 1950; McCutcheon, 1987; 

Muthén, 2004). These approaches are person-centered rather than variable-centered in that they 

focus on describing relationships among individuals rather than among variables as in regression 

or classic R factor analysis. Because population heterogeneity cannot be observed, it is modeled 

using a latent categorical variable that represents the number of homogeneous groups (or latent 

classes) underlying the population. Among other mixture modeling techniques, Latent Profile 

Analysis (LPA) is deemed particularly adapted to the present study as it permits analysis of 

continuous rather than categorical observed measures (Lanza, Flaherty, & Collins, 2003). In 
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addition, because it is model-based (i.e., involving probability estimates), LPA has been gauged 

superior to classic clustering analyses such as K-means clustering involving centroid 

calculations (Vermunt and Magidson, 2002). LPA has been increasingly used in behavioral and 

social sciences in recent years, for example in characterizing profiles of eating disorders, child 

maltreatment, fetal alcohol syndrome, frontotemporal lobar degeneration, and executive 

functioning (e.g., Borroni et al. 2007; Mattson et al. 2010; Rau, 2013; Roesch, Villodas, & 

Villodas, 2010; Wade, Crosby, & Martin, 2006). 

The LPA mathematical model has been described in detail by Vermunt & Magidson 

(2002). The model is based on expressing the probability of obtaining a certain pattern of scores 

on a number of continuous observable measures as: 

𝑓(𝑌 = 𝑦) = ∑ 𝑃(𝑙𝑐 = 𝑖)𝑓(𝑌 = 𝑦|𝑔𝑝 = 𝑖)𝑁
𝑖=1 ,    (1) 

where 𝑓(𝑌 = 𝑦) is the probability density of obtaining the pattern of scores y={y1, y2, …, yq} on 

q continuous observable measures, N is the number of latent classes, 𝑃(𝑙𝑐 = 𝑖) is the probability 

of belonging to the ith latent class (or proportion of individuals in the ith latent class), and 

𝑓(𝑌 = 𝑦|𝑔𝑝 = 𝑖) is the probability density of obtaining the pattern of scores y for individuals 

in the ith latent class. In classic LPA, a local independence assumption is combined to this model. 

This assumption, which supposes independence of the observed measures within each latent 

class, may be expressed as: 

𝑓(𝑌 = 𝑦|𝑙𝑐 = 𝑖) = ∏ 𝑓(𝑌𝑗 = 𝑦𝑗|𝑙𝑐 = 𝑖)
𝑞
𝑗=1 ,    (2) 

where 𝑓(𝑌𝑗 = 𝑦𝑗|𝑙𝑐 = 𝑖) is the probability density of obtaining a score yj on the jth observable 

measure for individuals in the ith latent class. Within each latent class, the distribution of scores 

on all q measures is also assumed to be multivariate normal. Maximum likelihood techniques 

are then employed to find latent grouping that will maximize homogeneity within classes and 

heterogeneity between classes. This goal may also be expressed in the terms of maximizing the 
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likelihood of obtaining N specific patterns of scores, one for each latent class, with the logarithm 

of this likelihood expressed as: 

𝑙𝑛(𝐿) = ∑ 𝑛𝑖 ln(𝑓(𝑌 = 𝑦𝑖̅)) ⁡
𝑁
𝑖=1 ,     (3) 

where ni represents the proportion of individuals in the ith latent class,  𝑦𝑖̅ = {𝑦1𝑖̅̅ ̅̅ , 𝑦2𝑖̅̅ ̅̅ , … , 𝑦𝑞𝑖̅̅ ̅̅ }  

the mean scores of the ith latent class on the q observable measures, and ⁡𝑓(𝑌 = 𝑦𝑖̅)  the 

probability density of occurrence of that pattern of scores. Model parameters include the 

proportion of individuals in each latent class, and the mean and variance on each measure for 

each latent class. (Variance parameters were allowed to vary across classes in the present study.) 

Once the best data fit is achieved, posterior membership probabilities (i.e., probabilities of 

belonging to each latent class) are calculated for each individual, using the Bayes rule: 

𝑃(𝑙𝑐 = 𝑖|𝑌 = 𝑦) = 𝑃(𝑙𝑐 = 𝑖)𝑓(𝑌 = 𝑦|𝑙𝑐 = 𝑖) 𝑓(𝑌 = 𝑦)⁄ ,  (4) 

where ⁡𝑃(𝑙𝑐 = 𝑖|𝑌 = 𝑦) is the probability to be in latent class i given a pattern of score y. Each 

individual is then assigned to the latent class corresponding to the greatest 𝑃(𝑙𝑐 = 𝑖|𝑌 = 𝑦). 

To guide the decision on the number of latent classes that may provide the best and 

most meaningful fit of the data, models with incremental number of classes are tested. For each 

incremental step, a number of criteria are considered, including measures of model fit such as 

the Akaike’s Information Criterion (AIC, Akaike, 1987), Bayesian Information Criterion (BIC, 

Schwartz, 1978), and sample adjusted BIC (adjBIC, Hagenaars & McCutcheon, 2002; Sclove, 

1987), and an entropy index, which provides information on how well the latent classes are 

distinguished (good>0.8, Ramaswamy et al., 1993). Two significance tests are also carried out 

at every step, the Lo-Mendell-Rubin adjusted likelihood ratio test (LMR, Lo, Mendell, and 

Rubin, 2001) and bootstrapped parametric likelihood ratio test (BP, McLachlan & Peel, 2000), 

to determine whether the new model provides a significantly better fit than the previous model 

with one fewer class. Among these various criteria, the BP likelihood ratio test has been 
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suggested to provide the most consistent indicator of number of latent classes across mixture 

models (Nylund, Asparouhov, & Muthén, 2007). Because theoretical meaning should also 

weigh in guiding decisions on the number of latent classes, neuropsychological profiles and 

frequencies are calculated and compared for each class at every incremental step of the analysis. 

Desirable criteria supporting meaningful results include some stability across incremental 

models of neuropsychological profiles and frequencies of at least 5% for every latent class. The 

present study proposes to run these analyses using MplusTM (Muthén & Muthén, 2009), 

including options Tech11 and Tech14 to provide the afore-mentioned model fit criteria and 

likelihood ratio tests (Asparouhov & Muthén, 2012). 

The selection of variables to be included as input into the LPA was the subject of careful 

examination to limit risks of methodological confound. Notably, the inclusion of too many 

variables derived from the same test or too many variables assessing the same construct was 

deemed to have a potential impact on latent grouping. For example, if the scores obtained on 

trial 1, trial 5, trials 1-5, short delay recall, and long delay recall of the CVLT were all included 

in the LPA, performance on the CVLT may have a much greater effect on latent grouping than 

if trial 1 only was included. In the same way, if five variables were included assessing memory 

and only one variable assessing executive function, grouping would likely be biased toward 

grouping individuals with high or low memory scores before considering executive function 

performance. To circumvent the issue of variable selection and explore the cognitive domains 

covered by the test measures, a series of preliminary factor analyses was carried out. The goal 

of these analyses was the construction of composite factor scores representative of meaningful 

cognitive constructs to be then used as input into the LPA. To explore individual differences in 

terms of both absolute and relative neuropsychological profiles, two series of LPAs were 

conducted, the first one on full composite factor scores and the second on composite factor 
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scores corrected for general cognitive ability level. The second set of LPAs allowed to explore 

patterns of individual differences in cognition that might be otherwise masked if variations in 

general cognitive ability were to be dominant. 

Preliminary Factor Analyses. To create composite factor scores representative of the 

cognitive constructs involved during eHRB testing, a two-step approach was taken. An 

Exploratory Factor Analysis (EFA) was first conducted to explore the dimensionality of the 

eHRB without imposing a priories. A Confirmatory Factor Analysis (CFA) was then carried out 

to compute the composite factor scores, with factor structure guided by the prior EFA results. 

Both analyses were run using MplusTM (Muthén & Muthén, 2009). 

First, EFA was chosen over Principal Component Analysis (PCA) as it deals solely with 

the shared variance among observed variables (as opposed to the total amount of variance in 

PCA), thus permitting theoretical interpretation of factors as underlying or “causing” the 

variables (Meyers, Gamst, Guarino, 2006). These characteristics were deemed better adapted to 

modeling the constructs underlying cognition from imperfect instrumental measures. Oblique 

factor rotation (Geomin; Yates, 1987) was carried out to maximize high correlations and 

minimize low correlations between observable variables and factors. This type of rotation was 

selected over an orthogonal factor rotation such as Varimax (Kaiser, 1958) to permit 

maximization of model fit – the factors are positioned closer to the original variables –  and a 

more realistic representation of the relationship between cognitive domains – the factors can be 

correlated (Browne, 2001; Thurstone, 1947). Among models with increasing number of factors, 

the final solution was selected by comparing statistical indices of model fit (e.g., Hooper, 

Coughlan, & Mullen, 2008), including Akaike’s Information Criterion (AIC, Akaike, 1987), 

Bayesian Information Criterion (BIC, Schwartz, 1978), sample adjusted BIC (adjBIC, 

Hagenaars & McCutcheon, 2002; Sclove, 1987), Chi-square indice (χ2, Hu & Bentler, 1999), 
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Comparative Fit Index (CFI, Bentler, 1990), Root Mean Square Error of Approximation 

(RMSEA, Steiger, 1990), and Standardized Root Mean Square Residual (SRMR, Byrne, 1998). 

The variance accounted for by the solution (i.e., the sum of the solution’s eigenvalues divided 

by the number of variables), the variance accounted for by each individual factor (i.e., 

approximated as the sum of squared factor loadings for that factor divided by the number of 

variables), and the interpretability of the factors were also evaluated to determine the initial 

plausibility of the factor structure. Factor interpretability was determined by verifying the 

presence of loadings greater than 0.3 on each factor with limited cross-factor loadings. Because 

the goal of this analysis was not data reduction per se, but the exploration and identification of 

underlying and potentially overlapping cognitive constructs, criteria based on Scree plot 

characteristics such as solely retaining eigenvalues greater than one and above the curve’s elbow 

shape were not deemed determinant. 

Because several of the eHRB measures were derived from the same tests, caution must 

be exercised in the EFA to avoid obtaining instrument factors – i.e., factors arising from 

correlations related to task demands rather than to underlying cognitive ability (Cattell, 1961). 

For example, delayed recall performance on the CVLT is likely to be more correlated to the 

CVLT T1-T5 learning trials than with delayed recall on the Story Memory Test for the sole 

reason that they involve the same verbal material. Similarly, right- and left-hand performances 

on the Grooved Pegboard are likely more closely related to each other than to any other fine 

motor measures due to involving the same instrumental constraints. A preliminary EFA 

conducted on all the eHRB measures confirmed the risk of instrument factors. For example, in 

the four factor solution of this preliminary analysis, two of the factors were defined solely by 

loadings from the Tactual Performance Test and Reitan- Kløve Sensory Perceptual Examination, 

respectively. A second EFA was thus conducted, this time including only one measure per test. 
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Because the goal of the EFA was solely to guide the factor structure of the subsequent CFA, the 

process for selecting which measure to keep per test was somewhat arbitrary. Exceptions were 

made and same-test variables were kept only for measures that have been suggested to involve 

markedly different cognitive constructs: Trail Making Test Part A and Part B, with Part B 

requiring set-switching compared to simple sequencing required during Part A (Reitan, 1955b; 

Reitan & Wolfson, 2009); and Digit Vigilance Time and Error, which assess speed and accuracy 

(or error-monitoring), respectively, and have been found to be essentially unrelated (Lewis, 

1995).  

In a second step, a CFA was conducted on all eHRB variables using a factor structure 

guided by the EFA results. Correlation parameters were included to model relatedness between 

factors and provide a realistic representation of relatedness between cognitive domains. The 

factor means were set to 0 and factor variances to 1. To account for within-instrument relations, 

correlation parameters were also included in the CFA model relating any two measures derived 

from the same test. The CFA model was progressively simplified by running several analyses 

in an iterative process, starting with parameters for all loadings that were greater than 0.22 in 

the EFA (corresponding to a 5% proportion of variance), and progressively keeping only 

loadings greater than 0.3, and finally 0.4. Loading sizes were interpreted based on criteria 

proposed by Comrey & Lee (1992) – i.e., excellent for loadings >.71 (50% overlapping 

variance), very good for loadings >.63 (40% overlapping variance), good for loadings >.55 

(30% overlapping variance), fair for loadings >.45 (20% overlapping variance), and poor for 

loadings >.32 (10% overlapping variance). Each iterative CFA model was verified to provide 

adequate fit of the data by using the same statistical indices as for the EFA (i.e., AIC, BIC, 

sample-adjusted BIC, χ2, CFI, RMSEA, and SRMR) and was gauged in terms of factor 

interpretability. Factor scores were computed for the final model using Bartlett’s method as 
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employed by MplusTM for continuous variables (Bartlett, 1937, Estabrook, & Neale, 2013; 

Lawley & Maxwell, 1971, Chapter 8; Muthén, 1998-2004, Appendix 11). 

Attrition and Variable Selection. In general, most subjects were administered most 

measures as part of the eHRB normative project. However, because the normative project 

represented a multi-study and multi-site effort with main goal to provide norms for every test 

separately, it was not uncommon for a single subject to have a few missing measures. Most 

latent variable statistical techniques are reasonably robust to attrition (Hagenaars & 

McCutcheon, 2002). However, because including too many subjects with too few test scores 

might affect the reliability of factor score estimation (Estabrook, & Neale, 2013), only subjects 

who had been administered at least half of the eHRB measures including at least one memory 

test, were selected for the present statistical analyses. The demographic characteristics of the 

remaining sample (N=982) were examined for each test separately and are presented in Table 

2. As shown in the table, three of the test measures were found to have been administered to 

less than 25% of the remaining sample, namely the BDAE Complex Ideational Material (the 

BDAE normative sample was recruited entirely separately), PIAT spelling (only 125 subjects 

tested who were all Caucasian), and PIAT comprehension (only 217 subjects tested, including 

203 Caucasian and 14 African American participants). These three measures were excluded 

from all analyses.   

Significant differences in demographic distributions are also shown for the WAIS and 

WAIS-R data in Table 2: WAIS data were only available for Caucasian individuals, and WAIS-

R data were available for 3.5 times as many African American compared to Caucasian 

individuals. This demographic imbalance is explained by the timely administration of the two 

WAIS versions over the 25 year course of the eHRB normative effort. That is, the WAIS was 

essentially administered during the first wave of the eHRB normative effort focusing on 
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establishing Caucasian norms (Heaton et al. 1991), whereas the WAIS-R was administered 

during the second wave focusing on establishing African American norms (Heaton et al. 2004). 

To avoid introducing too many confounds in the main analyses (i.e., WAIS version and 

ethnicity), the WAIS and WAIS-R data were excluded from the factor analyses, and thus from 

the LPA. The WAIS and WAIS-R data were used, however, in post-hoc analyses to help 

compare and interpret neuropsychological profiles resulting from the LPA. 

Most remaining tests were found to have been administered to more than 80% of the 

selected sample, with consistent demographic distributions in terms of gender, ethnicity, age, 

and education (Table 2). Attrition in the remaining tests was thus assumed to occur at random 

and was dealt with in the EFA and CFA using Full Information Maximum Likelihood (e.g., 

Collins, Schafer, & Kam, 2001; Muthén & Muthén, 2009).  

A few other test measures were excluded from the main factor analyses and LPA but 

included for interpretation purposes in post-hoc analyses, notably measures that were not 

normally distributed (i.e., Spatial Relations, Story Memory-Percentage Loss, and Figure 

Memory-Percentage Loss), and to avoid multicolinearity, measures that linearly combined or 

were included in other measures – i.e., CVLT Trial 5, which is included in a combination of 

CVLT Trials1-5 and CVLT Trial 1; SPE total, which is a combination of SPE right hand and 

SPE left hand; and TPT dominant, non-dominant, and both hands, which are summarized in 

TPT total. Pure motor tests (i.e., Grip Strength and Finger Tapping) were also excluded from 

the factor analyses and LPA to limit the introduction of gender differences related to 

physiological rather than cognitive factors. These test measures are presented in gray font in 

Table 1. 

Demographic and Ability Corrections. Most if not all previous data analyses 

involving the HRB and WAIS or WAIS-R measures have used scores that were either raw or 
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corrected for age (e.g., McDermott et al. 1989; Ross, 2013). Yet, demographic factors such as 

education, ethnicity, and sometimes gender have been shown to be significantly related to 

neurocognitive test performance, potentially leading to large scale misdiagnosis of specific 

demographic groups if not taken into account (Heaton et al. 1986, 1996; Manly et al. 2005; 

Norman et al., 2000; Reynolds et al., 1987). For example, using norms that were not education-

corrected on the HRB has led to misclassifying 42% of healthy adults with lower educational 

levels as cognitively impaired (Heaton et al. 1986). Further, despite norms corrected for age, 

education, and gender on the CVLT, failure to control for ethnicity has led to misclassifying 

36% of healthy African-American individuals as impaired (Norman et al. 2000). Demographic 

factors may therefore represent a dominant source of individual differences in uncorrected 

neurocognitive test performance, perhaps masking more subtle patterns of strengths and 

weaknesses across individuals in neurocognition. In the LPA, lack of demographic corrections 

might thus result in unwanted clustering of individuals based on demographic and cultural 

factors rather than cognitive styles. 

In the present study, scaled scores generated from raw test scores were first inputted 

without demographic correction into the factor analyses. Scaled scores have a mean of 10, 

standard deviation of 3, and were computed so that higher scores always indicate better 

performance (e.g., faster trial completion, fewer errors, or more correct answers). These scaled 

scores were published by Heaton et al. (2004) to permit comparison of patient performance in 

absolute terms to the entire population, a comparison often relevant for inferences on 

professional and everyday functioning. They were deemed particularly useful in the factor 

analyses of the present study for recruitment of maximal available sources of reliable variance 

when identifying cognitive constructs, while permitting same-scale comparisons across tests.  
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Because the goal of this study is to examine individual differences in neurocognitive 

profiles, and not the impact of age, education, or cultural background on cognitive performance, 

the factor scores resulting from these factor analyses were then corrected for age, education, and 

ethnicity before being inputted into the LPA. Demographic corrections were carried out using 

multiple linear regression, with models including quadratic and linear terms for age and 

education and a linear term for ethnicity. The regression models are expressed as: 

𝐹𝑆 = 𝐹𝑆𝑐𝑜𝑟 + 𝑏⁡1𝑎𝑎𝑔𝑒 + 𝑏⁡2𝑎𝑎𝑔𝑒
2 + 𝑏⁡1𝑒𝑒𝑑𝑢 + 𝑏⁡2𝑒𝑒𝑑𝑢

2 + 𝑏⁡𝑒𝑡ℎ𝑛𝑒𝑡ℎ𝑛,  (5) 

where FS and FScor represent the original and corrected factor scores, age the age of participants 

in years, edu the education level of participants expressed in years of education, ethn the 

ethnicity of participants dummy-coded using 0 for Caucasian and 1 for African American, and 

𝑏⁡1𝑎 , 𝑏⁡2𝑎 , 𝑏⁡1𝑒 ,⁡𝑏⁡2𝑒 , and 𝑏⁡𝑒𝑡ℎ𝑛  the regression coefficients. All independent variables were 

centered so that FScor and FS would retain the same mean. When a quadratic term was not 

significant, the regression was run a second time without that quadratic term.  

Because there are no known large effect size a priori differences in neurocognitive 

performance between right-handed and left-handed individuals and between males and females 

(Hyde, 2005, 2014; Zell, Krizan, & Teeter, 2015), these demographic variables were deemed 

unlikely to mask subtle patterns of individual differences in neurocognition. In addition, there 

might arguably be fewer environmental confounds associated with gender and handedness than 

with other demographic variables such as education or ethnicity – e.g., males and females and 

right- and left-handers are found in equal proportions in all cultures and socio-economic status. 

These demographic variables were therefore deemed unlikely to lead to unwanted clustering of 

individuals based on demographic and cultural factors, and no corrections for gender or 

handedness were carried out.  
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To also explore individual differences in terms of relative neurocognitive profiles, a 

second set of composite factor scores was computed with corrections for level of general 

cognitive ability in addition to demographic corrections. Using the psychometric definition of 

general intelligence initially introduced by Spearman (1904), or g-factor, level of general 

cognitive ability was defined as the direction of maximum common variance between cognitive 

abilities – i.e., the direction of the eigenvector with largest eigenvalue for the covariance matrix 

of demographics-corrected factor scores. Controlling for g has been done in previous factor 

analytic studies to isolate processes unique to single tasks (e.g., Vernon, 1964). Correction for 

level of general cognitive ability was calculated by projecting demographics-corrected factor 

scores onto the vector space orthogonal to the eigenvector with largest eigenvalue, using the 

system of equations: 

{
𝐹𝑆𝑎𝑏,𝑖⁡. 𝑉1 = 0

⁡⁡{𝐹𝑆𝑎𝑏,𝑖⁡. 𝑉𝑗 = 𝐹𝑆𝑐𝑜𝑟,𝑖⁡. 𝑉𝑗}𝑗=2:𝑛𝐹

,     (6) 

where 𝐹𝑆𝑐𝑜𝑟,𝑖 is the row-vector of factor scores corrected for demographic variables for 

individual i, 𝐹𝑆𝑎𝑏,𝑖 is the row-vector of factor scores corrected for both demographic variables 

and ability for individual i, nF is the overall number of factors, and V1, V2, … VnF  are the 

eigenvectors (column-vectors) of the covariance matrix of demographics-corrected factor scores 

in order of decreasing eigenvalue. This system of equations was solved as: 

𝐹𝑆𝑎𝑏,𝑖 = 𝐹𝑆𝑐𝑜𝑟,𝑖[(0)⁡𝑉2 ⁡…⁡𝑉𝑛𝐹
][𝑉1⁡𝑉2…⁡𝑉𝑛𝐹

]
−1

.    (7) 

Two sets of LPAs were therefore run using either 𝐹𝑆𝑐𝑜𝑟 or 𝐹𝑆𝑎𝑏 as input, permitting exploration 

of individual differences in cognition in terms of both absolute and relative neurocognitive 

profiles. In the second set of LPAs, because correcting for level of general cognitive ability 

essentially removed one dimension of variance, including all the ability-corrected factor scores 

would have resulted in the multicolinearity of the input variables. To avoid multicolinearity, the 
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ability-corrected factor with smallest remaining variance was selected to not be included in the 

set of LPA inputs. That ability-corrected factor, although not directly influent in clustering 

individuals together, was nonetheless calculated for each latent class of the LPA solution and 

used for result interpretation. 

Post-Hoc Analyses. A series of post-hoc analyses was carried out for further 

interpretation of the LPA results, notably for comparison of factor scores, test scores, and 

demographic composition across latent classes. 

