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Transforming Olefins into γ,δ-Unsaturated Nitriles by Cu-
Catalysis
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Abstract

We developed a strategy to transform olefins into homoallylic nitriles by a mechanism that 

combines copper catalysis with alkyl nitrile radicals. The radicals are easily generated from alkyl 

nitriles in the presence of a mild oxidant, di-terf-butyl peroxide. This cross-dehydrogenative 

coupling between simple olefins and alkylnitriles bears advantages to the conventional use of 

halides and toxic cyanide reagents. With this method, we showcase the facile synthesis of a 

flavoring agent, natural product, and polymer precursor from simple olefins.

Graphical Abstract

Functionalizing alkenes for pennies: A copper catalyzed cross-dehydrogenative coupling of 

unactivated olefins with alkylnitriles was developed by dual sp3 C–H bond cleavage.
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While radicals play a key role in biochemistry,[1] their potential for use in organic synthesis 

remains vast, with new concepts emerging,[2] including applications in cross-coupling.[3] By 

combining Cu-catalysis with radicals, Heck-type transformations have been achieved, 

including allylic trifluoromethylation,[4] arylation,[5] and alkylation.[6] These radical 

transformations enable bond constructions previously impossible and provide an attractive 

approach for olefin synthesis (Figure 1). Inspired by versatility of nitriles,[7] we designed a 

strategy for transforming simple olefins into γ,δ-unsaturated nitriles by taming the reactivity 

of a cyanoalkyl radical. Rather than requiring functionalized halides and toxic cyanide 

reagents, this transformation enables olefin feedstocks to be coupled with alkyl nitriles to 

generate homoallylic nitriles in a single-step, using an earth-abundant metal-catalyst (Figure 

1).[8]

The nitrile functional group is common in both materials[9] and medicines,[10] while being a 

useful handle for elaboration.[7] As shown in Figure 1, we proposed a cross-dehydrogenative 