For further characterization of the latent classes’ neuropsychological profiles, factor 

scores and test-scores were compared across latent classes using multivariate and univariate 

analyses of variance. Notably, results were provided for all available eHRB and Wechsler scales 

test measures, including those previously excluded from the factor analyses (e.g., Wechsler 

scales tests, motor tests). For consistency, eHRB test scores were corrected for age, education, 

and ethnicity using a similar multiple linear regression procedure as described for the factor 

scores. These corrected scores were converted into Z-scores with mean of 0 and standard 

deviation of 1 to permit same-scale comparisons across tests. For the WAIS and WAIS-R 

measures, scaled scores were used providing population-based comparison to the published 

normative samples (Wechsler, 1955, 1981). To control for age, education, ethnicity, and IQ-

score drift across WAIS versions, three separate regression analyses and conversions to Z-scores 

were conducted: for Caucasian individuals who had been administered the WAIS (N=126, age: 

M=35.4, SD=12.8), Caucasian individuals who had been administered the WAIS-R (N=97, age: 

M=67.2, SD=11.1), and African-American individuals who had been administered the WAIS-

R (N=362, age: M=39.0, SD=12.6). Because of the large difference in age found between the 

WAIS-R Caucasian and African American participants (F(1,457)=403.9, p<.001, η2=.469), this 

method was deemed preferable than correcting for ethnicity using dummy coding within one 
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regression model to limit confounding factors. The three distribution of Z-scores with mean of 

0 and standard deviation of 1 were then merged to compare performance on the Wechsler scales 

across latent classes. 

In terms demographic composition of the latent classes, differences in age and 

education were tested using univariate analyses of variance with most likely class membership 

as independent variable. Differences in gender, ethnicity, and handedness composition were 

tested using logistic regression with dummy coding of the latent classes. Although composite 

factor scores inputted into the LPA were each controlled for age, education, and ethnicity, it 

was still deemed possible to find demographic differences along these variables due to profile 

variation. For example, one could imagine that middle age individuals may present with marked 

variations in their neurocognitive profiles due to years spent developing and maintaining 

specialized cognitive work skills; while younger individuals may present with flatter profiles, 

perhaps resulting from exercising a less deep but wider range of cognitive functions throughout 

their school years. 

The material in this dissertation was, in part, published in the peer-reviewed article: Patt, 

V. M., Brown, G. G., Thomas, M. L., Roesch, S. C., Taylor, M. J., & Heaton, R. K. (2017). 

“Factor Analysis of an Expanded Halstead-Reitan Battery and the Structure of Neurocognition.” 

Archives of Clinical Neuropsychology, in press. The dissertation author was the primary 

investigator and author of this material. Part of the material in this dissertation is also currently 

being prepared for submission for publication: Patt, V. M., Brown, G. G., Thomas, M. L., 

Roesch, S. C., Taylor, M. J., & Heaton, R. K. “Heterogeneity in normal neurocognition: A latent 

profile analysis of the expanded Halstead-Reitan Battery normative dataset.” The dissertation 

author will be the primary investigator and author of this material. 
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RESULTS 

Factor Analyses Results 

Exploratory Factor Analysis. An EFA using geomin rotation was first conducted on 

a selection of test measures to explore the cognitive constructs underlying the eHRB normative 

database. Considerations of indices of model fit (see Tables 3) and factor interpretability 

suggested that a 7-factor solution best explained the data (χ2(84)=137.5, CFI=.994, 

AIC=79,326, BIC=80,148, adjBIC=79,614, RMSEA=0.025, SRMR=0.014). An 8-factor 

solution was also considered due to improvement of some of the model fit indices (i.e., 

χ2(70)=85.9, CFI=.998, AIC=79,302, BIC=80,192, adjBIC=79,614, RMSEA=0.015, 

SRMR=0.011),  but was discarded based on difficulties with convergence (i.e., tolerance had to 

be decreased from .00005 to .0005 to obtain a set of results), BIC indices indicative of worse fit 

(i.e., BIC=80,192, adjBIC=79,614), and lack of interpretability of the solution (i.e., only one 

item loaded on the 8th factor and the 7th factor was poorly identified). 

The variance explained by the 7-factor solution was 74.1%. The sums of squared 

structure coefficients, a proxy for the overlapping proportions of variance covered by each factor 

after rotation, were 22.1%, 12.7%, 26.1%, 13.5%, 31.3%, 25.0%, and 23.2% for factors 1 to 7, 

respectively (see Table 4). The geomin-rotated factor loadings are presented in Table 4. 

Loadings greater than 0.22, highlighted by gray-shading, were kept for the initial CFA model. 

Loadings greater than 0.45, highlighted in bold font, were considered in priority for factor 

interpretation. Based on these loadings and on a review of the cognitive processes theoretically 

involved in each test measure, the factors were interpreted as representing the following 

underlying cognitive abilities: “attention/working memory” (factor 1), “fluency” (factor 2), 

“language” (factor 3), “verbal episodic memory” (factor 4), “visuospatial cognition” (factor 5), 
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“perceptual speed” (factor 6), and “sensory-perceptual processing” (factor 7). Correlations 

between factors (see Table 5) were for the most part positive with small to large effect sizes (r 

=.212 to r =.642). Exceptions were found for the correlations between “language” and “sensory-

perceptual processing” (r =.120) and between “language” and “perceptual speed” (r =.085) 

which were weak to negligible.  

Confirmatory Factor Analysis. A series of CFAs was conducted on a larger selection 

of eHRB test measures. The CFA models were initially guided by the factor structure resulting 

from the EFA and were progressively simplified so as to keep only loadings greater than 0.3 

and then 0.4. Indices of goodness of fit for the initial, intermediate, and final models are 

presented in Table 6. The final model was found to fit well the data (χ2(454)=1134.5, CFI=.965, 

AIC=120,682, BIC=121,366, adjBIC=120,922, RMSEA=0.039, SRMR=0.050), with loadings 

deemed good to excellent per the Comrey & Lee (1992) criteria for all but two test measures 

(Figure 1). The factor structure in the final model is as follows: Factor 1 is defined by loadings 

from Trails Making-Part B (.87), PASAT (.80), and Digit Vigilance-Error (.40); Factor 2 is 

defined by loadings from Thurstone Word Fluency (.88), Letter Fluency (.80), and Category 

Fluency (.69); Factor 3 is defined by loadings from the BNT (0.78), Aphasia Screening Test 

(0.70), and PIAT Reading Recognition (0.62); Factor 4 is defined by loadings from the CVLT 

(.60 to .78) and Story Memory Test (.61 to .80), with greatest loadings from the averaged 

learning trials in both tests; Factor 5 is defined by loadings from the Figure Memory Test (.56 

to .82) with greatest loading from the averaged learning trials, and by loadings from the 

Category Test (.83) and the two TPT memory measures (.62 and .67); Factor 6 is defined by 

loadings from TPT-total (.85), Grooved Pegboard (.76 and .78), Trail Making-Part A (.72), and 

Digit Vigilance-Time (.59); and Factor 7 is defined by loadings from Speech-Sounds Perception 

(.71), the Reitan- Kløve Sensory Perceptual Examination (.67 and .67), Tactile Form 
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Recognition (.60 and .62), and Seashore Rhythm (.49). A competing model was considered with 

a loading for TPT-total on Factor 5 rather than 6. That model was not selected based on a poorer 

fit of the data (χ2(454)=1158.3, CFI=.964, AIC=120,706, BIC=121,390, adjBIC=120,946, 

RMSEA=0.040, SRMR=0.051) and a less elegant theoretical factor interpretation – TPT total 

would have been the only measure with a speed component loading on Factor 5. 

Based on the loadings and structure of the final solution, most CFA factors were deemed 

to represent underlying cognitive abilities similar to those of the EFA factors, but with 

noticeable changes in Factors 1 and 7. First, Factor 1, which included loadings in the EFA from 

tests involving basic attention (i.e., Seashore Rhythm, Aphasia Screening Test, and Trail Making 

Test –Part A), included loadings in the CFA solely from tests requiring online executive 

processes, specifically information manipulation, cognitive flexibility, and error monitoring. 

Further, Factor 7, which was dominated in the EFA by loadings from sensory-perceptual tests 

(i.e., Speech-Sounds Perception and Tactile Form Recognition), presented in the CFA with a 

highest loading from the Speech-Sounds Perception Test and an increased loading from the 

Seashore Rhythm Test, two tests test originally designed to measure alertness and attention 

(Reitan & Wolfson, 2009). Taking into account these considerations, the CFA factors were 

interpreted as representing the following underlying cognitive abilities: “working memory” 

(factor 1), “fluency” (factor 2), “language” (factor 3), “verbal episodic memory” (factor 4), 

“visuospatial cognition” (factor 5), “perceptual speed” (factor 6), and “perceptual attention” 

(factor 7).  

The correlations between factors in the final model (see Table 7) were all positive and 

significant (p<.001), with medium to large effect sizes (r =.46 to r =.91). Residual correlations 

between same-test measures (see Figure 1) were also for the most part positive and significant 

(p<.001), with effect sizes ranging from small to large (r =.18 to r =.76). There were a few 
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exceptions, with weak to negligible associations found between Story Memory-Delayed Recall 

and Story Memory-Trial 1 (r =.09, p =.023), and between Story Memory-Delayed Recall and 

Story Memory-Learning (r =.13, p =.003). Further, Digit Vigilance-Time and Digit Vigilance-

Error were moderately and negatively associated (r = -.29, p <.001), suggesting a trade-off 

between performances on these two measures. Interestingly, similar patterns of residual 

correlations were found across the three memory tests (i.e., Figure Memory, Story Memory, and 

CVLT), with weak to small associations found between performances on trial 1 and delayed 

recall (r = .20, .09, and .25, respectively), somewhat increased associations between averaged 

learning and delayed recall (r=.24, .13, and .55, respectively), and large associations between 

trial 1 and averaged learning (r= .74, .76, .64, respectively).  

Demographic Contributions and Corrections of the Factor Scores. Factor scores 

were computed using the final CFA model and were corrected for age, education, and ethnicity 

using multiple linear regression. The multiple linear regression statistical results are presented 

in Table 8. The regression models including age, education, and ethnicity accounted for 63.0%, 

42.1%, 42.5%, 59.2%, 63.9%, and 67.0%, of the variance in the factors “working memory” 

(R2=.630, F(5,976)=333.0, p <.001), “fluency” (R2=.421, F(5,976)=142.1, p <.001), “language” 

(R2=.425, F(4,977)=180.3, p<.001), “verbal episodic memory” (R2=.592, F(5,976)=283.4, p 

<.001), “visuospatial cognition” (R2=.670, F(5,976)=396.6, p <.001), “perceptual speed” 

(R2=.676, F(5,976)=408.1, p <.001), and “perceptual attention” (R2=.639, F(5,976)=345.8, p 

<.001), respectively. The regression coefficients for the quadratic effects of age were negative 

and significant (p<.05) for all factors except “language”, indicating accelerated decrease of 

performance with age in most domains of cognition (see Figure 2). The linear regression model 

was re-run for “language” without the quadratic term for age. Results also suggested a 

significant linear decrease of “language” performance with age, but with a very small effect size 
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(b1a = -5.14×10-3 in units of number of standard deviations per year, p<.05). Education was found 

to have significant positive linear and negative quadratic effects on all factors, indicating 

increased performance with years of education in all cognitive domains, with dampening at 

higher educational levels (see Figure 3). The effect of ethnicity was also significant, indicating 

better performance for Caucasian subjects over African American subjects across cognitive 

domains. 

For further information on the differential effects of the various demographic variables, 

hierarchical multiple regression was carried out, using models progressively including age, 

education, and ethnicity. Results suggested that age, education, and ethnicity each contributed 

significantly to incremental portions of variance in the factors, but with contributions varying 

in effect size depending on the cognitive domain (see statistics in Table 8). The incremental 

contributions of age, education, and ethnicity were 43.5%, 9.4%, and 10.1%, respectively, of 

the variance in “working memory”; 18.8%, 14.7%, and 8.6% of the variance in “fluency”; 4.1%, 

22.1%, and 16.3% of the variance in “language”; 30.5%, 15.3%, and 13.4% of the variance in 

“verbal episodic memory”; 48.2%, 7.9%, and 10.9% of the variance in “visuospatial cognition”; 

53.9%, 5.7%, and 8.0% of the variance in “perceptual speed”; and 48.4%, 7.3%, and 8.2% of 

the variance in “perceptual attention”. Notably, using Cohen’s criteria to evaluate effect sizes 

(Cohen et al. 2003), age had a small effect on “language”, a medium effect on “fluency”, and a 

large effect on all other factors; education had a medium incremental effect on “fluency”, 

“language”, and “verbal episodic memory”, but a small incremental effect on other factors; and 

ethnicity had a medium incremental effect on “language” and “verbal episodic memory” but a 

small incremental effect on all other factors.  

The effect of gender was also examined in an additional model. Females were found to 

significantly outperform males in “working memory”, “language”, “fluency”, and “verbal 
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episodic memory”, but all effect sizes corresponding to the incremental contribution of gender 

were negligible. There was no significant incremental effect of gender on “visuospatial 

cognition”, “perceptual speed”, or “perceptual attention”. 

Latent Profile Analyses Results 

Two series of LPAs were conducted investigating individual differences in cognitive 

profiles in terms of absolute and relative abilities.  

First LPA series. The first series of LPAs was carried out, using factor scores corrected 

for age, education, and ethnicity as input. Models were run with number of latent classes 

iteratively increasing between 1 and 8. The maximum loglikelihood of the model with 8 classes 

could not be replicated despite increase of the number of starts to 10,000 – the results that were 

obtained are therefore unreliable (they could correspond to a local maximum) and are not 

presented here. Among the measures of goodness of fit (Table 9), the AIC, BIC, and adjBIC 

indices suggested systematic improvement of model fit with increasing number of classes. 

Entropy indices were equivalent across models, ranging between .88 and .91 and suggesting 

adequate distinction of the latent classes in all model. The LMR likelihood ratio test suggested 

that the two-latent class model improved significantly upon the one-class model (Likelihood 

Ratio: LR=3365, p <.001), and that the three-class model improved significantly upon the two-

class model (LR =1666, p <.001). The LMR likelihood ratio test suggested that improvement in 

fit was not significant between models with four versus three, five versus four, six versus five, 

and seven versus six latent classes (p = .173, .173, .604, and .137, respectively). This lack of 

significant improvement, however, could not be confirmed by the BP likelihood ratio test, not 

reported here due to lack of replication in all bootstrap draws of the best loglikelihood value. 

The average neurocognitive profiles obtained for models with 2 to 7 latent classes are plotted in 
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Figure 4. The resulting variance parameters, separate for each latent class and each factor, are 

indicated in the figure using line-width. In the LPA solutions with two- to five-classes, a ladder-

like distribution of latent class profiles emerged, with profiles that were primarily flat and 

mostly differing in their level of general cognitive ability. Interestingly, in the solution with six 

latent classes, individuals with average general cognitive ability (about 40% of the sample 

population) became divided into two groups with complementary neurocognitive profiles,: one 

group with relatively better performance on factors involving verbal abilities (i.e., “fluency”, 

“language”, and “verbal episodic memory”) and relatively worse on factors involving 

perceptual abilities (i.e., “visuospatial cognition”, “perceptual speed”, and “perceptual 

attention”); and one group with relatively better performance on factors involving perceptual 

abilities and relatively worse performance on factors involving verbal abilities. In the solution 

with seven latent classes, a similar division became apparent for individuals with high-average 

cognitive abilities. The examination of these profiles, added to considerations of all fit indices, 

suggested the presence of a continuum of individual differences rather than the existence of a 

specific number of groups with differing neurocognitive profiles. This continuum is 

predominantly characterized by level of general cognitive ability, even after correcting for age, 

education, and ethnicity. A secondary level of individual differences also appeared at average 

and high-average ability levels, characterized by relative performance on verbal versus 

perceptual tasks. Further investigations are necessary to determine whether this secondary 

division is present at all levels of cognitive abilities and whether it also varies along a continuum.  

Second LPA series. To examine individual differences in relative cognitive abilities, a 

second series of LPA was conducted on factors scores corrected for level of general cognitive 

ability as well as for age, education, and ethnicity. This method allowed to explore patterns of 

individual differences in cognition that might be otherwise masked by the dominant variation 
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along general cognitive ability. Because one dimension of variance was removed by correcting 

for level of general cognitive ability, only six of the seven ability-corrected factor scores were 

used as input into the LPA to avoid multicolinearity. The ability-corrected factor with smallest 

remaining variance, i.e., “working memory”, was selected to not be included in the LPA inputs. 

The scores on this factor were nonetheless calculated for the latent classes identified in the LPA 

solution and were used for result interpretation. LPA models were run with number of latent 

classes iteratively increasing between 1 and 10. All models converged with replication of 

maximum likelihood values using various starting points for the parameters. Among the 

measures of goodness of fit (Table 9), the AIC, BIC, and adjBIC indices suggested systematic 

improvement of model fit with increasing number of classes. Entropy indices also improved 

overall with increasing number of classes – entropy values ranged between .81 and .87, 

suggesting adequate distinction of the latent classes in all models. The LMR likelihood ratio test 

suggested significant improvement in fit for the two-latent class model over the one-class model 

(LR =1483, p <.001), the three-class model over the two-class model (LR =632, p =.017), the 

four-class model over the three-class model (LR =502, p =.012), the seven-class model over the 

six-class model (LR =232, p =.008), and the ten-class model over the nine-class model (LR =115, 

p =.017). The LMR likelihood ratio test suggested no significant improvement for models with 

five versus four, six versus five, eight versus seven, and nine versus eight latent classes (p 

= .130, .117, .178, and .145, respectively). By contrast, the BP likelihood ratio test suggested 

significant incremental improvement for all models between 1 and 7 classes (p <.001). The BP 

likelihood ratio test is not reported for models with 8 classes and beyond due to lack of 

replication in all bootstrap draws of the best log-likelihood value. The pattern of fit indices 

suggested here again the presence of a continuum of individual differences rather than the 

existence of a specific number of groups with differing neurocognitive profiles. Because classes 
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with less than 5% of the population were found in the 9-class solution (one class with < 5% of 

individuals) and 10-class solution (two latent classes with < 5% of individuals), the 8-class 

solution was deemed most relevant and representative of the continuum.  

Estimated mean neurocognitive profiles are presented in Figure 5a for the 8-class 

solution. Standard errors of mean estimates and estimated variances are also plotted for each 

latent class using error bars and linewidth, respectively. The results suggested four pairs of 

nearly mirroring neurocognitive profiles. The first pair of latent classes encompassed about 40% 

of the population and was characterized by small to moderate relative variations in 

neurocognitive profiles (i.e., the maximum amplitude of within-profile variation was about one 

standard deviation in ability-corrected factor score). This pair consisted of “mildly verbal” 

individuals, estimated to represent 19.1% of the population based on estimated posterior 

probabilities, and characterized by slightly better performance, relatively, on verbal compared 

to perceptual factors; and of “mildly perceptual” individuals, estimated to represent 19.5% of 

the population and characterized by slightly better performance, relatively, on perceptual 

compared to verbal factors. All other latent classes presented with larger within profile 

variations. The second pair of latent classes (within-profile variation of about 3 standard 

deviations) consisted of “highly verbal” individuals (13.1%), characterized by markedly better 

relative performance on verbal compared to perceptual factors, and “highly perceptual” 

individuals (8.9%), characterized by markedly better relative performance on perceptual 

compared to verbal factors. The third pair of latent classes (within-profile variation of about 3 

standard deviations) consisted of “visuospatial cognitive” individuals (6.5%), characterized by 

markedly better relative performances on the “visuospatial cognition” and “verbal episodic 

memory” factors compared to the “fluency” factor, and “super fluent” individuals (7.8%), 

characterized by markedly better relative performance on the “fluency” factor compared to the 
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“visuospatial cognition” and “verbal episodic memory” factors. The fourth pair of latent classes 

(within-profile variation of about 2.5 standard deviations) consisted of “verbal memorizer” 

individuals (10.7%), characterized by better relative performance on the “verbal episodic 

memory” factor compared to the “perceptual attention” and “perceptual speed” factors, and “fast 

attentive” individuals (14.4%), characterized by better relative performance on the “perceptual 

attention” and “perceptual speed” factors compared to the “verbal episodic memory” factor. 

Post-Hoc Analyses Results 

Comparison of Absolute Neurocognitive Profiles. The eight latent classes that were 

identified based on differences in relative neurocognitive profiles – i.e., demographic- and 

ability-corrected factor scores (second LPA series) – were also found to differ in absolute 

neurocognitive profiles – i.e., demographic only-corrected factor scores (Figure 5b). To quantify 

those differences, a multivariate analysis of variance was carried out on demographic-corrected 

factor scores with most likely class membership as independent variable (Table 10). 

Homogeneity assumptions were evaluated and validated using Levene’s homogeneity tests (all 

ps > .400). Differences in absolute neurocognitive profiles were found to be significant 

(omnibus test statistics: Wilk’s Λ=.037, F=91.29, p<.001, η2=.374) with effect sizes varying 

from small to large depending on the cognitive domain. Notably, “perceptual speed” had the 

largest between-class variation (univariate test of between-subject effects: F(7,974)=49.8, 

p<.001, η2=.264), followed by  “visuospatial cognition” (F(7,974)=36.6, p<.001, η2=.208), 

“language” (F(7,974)=34.0, p<.001, η2=.196), “fluency” (F(7,974)=30.9, p<.001, η2=.182), 

“perceptual attention” (F(7,974)=21.6, p<.001, η2=.135), “verbal episodic memory” 

(F(7,974)=19.7, p<.001, η2=.124), and “working memory” (F(7,974)=5.3, p=.003, η2=.037). 

Contrasts are also provided in Table 10 comparing mean demographic-corrected factor scores 
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across classes. Most contrasts were found to be significant, confirming that the latent classes 

identified in the second LPA series were distinct both in terms of relative and absolute 

neurocognitive profiles. There was no significant difference across classes, though, in terms of 

level of general cognitive ability (F(7,981)=.528, p=.813, η2=.004). 

For further visualization of within-class variability, relative and absolute 

neurocognitive profiles were plotted for all participants grouped based on their most likely class 

membership (Figure 6). Profiles using demographic- and ability-corrected factor scores are 

provide in the left panels and using demographic only-corrected factor scores in the right panels. 

To limit overlaps, separate plots are provided for each pair of latent classes with seemingly 

mirroring estimated neurocognitive profiles (vertically-arranged panels). Averaged factor 

scores are presented using thicker lines. (The average scores in the left panels of Figure 6 are 

based on most likely class memberships and may thus be different from the LPA estimated 

means presented in Figure 5a.) To quantify differences in absolute neurocognitive profile within 

each pair, univariate analyses of variance were carried out on the demographic-corrected factor 

scores (Table 11). Differences in absolute neurocognitive profiles were found to be small to 

negligible between “mildly verbal” and “mildly perceptual” individuals depending on the 

cognitive domain (η2=.003 to .120), small to large between “highly verbal” and “highly 

perceptual” individuals  (η2=.080 to .509), negligible to large between “visuospatial cognitive” 

and “super fluent” individuals (η2=.002 to .453), and small to medium between “verbal 

memorizer” and “fast attentive” individuals (η2=.024 to .219).  

Comparison of Test Scores. For a more detailed comparison of neuropsychological 

profiles, average test scores were calculated and compared across latent classes for all available 

eHRB test measures (Figures 7) and Wechsler scales measures (Figure 8). Overall, patterns of 

differences across latent classes at the factor score level were also found at the test score level. 
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These differences were quantified using a series of univariate analyses of variance (Table 12). 

Most eHRB test measures were found to vary significantly across latent classes, with effect 

sizes that were small to medium depending on the test. The greatest effect sizes were found for 

the Letter Fluency, Thurstone Word Fluency, Story Memory Test-Trial 1, Story Memory Test-

Learning, Figure Memory Test-Learning, and TPT-total test measures (η2=.20 to .24), followed 

by the Grooved Pegboard, CVLT-Trials 1-5, CVLT-short delay, CVLT-long delay, Figure 

Memory Test-Trial 1, Category Test, and TFR-left hand test measures (η2=.14 to .19). The few 

test measures that did not differ significantly across classes or differed but with a negligible 

effect size were the PASAT (F=.88, p=.525, η2=.013), Digit Vigilance-Error (F=1.04, p=.404, 

η2=.013), and Grip Strength non-dominant (F=2.37, p=.021, η2=.018). Among the Wechsler 

scales, most test measures presented with significant differences across classes but with effect 

sizes that were small (η2=.03 to 07). Variations across classes were larger for Vocabulary 

(F=8.62, p<.001, η2=.095) and Block Design (F=7.72, p<.001, η2=.086); but were negligible or 

non- statistically significant for Digit Span (F=2.37, p=.021, η2=.018), Picture Completion 

(F=1.79, p=.088, η2=.021), and Picture Arrangement (F=1.32, p=.240, η2=.017). In terms of 

within mirroring-class comparison, the demographically-corrected Wechsler scales 

distinguished well (small to medium effect sizes) between the “highly verbal” and “highly 

perceptual” groups and between the “visuospatial cognitive” and “super fluent” groups (Table 

13). By contrast, the “mildly verbal” and “mildly perceptual” groups and the “verbal memorizer” 

and “fast attentive” groups differed only by small effect sizes, notably on Block Design (“mildly 

perceptual” >”mildly verbal”), Vocabulary (“verbal memorizer” >”fast attentive”), and Digit-

Symbol Coding (“fast attentive” >”verbal memorizer”).  

Demographic Corrections of Test Scores. All test scores presented in Figures 7 and 

8 were corrected for age, education, and ethnicity using multiple linear regression. Demographic 
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effect sizes, calculated using hierarchical multiple linear regression models incrementally 

including age, education, and ethnicity, are presented for the eHRB test measures (Tables 14 & 

15) and Wechsler scales measures (Table 16). Models including gender and handedness were 

also run for additional information (see Tables 13 and 14), although no demographic corrections 

were conducted for these variables. To avoid confounds related to disparities in demographic 

distributions between the WAIS and WAIS-R data (ethnicity and age), results in Table 16 are 

presented separately for Caucasian individuals who had been administered the WAIS, 

Caucasian individuals who had been administered the WAIS-R, and African-American 

individuals who had been administered the WAIS-R.  

Most eHRB test measures (Table 14 & 15) presented with medium to large effects of 

age (R2=.134 to .423) and small to negligible effects of education (R2
change=.001 to .065), except 

for measures related to language – i.e., Aphasia Screening Test, BNT, and PIAT Reading 

Recognition – which presented with small to negligible effects of age (R2=.003 to .046) and 

small to medium effects of education (R2
change=.113 to .203), and for the Seashore Rhythm Test, 

Spatial Relations, PASAT, and Digit Vigilance Test-Error, which presented with small to 

negligible effects of age (R2=.006 to .084) and small to negligible effects of education 

(R2
change=.012 to .077). Interestingly, slight differences were found across fluency tests, with a 

greater effect of age but smaller effect of education for the Category Fluency Test (age: R2=.140; 

education: R2
change =.055) compared to the letter fluency tests – i.e., Thurstone Word Fluency 

and FAS (age: R2=.057 and .062; education: R2
change =.136 and .085). Differences were also 

found across memory tests, with effects of age that were medium to large for the CVLT and 

Figure Memory Test (R2=.139 to .296), but small to medium for the Story Memory Test (R2=.063 

to .160). The effects of education were equivalent across memory tests and were in the small 

range (R2
change =.020 to .118). The effect of ethnicity was negligible-to-small for all eHRB test 
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measures (R2
change <.001 to .117), except for the BNT, arguably one of the most culture-

dependent tests, where the effect was medium (R2
change =.199). The effect of gender was also 

negligible-to-small for all eHRB test measures except Grip Strength where the effect was large 

(R2
change=.429 and .431). All effects of handedness were negligible (R2

change<.009). 

For the Wechsler Scales test measures (Table 16), a contrast was observed between the 

verbal measures, which for the most part presented with negligible to small age effects (R2=.006 

to .107) and medium to large education effects (R2
change=.105 to .421); and the performance 

measures, which presented with small to large age effects (R2=.047 to .279) and small to medium 

education effects (R2
change=.024 to .138). An exception was found for Digit Span, which 

presented with negligible to small effects for both age and education (age: R2=.004 to .063; 

education: R2
change=.006 to .045). The effect of gender was negligible-to-small for all Wechsler 

Scales test measures (R2
change= <.001 to .078). All effects of handedness were negligible and 

non-significant. 

Demographic Comparison across Latent Classes. The demographic compositions 

of the latent classes identified using demographic- and ability-corrected factor scores (second 

LPA series) are provided in Table 17. There were no significant difference in age (F=.68, 

p=.689, η2=.005) or education (F=.89, p=.516, η2=.006) across latent classes. Two series of 

logistic regression analyses were carried out, comparing gender, ethnicity, and handedness 

distributions within and across pairs of mirroring latent classes. Significance was tested for 

each comparison using χ2-tests, with p-values considered significant using α=.012 (Bonferroni 

correction). The female proportion was significantly smaller in the “highly perceptual” group 

(32.2%) compared to the “highly verbal” group (49.6%), with an estimated female to male 

odds ratio varying by a factor of exp(b)=.48 (χ2=6.542, p=.011). In probing this effect further 

using contrasts, the female to male odds ratio was found to be significantly smaller in the 
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“highly perceptual” group compared to the other groups combined (exp(b)=.52, Wald=4.002, 

p=.045), but was not significant different in the “highly verbal” group compared to the other 

groups combined (exp(b)=1.07, Wald=.055, p=.815). 

The proportion of females was not different within any other pair of mirroring latent 

classes (ps=.602 to .920) or across pairs of latent classes (ps=.399 to .983). Distributions of 

African American and Caucasian participants did not differ significantly within mirroring latent 

classes (ps=.318 to .826) or across pairs of mirroring latent classes (ps=.028 to .640). There was 

a sizably smaller African American to Caucasian proportion in the combined “visuospatial 

cognitive” and “super fluent” classes (54.2%) compared to the other classes combined (64.3%) 

–odds ratio varying by a factor of exp(b)=.66 (χ2=4.836, p=.028) – but this difference was not 

statistically significant when using α=.012. The proportion of left-handed to right-handed 

individuals was significantly smaller in the combined “mildly verbal” and “mildly perceptual” 

classes (6.6%) compared to the other classes (13.6%) – estimated odds ratio of left-handed to 

right-handed individuals varying by a factor of exp(b)=.45 (χ2=12.425, p<.001). By contrast, the 

proportion of left-handed to right-handed individuals was significantly greater in the combined 

“highly verbal” and “highly perceptual” classes (15.7%) compared to the other classes 

combined (9.4%) – estimated odds ratio varying by a factor of exp(b)=1.8 (χ2=6.497, p=.011). 

The material in this dissertation was, in part, published in the peer-reviewed article: Patt, 

V. M., Brown, G. G., Thomas, M. L., Roesch, S. C., Taylor, M. J., & Heaton, R. K. (2017). 

“Factor Analysis of an Expanded Halstead-Reitan Battery and the Structure of Neurocognition.” 

Archives of Clinical Neuropsychology, in press. The dissertation author was the primary 

investigator and author of this material. Part of the material in this dissertation is also currently 

being prepared for submission for publication: Patt, V. M., Brown, G. G., Thomas, M. L., 

Roesch, S. C., Taylor, M. J., & Heaton, R. K. “Heterogeneity in normal neurocognition: A latent 
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profile analysis of the expanded Halstead-Reitan Battery normative dataset.” The dissertation 

author will be the primary investigator and author of this material. 
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DISCUSSION 

 

The goal of this study was to examine and characterize patterns of individual differences 

in normal neurocognition. Two series of latent profile analyses were carried out on composite 

scores representative of absolute and relative performances in seven neurocognitive domains. 

These domains were identified by factor analysis on the eHRB normative dataset as “working 

memory”, “fluency”, “language”, “verbal episodic memory”, “visuospatial cognition”, 

“perceptual speed”, and “perceptual attention”. The first series of LPA revealed a predominant 

ladder-like continuum of absolute neurocognitive profiles, with some individuals performing 

better or worse across all cognitive domains, despite corrections for age, education, and ethnicity. 

Secondary patterns of individual differences were however apparent at average and high-

average general cognitive ability, separating individuals who had relatively better or worse 

performance in verbal versus perceptual cognitive domains. The second series of LPA 

confirmed the presence of individual differences at every level of general cognitive ability, and 

revealed mirroring patterns of relative neurocognitive profiles characterized by pairs of 

relatively competing cognitive abilities: verbal versus perceptual abilities, visuospatial 

cognition versus fluency abilities, and verbal memory versus perceptual attention and speed 

abilities.  

The remainder of the section is organized in two parts: the first part discusses the eHRB 

factor analysis results by comparing them to previous factor analyses involving the Halstead 

Reitan Battery, and the second part discusses the LPA results in the context of available 

literature on individual differences in neurocognition, including cognitive styles and theories of 

brain function. Limitations and conclusions drawn from this work are then discussed.
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The Cognitive Domains Assessed by the eHRB 

Factor Structure and Interpretation. The cognitive constructs underlying the eHRB 

normative dataset were characterized using a preliminary exploratory factor analysis and 

iterative series of confirmatory factor analysis. The final retained CFA model suggested seven 

cognitive domains, defined as “working memory”, “fluency”, “language”, “verbal episodic 

memory”, “visuospatial cognition”, “perceptual speed”, and “perceptual attention”.  The Finger 

Tapping Test and Grip Strength Test were not included in the analysis to limit gender differences 

related to physiological rather than cognitive influences. Based on an additional CFA which 

provided a good fit of the data, these two tests would have loaded on an 8th “motor” factor.  

To confirm the structure and interpretations of these factors, a supplemental EFA was 

run including the WAIS and WAIS-R variables, initially discarded from the main analyses due 

to the fewer number of subjects to whom these tests have been administered and to confounding 

factors related to battery version, age, and ethnicity. Results from the supplemental EFA 

suggested an 8-factor structure, with 7 of the factors matching those identified in the CFA, and 

an 8th factor interpreted as “verbal knowledge and reasoning” with primary loadings from the 

Wechsler Scales’ Information, Vocabulary, Comprehension, and Similarity subtests, and from 

the BNT (Table 18). 

Perhaps surprisingly, the “visuospatial cognition” factor was found to encompass 

constructs that were both associated with episodic memory (i.e., loadings from the Figure 

Memory Test and from the TPT-shapes and -locations measures) and with reasoning and 

abstraction (i.e., loading from the Category Test). The supplemental EFA including the WAIS 

and WAIS-R subtests confirmed this structure, with the finding of a similar “visuospatial 

cognition” factor encompassing loadings from the Figure Memory Test, TPT, and Category 

Test, as well as from subtests from the Wechsler performance subscale, namely Block Design, 
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Object Assembly, Picture Completion, and Picture Arrangement. These findings are consistent 

with previous factor analytic studies that have examined visuospatial memory tests combined 

with other neuropsychological tests. Indeed, although a few studies have suggested the loading 

of visuospatial memory tests on a separate factor (e.g., Bornstein, 1983), most have reported 

loadings lumped in together with other neurocognitive tests, concluding against separate 

memory modules (e.g., Leonberger, Nicks, Goldfader, & Munz, 1991). The common 

association of visuospatial memory measures to a broader visuospatial cognitive construct might 

suggest that the difficulty of those tasks resides in the visuospatial properties of the stimuli rather 

than in remembering them. These considerations are consistent with previous studies inferring 

that figural stimuli employed in most visual memory tasks may be more difficult to encode than 

stimuli employed in most verbal memory tasks – such studies have proposed matching figural 

and verbal items for encoding difficulty before assessing recall performance across domains 

(e.g., Brown, Patt, Sawyer, & Thomas, 2016).  

The factor analysis results also indicated the presence of a “perceptual attention” factor, 

with primary loadings from the Speech-Sounds Perception Test, Reitan- Kløve Sensory 

Perceptual Examination, Tactile Form Recognition Test, and Seashore Rhythm Test. The 

Speech-Sounds Perception Test and Seashore Rhythm Test were originally designed to measure 

alertness and attention (Reitan & Wolfson, 2009), suggesting that the central construct 

underlying performance on this factor is attention-related. Further, the Reitan- Kløve Sensory 

Perceptual Examination (SPE) and Tactile Form Recognition Test (TFR) were originally 

designed to detect unilateral or bilateral sensory-perceptual deficits, but only in brain-lesioned 

patients. In fact, low performance on these tests has been considered a pathognomonic sign – 

i.e., a strong indicator of brain damage possibly providing information on lesion lateralization 

(Reitan & Wolfson, 2004). Cognitively healthy individuals are therefore not typically expected 
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to make errors on these tests (Spree & Sprauss, 1998), and if they do make errors, these are 

probably more related to lapses in attention rather than to deficits in sensory-perceptual abilities. 

The results of the supplemental EFA supported this interpretation, by showing a secondary 

loading of Digit Span – a measure of verbal attention and working memory – on the “perceptual 

attention” factor. A similar attention-related interpretation has also been proposed in previous 

factor analytic studies (Fowler, Zillmer, & Newman, 1988). 

The “working memory” factor, with primary loadings from the Trail Making Test-Part 

B and PASAT, and secondary loading from Digit Vigilance-Error, is likely also recruiting the 

brain attentional network, but within the context of its involvement in working memory 

(D’Esposito, 2007). Indeed, both the Trail Making Test-Part B and the PASAT have been shown 

to primarily recruit working memory processes (Gonzalez et al. 2006; Sánchez-Cubillo, 2009). 

Working memory may also be involved in Digit Vigilance-Error, as part of the mechanisms 

facilitating visual search, presumably contributing to tracking locations already searched (Oh & 

Kim, 2004). The involvement of working memory was also confirmed in the supplemental EFA 

by the primary loading of Digit Span (combined forward and backward) on the “working 

memory” factor (Table 18). A widely accepted working memory model is that of Baddeley and 

Hitch (1974), encompassing an attentional control system, the “central executive”, which is 

responsible for the manipulation of information, and three independent subordinate systems for 

the storage and maintenance of verbal, figural, and spatial information (Baddeley, 1986; Della 

Sala et al. 1999). It is notable that the current “working memory” factor likely involves the 

“central executive” component of working memory, not simply the subordinate systems. 

Indeed, as reviewed by Tombaugh (2006), the PASAT has been shown to be significantly 

correlated with Digit Span-backward, requiring the mental reordering of numbers (“central 

executive” process), but not with Digit Span-forward, only requiring storage and maintenance 
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of information (subordinate systems). Because tasks involving working memory are somewhat 

more complex than those requiring simple attention, these tasks are more likely to challenge 

cognitively healthy individuals at their level of ability, leading to greater variability in 

performance across individuals (Hambleton, Swaminathan, & Rogers, 1991). Therefore, 

individual differences on the “working memory” factor are likely dominated by individual 

differences in working memory abilities rather than attention abilities in healthy cognitive 

individuals, even though both types of processes are likely simultaneously involved.   

Supporting the factor interpretations listed above, differential effects of age, education, 

and ethnicity were noted depending on the cognitive domain. Notably, large quadratic declines 

were found with age in “working memory”, “verbal episodic memory”, “visuospatial 

cognition”, “perceptual attention”, and “perceptual speed”, with the latter cognitive domain 

suffering the greatest impact. By contrast, medium and very small declines were found in 

“fluency” and “language”, respectively. These findings are consistent with a large body of 

research demonstrating age-related cognitive trajectories that differ across cognitive domains 

(e.g., Hedden & Gabrieli, 2004; Park & Reuter-Lorenz, 2009). Specifically, cognitive domains 

relatively resistant to aging have been identified as verbal ability, some numerical abilities, and 

general knowledge; whereas marked declines have been noted in speed of processing, working 

memory, executive function, and episodic memory. These findings are described well by the 

theory of fluid and crystallized intelligence, which proposes a division of mental abilities into 

two separate components: crystallized abilities, which are considered the manifestation of 

overlearned experiences including education and acculturation and are relatively resistant to 

aging; and fluid abilities, which are considered the manifestation of biological factors and are 

more vulnerable to aging, and especially brain pathology often associated with aging (Cattell, 

1963; Horn & Cattell, 1966; McArdle et al. 2002). Consistent with these accounts, education 
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and ethnicity, which may arguably be considered representative of amounts of common 

overlearned experiences, were found to have their greatest impact on the “language” factor – 

i.e., the only crystallized factor in the present study. Education and ethnicity were also found to 

have sizeable effects on “verbal episodic memory” and “fluency”, perhaps suggesting that 

amounts of crystallized ability underlie all verbal performances, regardless of the amount of 

fluid abilities that they may also require.   

Anecdotally, for application in human resource departments, it might be worth noting 

that the effect of education was positive in all cognitive domains, but with quadratic dampening 

at higher educational levels, suggesting lack of improved cognitive performance between 

individuals with a Master’s and a doctoral degree.  

Comparison to Previous Factor Analyses involving the HRB & Wechsler Scales. 

Although numerous factor analyses (mostly exploratory) have been carried out in the past on 

combinations of select HRB subtests and other neuropsychological tests, no factor analysis of 

the full HRB or full eHRB appears to have been published to date (Ross, Dean, & Fischer, 2013 

for a review). In synthesizing results from these various studies, Ross et al. (2013) noted that no 

single and simple agreed-upon structure has emerged for the HRB, perhaps related to a 

variability in measure selection, heterogeneity in sample selection (often brain-damaged or 

neuropsychiatric patients), and actual complexity of the HRB measures (leading to complex 

factor structures). Nonetheless, Ross et al. (2013) concluded that the HRB likely had a four to 

five factor structure; including four factors corresponding fairly well to those originally 

proposed by Halstead (1947) with his 13 tests of “biological intelligence” plus a possible 

language factor. 

For example, Fowler et al. (1988) identified five factors, based on an exploratory factor 

analysis on a modified version of the HRB with addition of subtests from the WAIS, PIAT, 
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Wide Range Achievement Test (WRAT), and Wechsler Verbal and Spatial Memory Tasks. 

Their sample was composed of 151 neuropsychiatric inpatients. These five factors were: 

“Verbal Comprehension”, “Perceptual Organization”, “Sensory-Attention”, “Tactile-Spatial”, 

and “Primary Motor abilities”, which correspond reasonably well to the current “language”, 

“perceptual speed”, “perceptual attention”, and “visuospatial cognition” factors, and to the 

motor factor that would have been obtained if Finger Tapping and Grip Strength had been 

included in the present CFA analysis. Discrepancies were found, though, in the composition of 

Fowler’s “Perceptual Organization” and “Tactile-Spatial” factors. Specifically, “Perceptual 

Organization” essentially lumped together all the tests from the current “perceptual speed” and 

“visuospatial cognition” factors, while “Tactile-Spatial” remained somewhat undefined with 

loadings from the Wechsler Delayed Spatial Memory task, Grooved Pegboard non-dominant 

hand, and Tactile Form Recognition – dominant and non-dominant hands. These discrepancies 

may be partially attributed to differences in measure selection, sample size, and sample 

characteristics, with likely cognitive impairments among neuropsychiatric inpatient participants.  

Comparison with the factor structure of Fowler et al.(1988) suggests that at least three 

domains of cognitive assessment were added with the expansion of the HRB by Heaton et al. 

(1991, 2004), notably “working memory”, “fluency”, and “verbal episodic memory”. To be 

exact, the eHRB expansion might also have added or at least solidified the “language” cognitive 

domain covered by the HRB. Indeed, the “Verbal Comprehension” factor in Fowler et al. (1988) 

was almost solely composed of subtests added from the WAIS, PIAT, and Wide Range 

Achievement Test (WRAT), and included only weak loadings from HRB tests, namely Aphasia 

Screening, Speech Sounds Perception, and Seashore Rhythm. In other words, it is possible that 

without the added subtests from the WAIS, PIAT, and WRAT, Fowler et al. would not have 

found their “Verbal Comprehension” factor. Interestingly, as shown by the additional factor in 
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the supplemental EFA results, the “language” cognitive construct assessed in the eHRB 

expansion appears to be different from that assessed by the Wechsler subtests. Specifically, 

while the latter primarily requires accumulated verbal knowledge, the earlier might be 

representative of less elaborate language skills. 

The loading of the Category Test on a single and broad visuospatial cognition factor 

may be surprising for a test suggested to recruit abstraction, problem solving, logical analysis, 

organized planning, and organized memory skills (Reitan & Wolfson, 2009). Halstead’s (1947) 

initial factor analysis suggested multifactorial contributions of the Category Test. Specifically, 

he reported loadings on a “central integrative field (C)” factor (along with measures of general 

intelligence and involving integration of various types of perceptual information), and on an 

“abstraction (A)” factor (along with the Carl Hollow Square Test and TPT-shapes and -locations 

measures). Other studies have also reported multifactorial contributions of the Category Test, 

for example with loadings on spatial reasoning and visual memory factors (Leonberger et al. 

1991), or perceptual organization and attention-concentration factors (Ryan, Prifiteria, and 

Rosenberg, 1983). Consistent with the present results, though, other studies have also reported 

single-factor contributions of the Category Test on factors often involving either visuospatial 

cognition (Fowler et al. 1988) or general intelligence (Boyle, 1988).  

The TPT has been the subject of similar discrepancies (Ross et al. 2013), but with a 

consensus overall for loading on a single factor together with the Category Test and WAIS 

performance subtests. Further, separate loadings have been sometimes suggested for the TPT-

shapes and -locations components compared to the TPT speed components (e.g., Boyle, 1988; 

Goldstein, & Shelly, 1971). The present findings are rather consistent with this literature. First, 

the preliminary EFA, which included only one measure per test to avoid instrumental factors, 

showed a primary loading of the TPT speed measure on the “visuospatial cognition” factor 
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(along with the Category Test and Figure Memory Test). This EFA also indicated the presence 

of a secondary loading on the “perceptual speed” factor. Then, during the CFA process, which 

also included same-test measures, a distinction was made between the TPT-total speed measure 

and the TPT-shapes and -locations components. Notably, TPT-shapes and -locations presented 

with single loadings on the “visuospatial cognition” factor, whereas TPT-total presented with 

weak and equivalent loadings on both the “visuospatial cognition” and “perceptual speed” 

factors. In the end, a choice was made to retain a model with TPT-total loading only on 

“perceptual speed”, as this model permitted a stronger factor loading, a slightly better fit of the 

data compared to the alternate model, and a clearer model interpretation with separation of 

measures primarily based or not on speed. 

Consistent with previous EFAs on the HRB (Ross et al. 2013), the current EFA results 

suggest an overall complex factor structure for the eHRB, with many tests loading on several 

factors. Some of the loadings that appear in the EFA solution, however, might have been 

mathematically driven by small loadings from other factors, and the complementary CFA 

approach was essential to clarify the cognitive construct underlying the dataset. For example, 

the EFA results initially suggested loadings of equivalent sizes for the Story Memory Test and 

CVLT on both the “verbal episodic memory” and “attention/working memory” factors. The first 

CFA results proved the loadings on the latter to be non-significant, and they were discarded 

from subsequent CFA iterations. Finally, although the final CFA results appear solid in that they 

represent the convergence of many models, these results remain dependent upon the specific 

eHRB normative sample tested. Indeed, some relationships between variables might not be put 

forth in the testing of healthy cognitive individuals, and different factor analytic results might 

be found in patient samples with different diagnoses. In fact, different factor loadings and even 

factor structures have been occasionally reported in patients with different types of brain 
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dysfunction (e.g., Russell, 1974; Warnock & Mintz, 1979). Nonetheless, the present work does 

provide some indication of the main cognitive domains that are being assessed by the eHRB, 

and certainly constitutes a solid basis for examining individual differences in normal 

neurocognition. 

Individual Differences in Normal Neurocognition 

Absolute Neurocognitive Profiles. Individual differences in neurocognitive profiles 

were first characterized by using LPA on absolute performances in seven neurocognitive 

domains. Results suggested a prevalent ladder-like distribution of profiles, indicating that 

individual differences in cognition are dominated by levels of general cognitive ability, even 

after correcting for age, education, and ethnicity. These findings are consistent with previous 

cluster analyses of neurocognitive batteries, which reported profiles essentially clustered by 

general cognitive ability (Donders, 1996; Konold et al. 1999; McDermott et al. 1989). These 

studies, performed on the Wechsler batteries’ adult (WAIS-R) and children (WISC-III) 

normative datasets, have used scores that were corrected for age only, and reported an impact 

of educational and cultural backgrounds on clustering (e.g., the “high ability” group had an 

over-representation of Caucasian children and children of parents with higher educational levels, 

Konold et al. 1999). The present results suggest that a ladder-like distribution continues to 

dominate individual differences in neurocognitive profiles even after correction for education 

and ethnicity. That is, within every demographic group, it appears that some individuals simply 

tend to perform better than others across cognitive domains.  

These results support the notion of a unitary factor of general intelligence, or g-factor, 

accounting for most individual differences in all cognitive performance (Spearman, 1904). 

Findings that g accounts for a substantially large amount of variance in cognitive testing 
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regardless of the test’s content or modality of administration have been demonstrated in 

hundreds of studies (e.g., Caroll, 1993). Individual differences in g have been shown to be robust 

and stable throughout the life span (Deary, 2000), with strong predictive influence on life 

attainments, such as school achievement, socio-economic success, and health (Deary, Strand, 

Smith, & Fernandes, 2007; Gottfredson, 1997; Strenze, 2007). Individual differences in g have 

also been shown to be robust across test batteries, as long as they include sufficient variety 

across tests (Johnson, te Nijenhuis, & Bouchard, 2008). Considering the variety and number of 

tests included in the eHRB, it is not be surprising that the g-factor would also dominate latent 

grouping in the present study. 

The LPA results showed systematic improvement in model fit with increasing number 

of classes. This pattern suggested the presence of a continuum of individual differences rather 

than the existence of a specific number of qualitatively different groups. In other words, one 

could probably justify dividing cognitively healthy individuals into various numbers of groups 

varying in gradation of ability levels– for example, two groups with low versus high ability 

levels, or five groups with very low, low, medium, high, and very high ability levels.  

Interestingly, LPA solutions beyond six classes started revealing a secondary dimension 

of individual differences. These more subtle profile patterns appeared first at average levels of 

general cognitive ability (6-class solution) and then at high-average levels of cognitive ability 

(7-class solution). At both ability levels, the results suggested distinction of individuals based 

on their relatively better or worse performance on factors involving verbal abilities (i.e., 

“fluency”, “language”, and “verbal episodic memory”) compared to perceptual abilities (i.e., 

“visuospatial cognition”, “perceptual speed”, and “perceptual attention”). These findings are 

again consistent with the cluster analyses that have been carried out on the WAIS-R and WISC-

III normative datasets where minor profile variations in terms of VIQ versus PIQ were reported 
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at various ability levels (Donders, 1996; Konold et al. 1999; McDermott et al. 1989). For 

example, the eight groups resulting from the multistage cluster analysis of the WISC-III 

normative dataset were listed as: “High ability”, “Above average”, “Above average and 

VIQ>PIQ”, “Average and VIQ>PIQ”, “Average and PIQ>VIQ”, “Below average and 

VIQ>PIQ”, “Below average”, and “Low” (Konold et al. 1999). 

Methodological difficulties associated with cluster analysis have been pointed out 

before for distinguishing subtle profile patterns within data containing large differences in 

profile elevations (Moses, Pritchard, & Faustman, 1994). The present results, notably the 

evolution between a ladder-like distribution of profiles at smaller numbers of classes and arising 

of subtle profile patterns at larger numbers of classes, suggested that these difficulties also apply 

to LPA techniques. The issue of identifying subtle patterns obscured by larger variation is 

common in intelligence research, with g almost systematically dominating the amount of 

variance explained in the data and undermining identification of task-specific processes (Deary, 

Penke, & Johnson, 2010). Controlling for g has been suggested before in order to isolate 

processes unique to single tasks (e.g., Johnson, Jung, Colom, & Haier, 2008; Vernon, 1964). A 

similar method was applied in the current study to examine subtle patterns of individual 

differences in relative neurocognitive profiles, independently of general cognitive ability.  

Relative Neurocognitive Profiles. The second series of LPAs, carried out on cognitive 

performances corrected for general cognitive ability, revealed interesting patterns of individual 

differences in neurocognition. The most representative LPA solution suggested eight groups of 

cognitively healthy individuals, defined by pairs of seemingly mirroring relative neurocognitive 

profiles (Figure 5a): “mildly verbal” (19%) versus “mildly perceptual” (20%) individuals, 

characterized by slightly better relative performance  in verbal versus perceptual cognitive 

domains; “highly verbal” (13%) and “highly perceptual” (9%) individuals,  characterized by 
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markedly better relative performance in verbal versus perceptual cognitive domains;  

“visuospatial cognitive” (6%) versus “super fluent” (8%)  individuals, characterized by 

markedly better relative performances in visuospatial cognition and verbal episodic memory 

versus  fluency; and “verbal memorizer” (11%) versus “fast attentive” (14%) individuals, 

characterized by better relative performance in “verbal episodic memory” versus “perceptual 

attention” and “perceptual speed”. The eight groups did not differ in level of general cognitive 

ability.  

These findings support the presence of individual differences in cognition or cognitive 

styles at every level of general cognitive ability, and the idea that two individuals might reach 

identical levels of general intelligence by using different cognitive strategies or neuronal routes 

(Johnson & Bouchard, 2007; Neubauer & Fink, 2009). The resulting pairs of mirroring relative 

neurocognitive profiles suggested specific compensatory mechanisms to permit attaining 

similar levels of general cognitive ability. These compensatory cognitive routes were 

characterized by three main dipoles consisting of: verbal versus perceptual abilities, visuospatial 

cognition versus fluency abilities, and verbal memory versus perceptual attention and speed 

abilities. These mechanisms and potential underlying processes are discussed in the following 

section. 

The eight groups of the most representative LPA solution were found to be distinct both 

in terms of relative and absolute neurocognitive profiles, but with effect sizes varying across 

groups and neurocognitive domains. For example, “highly verbal” individuals were found to 

perform markedly better than “highly perceptual” individuals in all verbal cognitive domains in 

both relative and absolute terms (large effect sizes). By contrast, “mildly verbal” and “mildly 

perceptual” individuals had large overlaps in absolute neurocognitive profiles (small effect 

sizes). As a result, many “mildly verbal” individuals were found to have better absolute 
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performances on perceptual tasks compared to “mildly perceptual” individuals (or vice-versa), 

simply due to higher levels of general cognitive ability. The same was true of “verbal memorizer” 

versus “fast attentive” individuals.  

These considerations likely explain difficulties encountered by previous studies in 

relating differences in cognitive style to differences in cognitive performance. For example, 

self-reported preference for using imagery over verbal strategies (c.f. “Verbalizer-Visualizer 

Questionnaire”, Paivio, 1971; Richardson, 1977) was shown to have weak or no correlation with 

performance on visuospatial tasks (e.g., Alesandrini, 1981; Green & Schroeder, 1990; Lean & 

Clements, 1981). Further, “verbalizers” in some studies were found to perform at an 

intermediate level on all visuospatial tasks (Kozhevnikov et al. 2002, 2005). Because these 

studies did not control for g, it is likely that actual relations between cognitive style and specific 

cognitive performance, if they were present, were masked by larger individual variations in 

general cognitive ability. In other words, it is possible that the “verbalizers” that were identified 

using the “Verbalizer-Visualizer Questionnaire” were indeed better at verbal tasks and worse at 

visuospatial tasks than the “visualizers”, but when comparing “verbalizers” and “visualizers” of 

similar general cognitive ability.  

Three-Dimensional Continuum of Individual Differences in Neurocognition. 

Although the eight-class model provided a good data fit and may arguably offer the most 

representative description of individual differences in neurocognition, the systematic 

improvement of model fit with increasing number of classes suggested again the presence of a 

continuum of individual differences rather than the existence of a specific number of 

qualitatively different groups. That is, one could probably continue dividing the sample into 

more classes of fewer and more cognitively similar individuals. Indeed, the ten-class solution 

resulted in an even better fit of the data with the identification of “very highly verbal” (4.1%) 
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and “very highly perceptual” (2.9%) classes of individuals in addition to the eight classes 

previously described. Solutions beyond eight classes were not retained only due to the smaller 

proportions of individuals represented in the additional classes. 

To explore the continuum underlying all LPA solutions, projections of factor scores 

were calculated onto the three-dimensional vector space corresponding to the three dimensions 

of greatest variance in the data – i.e., the three eigenvectors with largest eigenvalues in the 

demographic-corrected factor scores’ covariance matrix. (Eigenvalues: λ=1.907, 0.362, 0.156, 

0.054, 0.048, 0.014, 0.006). The dimensions corresponding to the next eigenvalues were 

considered to represent minimal amounts of variance by comparison and were not plotted. The 

7-class solution of the LPA on absolute factor scores was nicely revealed in the plane constituted 

by the first two eigenvectors (Figure 9 – left upper panel). Notably, the dominant division of 

individuals by general cognitive ability levels appeared as slices along the first eigenvector 

dimension; and the verbal/perceptual secondary level of individual differences emerged at 

average and high average ability levels along the second eigenvector dimension. Unsurprisingly, 

the 8-class solution of the LPA on relative factor scores did not appear clearly in this plane due 

to the removal of information pertaining to general cognitive ability (Figure 9 – left lower panel). 

The LPA relative solution, though, distinctly emerged in the plane constituted by the second 

and third eigenvectors (Figure 9 – right lower panel).These plots confirm continuity between 

the latent classes identified in the two LPA series and suggest a mostly three-dimensional 

continuum of individual differences in normal neurocognition as defined by performance on the 

eHRB. 

Dimension 1: general cognitive ability. As previously mentioned, the first and by far 

dominant dimension of this continuum (eigenvector 1) may be interpreted as levels of general 

cognitive ability – i.e., the g-factor or psychometric definition of general intelligence (Spearman, 
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1904). This primary channel of individual differences is visualized in Figure 9 by a dominant 

stretch of data in this direction and by large positive correlations between factors (Figure 9 – 

left panels, see also Table 7). The factor most representative of this general direction of variance, 

or factor with smallest amount of remaining variance after controlling for general cognitive 

ability, was the “working memory” factor. This is perhaps not surprising as the measures with 

greatest loadings on this factor (i.e., Trails Making Test-Part B and PASAT) have been shown 

to require the simultaneous integration of a wide range of key abilities – including verbal 

working memory, visual search or imagery strategies, cognitive flexibility, and processing 

speed – and have been described as non-specific, highly sensitive, and among the best indicators 

of general brain function (Reitan, 1955b; Reitan & Wolfson, 2009; Sánchez-Cubillo, 2009; 

Tombaugh, 2006). Further, working memory, the brain system dedicated to the temporary 

storage and manipulation of information, has been suggested to be one of the best predictors of 

general intelligence (e.g., Engle, Tuholski, Laughlin, & Conway 1999; Kyllonen, 1996; Jensen, 

1998), with a basis for this relationship thought to be mediated by executive-attention control 

and involvement of the dorsolateral prefrontal cortex (Conway, Kane, & Engle, 2003). 

Individual differences in general cognitive ability have been suggested to be related to 

individual differences in brain structure and activation, white matter integrity, and brain 

efficiency (e.g., Deary et al. 2010; Jung & Haier, 2007; Neubauer & Fink, 2009). Notably, brain 

correlates of the g-factor have been reported to include brain volume (e.g., Reiss, Abrams, 

Singer, Ross, & Denckla, 1996) and cortical thickness (e.g., Narr et al. 2007), with more recent 

studies suggesting that trajectory of change in brain structure may be more closely related to g 

than brain structure itself (Shaw et al. 2006; Schnack et al. 2015). Specifically, Schnack et al. 

(2015) found an association between higher IQ and greater and faster changes in brain structure 

during cognitive development (i.e., faster cortical surface area expansion and cortical thinning 
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during childhood, followed by faster surface area reduction and cortical thickening). Specific 

brain regions have also been associated with individual differences in general cognitive ability. 

Notably, based on a review of structural and functional neuroimaging studies, Jung & Haier 

(2007) proposed a parieto-frontal integration theory of intelligence. They suggested that 

individual differences in intelligence resides in a network of brain regions, involving the 

occipital and temporal lobes (i.e., the extrastriate cortex, fusiform gyrus, and Wernicke’s area 

for the recognition, imagery, and elaboration of visual and auditory inputs), parietal lobes (i.e., 

the supramarginal, superior parietal, and angular gyri involved in symbolism, abstraction, and 

elaboration), and frontal lobes (i.e., the dorsolateral prefrontal cortex, engaged in working 

memory processes for comparison of possible behavioral responses, and the anterior cingulate 

cortex responsible for response engagement and inhibition of alternative responses). Most of 

these brain regions were found to involve predominant activation of the left hemisphere, 

although some showed dominant involvement of the right hemisphere. White matter integrity 

but also network organizational efficiency have also been related to greater levels of general 

intelligence (Deary et al. 2006; Li et al. 2009), presumably contributing to more efficient 

interactions between the brain regions identified above (Jung & Haier, 2007). Further, higher 

IQ has been associated with lower cortical activity at rest or during tasks of low to moderate 

difficulty, but higher cortical activity during more difficult tasks, especially in frontal and 

parietal regions (Neubauer & Fink, 2009; Song et al. 2008; van den Heuvel, Stam, Kahn, & 

Hulshoff Pol, 2009). The notion of brain functional efficiency may therefore be key for 

understanding individual differences in general cognitive ability (Neubauer & Fink, 2009).  

Dimension 2: “verbal” vs. “perceptual”. The second dominant dimension of 

individual differences (eigenvector 2), after controlling for general cognitive ability, was found 

to distinguish individuals based on their verbal versus perceptual abilities. Specifically, 
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individual differences along this dimension were characterized by a tradeoff between relative 

performances in “language”, “fluency”, and to a lower extent “verbal episodic memory” 

(negative y-values in Figure 9) and relative performances in “visuospatial cognition”, 

“perceptual speed”, and “perceptual attention” (positive y-values). In other words, a negative 

association was found between verbal and perceptual abilities after controlling for general 

cognition, a finding consistent with previous studies (e.g., Johnson & Bouchard, 2006; Vernon, 

1964).  

Because general cognitive ability represented a far dominant source of variance, 

controlling for it was mathematically bound to lead to some negative correlations among 

residual scores (Vernon, 1964). Nonetheless, as previously debated (e.g., Johnson & Bouchard, 

2006; Lynn, 1990), the exact pattern of associations between residual scores is not dictated by 

the method and is considered representative of actual relationships between underlying 

cognitive processes. For enhanced interpretation, projections of all available demographic-

corrected test scores were also calculated and plotted on the three-dimensional eigenvector 

space (Figure 10). Almost all tests had projections that were consistent with expectations (Table 

1), confirming the interpretation of eigenvector 2 as a “verbal-perceptual” dimension. The only 

exception was the PASAT, a measure primarily considered to assess verbal working memory 

(Gonzalez et al. 2006), but that unexpectedly projected toward the perceptual direction. 

Involvement of perceptual processes during PASAT administration might be consistent, though, 

with the complexity and non-specificity of the task (Tombaugh, 2006) and with previous 

findings suggesting correlations between visual-spatial abilities and performance on the PASAT 

and other tasks requiring mathematical operations (Hegarty & Kozhevnikov, 1999; Sherman, 

Strauss, & Spellacy, 1997). 
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The finding that individual differences in cognition are dominated, after parsing out 

general cognitive ability, by verbal versus perceptual differences, supports the relevance of the 

cognitive style literature that has divided and examined individuals along a verbalizer-versus-

imager dimension (Binet, 1894; Galton, 1883, Paivio, 1971; Riding & Cheema, 1991). The 

present results especially confirm the conceptualization of individual differences in verbal 

versus perceptual cognitive abilities along a continuum rather than as categorical types 

(Thorndike, 1914). Specifically, consistent with the distribution of VIQ minus PIQ scores 

presented in Matarazzo & Herman (1985), the frequency distribution of individuals along the 

verbal-to-perceptual dimension was found to be normal and centered on zero. Individuals with 

smaller within-profile variations were therefore more common than those with larger variations. 

Nonetheless, large within-profile variations along the verbal-to-perceptual dimension were not 

uncommon. For example, 22% of individuals were classified as either “highly verbal” or “highly 

perceptual” and had within-profile variation of about 1.4 standard deviation, on average, 

between their language and visuospatial demographic-corrected performances. These results are 

consistent with the important base rates of statistically significant VIQ/PIQ discrepancies 

published by Matarazzo & Herman (1984, 1985). An association between greater FSIQ and 

greater base rates of large VIQ/PIQ differences was also reported in Matarazzo & Herman 

(1985). That finding, however, was not supported in the present study. In fact, no difference 

was found in general cognitive ability between “mildly verbal or perceptual” and “highly verbal 

or perceptual” individuals. The present results suggest similar distributions of relative cognitive 

strengths and weaknesses at all levels of general cognitive ability. 

By highlighting the predominant importance of verbal versus perceptual abilities for 

understanding individual differences in normal neurocognition, the present study also brings 

support to theories of information processing that have distinguished between a verbal and non-
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verbal system of object representations (e.g., Paivio, 1971). Notably, Paivio (1991) suggested 

in his dual coding theory that the verbal and non-verbal systems had additive effects on 

cognitive performance and may be activated differentially depending on task demands and on 

individual differences in verbal versus imagery abilities. The present findings support these 

ideas, suggesting that similar levels of general cognitive performance may be reached by 

individuals differing in their verbal versus perceptual abilities, presumably by using information 

processing strategies differentially involving the verbal or non-verbal systems. Notably, the 

results suggest amplitude-bound compensation between verbal and perceptual abilities, with 

greater strengths in one area permitting compensation of greater weaknesses in the other area. 

Such compensatory relationships were found both in terms of relative and absolute 

performances, although with large effect sizes only for more extreme profiles. These 

considerations are consistent with previous reports of a double dissociation between verbal or 

imagery cognitive styles and performances on tasks involving verbal symbolization or concrete 

imagery (e.g., Kuhlman, 1960; Luria, 1968). For example, children classified as high imagers 

were better at recalling concrete visual stimuli but worse at categorizing objects into abstract 

categories, whereas children classified as low imagers showed the opposite trend (Kuhlman, 

1960). Such clean findings are scarcely found in the literature, though, with most studies 

reporting inconclusive differences in absolute cognitive performance between individuals 

varying in verbalizer/imager cognitive styles (Alesandrini, 1981; Green & Schroeder, 1990; 

Kozhevnikov et al. 2002, 2005; Lean & Clements, 1981). As mentioned before, the absence of 

such findings are likely related to a failure to control for the g-factor and the obscuring of subtle 

individual differences by larger variations in general cognitive ability.  

Individual differences along a verbal-to-perceptual dimension maps rather nicely on the 

demonstrated lateralization of brain functions, with the left hemisphere specializing in language 
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processing and the right in visuospatial and perceptual processing (e.g., Broca, 1861; Milner, 

1971; Sperry, 1975; Spring & Deutsch, 2001). The question of individual variations in terms of 

right-brain versus left-brain processing seems therefore legitimate, with perhaps the idea that 

individuals might differentially use right versus left hemisphere neuronal routes to reach similar 

levels of general cognitive ability. There has been no clear evidence so far about the existence 

of left-brained versus right-brained phenotypes. In fact, a recent fMRI study ruled against it, 

based on lack of finding for greater left versus right network strength in resting state functioning 

connectivity across individuals (Nielsen et al. 2013). This study, however, did not have 

information about their subjects’ general cognitive ability and thus could not correct for it. The 

obscuring by g of individual differences in brain activation related to specific tasks has been 

suggested to greatly impact imaging studies (e.g., Keary et al. 2010). It is therefore possible that 

individual differences in general cognitive ability, which have been shown to involve a bilateral 

parieto-frontal network of brain areas (Jung & Haier, 2007), might have masked subtle patterns 

of individual differences in brain function, notably between the right and left hemisphere. Using 

magnetic resonance imaging (MRI) and voxel-based morphometry (VBM), Johnson & 

Bouchard (2008) did examine regional brain structure correlates of verbal versus spatial rotation 

cognitive abilities independent of g, but again did not especially report lateralized effects of one 

or the other cognitive domain. As they suggested though, their sample size was small for 

examining individual differences, and their study is pending replication in a larger and broader 

sample. It is also possible that only a subset of individuals in the population may actually qualify 

as “right-brainers” or “left-brainers”. Indeed, in the present LPA results, only “highly verbal” 

and “highly perceptual” individuals displayed large effect size differences between their verbal 

and perceptual absolute performances – and they represented only 22% of the sample population. 

To have a chance of detecting right-brain versus left-brain phenotypes, imaging studies might 
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have to preliminary sort individuals based on their relative cognitive strengths and weaknesses, 

and compare only those with larger within-profile variations at equal levels of general cognitive 

ability. 

Dimension 3: “analysis” versus “attention/speed”. The third dimension of largest 

individual variations in normal neurocognition as measured by the eHRB (eigenvector 3) was 

found to involve a tradeoff between relative performances in “verbal episodic memory”, 

“visuospatial cognition”, and “language”, and relative performances in “perceptual attention”, 

“fluency”, and “perceptual speed” (Figure 9, right panels). As mentioned in the previous section, 

although some negative correlations between residual scores after correcting for general 

cognitive ability were mathematically bound to occur, the patterns of associations between 

residuals are considered representative of underlying cognitive processes (Lynn, 1990; Johnson 

& Bouchard, 2006; Vernon, 1964). The examination of the factors and tests that projected onto 

this third dimension (Figure 10) suggested a tradeoff between relative cognitive abilities related 

to the “analysis” of material content, including  learning, memory, and reasoning (dominant 

projections: Story Memory Test, CVLT, Figure Memory Test, Category Test, and BNT)  and 

“attention/speed” relative abilities, including sustained attention, behavioral engagement, and 

speed (dominant projections: Speech-Sounds Perception Test, Seashore Rhythm Test, Tactile 

Form Recognition Test, Digit Vigilance Test – Time, Trail Making Test – Part A, FAS Letter 

Fluency Test, Thurstone Word Fluency Test, and Grooved Pegboard Test).  

The comparison of projections of same-test variables supported this “analysis” versus 

“attention/speed” interpretation. For example, the TPT trials’ speed measures (i.e., how fast 

participants were able to place a specific number of shapes onto a wooden board while blind-

folded) projected toward “attention/speed” while the TPT memory measures (i.e., recall of the 

shapes and their locations on a wooden board) projected toward the “analysis” direction. In a 
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similar way, the Digit Vigilance Test‘s speed measure (i.e., time of test completion) projected 

toward “attention/speed”, whereas its accuracy measure (i.e., number of errors committed) 

projected toward “analysis”. Further, the phonemic fluency measures (FAS Letter Fluency and 

Thurstone Word Fluency Tests), which have been suggested to bare higher executive loads (e.g., 

Baldo, Schwartz, Wilkins, & Dronkers, 2006; Gourovitch et al. 2000), had larger projections 

onto “attention/speed” than the semantic fluency test (Category Fluency Test). The projections 

of the Wechsler scales’ test measures, which were not included in the factor analyses and were 

therefore not involved in the construction of the continuum, were also consistent with the 

proposed interpretation. Notably, the Wechsler verbal subtests showed increasing projections 

toward the “analysis” direction with increasing demands, arguably, on reasoning and analytic 

skills rather than solidified knowledge (in order from least to most analytic: Vocabulary, 

Information, Comprehension, Similarities, and Arithmetic). A similar pattern was true for the 

Wechsler performance subtests which differentially projected toward “analysis” with increasing 

reasoning and perhaps verbal demands as opposed to perceptual skills (in order: Object 

Assembly, Block Design, Picture Completion, and Picture Arrangement). Strikingly almost all 

the Wechsler subtests were located in the “analysis” hemi-field, with only Digit Symbol-Coding 

projecting toward “attention/speed”. (Digit Span projected mostly onto the general cognitive 

ability dimension, consistent with projections of other measures involving working memory, 

such as the PASAT and Trail Making Test –Part B.) 

It must be emphasized that the identified tradeoff between “analysis” and 

“attention/speed” only applies to relative neurocognitive abilities. That is, the results suggest 

that two individuals with similar general cognitive ability might employ the two following 

cognitive routes to reach similar scores on most neurocognitive tests: (1) an “analysis” route, 

which involves in-depth processing of content material including learning, memory, and 
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reasoning; and (2) an “attention/speed” route, which involves sustained attention, behavioral 

engagement with fast execution, and presumably fast adjustment depending on feedback. These 

tradeoff mechanisms are well described by the military terms “strategy” versus “tactics”, which 

deal with analyzing, preparing, and planning operations versus observing and reacting to events 

as they unfold. 

Similar accuracy-versus-speed tradeoffs have previously been suggested to describe 

individual differences in cognition, notably in terms of “reflection” versus “impulsivity” 

cognitive styles, where “reflection” refers to a tendency to carefully deliberate in uncertain 

conditions and “impulsivity” to a tendency to make decisions quickly (Messer, 1976 for a 

review). Perhaps related to a lack of control for general cognitive ability, the studies reviewed 

by Messer (1976) have often painted a negative picture of “impulsivity”. In particular, impulsive 

children, often identified only in terms of their response speed, have been associated with lower 

IQ, lower sustained attention, and school failure (Messer, 1976). If IQ had been examined first, 

though, it might have been found to account for the largest portions of variance in all cognitive 

performances, including number of accurate answers, speed of decision making, and levels of 

sustained attention. Then, among individuals of similar IQ, more impulsive children might have 

shown better attention skills than their IQ counter-parts, and perhaps even outperformed them 

in tasks other than those requiring pondering and analyzing. 

Interestingly, the cognitive mechanisms involved in the “analysis” versus 

“attention/speed” tradeoff appear remarkably consistent with Luria’s theory of brain functioning 

and his division of the higher cortex into three interacting “blocks” (Luria, 1970). Specifically, 

the processes corresponding to better performance in the “analysis” direction are consistent with 

“block 2” processes, encompassing the analysis, coding, and storage of information; and 

processes leading to better performance in “attention/speed” are consistent with “block 3” 
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processes, encompassing attention regulation and the generation of intentions and behavioral 

programs. With the close correspondence between Kosslyn’s theory of cognitive mode and 

Luria’s theory of brain functioning, the “analysis” versus “attention/speed” tradeoff also maps 

well onto Kosslyn’s “bottom-brain” and “top-brain” systems (Kosslyn & Miller, 2013). Notably, 

cognitive constructs representative of the “analysis” direction may be subsumed under the 

“bottom-brain” or ventral pathway functions – i.e., the organization, comparison to memory 

content, classification, and interpretation of incoming information; and cognitive constructs 

representative of the “attention/speed” dimension may be classified as “top-brain” or dorsal 

pathway functions, including the voluntary allocation of attention and executive functions such 

as planning, monitoring, and adjusting the carrying out of plans (Kosslyn & Miller, 2013; Posner, 

1980; Sereno, Pitzalis, & Martinez, 2001).  

Despite the correspondence noted above, the tradeoff identified as “analysis” versus 

“attention/speed” is in no way suggesting a tradeoff between “bottom brain” and “top brain” 

functions. In fact, most of the individual variance in “bottom brain” and “top brain” functioning 

is likely related to variance in general cognitive ability, or g-factor, just like variance in any 

brain region related to cognition (Deary et al. 2010). Further, considering that individual 

differences in g have been shown to involve brain regions recruited in information processing 

(Jung & Haier, 2007), this is probably even truer of Kosslyn’s proposed “bottom brain” and 

“top brain” systems which were identified based on information processing theory (Kosslyn & 

Miller, 2013). What the present “analysis” and “attention/speed” tradeoff suggests is that at 

equivalent level of general cognitive ability, two individuals might use their “bottom-brain” or 

“top-brain” functions differentially to arrive at similar scores on most cognitive tests. 

Dimensions 2 × 3. The eight latent classes identified in the second series of LPA on 

ability-corrected factor scores were distinguished with little overlap in the continuum defined 
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by the verbal-perceptual and “analysis”-“attention/speed” dimensions (Figure 9). Such neat 

division confirmed discarding dimensions of variance beyond the third eigenvalue for 

interpreting differences across latent classes. Mirroring pairs of latent classes may be described 

symmetrically within this two-dimensional continuum. The “highly verbal” class may be 

described as “verbal” and “slightly analytic”, the “highly perceptual” group as “perceptual” and 

“slightly executive”, the “super fluent” group as “verbal” and “attentive/fast”, the “visuospatial 

cognitive” group as “perceptual” and “analytic”, the “verbal memorizer” group as “slightly 

verbal” and “analytic”, and the “fast attentive”  group as “slightly perceptual” and 

“attentive/fast”. The “mildly verbal” and “mildly perceptual” groups were differentiated only 

along the verbal-perceptual dimensions. (The qualifier “slightly” represents differences of at 

least medium effect sizes, verified using univariate analyses of variance). Interestingly, LPA 

grouping suggests that the “verbal”-“perceptual” and “analysis”-“attention/speed” dimensions 

might not be completely orthogonal to each other. (That is, the “analysis”-“attention/speed” 

dimension might not be completely aligned with eigenvector 2.) Indeed, among the six LPA 

classes with large within-profile variations, four of them showed the associations 

“verbal”/“analytic” or “perceptual”/“attentive/fast”. A small association between “verbal” and 

“analytic” relative cognitive skills would be consistent with previous research on cognitive 

styles, suggesting that individuals identified as having verbal cognitive styles were more 

analytic, whereas individuals with imagery cognitive styles were more holistic (e.g., Kirby et al. 

1988). This association would also be consistent with the dual coding theory of Paivio (1971), 

who proposed the existence of a verbal system for both language processing and abstraction, 

permitting the symbolic representation and categorization of objects and experiences. Further 

evidence is necessary, though, to confirm the “verbal/analytic” association in terms of individual 

differences in cognition and examine whether the complementary processes – i.e., holistic and 
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concrete information processing – may be related to the “attention/speed” and “perceptual” 

dimensions. 

Two orthogonal tradeoff dimensions have been reported before as part of a study 

examining cognitive performance corrected for g (Johnson & Bouchard, 2006). Although the 

authors arrived at a different interpretation of these dimensions, the cognitive processes 

involved in the tradeoffs are strikingly similar to the results of the present study, supporting the 

possible generalization of the findings to other test batteries and subject samples. Using the twin 

study sample from the Minnesota Study of Twins Reared Apart (MISTRA, N=436), Johnson & 

Bouchard (2006) performed a confirmatory factor analysis of g-corrected as well as age and 

sex-corrected scores obtained on 42 tests selected from the Comprehensive Ability Battery, 

Hawaii Battery, and WAIS. These tests covered a wide range of cognitive abilities, identified 

in another factor analytic study as verbal, scholastic, fluency, number, content memory, 

perceptual speed, spatial (or visuospatial), and image rotation abilities (Johnson & Bouchard, 

2005). In the third-stratum of their analysis, Johnson & Bouchard (2006) extracted three non-

rotated and thus orthogonal factors, consisting of “content memory” and of two tradeoff 

dimensions termed “rotation-verbal” and “focus-diffusion”. (They reported difficulties with the 

matrix of correlations not being positive definite and used heavy ridge smoothing.) The 

“rotation-verbal” dimension was characterized by positive loadings from visuospatial, rotation, 

and perceptual speed, and by negative loadings from verbal, scholastic, and fluency. The “focus-

diffusion” dimension was predominantly characterized by positive loadings from perceptual 

speed and fluency (content memory also loaded positively on this dimension but to a smaller 

extent), and by negative loadings from scholastic and visuospatial abilities. Based on these 

primary loadings, the two tradeoff dimensions identified in Johnson & Bouchard (2006) appear 

rather consistent with the “verbal-perceptual” and “analysis-attention/speed” dimensions 
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identified in the present study. The only major difference was related to “content memory”, 

which Johnson & Bouchard (2006) identified as a third orthogonal residual dimension, and as 

having a small positive loading on “focus-diffusion”. Perhaps related to this difference, the 

interpretation of the “focus-diffusion” dimension was very different, proposing a tradeoff 

between relative abilities requiring the application of focused attention (i.e., verbal, scholastic, 

visuospatial, and image rotation) and those requiring more diffuse attention to a variety of cues 

simultaneously (i.e., fluency, perceptual speed, and content memory). The reason that abilities 

such as fluency, perceptual speed, or content memory should require more diffuse attention than 

language, scholastic, visuospatial, and image rotation abilities, was not justified based on prior 

literature and may not seem warranted. Nonetheless, the similarities between the orthogonal 

dimensions of Johnson & Bouchard (2006) and the present results are very encouraging, likely 

supporting the intrinsic existence of a continuum of individual differences in residual cognitive 

abilities that is dataset-independent.  

Demographic Distributions across Neurocognitive Profiles 

The demographic compositions of the identified latent classes indicated no difference 

in age, education, and ethnicity distributions across groups. These findings suggest the presence 

of similar patterns of relative cognitive strengths and weaknesses at each age, educational level, 

and across African American or Caucasian ethnicity, provided that each cognitive domain be 

previously and separately corrected for these demographics. 

Gender. Equivalent distributions of males and females were also found across most 

latent classes, but with the exception of the “highly perceptual” group, where the proportion of 

females was significantly smaller. In other words, there was an over-representation of males 

among individuals with disproportionately greater relative perceptual compared to verbal skills 
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and slightly better attention and executive speed compared to analysis skills. Although the 

proportion of females was the largest in the “highly verbal” group, that proportion was not 

significantly different from that of the other groups combined. These rather minimal gender 

differences in terms of distributions of neurocognitive profiles were also confirmed by minimal 

differences in average scores on the factors and three-dimensional continuum. Notably, females 

were found to outperform males in “working memory”, “language”, “fluency”, and “verbal 

episodic memory”, but with negligible effect sizes, and there were no significant gender 

differences in “visuospatial cognition”, “perceptual speed”, and “perceptual attention”. Further, 

gender differences were also significant but negligible in effect sizes on the general cognitive 

ability dimension (F(1,980)=4.4, p=.036, η2=.004, females better than males) and on the 

“verbal-perceptual” dimension (F(1,980)=4.1, p=.042, η2=.004, females more verbal, males 

more perceptual, see Figure 11); and there was no significant gender difference on the “analysis-

attention/speed” dimension (F(1,980)=0.2, p=.665, η2<.001).  

These results overall suggest great similarity across gender in relative neurocognitive 

profiles, consistent with reviews and meta-analyses suggesting more cognitive similarities than 

differences between men and women (Hyde, 2005; Zell et al. 2015). The small effects that were 

nonetheless noted were consistent with previous accounts suggesting that males tend to 

outperform females on visuospatial tasks and that females tend to outperform males on verbal 

tasks (Maccoby & Jacklin, 1974), although with differences in verbal skills that have been 

suggested to be small (Cohen’s d = −0.11, Hyde, 2014).  

These findings contrast with the large gender differences in relative cognitive abilities 

reported by Johnson & Bouchard (2006), with males scoring higher towards the “rotation” and 

“focus” poles, and females scoring higher toward the “verbal” and “diffusion” poles and higher 

on the “content memory” factor (Cohen’s d=0.58, 0.90, and 0.62, respectively). Part of this 
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discrepancy in gender findings might be related to the inclusion in Johnson & Bouchard (2006) 

of tests assessing mental rotation abilities, with such tests being absent in the present study. 

Indeed, gender differences in visuospatial skills have been shown to vary depending on the task 

(Voyer, Voyer, & Bryden, 1995), with robust gender gaps demonstrated in tasks requiring the 

spatial manipulation of mental images, especially 3D mental rotations (Cohen’s d=0.57, Maeda 

& Yoon, 2013), while gender differences have been shown to be small to negligible in 

visuospatial perception and visuospatial cognitive tasks (Voyer et al. 1995), and even to benefit 

women in object-location memory (Voyer, Postma, Brake, & Imperato-McGinley, 2007). It is 

therefore possible that with the absence of mental rotation tests in the eHRB normative database, 

gender differences in cognition were underestimated in the present study. That said, the large 

gender gap reported by Johnson & Bouchard, (2006) along the “focus-diffusion” dimension 

seems harder to reconcile with the present absence of findings along the “analysis-attention & 

executive” dimension. Indeed, gender differences suggesting use of more “focused” attention 

in men and more “diffused” attention in women does not hold strong baring in the literature. In 

fact, the opposite trend might be expected based on prior studies suggesting information 

processing that is more analytic in women and more holistic or intuitive in men (e.g., Heil & 

Jansen-Osmann, 2008; Sadler-Smith, 1999). 

Handedness. Considerations of handedness distributions across neurocognitive 

profiles suggested a disproportionately smaller proportion of left-handers among individuals 

with smaller within-profile variations (i.e., the “mildly verbal” and “mildly perceptual” groups) 

and a disproportionately greater proportion of left-handers among individuals with large 

variations between verbal and perceptual abilities (i.e., the “highly verbal” and “highly 

perceptual” groups). These results suggest greater intra-individual variability in neurocognition 

in left-handed compared to right-handed individuals.  No significant differences were found 
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between right-handed and left-handed individuals in terms of average scores on the factors or 

on the three-dimensional continuum, including general cognitive ability (F(1,980)=0.6, p=.459, 

η2=.001), “verbal-perceptual” dimension (F(1,980)=1.1, p=.286, η2=.001), and “analysis-

attention/speed” dimension (F(1,980)=0.1, p=.754, η2<.001). On all three of the continuum 

dimensions, however, the distributions of scores of left-handers were found to be flatter 

(kurtosis = -0.41, -0.21, and -0.48 on dimensions 1, 2, and 3, respectively) than those of the 

right-handers (kurtosis = -0.18, 0.31, and 0.05 – see Figure 11), thus supporting the presence of 

more cognitive variability in this population. 

The effect of handedness on neurocognitive abilities has been the subject of much 

debate (e.g., Corballis, Hattie, & Fletcher, 2008; McManus, 2002). Notably, left-handedness 

has been related to a functional reorganization of the brain’s usually dominant left-hemisphere, 

resulting in the relocalization of hand-control and often language functions (Jung, Baumgärtner, 

Magerl, & Treede, 2008). This re-organization has been suggested to have beneficial effects and 

lead to enhanced brain functions, with some studies suggesting an over-representation of left-

handers among bright and even gifted individuals (Benbow, 1986; Halpern, Haviland, and 

Killian, 1998). By contrast, other accounts have suggested that left-handedness, unless inherited 

genetically, might be acquired due to early brain damage to the left cerebral hemisphere and 

thus be related to general cognitive deficits (Miller, Jayadev, Dodrill, & Ojemann, 2005; 

Ramadhani, Koomen, Grobbee, van Donselaar, van Furth, & Uiterwaal, 2006; Satz, Orsini, 

Saslow, & Henry, 1985). This theory has been supported by reports of an association between 

left-handedness and general deficits in cognitive ability (Johnston, Nicholls, Shah, and Shields, 

2009). 

The present findings, suggesting greater intra and inter neurocognitive variability in 

left-handed individuals, are consistent with previous reports of an over-representation of left-



98 

 

 

 

handed individuals in both the upper-tail (Benbow, 1986) and lower tail (Johnston et al. 2009) 

of general cognitive abilities. The greater proportion of left-handers among individuals with 

large intravariability along the verbal-perceptual dimension is also consistent with previous 

findings suggesting an over-representation of left-handers among individuals with superior 

verbal reasoning skills (Halpern et al. 1998) and among individuals with superior perceptual 

skills, such as creative artists (Preti & Vellante, 2007). The increased intravariability noted along 

the verbal-perceptual dimension might be related to cerebral functional reorganization 

associated with left-handedness, previously shown to differentially affect lateralized brain 

functions (Jung et al. 2008).  

The present findings certainly do not support the presence of general or specific 

cognitive deficits in left-handed compared to right handed individuals. It has been suggested, 

however, that handedness should be examined not only in terms of dichotomous self-reported 

hand-preference (as in the present study) but also in terms of strength of handedness, with many 

studies reporting decreased cognitive performance with weaker hand-lateralization (e.g., 

Corballis et al. 2008; Crow, Crow, Done, and Leask, 1998). A few studies, however, have also 

reported the opposite trend. For example, Nicholls et al. (2010) have examined the effect of both 

hand-preference (using the Annett Handedness Questionnaire; Annett, 1970) and hand-

performance (measured as the discrepancy between participants’ right- and left-hand finger 

tapping scores) on general cognitive abilities. They found a quadratic effect of hand-

performance on general cognitive ability and concluded that strong left-handers and strong 

right-handers had a subtle disadvantage compared to individuals with smaller hand-performance 

disparities.  

To test the effect of strength of handedness on general cognitive ability in the present 

study, a similar method as that of Nichols et al. (2010) was tried out. Specifically, disparities 
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between right-hand and left-hand performance were calculated by using scores on the Finger 

Tapping Test, Grooved Pegboard Test, Grip Strength Test, Sensory-Perceptual Examination, 

and Tactile Form Recognition Test. As suggested in Nicholls et al. (2010), the equation (Right 

- Left) / (Right + Left) was employed to calculate the lateralization indices of hand-performance. 

The results obtained were rather mixed. First, although significant effects of self-reported 

handedness were found on the three motor-based lateralization indices (p<.001), these effects 

were surprisingly small in effect sizes (η2 = .041, .053, and .089, for the Grip Strength Test, 

Finger Tapping Test, and Grooved Pegboard Test, respectively). Further, there was no 

significant effect of self-reported handedness on the sensory-perceptual-based lateralization 

indices. Second, the correlations between the three motor-based indices were also surprisingly 

small, with significant but very small correlations found between the Grooved Pegboard 

lateralization index and Finger Tapping (r =.152) and Grip Strength (r=.120) indices, and no 

significant correlation between the Finger Tapping and Grip Strength indices. These 

preliminary results suggest that lateralization indices based on hand-performance could be 

considered, at best, unreliably related to strength of handedness. Using multiple linear 

regression and a similar quadratic model as that of Nicholls et al. (2010), the effect of the 

Grooved Pegboard lateralization index on general cognitive ability was calculated. The 

statistical results were almost identical to those of Nicholls et al. (2010), including a significant 

contribution of the model (p<.001), significant quadratic term (p<.001), significant linear term 

(p=.034) terms, and a proportion of variance explained by the model that was smaller than 1.5% 

(R2=.014). However, unlike the conclusions of Nicholls et al. (2010), it seems that the latter 

number, which does not even meet criteria for a small effect (Cohen et al., 2003), would suggest 

a negligible rather than subtle effect of hand-performance on general cognitive ability. As noted 

earlier, though, with the lack of reliability and construct validity of hand performance as an 
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indicator of strength of handedness, it is unlikely that this result means anything about the effect 

of handedness on cognition.   

Beyond the small differences noted in gender and handedness distributions across 

patterns of relative neurocognitive profiles, the results overall indicated strong similarities 

across demographic groups. Such similarities might suggest biological more than environmental 

contributions to individual differences in relative neurocognition, although both may influence 

each other and might be hard to parse out (e.g., Noble et al. 2015). All the same, individual 

differences in brain activation will be worth investigating in relation to individual differences 

in relative neurocognitive profiles, and should likely focus on investigating patterns of 

differential activation along the right-left and ventral-dorsal axes.  

Limitations and Future Studies 

The goal of the present study was to examine heterogeneity in normal neurocognition. 

This goal was accomplished by using LPA on the eHRB, revealing patterns of individual 

variations in relative neurocognitive profiles, characterized by relative tradeoffs between 

specific neurocognitive abilities. The pattern of model fit of the LPAs notably indicated the 

presence of a continuum of individual differences rather than a specific number of qualitatively 

different groups. Interestingly, that very finding would suggest the inadequacy of LPA in the 

present project, a method that specifically assumes a categorical latent construct (i.e., latent 

class belonging) and tests the presence of specific numbers of groups within a population. In 

fact, the main conclusions of the current project could have probably been reached by solely 

using factor analysis and revealing the three-dimensional continuum of individual differences 

in cognition.  LPA was useful, though, as taxonomic tool, providing classifications that, even if 

somewhat arbitrary, enabled discussions and comparisons of constructs that would have been 
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harder to conceptualize otherwise. In fact, taxonomies have been suggested to be essential for 

the advancement of most scientific fields, permitting increased accuracy in predictions within 

organizational categories compared to predictions involving the entire population (Bobko & 

Russell, 1991). The number of groups to be included in a taxonomy, though, is often subject of 

debates and compromises, with too few groups leading insufficient differentiation across 

elements, and too many groups rendering grouping impractical and useless (Gould, 1981). LPA 

may provide just the perfect tool for guiding such a decision. In fact, in clinical research fields, 

a combination of factor analysis and LPA may provide an ideal methodological framework for 

both permitting better understanding of underlying constructs and providing taxonomies for 

practical application in clinical and research settings. 

The present study of individual differences in neurocognition is dependent upon the 

cognitive domains that were assessed in the eHRB normative project. And although the eHRB 

represents one of the largest neuropsychological battery with over forty test measures, it does 

not assess all possible cognitive functions. For example, spatial mental manipulation such as 

mental image rotation is not assessed in the eHRB. Interestingly, it has been suggested that 

mental image rotation may represent a separate source of individual differences in cognition 

compared to verbal or perceptual operations (Bouchard & Johnson, 2005). In fact, in comparing 

several main psychometric models of intelligence, Johnson & Bouchard (2005) concluded for a 

subdivision of cognition into verbal, perceptual, and image rotation domains, rather than 

crystallized and fluid, or only verbal and perceptual. This special importance of spatial 

operations in human cognition, distinguished from verbal and figural functions, has been also 

highlighted in the cognitive style (Kozhevnikov et al. 2002, 2005), dorsal versus ventral brain 

pathway (e.g., Haxby et al. 1991; Ungerleider & Mishkin, 1982; Wilson et al. 1993), and 

working memory (e.g., Della Sala et al. 1999; Klauer & Zhao) bodies of literature. If tests of 
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spatial mental operations had been included in the present study, it is not clear whether they 

might have been integrated to the present findings or would have changed the structure of the 

continuum more deeply. In arguing for the earlier, the interpretations of the continuum’s 

tradeoff dimensions as “verbal-perceptual” and “analysis-attention/speed” were found to be 

rather robust to test selection. For example, although the continuum was constructed based 

solely on eHRB test measures, projections of the Wechsler scales’ subtests onto the continuum 

yielded congruent interpretations. In addition, striking similarities were found between the 

present results and those obtained by Johnson & Bouchard (2006), who used an entirely 

different participant sample and neuropsychological battery, including assessment of image 

rotation. If individual differences in spatial operations could be integrated and plotted onto the 

continuum of relative neurocognitive profiles, it is predicted that they would project toward the 

“perceptual” and “attention/speed” dimensions. Indeed, the representation and maintenance of 

spatial information have been shown to recruit the dorsal brain pathway (Haxby et al. 1991; 

Ungerleider & Mishkin, 1982), and especially the brain’s attentional networks (e.g., Awh & 

Jonides, 2001; Patt et al. 2014; Smyth & Scholey, 1994). Specifically, attentional networks, 

which involve right hemisphere-dominant fronto-parietal circuitries (Heilman, Watson, & 

Valenstein, 1985), have been shown to closely overlap with networks governing the planning 

of eye and body movement, which are key in spatial information processing (Awh, Armstrong, 

& Moore, 2006; Johnson, 1982). It would therefore not be surprising that a “spatial operations” 

factor would load in the “perceptual” and “attention/speed” quadrant of the continuum, with 

other presumed right- and top-brain functions. 

Another cognitive domain that might have been under-represented in the present study 

and yet may be essential for understanding individual differences in neurocognition is executive 

function. Executive function has been suggested to recruit not one but a variety of higher 
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cognitive abilities, including verbal and nonverbal concept-formation, abstract expression of 

conceptual relationships, initiation and inhibition of concept-related actions, and flexibility of 

thinking (Delis, Kaplan, & Kramer, 2001). Some of those constructs are already part of the 

eHRB assessment – e.g., abstraction (Category Test), flexibility of thinking (Trail Making Test-

Part B), and initiation of concept-related actions (fluency tests, and perhaps the Trail Making 

Test and Tactual Performance Test) – but except for the fluency tests, the number of tests in 

each domain is probably too limited to reveal clear executive factors in the data. In future studies, 

it would be especially interesting to include additional tests assessing inhibition (e.g., the Color 

Word Interference Test; Delis et al. 2001) and flexibility of thinking (e.g., the Wisconsin Card 

Sorting Test; Heaton, 1981). Based on the discussion earlier in this section, very rough 

predictions might suggest a projection of the former toward the “perceptual attention” 

dimension and of the latter toward the “working memory” and thus general cognitive ability 

dimension. 

Other measures that could be useful for validating the present findings in future studies 

might be the “Verbalizer-Visualizer Questionnaire” (Paivio, 1971; Richardson, 1977) to verify 

whether self-reported preference for using imagery over verbal representation is indeed related 

to the present study’s “verbal-perceptual” dimension; and a form of assessment of abilities for 

detailed versus holistic processing, to examine a possible relation with the “analysis-

attention/speed” dimension. 

Finally, a cognitive domain that is very rarely included in comprehensive clinical 

neuropsychological batteries but might be essential for fully understanding individual 

differences in neurocognition, is theory of mind, or the ability to understand others' mental states 

including their intents, beliefs, desires, and knowledge (Premack & Woodruff, 1978; Wellman 

& Liu, 2004). Theory of mind has been shown to be impaired in autism spectrum disorder, 
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independently of general cognitive ability (Baron-Cohen, Leslie, & Frith, 1985) and might be 

involved in a cognitive tradeoff with abilities for mental image mapping and rotation, shown to 

be enhanced in this population (e.g., Soulières, Zeffiro, Girard, & Mottron, 2011). Interestingly, 

females have been shown to outperform males in theory of mind abilities (e.g., Bosacki & 

Astington, 1999). So it seems only fair that if one was to include assessment of mental image 

rotation in future neurocognitive batteries, a domain where men outperform women with robust 

effect sizes (Maeda & Yoon, 2013), assessment of theory of mind also be included. 

Conclusions  

Patterns of individual differences in normal neurocognition were characterized by using 

LPA on the eHRB normative database. Preliminary factor analyses suggested seven non-motor 

neurocognitive domains assessed by the eHRB: “working memory”, “fluency”, “language”, 

“verbal episodic memory”, “visuospatial cognition”, “perceptual speed”, and “perceptual 

attention”. Individual differences in absolute neurocognitive profiles were characterized by a 

ladder-like distribution, suggesting dominance by general cognitive ability, or g-factor, even 

after correction for age, education, and ethnicity – that is, some individuals simply tend to 

perform better than others across all cognitive domains. However, at equivalent levels of general 

cognitive ability, more subtle patterns of individual differences were revealed, characterized by 

a continuum of relative tradeoffs along two almost orthogonal dimensions, “verbal-to-

perceptual” and “analysis-to-attention/speed”. Higher relative verbal abilities implied lower 

relative perceptual abilities, and vice-versa; and higher relative “analysis” abilities implied 

lower relative “attention/speed” abilities, and vice-versa.  

By identifying and characterizing individual differences in absolute and relative 

neuropsychological profiles in a large control population, the present study is providing a new 
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basis of comparison for defining impairment in clinical and research settings. Notably, the 

present results indicate that within-profile variations are common among cognitively healthy 

individuals (about 36% of the sample showed medium to large within-profile variations), but 

only according to specific patterns. For example, a profile with large relative weaknesses in both 

visuospatial cognition and perceptual speed and relative strengths in both fluency and language 

might be relatively common and suggest an individual belonging to the “highly verbal” or 

“super fluent” categories. By contrast, a profile showing large relative weaknesses in both 

fluency and visuospatial cognition and relative strengths in both perceptual speed and language 

would probably be very unusual in the cognitively healthy population, and might suggest 

cognitive impairment.  

To make these findings directly applicable in clinical and research settings, subsequent 

work will focus on constructing base rate tables indicative of how usual or unusual various types 

of neurocognitive profiles and within-profile variations might be in the cognitively healthy 

population. A simple formula may also be devised based on a minimal number of tests to help 

classify healthy participants in other studies into one of the eight LPA groups that were 

identified and provide a measure of their location on the three-dimensional continuum. Various 

methodological applications may be envisioned with the availability of such tools. Brain 

imaging studies might especially benefit from a taxonomy categorizing individuals based on 

their relative neurocognitive profiles, with the idea of increasing group homogeneity and 

diminishing signal noise related to between-subject variability. 

The present study has implications for validating previous theories of individual 

differences in cognition and brain function. First, the results support the large body of research 

showing the existence of one factor underlying performance on all cognitive tests, regardless of 

test modality and demands (Spearman, 1904). At equivalent levels of general cognitive ability, 
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though, patterns of individual differences were found involving a relative tradeoff between 

“verbal” and “perceptual” abilities and, to a lesser extent, a relative tradeoff between “analysis” 

and “attention/speed” abilities.  Assuming that individual differences in relative neurocognitive 

profile may translate into individual differences in brain regional structure and neural activation, 

the present study brings support to the long tradition of differentiating individuals in terms of 

right-brain versus left-brain functioning. The results however suggest a continuum of 

differences in lateralized brain functions rather than clear-cut right-brain versus left-brain 

phenotypes. Individual variations along the “analysis-attention/speed” dimension also supports 

theories suggesting individual differences in bottom-brain versus top-brain functions (Kosslyn 

& Miller, 2013). Incongruent with Kosslyn’s suggestion that bottom-versus-top would dominate 

left-versus-right differences in brain function, individual variations along the “analysis-

attention/speed” dimension was found to have a smaller amplitude and be close to orthogonal 

to “verbal-perceptual” variations. To have a chance of validating the existence of individual 

differences along the left-right and ventral-dorsal brain axes, imaging studies will have to 

overcome the dominating influence of general cognitive ability in brain signal, with brain 

correlates including brain functional efficiency, white matter integrity, trajectories of cortical 

thickness and surface area, and the differential activation of specific brain regions notably 

involving the left hemisphere and fronto-parietal networks (Deary et al. 2010; Jung & Haier, 

2007; Neubauer & Fink, 2009). These brain correlates are likely to mask subtle patterns of 

individual differences in relative right/left or dorsal/ventral activation. A possible strategy for 

these imaging studies might be to maximize individual differences in relative cognitive abilities 

by preliminarily identifying and selecting individuals at the extremes of the “verbal-perceptual” 

and “analysis-attention/speed” dimensions.  
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In conclusion, although individual differences in neurocognition appear to be 

dominated by one general factor, rich individual differences were revealed at every level of 

general cognitive ability. These relative variations suggest that two individuals with similar 

levels of general cognitive ability might employ their pool of mental energy (Spearman, 1904), 

brain reserve capacity (Satz, 1993), IQ (Wechsler, 1945), or brain functional efficiency 

(Neubauer & Fink, 2009) via different cognitive strategies and neuronal routes to attain 

reasonably similar scores on almost all cognitive tests. Notably, to successfully perform the 

same tasks and solve the same problems, individuals might rely differentially on verbal versus 

imagery representations, and on in-depth analysis versus efficient observation and reaction. 

With such strategies likely involving differential use of left versus right and ventral versus dorsal 

neuronal routes, a better question might be: are you right-dorsal, right-ventral, left-dorsal, or 

left-ventral brained? 

The material in this dissertation was, in part, published in the peer-reviewed article: Patt, 

V. M., Brown, G. G., Thomas, M. L., Roesch, S. C., Taylor, M. J., & Heaton, R. K. (2017). 

“Factor Analysis of an Expanded Halstead-Reitan Battery and the Structure of Neurocognition.” 

Archives of Clinical Neuropsychology, in press. The dissertation author was the primary 

investigator and author of this material. Part of the material in this dissertation is also currently 

being prepared for submission for publication: Patt, V. M., Brown, G. G., Thomas, M. L., 

Roesch, S. C., Taylor, M. J., & Heaton, R. K. “Heterogeneity in normal neurocognition: A latent 

profile analysis of the expanded Halstead-Reitan Battery normative dataset.” The dissertation 

author will be the primary investigator and author of this material. 
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APPENDIX 1: TABLES 

 

Table 1: Description of the test measures and abilities likely recruited. 
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Halstead Reitan Battery (HRB)        
 

     

Speech-Sounds Perception Number of errors              

Seashore Rhythm Test Number of correct answers              

Reitan-Indiana Aphasia 

Screening Test  

Number of errors 
       

 
     

Spatial Relations Ratings of complex cross 

drawing 
       

 
     

Reitan-Kløve Sensory-

Perceptual Examination 

(SPE) 

Number of errors (right, 

left, total)        

 

     

Tactile Form Recognition 

Test (TFR) 

Time in seconds (right, left) 
       

 
     

Finger Tapping Test Number of taps in 10 

seconds (dominant & non-

dominant hand) 

       

 

     

Grip Strength Test Kilograms (dominant & 

non-dominant hand) 
       

 
     

Tactual Performance Test 

(TPT) 

Time of trial completion in 

seconds (dom., non-dom., 

both hands, total) 

       

 

     

 Number of shapes 

remembered (shapes) 
       

 
     

 Number of locations 

remembered (locations) 
       

 
     

Category Test Number of errors              

Trail Making Test Part A – time in seconds               
Part B – time in seconds              
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Table 1: Description of the test measures and abilities likely recruited, continued. 
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expanded Halstead Reitan Battery (eHRB)        
 

     

Boston Naming Test (BNT) Correct answers              

BDAE Complex Ideational 

Material* 

Correct answers 
       

 
     

Peabody Individual Achievement Test (PIAT)              

PIAT Reading Recognition Correct answers               

PIAT Spelling* Correct answers              

PIAT Reading 

Comprehension * 

Correct answers 
       

 
     

Thurstone Word Fluency Correct answers              

Letter Fluency (FAS) Correct answers              

Category Fluency (Animal) Correct answers              

Paced Auditory Serial 

Addition Test (PASAT) 

Correct answers 
       

 
     

Digit Vigilance Test Time in seconds               
Number of errors              

Grooved Pegboard Time in seconds (dom. & 

non-dom. hand) 
       

 
     

California Verbal Learning 

Test (CVLT) 

Trials 1-5 – Number of 

correct answers 
       

 
     

 Trial 1 – correct answers              

 Trial 5 – correct answers              

 Short Delay – correct               

 Long Delay – correct               

Story Memory Test Trial 1 – Correct answers              

 Learning – Points per trial              

 Delayed recall – correct               

 Percentage loss              

Figure Memory Test Trial 1 – Correct answers              

 Learning – Points per trial              

 Delayed recall – Correct              

 Percentage loss              
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Table 1: Description of the test measures and abilities likely recruited, continued. 

  ABILITIES 

TESTS 
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Wechsler Adult Intelligence Scales (WAIS & WAIS-R)       
 

     

Information Correct answers              

Vocabulary Correct answers              

Comprehension Correct answers              

Similarities Correct answers              

Digit Span Correct answers              

Arithmetic Correct answers (timed)              

Picture Completion Correct answers (timed)              

Picture Arrangement Correct answers (timed)              

Block Design Correct answers (timed)              

Object Assembly Correct answers (timed)              

Digit-Symbol Coding Correct answers (timed)              
               

 

Notes: BDAE stands for Boston Diagnostic Aphasia Examination and “dom.” is an abbreviation of 

“dominant”. Test measures in gray font with an asterisk refer to variables excluded from the present 

work due to normative samples that were separately recruited or inadequate in size (BDAE Complex 

Ideational Material, PIAT spelling, and PIAT reading comprehension). Test Measures in gray font refer 

to variables excluded from the factor analyses due to: non-normal distributions (Spatial Relations, Story 

Memory Percentage Loss, and Figure Memory Percentage Loss), scores combining or included in other 

measures (CVLT Trial 5 is included in a combination of CVLT Trials1-5 and CVLT Trial 1, and TPT 

dominant, non-dominant, and both hands are included in TPT total), and pure motor tests involving 

physiological differences known to be influenced by gender (Grip Strength Test and Finger Tapping 

Test).  
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Table 2: Sample characteristic and attrition for each test administered as part of the eHRB 

normative project.  

 NUMBER OF PARTICIPANTS  

TESTS 

 Total Male Female Caucasian 

African-

American 

Age 

M (SD) 

Education 

M (SD) 

        

Halstead Reitan Battery       

Speech-Sounds 

Perception Test 

893 498 395 311 582 47.6 

(18.2) 

13.8  

(2.5) 

Seashore Rhythm 

Test 

894 499 395 312 582 47.7 

(18.3) 

13.8  

(2.5) 

Reitan-Indiana 

Aphasia Screening  

863 466 397 286 577 47.7 

(18.5) 

13.8  

(2.6) 

Spatial Relations 881 485 396 301 580 47.6 

(18.3) 

13.7  

(2.6) 

Reitan-Kløve 

Sensory-Perceptual 

Examination (SPE) 

893 494 399 293 600 46.1 

(17.8) 

13.7  

(2.6) 

Tactile Form 

Recognition (TFR) 

837 459 378 257 580 46.9 

(18.1) 

13.7  

(2.6) 

Finger Tapping 

Test 

744 428 316 361 383 50.7 

(18.1) 

13.8  

(2.6) 

Grip Strength Test 892 489 403 299 593 46.7 

(17.9) 

13.8  

(2.6) 

Tactual 

Performance (TPT) 

893 499 394 321 572 47.0 

(17.9) 

13.8  

(2.6) 

Category Test 969 529 440 360 609 46.9 

(17.9) 

13.8  

(2.5) 

Trail Making Test 982 539 443 364 618 47.2 

(18.0) 

13.8  

(2.5) 

        

Expansion of the Halstead Reitan Battery     

Boston Naming 

Test (BNT) 

844 429 415 227 617 49.0 

(18.0) 

13.6 

(2.4) 

BDAE Complex 

Ideational 

Material* 

0 0 0 0 0 - - 

PIAT Reading 

Recognition 

871 473 398 280 591 47.6 

(18.3) 

13.7  

(2.6) 

PIAT Spelling* 125 97 28 125 0 35.5 

(12.8) 

14.8  

(2.9) 

PIAT Reading 

Comprehension*  

217 135 82 203 14 48.2 

(19.4) 

14.4  

(2.7) 

Thurstone Word 

Fluency 

658 387 271 276 382 39.3 

(14.5) 

13.9  

(2.6) 

Letter Fluency 

(FAS) 

806 409 397 203 603 51.8 

(18.0) 

13.5  

(2.5) 

Category Fluency 

(Animal) 

801 405 396 200 601 49.0 

(18.0) 

13.6  

(2.4) 
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Table 2: Sample characteristic and attrition for each test administered as part of the eHRB 

normative project, continued. 

 NUMBER OF PARTICIPANTS  

TESTS 

 Total Male Female Caucasian 

African-

American 

Age 

M (SD) 

Education 

M (SD) 

        

Expansion of the Halstead Reitan Battery (Continued)    

Paced Auditory 

Serial Addition 

Test (PASAT) 

479 268 211 104 375 37.8 

(12.0)  

13.7 (2.5) 

Digit Vigilance 

Test 

562 302 260 179 383 42.1 

(16.0) 

13.7 (2.5) 

Grooved 

Pegboard 

950 530 420 361 589 47.1 

(17.7) 

13.8 (2.5) 

California Verbal 

Learning Test 

(CVLT) 

681 319 362 166 515 51.8 

(18.0) 

13.5 (2.5) 

Story Memory 

Test 

953 519 434 341 612 47.3 

(18.1) 

13.7 (2.5) 

Figure Memory 

Test 

937 510 427 331 606 47.3 

(18.0) 

13.7 (2.5) 

        

Wechsler Adult Intelligence Scales      

WAIS  

(11 subtests) 

126 98 28 126 0 35.4 

(12.8) 

14.8 (2.9) 

WAIS-R  

(11 subtests) 
459 217 242 97 362 

44.9 

(16.8) 
13.6 (2.5) 

     
African 

American: 

39.0 

(12.6) 
13.6 (2.5) 

     
Caucasian

: 

67.2 

(11.1) 
13.7 (2.3) 

Individuals administered at least half of the eHRB measures & one memory test 

Total 982 539 443 364 618 
47.2 

(18.0) 
13.7 (2.5) 

        

 
Notes: BDAE stands for Boston Diagnostic Aphasia Examination, SPE for Sensory Perceptual 

Examination, and PIAT for Peabody Individual Achievement Test. Test measures in gray with an 

asterisk were excluded from the present work due to normative samples that were separately recruited 

or inadequate in size (BDAE Complex Ideational Material, PIAT spelling and reading comprehension). 
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Table 3: EFA results: Indices of model fit. 
 

NF df χ2 CFI Information Criteria 

(lower=better) 

RMSEA SRMR 

  good>.9 AIC BIC adjBIC good<.05 good<.05 

1 189 1939 0.803 80,917 81,225 81,025 0.097 0.079 

2 169 958 0.911 79,976 80,382 80,118 0.069 0.043 

3 150 587 0.951 79,643 80,142 79,818 0.054 0.031 

4 132 411 0.969 79,503 80,089 79,708 0.046 0.026 

5 115 299 0.979 79,425 80,095 79,660 0.04 0.023 

6 99 211 0.987 79,369 80,117 79,631 0.034 0.017 

7 84 138 0.994 79,326  80,147  79,613 0.025 0.014 

8 70 86 0.998 79,302  80,192  79,614 0.015 0.011 

 
Notes: NF represents the number of factors included in the model and df the number of degrees of 

freedom. The solution selected is highlighted in bold. 
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Table 4: EFA results for the 7-factor solution: Geomin-rotated factor loadings and sum of 

squared structure coefficients after rotation. 
 

TEST MEASURES 
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Trail Making Test – Part B 0.502 0.004 0.031 0.008 -0.014 0.581 0.017 

PASAT 0.544 0.098 -0.046 0.075 0.015 0.314 -0.004 

Digit Vigilance (Error) 0.541 -0.09 0.152 -0.128 0.061 -0.107 0.044 

Thurstone Word Fluency -0.001 0.74 0.036 0.003 0.229 0.069 -0.027 

Letter Fluency (FAS) -0.012 0.801 0.009 0.063 -0.028 -0.042 0.167 

Category Fluency (Animal) 0.101 0.29 0.023 0.324 0.001 0.142 0.107 

Aphasia Screening Test 0.346 0.002 0.504 0.140 -0.158 0.079 0.018 

BNT -0.030 0.046 0.514 0.309 0.265 -0.009 0.036 

PIAT reading recognition 0.029 0.254 0.618 -0.004 0.016 -0.083 -0.098 

Story Memory (Learning) 0.440 -0.008 0.047 0.457 0.169 -0.033 -0.011 

CVLT (Trials 1-5) 0.305 0.049 -0.007 0.338 0.192 0.159 -0.002 

Figure Memory (Learning) 0.087 0.014 0.024 0.000 0.789 -0.017 0.002 

Category Test 0.150 0.028 -0.040 0.054 0.627 0.075 0.039 

TPT (total) 0.011 -0.015 -0.022 0.023 0.579 0.27 0.108 

Digit Vigilance (Time) -0.029 0.060 -0.109 0.001 0.021 0.651 0.055 

Trail Making Test – Part A 0.234 0.023 0.028 -0.060 0.111 0.625 -0.020 

Grooved Pegboard (dom.) -0.025 -0.079 0.037 0.069 0.288 0.375 0.262 

SPE (right hand) 0.293 0.039 -0.194 0.018 0.033 -0.020 0.6 

TFR (right hand) -0.018 -0.018 0.025 0.020 0.012 0.219 0.528 

Speech-Sounds Perception 0.058 0.192 0.245 -0.068 0.213 0.103 0.271 

Seashore Rhythm 0.240 0.169 0.025 -0.141 0.02 0.042 0.254 

Sum of squared structure 

coefficients 
26.1%, 22.1%, 12.7%, 13.5% 31.3%, 25.0%, 23.2%, 

 

Notes: Numbers in bold indicate loadings >0.45 considered in priority for factor interpretation. Gray-

shaded areas indicate loadings >.22, corresponding to parameters included in the starting CFA model 

before model simplification. 
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Table 5: EFA results: Correlations between factors. 
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Attention/Working Memory 1       

Fluency 0.442 1      

Language 0.396 0.472 1     

Verbal Episodic Memory 0.274 0.405 0.228 1    

Visuospatial Cognition 0.656 0.319 0.212 0.381 1   

Perceptual Speed 0.319          0.455 0.085 0.318   0.562 1  

Sensory-Perceptual Processing 0.407 0.350 0.120 0.269 0.642 0.562 1 

 

Notes: Correlations between “language” and “sensory-perceptual processing” and between “language” 

and “perceptual speed” were negligible in terms of effect size (italicized). All other between-factor 

correlations were positive with small to medium effect sizes. 
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Table 6: CFA results: Indices of goodness of fit for a series of models that were iteratively 

simplified, starting from a factor structure guided by the EFA results (loadings > .22), and 

progressively keeping only loadings greater than 0.3, and finally 0.4. 
 

CFA 

models 

df χ2 CFI Information Criteria 

(lower=better) 

RMSEA SRMR 

  good>.9 AIC BIC adjBIC good<.05 good<.05 

Initial  427 647 0.989 120,248 121,065 120,534 0.023 0.026 

Interm 1 445 913 0.976 120,478 121,207 120,733 0.033 0.047 

Interm 2 451 1092 0.967 120,645 121,344 120,890 0.038 0.050 

Interm 3 452 1093 0.967 120,645 121,339 120,888 0.038 0.050 

Interm 4 453 1100 0.967 120,649 121,339 120,891 0.038 0.050 

Final 454 1135 0.965 120,682 121,366 120,922 0.039 0.050 

 
Notes: df represents the number of degrees of freedom. Interm is an abbreviation of intermediate. The 

solution selected is highlighted in bold.  
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Table 7: CFA results: Correlations between factors. 
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Working memory 1       

Fluency 0.735 1      

Language 0.595 0.748 1     

Verbal Episodic Memory 0.835 0.741 0.735 1    

Visuospatial Cognition 0.847 0.627 0.542 0.850 1   

Perceptual Speed 0.894 0.646 0.463 0.748 0.910 1  

Perceptual Attention 0.889 0.744 0.552 0.753 0.871 0.913 1 
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Table 8: Linear Regression Results: Effect of age, education, ethnicity, and gender on each of 

the CFA factor scores. 
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Regression Model including age  

(Model fit) 

R2 0.435 0.188 0.041 0.305 0.482 0.539 0.484 

F 377.6 113.4 42.3 214.5 454.8 571.7 458.4 

p <.001 <.001 <.001 <.001 <.001 <.001 <.001 

        

Regression Model including age & education  

(Model fit and comparison with previous model) 

R2 0.529 0.335 0.262 0.458 0.561 0.596 0.557 

F 274.1 123.3 115.6 206.3 312.5 359.7 307.0 

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

R2
change 0.094 0.147 0.221 0.153 0.079 0.057 0.073 

Fchange 96.7 108.3 146.0 138.1 88.7 68.7 80.8 

pchange <.001 <.001 <.001 <.001 <.001 <.001 <.001 

        

Regression Model including age, education, & ethnicity 

(Model fit and comparison with previous model)   

 

R2 0.630 0.421 0.425 0.592 0.670 0.676 0.639 

F 333.0 142.1 180.3 283.4 396.6 408.1 345.8 

p <.001 <.001 <.001 <.001 <.001 <.001 <.001 

R2
change 0.101 0.086 0.163 0.134 0.109 0.080 0.082 

Fchange 268.6 144.7 276.7 321.1 322.1 244.0 222.6 

pchange <.001 <.001 <.001 <.001 <.001 <.001 <.001 

        

Regression Coefficients      

b2a -2.28.10-4 -1.76.10-4  -1.85.10-4 -1.92.10-4 -2.63.10-4 -2.67.10-4 

b1a -8.11.10-3 -0.61.10-3 -5.14.10-3 -5.69.10-3 -13.9.10-3 -9.47.10-3 -6.31.10-3 

b2e -6.78.10-3 -8.34.10-3 -7.11.10-3 -5.90.10-3 -4.18.10-3 -4.86.10-3 -6.71.10-3 

b1e 0.282 0.355 0.340 0.286 0.201 0.207 0.269 

beth -0.640 -0.575 -0.763 -0.727 -0.668 -0.576 -0.572 
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Table 8: Linear Regression Results: Effect of age, education, ethnicity, and gender on each of 

the CFA factor scores, continued. 
 

 
W

o
rk

in
g

 M
em

o
ry

 

F
lu

en
cy

 

L
an

g
u

ag
e 

V
er

b
al

  

E
p

is
o

d
ic

 M
em

o
ry

 

V
is

u
o

sp
at

ia
l 

 

C
o

g
n

it
io

n
 

P
er

ce
p

tu
al

 S
p

ee
d

 

P
er

ce
p

tu
al

 

A
tt

en
ti

o
n

 

        

Regression Model including age, education, ethnicity, & gender 

(Model fit and comparison with previous model)   

R2 0.633 0.425 0.428 0.595 0.670 0.677 .640 

F 280.1 120.2 146.3 238.8 330.2 340.0 289.1 

p <.001 <.001 <.001 <.001 <.001 <.001 <.001 

R2
change 0.002 0.004 0.004 0.003 <0.001 <0.001 0.001 

Fchange 6.5 6.4 6.2 7.1 .138 .407 2.7 

pchange .011+ .011+ .013+ .008+ .711 .523 .104 

 

Notes: Linear and quadratic terms were included for age and education in all the factors’ regression 

models but that of “language”. (The quadratic term for age in the models of “language” was not 

significant and was removed).  R2 represents the proportion of variance accounted for by each 

regression model, F and p represent the F-ratio and p-value indicative of model fit. The subscript 
“change” refers to measures of improvement of one model compared to the previous model in the 

hierarchy. 𝑏⁡1𝑎, 𝑏⁡2𝑎, 𝑏⁡1𝑒,⁡𝑏⁡2𝑒, and 𝑏⁡𝑒𝑡ℎ𝑛 represent the regression coefficients corresponding to the 

effects of age (linear and quadratic terms expressed in number of standard deviations per year and per 

year-squared), education (linear and quadratic terms expressed in number of standard deviations per 

year and per year-squared), and ethnicity (expressed in units of number of standard deviations using the 

dummy coding 0 for Caucasian and 1 for African American), respectively. Effect sizes are gauged 

based on Cohen’s criteria (Cohen et al. 2003) – i.e., small (R2≥.02), medium (R2≥.13), and large 

(R2≥.26) – and are color-coded using very light gray, light gray, and dark gray-shaded areas, 

respectively. Non-significant regression coefficients are italicized. The signs after the significant p-

values of the model including gender indicate whether females performed significantly better (+) or 

worse (-) than males.  
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Table 9: Latent Profile Analysis Results: Indices of model fit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: np represents the number of model parameters. LMR stands for Lo-Mendell-Rubin adjusted 

likelihood ratio, and BP for bootstrapped parametric likelihood ratio. NR represents runs for 

which the maximum likelihood was not replicated despite increase in the number of starts. Numbers 

italicized represent runs that resulted in one or two latent classes representing less than 5% of the 

population. 

  

Number 

   Likelihood Ratio Tests 

 Information Criteria 

(lower=better) 

Entropy LMR BP 

Groups np AIC BIC adjBIC good>0.8 ratio p-value p-value 

LPAs on  demographic-corrected factor scores 

1 14 12449 12518 12473       

2 29 9081 9223 9131 0.894 3365 <.001 NR 

3 44 7429 7644 7504 0.909 1666 <.001 NR 

4 59 6744 7032 6845 0.896 708 .173 NR 

5 74 6372 6734 6499 0.892 398 .173 NR 

6 89 6072 6507 6225 0.881 327 .604 NR 

7 104 5843 6352 6022 0.884 256 .137 NR 

8 119 NR NR NR NR NR NR NR 

          

LPAs on  demographic- and ability- corrected factor scores 

1 12 2687 2746 2708     

2 25 1214 1336 1256 0.813 1483 <.001 <.001 

3 38 600 786 665 0.809 632 .017 <.001 

4 51 119 368 206 0.835 502 .012 <.001 

5 64 -230 83 -120 0.835 370 .130 <.001 

6 77 -491 -115 -359 0.852 284 .117 <.001 

7 90 -700 -260 -546 0.86 232 .008 <.001 

8 103 -858 -355 -682 0.861 183 .178 NR 

9 116 -980 -412 -781 0.862 146 .145 NR 

10 129 -1070 -440 -849 0.866 115 .017 NR 
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Table 10: Comparison of cognitive performance across latent classes: Multiple analysis of 

variance on demographic-corrected factor scores, with contrast estimates and univariate tests 

of between-subject effects for each factor. 
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Univariate Tests & Contrasts 
 

 

C 

p 
 

C 

p 
 

C 

p 
 

C 

p 
 

C 

p 
 

C 

p 
 

C 

p 
 

 

Working 

Memory 

F(7,974)=5.3 

p <.001 

η2=.037 

.060 

.351 

-.180 

.002 

-.086 

.238 

.064 

.502 

.228 

.014 

-.188 

.011 

.137 

.097 

 

Fluency 

F(7,974)=30.9 

p <.001 

η2=.182 

.317 

<.001 

.233 

<.001 

.153 

.063 

.253 

.018 

-.315 

.003 

-.431 

<.001 

-.401 

<.001 

 

Language 

F(7,974)=34.0 

p <.001 

η2=.196 

.450 

<.001 

.277 

<.001 

.427 

<.001 

-.353 

.001 

-.300 

.003 

.190 

.017 

-.331 

<.001 

 

Verbal 

Episodic 

Memory 

F(7,974)=19.7 

p <.001 

η2=.124 

.255 

<.001 

-.057 

.310 

.266 

<.001 

-.571 

<.001 

.031 

.733 

.584 

<.001 

-.038 

.640 

 

Visuospatia

l Cognition 

F(7,974)=36.6 

p <.001 

η2=.208 

-.157 

.005 

-344. 

<.001 

-.133 

.035 

-.129 

.117 

.355 

<.001 

.209 

.001 

.318 

<.001 

 

Perceptual 

Speed 

F(7,974)=49.8 

p <.001 

η2=.264 

-.303 

<.001 

-.356 

<.001 

-.318 

<.001 

.303 

<.001 

.397 

<.001 

-.356 

<.001 

.361 

<.001 

 

Perceptual 

Attention 

F(7,974)=21.6 

p <.001 

η2=.135 

-.161 

.007 

-.218 

<.001 

-.254 

<.001 

.362 

<.001 

.289 

.001 

-.525 

<.001 

.196 

.011 

 

Omnibus 

Test 

(Wilk’s Λ)  

Λ=.037, F=91.3, 

p<.001,  η2=.374 
 

       
 

  

Notes: The multivariate and univariate analyses of variance were carried out on all the demographic-

corrected factor scores, simultaneously, with most likely class membership as independent variables. F-

tests are provided for each analysis with the corresponding p-value and effect size (η2). Contrast 

estimates (C) compare estimated means of classes from left to right (left minus right). Significance 

levels of <.005 are highlighted in dark gray and <.05 in light gray. 
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Table 11: Comparison of absolute cognitive performance across mirroring latent classes: 

Univariate analyses of variance on the demographic-corrected factor scores. 
 

  

Demographic-Corrected Factor Scores 
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“mildly verbal” vs. “mildly perceptual”     

F(1,390)  9.252 13.382 19.531 0.986 46.627 52.951 15.960 

p  .003* <.001* <.001* .321 <.001* <.001* <.001* 

η2  .023 .033 .048 .003 .107 .120 .039 

         

“highly verbal” vs. “highly perceptual”  

F(1,214)  18.604 59.351 193.229 36.655 83.957 221.418 73.802 

p  <.001* <.001* <.001* <.001* <.001* <.001* <.001* 

η2  .080 .217 .474 .146 .282 .509 .256 

         

“visuospatial cognitive” vs. “super fluent”  

F(1,129)  3.353 101.533 17.477 34.740 107.043 26.131 .200 

p  .069 <.001* <.001* <.001* <.001* <.001* .655 

η2  .025 .440 .119 .212 .453 .168 .002 

         

“verbal memorizer” vs. “fast attentive”  

F(1,235)  6.604 28.128 5.868 67.417 11.918 38.435 62.253 

p  .011* <.001* .016 <.001* .001* <.001* <.001* 

η2  .027 .105 .024 .219 .047 .138 .205 

 

Notes: Because four univariate analyses of variance were performed for each factor, effects were 

considered to be significant (*) only if p <.012 (Bonferroni correction). Effect sizes are gauged small 

(η2≥.02), medium (η2≥.13), and large (η2≥.26) based on Cohen’s criteria (Cohen et al. 2003) and are 

color-coded using very light gray, light gray, and dark gray-shaded areas, respectively.  
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Table 12: Comparison of test performance across latent classes: Between subject univariate 

analyses of variance on demographic-corrected test scores. 
 

Halstead 

Reitan Battery 
 Expansion of the Halstead Reitan Battery 

Speech-Sounds 

Perception Test 
F=8.12, p<.001, η2=.060 

Boston Naming 

Test (BNT) 

F=11.46, p<.001, η2=.088 

Seashore 

Rhythm Test 
F=4.57, p<.001, η2=.035 

PIAT Reading 

Recognition 

F=13.04, p<.001, η2=.096 

Aphasia 

Screening Test 
F=13.18, p<.001, η2=.098 

Thurstone Word 

Fluency 

F=22.56, p<.001, η2=.195 

Spatial 

Relations 
F=3.54, p<.001, η2=.028 

Letter Fluency 

(FAS) 

F=35.12, p<.001, η2=.235 

SPE-total* F=17.81, p<.001, η2=.123 
Category Fluency 

(Animal) 

F=13.50, p<.001, η2=.106 

SPE-right F=15.89, p<.001, η2=.112 PASAT F=.88, p=.525, η2=.013 

SPE-left* F=15.06, p<.001, η2=.106 
Digit Vigilance 

Test - Time 

F=7.51, p<.001, η2=.087 

TFR-right F=15.49, p<.001, η2=.116 
Digit Vigilance 

Test - Error 

F=1.04, p=.404, η2=.013 

TFR-left F=22.80, p<.001, η2=.162 
Grooved 

Pegboard - dom 

F=22.09, p<.001, η2=.142 

Finger Tapping 

Test- dom 
F=2.61, p=.012, η2=.024 

Grooved Peg-

board non-dom 

F=30.2, p<.001, η2=.185 

Finger Tapping 

Test- non-dom* 
F=2.27, p=.028, η2=.021 CVLT-Trial1 

F=7.40, p<.001, η2=.071 

Grip Strength 

Test- dom 
F=3.32, p=.002, η2=.026 CVLT-Trial5 

F=13.52, p<.001, η2=.123 

Grip Strength 

Test- non-dom 
F=2.37, p=.021, η2=.018 CVLT-Trials1-5 

F=17.74, p<.001, η2=.156 

TPT-total F=33.38, p<.001, η2=.211 
CVLT-Short 

delay 

F=18.63, p<.001, η2=.163 

TPT-shapes F=8.59, p<.001, η2=.063 
CVLT-Long 

delay 

F=15.94, p<.001, η2=.142 

TPT-locations F=7.51, p<.001, η2=.056 
Story Memory 

Test-Trial 1 

F=33.70, p<.001, η2=.200 

Category Test F=26.36, p<.001, η2=.161 

                                

Story Memory 

Test-Learning 

F=43.34, p<.001, η2=.243 

Trail Making 

Test - Part A 
F=13.56, p<.001, η2=.089 

                                

Story Memory 

Test-Free Recall 

F=15.14, p<.001, η2=.101 

                              

- Part B 
F=3.22, p=.002, η2=.023 

Figure Memory 

Test-Trial 1 

F=27.88, p<.001, η2=.173 

  
Figure Memory 

Test-Learning 

F=34.71, p<.001, η2=.207 

  
Figure Memory 

Test-Free Recall 
F=8.40, p<.001, η2=.059 
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Table 12: Comparison of test performance across latent classes: Between subject univariate 

analyses of variance on demographic-corrected test scores, continued. 
 

Wechsler Adult Intelligence Scales   

Information F=5.81, p<.001, η2=.066   

Digit Span F=.903, p=.504, η2=.011   

Vocabulary F=8.62, p<.001, η2=.095   

Arithmetic F=2.87, p=.006, η2=.034   

Comprehension F=3.90, p<.001, η2=.045   

Similarity F=2.28, p=.027, η2=.027   

Picture 

Completion 
F=1.79, p=.088, η2=.021 

  

Picture 

Arrangement 
F=1.32, p=.240, η2=.017 

  

Block Design F=7.72, p<.001, η2=.086   

Object 

Assembly 
F=5.64, p<.001, η2=.064 

  

Digit Symbol-

Coding 
F=2.91, p=.005, η2=.034 

  

 

Notes: Univariate analyses of variance were carried out on demographic-corrected test scores with most 

likely class membership as independent variables. F-tests are provided for each analysis with the 

corresponding p-value and effect size (η2). Significant effect sizes are gauged small (η2≥.02), medium 

(η2≥.13), and large (η2≥.26) based on Cohen’s criteria (Cohen et al. 2003) and are color-coded using 

very light gray, light gray, and dark gray-shaded areas, respectively. (There was no large effect.)  
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Table 13: Comparison of absolute cognitive performance across mirroring latent classes: 

Univariate analyses of variance on the demographic-corrected WAIS/WAIS-R test scores. 
 

 

Demographic-Corrected WAIS/WAIS-R Test Scores 
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“mildly verbal” vs. “mildly perceptual”      

F(1,222) .61 .13 1.3 .71 2.06 8.8 1.2 4.8 

p .435 .717 .252 .399 .152 .003 .269 .029 

η2 .003 .001 .006 .003 .009 .038 .006 .021 

         

“highly verbal” vs. “highly perceptual”  

F(1,134) 30.0 41.4 9.7 16.8 4.7 11.5 25.7 7.26 

p <.001 <.001 .002 <.001 .032 .001 <.001 .008 

η2 .183 .236 .067 .112 .034 .078 .161 .051 

         

“visuospatial cognitive” vs. “super fluent”  

F(1,129) .21 .18 6.6 .49 1.3 27.1 9.8 .17 

p .650 .673 .012 .486 .257 <.001 .002 .684 

η2 .003 .002 .077 .006 .016 .255 .110 .002 

         

“verbal memorizer” vs. “fast attentive”  

F(1,235) 6.0 8.2 .84 3.6 6.1 1.3 .12 7.0 

p .015 .005 .361 .059 .014 .250 .727 .009 

η2 .041 .054 .006 .025 .041 .009 .001 .047 
 

Notes: Comparison across mirroring classes are only provided for the Wechsler tests that had 

significant omnibus tests (see Table 12). Because four univariate analyses of variance were performed 

for each test, effects were considered to be significant (*) only if p <.012 (Bonferroni correction). Effect 

sizes are gauged small (η2≥.02), medium (η2≥.13), and large (η2≥.26) based on Cohen’s criteria (Cohen 

et al. 2003) and are color-coded using very light gray, light gray, and dark gray-shaded areas, 

respectively.  
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Table 14: The effects of age and education on eHRB test performance: Results of a series of 

hierarchical multiple linear regressions, successively taking into account age, education, 

ethnicity, gender, and handedness. 
 

 Age Education 

TEST MEASURES R2 F p R2
change Fchange p 

       

Halstead Reitan Battery       

Speech-Sounds Perception Test .270 164.4 <.001 .037 23.9 <.001 

Seashore Rhythm Test .084 40.9 <.001 .022 10.8 <.001 

Aphasia Screening Test .003 1.2 .304 .113 54.8 <.001 

Spatial Relations .037 16.7 <.001 .031 14.4 <.001 

SPE   -total* .307 197.6 <.001 .009 6.0 .003 

          -right .303 193.7 <.001 .011 7.4 .001 

          -left* .296 187.4 <.001 .012 7.5 .001 

TFR-right .204 106.7 <.001 .013 7.1 .001 

TFR-left .214 113.5 <.001 .008 4.2 .015 

Finger Tapping Test- dom .260 129.9 <.001 .013 6.4 .002 

                                 - non-dom* .263 132.3 <.001 .020 10.4 <.001 

Grip Strength Test- dom .134 69.1 <.001 .001 .28 .755 

                              - non-dom .139 71.4 <.001 .001 .37 .692 

TPT– total .423 326.2 <.001 .027 22.0 <.001 

TPT-shapes .268 163.5 <.001 .022 14.0 <.001 

TPT-locations .224 128.6 <.001 .023 13.6 <.001 

Category Test .356 267.4 <.001 .050 40.6 <.001 

Trail Making Test - Part A .295 204.4 <.001 .041 29.8 <.001 

                              - Part B .326 236.3 <.001 .065 51.9 <.001 
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Table 14: The effects of age and education on eHRB test performance: Results of a series of 

hierarchical multiple linear regressions, successively taking into account age, education, 

ethnicity, gender, and handedness, continued. 
 

 Age Education 

TEST MEASURES R2 F p R2
change Fchange p 

       

Expansion of the Halstead Reitan Battery     

Boston Naming Test (BNT) .036 15.6 <.001 .124 62.1 <.001 

PIAT Reading Recognition .046 21.0 <.001 .203 117.3 <.001 

Thurstone Word Fluency .057 19.9 <.001 .136 54.9 <.001 

Letter Fluency (FAS) .062 26.3 <.001 .085 39.8 <.001 

Category Fluency (Animal) .140 64.8 <.001 .055 27.3 <.001 

PASAT .077 20.0 <.001 .077 21.5 <.001 

Digit Vigilance Test - Time .143 46.7 <.001 .019 6.3 .002 

                                  - Error .006 1.7 .191 .012 3.5 .032 

Grooved Pegboard - dom .385 296.1 <.001 .034 27.3 <.001 

                                - non-dom .373 281.9 <.001 .031 24.8 <.001 

CVLT-Trial1 .139 54.6 <.001 .020 8.0 <.001 

           -Trial5 .214 92.4 <.001 .087 42.2 <.001 

           -Trials1-5 .227 99.6 <.001 .070 33.8 <.001 

           -Short delay .234 103.8 <.001 .062 30.0 <.001 

           -Long delay .209 89.8 <.001 .072 34.1 <.001 

Story Memory Test-Trial 1 .099 52.2 <.001 .087 50.9 <.001 

                                -Learning .160 90.7 <.001 .118 77.8 <.001 

                                -Free Recall .063 32.0 <.001 .080 44.0 <.001 

                                -Loss .013 6.3 .002 .013 6.5 .002 

Figure Memory Test-Trial 1 .258 163.1 <.001 .071 49.2 <.001 

                                -Learning .296 196.6 <.001 .056 40.2 <.001 

                                -Free Recall .135 73.1 <.001 .025 13.7 <.001 

                                -Loss .000 .06 .941 .001 .49 .614 

 

Notes: Hierarchical multiple linear regression were carried out on the eHRB test measures, using 

models incrementally including quadratic and linear terms for age, quadratic and linear terms for 

education, dummy coding for ethnicity (Caucasian=0, African American=1), dummy coding for gender 

(Male=0, Female=1), and dummy coding for handedness (Right=0, Left=1). R2 represents the 

proportion of variance accounted for by each regression model, F and p represent the F-ratio and p-

value indicative of model fit. The subscript “change” refers to measures of improvement of one model 

compared to the previous model in the hierarchy. The + or - signs after the p-values for the effects of 

ethnicity and gender indicate the signs of the corresponding regression coefficients.  Effect sizes are 

gauged small (η2≥.02), medium (η2≥.13), and large (η2≥.26) based on Cohen’s criteria (Cohen et al. 

2003) and are color-coded using very light gray, light gray, and dark gray-shaded areas, respectively. 
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Table 15: The effects of ethnicity, gender, and handedness on eHRB test performance: Results 

of a series of hierarchical multiple linear regressions, successively taking into account age, 

education, ethnicity, gender, and handedness. 
 

 Ethnicity Gender 

TEST MEASURES R2
 change Fchange p R2

change Fchange p 

       

Halstead Reitan Battery       

Speech-Sounds Perception Test .051 70.2 <.001- .005 7.4 .007+ 

Seashore Rhythm Test .003 2.7 .100 .001 .55 .458 

Aphasia Screening Test .120 134.2 <.001- .030 35.1 <.001+ 

Spatial Relations .014 13.3 <.001- .001 .839 .360 

SPE   -total* .006 7.4 .007- .002 3.2 .075 

          -right .009 11.4 .001- .000 .347 .556 

          -left* .014 17.8 <.001- .001 1.7 .196 

TFR-right .006 6.0 .014- .003 3.1 .078 

TFR-left .006 6.4 .012- .002 2.6 .106 

Finger Tapping Test- dom .019 20.1 <.001- .113 139.9 <.001- 

                                 - non-dom* .030 32.3 <.001- .104 131.0 <.001- 

Grip Strength Test- dom .012 12.5 <.001- .429 896.3 <.001- 

                              - non-dom .005 5.3 .022- .431 897.2 <.001- 

TPT– total .055 98.6 <.001- .000 .05 .171 

TPT-shapes .029 38.4 <.001- .001 1.2 .281 

TPT-locations .037 46.1 <.001- .001 .69 .406 

Category Test .086 162.9 <.001- .006 12.3 <.001- 

Trail Making Test - Part A .046 73.0 <.001- .003 4.0 .046+ 

                              - Part B .079 144.8 <.001- .005 10.1 .002+ 
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Table 15: The effects of ethnicity, gender, and handedness on eHRB test performance: Results 

of a series of hierarchical multiple linear regressions, successively taking into account age, 

education, ethnicity, gender, and handedness, continued. 
 

 Ethnicity Gender 

TEST MEASURES R2
 change Fchange p R2

change Fchange p 

       

Expansion of the Halstead Reitan Battery 

Boston Naming Test (BNT) .199 259.7 <.001- .005 6.5 .011- 

PIAT Reading Recognition .035 42.1 <.001- .001 1.5 .222 

Thurstone Word Fluency .018 14.6 <.001- .007 5.7 .017+ 

Letter Fluency (FAS) .059 59.8 <.001- .000 .233 .630 

Category Fluency (Animal) .099 111.7 <.001- .001 1.5 .224 

PASAT .042 24.7 <.001- .000 .118 .732 

Digit Vigilance Test - Time .000 .043 .837 .023 15.9 <.001+ 

                                  - Error .054 32.6 <.001- .000 .216 .642 

Grooved Pegboard - dom .029 49.9 <.001- .006 10.0 .002+ 

                                - non-dom .064 113.8 <.001- .000 .011 .916 

CVLT-Trial1 .035 29.4 <.001- .025 21.4 <.001+ 

           -Trial5 .035 35.6 <.001- .047 51.8 <.001+ 

           -Trials1-5 .052 53.8 <.001- .052 59.1 <.001+ 

           -Short delay .037 37.3 <.001- .038 40.8 <.001+ 

           -Long delay .032 32.0 <.001- .033 34.0 <.001+ 

Story Memory Test-Trial 1 .072 91.9 <.001- .003 3.9 .050 

                                -Learning .094 141.8 <.001- .000 .34 .561 

                                -Free Recall .065 77.2 <.001- .002 2.7 .099 

                                -Loss .031 31.1 <.001- .008 8.1 .004+ 

Figure Memory Test-Trial 1 .102 167.0 <.001- .003 4.6 .033- 

                                -Learning .117 205.2 <.001- .002 2.9 .088 

                                -Free Recall .027 31.6 <.001- .000 .12 .733 

                                -Loss .000 .15 .697 .000 .04 .844 

 

Notes: Hierarchical multiple linear regression were carried out on the eHRB test measures, using 

models incrementally including quadratic and linear terms for age, quadratic and linear terms for 

education, dummy coding for ethnicity (Caucasian=0, African American=1), dummy coding for gender 

(Male=0, Female=1), and dummy coding for handedness (Right=0, Left=1). R2 represents the 

proportion of variance accounted for by each regression model, F and p represent the F-ratio and p-

value indicative of model fit. The subscript “change” refers to measures of improvement of one model 

compared to the previous model in the hierarchy. The + or - signs after the p-values for the effects of 

ethnicity and gender indicate the signs of the corresponding regression coefficients.  Effect sizes are 

gauged small (η2≥.02), medium (η2≥.13), and large (η2≥.26) based on Cohen’s criteria (Cohen et al. 

2003) and are color-coded using very light gray, light gray, and dark gray-shaded areas, respectively. 

The effect of handedness was negligible in effect size for all the test measures and was not included in 

the table. The only measures (indicated by asterisks) for which there was a significant effect of 

handedness, although still negligible in effect size, were: SPE-total (R2
change=.003, Fchange=4.5, p 

=.035-), SPE-left: R2
change=.006, Fchange=8.2, p =.004-), Finger Tapping-non-dominant (R2

change =.008, 

Fchange=10.2, p =.001+), Grooved Pegboard-dominant (R2
change =.003, Fchange=5.7, p =.017-), and Figure 

Memory Test–Trial 1 (R2
change =.003, Fchange=4.5, p =.0.035-). The abbreviations “dom” and “non-dom” 

stand for dominant and non-dominant hand, respectively. 
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Table 16: The effects of age, education, ethnicity, gender, and handedness on the Wechsler 

Adult Intelligence Scales: Hierarchical multiple linear regression results. 
 

 Age Education Gender 

 R2 F p R2
change Fchange p R2

 change Fchange p 

Wechsler Adult Intelligence Scales (verbal scales)     

Information          

WAIS/C .032 2.0 .137 .421 46.6 <.001 .025 5.75 .018- 

WAIS-R/C-old .025 1.2 .314 .175 9.9 <.001 .074 9.0 .003- 

WAIS-R/AA .037 6.9 .001 .215 51.4 <.001 .047 23.8 <.001- 

Digit Span           

WAIS/C .037 2.3 .100 .044 2.9 .060 .008 1.1 .299 

WAIS-R/C-old .004 .170 .844 .006 .257 .774 .003 .292 .590 

WAIS-R/AA .063 12.0 <.001 .045 8.9 <.001 .001 .256 .613 

Vocabulary          

WAIS/C .032 2.0 .135 .324 30.5 <.001 .000 .075 .784 

WAIS-R/C-old .015 .694 .502 .142 7.6 .001 .002 .209 .648 

WAIS-R/AA .028 5.2 .006 .228 54.6 <.001 .006 3.0 .085 

Arithmetic          

WAIS/C .107 7.4 .001 .142 11.5 <.001 .062 10.8 .001- 

WAIS-R/C-old .011 .542 .583 .139 7.5 .001 .082 9.7 .002- 

WAIS-R/AA .022 4.1 .018 .150 32.3 <.001 .004 1.9 .173 

Comprehension          

WAIS/C .006 .384 .682 .197 15.0 <.001 .005 .695 .406 

WAIS-R/C-old .006 .261 .771 .158 8.5 <.001 .<001 .014 .906 

WAIS-R/AA .033 6.1 .002 .182 41.3 <.001 .017 7.9 .005- 

Similarity          

WAIS/C .045 2.9 .059 .324 31.1 <.001 .002 .369 .545 

WAIS-R/C-old .006 .273 .762 .105 5.3 .006 .042 4.4 .039- 

WAIS-R/AA .023 4.1 .017 .228 54.4 <.001 .002 .83 .364 
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Table 16: The effects of age, education, ethnicity, gender, and handedness on the Wechsler 

Adult Intelligence Scales: Hierarchical multiple linear regression results, continued. 
 

 Age Education Gender 

 R2 F p R2
change Fchange p R2

 change Fchange p 

Wechsler Adult Intelligence Scales (performance subtests)    

Picture Completion          

WAIS/C .086 5.8 .004 .065 4.6 .012 .009 1.2 .269 

WAIS-R/C-old .018 .854 .429 .076 3.8 .027 .011 1.05 .308 

WAIS-R/AA .047 8.8 <.001 .092 19.0 <.001 .025 10.7 .001- 

Picture Arrangement         

WAIS/C .141 10.1 <.001 .037 2.7 .070 .011 1.6 .231 

WAIS-R/C-old .138 6.2 .003 .084 4.1 .021 .020 2.0 .163 

WAIS-R/AA .081 15.3 <.001 .062 12.5 <.001 .027 11.4 .001- 

Block Design          

WAIS/C .091 6.2 .003 .054 3.8 .025 .001 .20 .653 

WAIS-R/C-old .131 7.1 .001 .033 1.8 .164 .057 6.6 .012- 

WAIS-R/AA .115 23.4 <.001 .059 12.7 <.001 .019 8.31 .004- 

Object Assembly         

WAIS/C .073 4.86 .009 .024 1.6 .200 .003 .451 .503 

WAIS-R/C-old .189 10.7 <.001 .039 2.3 .110 .002 .241 .625 

WAIS-R/AA .104 20.8 <.001 .049 10.4 <.001 .002 .818 .366 

Digit Symbol-Coding         

WAIS/C .204 15.8 <.001 .138 12.7 <.001 .070 14.4 <.001+ 

WAIS-R/C-old .279 18.2 <.001 .029 1.9 .155 .014 1.9 .171 

WAIS-R/AA .220 50.6 <.001 .071 17.8 <.001 .078 43.7 <.001+ 

 
Notes: Hierarchical multiple linear regressions were carried out on the Wechsler scales’ measures, 

using models incrementally including quadratic and linear terms for age, quadratic and linear terms for 

education, dummy coding for gender (Male=0, Female=1), and dummy coding for handedness 

(Right=0, Left=1). To avoid confounds related to WAIS-version, ethnicity, and age, separate models 

were run for Caucasian individuals who had been administered the WAIS (WAIS/C, N=126, age: 

M=35.4, SD=12.8), Caucasian individuals who had been administered the WAIS-R (WAIS-R/C-old, 

N=97, age: M=67.2, SD=11.1), and African-American individuals who had been administered the 

WAIS-R (WAIS-R/AA, N=362, age: M=39.0, SD=12.6). R2 represents the proportion of variance 

accounted for by each regression model, F and p represent the F-ratio and p-value indicative of model 

fit. The subscript “change” refers to measures of improvement of one model compared to the previous 

model in the hierarchy. The + or - signs after the p-values for the effect of gender indicate the signs of 

the corresponding regression coefficients. Effect sizes are gauged small (η2≥.02), medium (η2≥.13), and 

large (η2≥.26) based on Cohen’s criteria (Cohen et al. 2003) and are color-coded using very light gray, 

light gray, and dark gray-shaded areas, respectively. The effect of handedness was negligible in effect 

size and significance for all the test measures and was not included in the table. 
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Table 17: Demographic composition of the latent classes. 
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(N
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 TOTAL 

A
g
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M
ea

n
 

(S
D

) 47.2  

(18.0) 

49.0 

(17.1) 

46.7 

(18.3) 

45.9 

(17.9) 

47.6 

(17.1) 

46.4 

(18.1) 

44.9 

(18.7) 

48.7 

(18.5) 

46.7 

(18.9) 

E
d

u
ca

ti
o

n
 

M
ea

n
 (

S
D

) 

13.7  

(2.5) 

13.7 

(2.5) 

13.8 

(2.5) 

13.8 

(2.5) 

13.6 

(2.4) 

14.2 

(2.4) 

14.2 

(2.9) 

13.5 

(2.5) 

13.7 

(2.7) 

G
en

-d
er

 

F
e-

m
al

e 
R

at
io

 

45.1% 43.9% 46.4% 49.6% 32.2% 47.9% 43.3% 46.5% 47.2% 

Log. Reg. 

within 

pair 

χ2=.238 

p=.626 

exp(B)=1.10 

χ2=6.542 

p=.011 

exp(B)=.48 

χ2=.272 

p=.602 

exp(B)=.83 

χ2=.010 

p=.920 

exp(B)=1.03  

Log. Reg. 

across 

pairs 

χ2<.001 

p=.983 

exp(B)=1.00 

χ2=.712 

p=.399 

exp(B)=.88 

χ2=.029 

p=.865 

exp(B)=1.03 

χ2=.423 

p=.516 

exp(B)=1.10 

E
th

n
ic

it
y

: 
A

fr
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-

A
m

er
ic

an
 R

at
io

 

62.9% 68.2% 63.4% 60.5% 63.2% 53.5% 55.0% 62.4% 65.5% 

Log. Reg. 

within 

pair 

χ2=.995 

p=.318 

exp(B)=.81 

χ2=.167 

p=.683 

exp(B)=1.12 

χ2=.029 

p=.866 

exp(B)=1.06 

χ2=.249 

p=.618 

exp(B)=1.15 

Log. Reg. 

across 

pairs 

χ2=2.335 

p=.126 

exp(B)=1.23 

χ2=.218 

p=.640 

exp(B)=92.6 

χ2=4.836 

p=.028 

exp(B)=.66 

χ2=.222 

p=.637 

exp(B)=1.08 

H
a

n
-d

ed
-n
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s:

 L
ef

t-
 

H
an

d
er

 R
at

io
  

10.8% 8.1% 5.2% 16.3% 14.9% 9.9% 13.3% 13.9% 12.0% 

Log. Reg. 

within 

pair 

χ2=1.367 

p=.242 

exp(B)=.62 

χ2=.070 

p=.791 

exp(B)=.90 

χ2=.386 

p=.535 

exp(B)=1.41 

χ2=.188 

p=.664 

exp(B)=.85 

Log. Reg. 

across 

pairs 

χ2=12.425 

p<.001 

exp(B)=.45 

χ2=6.497 

p=.011 

exp(B)=1.80 

χ2=.067 

p=.796 

exp(B)=1.08 

χ2=1.250 

p=.263 

exp(B)=1.30 

 

Notes: Two series of logistic regression analyses (Log.Reg.) were carried out, comparing gender, 

ethnicity, and handedness distributions (1) within pairs of mirroring latent classes – exp(B) represents 

the estimated difference in odds ratios between the latent class to the right minus that to the left – and 

(2) across pairs of mirroring latent classes – exp(B) represents the estimated difference in odds ratios 

between the latent class of interest minus that of all other classes combined. Significance was tested for 

each comparison using χ2-tests, with p-values <.001 highlighted in dark gray and p-values <.0125 

highlighted in light gray (considered significant using a Bonferroni correction 0.05/4). Proportions that 

were notable are highlighted in bold.   
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Table 18: Supplemental EFA on the eHRB and WAIS/WAIS-R test performances: Geomin-

rotated factor loadings corresponding to the 8-factor solution. 
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&
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eHRB measures         

Trail Making – Part B 0.265 0.051 0.091 0.079 0.03 0.574 0.05 0.012 

PASAT 0.471 0.092 0.003 0.174 0.003 0.324 0.015 0.047 

Digit Vigilance (Error) 0.343 -0.242 0.244 0.204 0.086 -0.018 0.026 -0.008 

Thurstone Fluency -0.004 0.576 0.324 0.097 0.112 0.058 0.02 -0.013 

Letter Fluency (FAS) 0.041 0.679 0.212 -0.02 -0.022 -0.006 0.1 0.089 

Category F. (Animals) -0.003 0.409 -0.007 0.124 0.089 0.16 -0.054 0.206 

Aphasia Screening  0.194 -0.013 0.425 0.047 -0.03 0.073 -0.07 0.256 

BNT -0.152 0.042 0.264 0.031 0.248 0.032 0.011 0.544 

PIAT reading recogn. 0.036 0.08 0.52 -0.137 -0.051 -0.079 -0.019 0.383 

Story Mem (Learning) 0.077 0.018 -0.005 0.575 -0.033 0.019 0.036 0.403 

CVLT (Trials 1-5) -0.012 0.099 0.133 0.572 0.056 0.159 -0.046 0.035 

Figure Mem(Learning) 0.068 -0.037 -0.008 0.137 0.692 0.024 0.071 0.03 

Category Test 0.114 0.014 -0.076 0.171 0.448 0.138 0.139 0.076 

TPT (total) -0.011 0.05 -0.054 0.095 0.533 0.296 0.088 -0.06 

TPT (memory) -0.001 0.146 0.002 0.166 0.576 -0.079 0.118 -0.108 

Digit Vigilance (Time) 0.003 0.097 -0.075 -0.151 -0.12 0.835 0.013 -0.032 

Trail Making – Part A 0.117 0.048 0.067 -0.018 0.073 0.677 -0.01 -0.044 

Grvd Pegboard (dom) -0.109 -0.066 -0.01 0.017 0.111 0.615 0.208 0.096 

SPE (right hand) 0.089 0.047 -0.08 0.14 0.075 0.236 0.387 -0.027 

TFR (right hand) -0.063 0.009 0.017 -0.061 0.006 0.462 0.327 0.035 

Speech-Sounds Percep -0.002 0.009 0.424 0.032 0.088 0.203 0.351 0.016 

Seashore Rhythm 0.245 0.066 0.186 -0.005 0.013 0.027 0.393 -0.101 

         

WAIS/WAIS-R measures        

Digit Span 0.524 0.014 0.238 -0.02 0.011 0.004 0.295 0.069 

Arithmetic 0.487 -0.017 -0.034 -0.001 0.164 0.026 -0.029 0.425 

Information 0.11 0.063 -0.013 -0.039 0.151 -0.134 -0.071 0.771 

Vocabulary 0.012 -0.003 0.212 0.027 -0.033 -0.016 0.087 0.783 

Comprehension -0.052 -0.019 0.007 0.056 0.017 0.007 0.203 0.743 

Similarity 0.026 0.009 0.02 0.033 0.244 0.052 -0.002 0.592 

Picture Completion 0.024 -0.034 0.049 0.007 0.446 0.064 0.056 0.318 

Picture Arrangement -0.012 0.026 0.039 0.249 0.303 0.032 0.1 0.143 

Block Design 0.166 -0.011 0.004 -0.066 0.766 0.007 -0.03 0.159 

Object Assembly -0.019 0.014 0.104 -0.077 0.888 0.018 -0.118 0.018 

Digit-Symbol Coding 0.165 -0.059 0.084 0.087 0.015 0.750 -0.063 0.01 

 

Notes: The 8-factor solution was considered to provide the best and most interpretable fit of the eHRB 

and WAIS/WAIS-R data (χ2(292)=556.3, CFI=.982, AIC=110.087, BIC=111,563, adjBIC=110,604, 

RMSEA=0.030, SRMR=0.018). Gray-shaded areas indicate loadings >.22, corresponding to items 

sharing at least 5% of variance with the factor. 
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APPENDIX 2: FIGURES 

 

Figure 1 

 
 

Figure 1: Final CFA model, including factor loadings and correlations between same test measures. All 

correlations were significant <.001 except those underlined (p-value provided on the graph) and were 

positive except between Digit Vigilance-Time and -Error (in blue).  
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Figure 2 

 
 

 

Figure 2: Effect of age on the CFA factor scores. 
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Figure 3 

 
 

 

 

Figure 3: Effect of education on the CFA factor scores. 
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Figure 4 

 
 

 

Figure 4: LPA on demographic-corrected factor scores: Absolute average neurocognitive profiles 

obtained for models with 2 to 7 latent classes. The standard errors of the estimated means are 

represented using error bars. Estimated variance parameters are represented for each latent class as 

linewidth. (The band top and bottom are calculated as the estimated mean plus or minus the square root 

of the estimated variance divided by 2 and divided again by 10 to limit overlap and enhance 

visualization). 
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Figure 5  

 
 

Figure 5: Relative and absolute neurocognitive profiles for the 8 latent class solution (LPA on 

demographic- and ability-corrected factor scores). Upper Panel: Estimated mean relative neurocognitive 

profiles. The units on the y-axis are in number of standard deviations of demographic- and ability-

corrected factor score. The standard errors of the estimated means are represented using error bars. 

Estimated variance parameters are represented for each latent class as linewidth. (The band top and 

bottom are calculated as the estimated mean plus or minus the square root of the estimated variance 

divided by 2 and divided again by 10 to limit overlap and enhance visualization.) Lower Panel: Average 

absolute neurocognitive profiles, calculated using most likely class membership. The units on the y-axis 

are in number of standard deviations of demographic-corrected factor score. The standard errors of the 

means are represented using error bars. Standard deviation are represented for each latent class as 

linewidth. (The band top and bottom are calculated as the group average plus or minus the standard 

deviation divided by 2 and divided again by 10 to limit overlap and enhance visualization.) The 

percentage of individuals in each latent class are calculated using estimated posterior probabilities. 
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Figure 6 

 
 

Figure 6: Neurocognitive profiles for all participants grouped by latent class using most likely class 

memberships in the 8-class LPA on demographic- and ability-corrected factor scores. To limit overlaps, 

separate plots are provided for each pair of classes with seemingly mirroring neurocognitive profiles 

(vertically-arranged panels). The units on the y-axis are in number of standard deviations of 

demographic- and ability-corrected factor score (left panels) and standard deviations of demographic-

corrected factor scores (right panels). Average neurocognitive profiles are provided for each group 

using darker lines.  
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Figure 7 

 
 

Figure 7: Comparison across latent classes of the eHRB test scores corrected for age, education, and 

ethnicity. Scores on the motor tests are provided for information but were not part of the factor 

analyses. The units on the y-axis are in number of standard deviations of demographic-corrected test 

score. Error bars are provided corresponding to plus or minus the means’ standard errors. 
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Figure 8 

 
 

Figure 8: Comparison across latent classes of the combined WAIS/WAIS-R test scores corrected for 

age, education, and ethnicity. The units on the y-axis are in number of standard deviations of 

demographic-corrected test score. Error bars are provided corresponding to plus or minus the means’ 

standard errors. 
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Figure 9 

 

 
 

Figure 9: Projections of factor scores in the three-dimensional eigenvector space corresponding to the 

three largest eigenvalues of the demographic-corrected factor scores’ covariance matrix. Projections 

corresponding to the first and second eigenvectors are plotted in the left panels, and to the second and 

third eigenvectors in the right panels. Individual performances are represented by crosses and color-

coded based on the 7-class solution of the LPA on demographic-corrected factor scores (upper panels) 

and the 8-class solution of the LPA on general cognitive ability- and demographic-corrected factor 

scores (lower panels). 

  



164 

 

 

 

Figure 10 

 
 

Figure 10: Projections of average demographic-corrected factor scores and test scores in the three-

dimensional eigenvector space corresponding to the three largest eigenvalues of the demographic-

corrected factor scores’ covariance matrix. Projections corresponding to the first and second 

eigenvectors are plotted in the left panels, and to the second and third eigenvectors in the right panels. 

Tests presented in gray font were not included in the factor analyses. Tentative interpretations of the 

overall continuum are provided in larger font. 
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Figure 11 

 

 
 

Figure 11: Distributions of gender and handedness along the verbal-perceptual dimension. 




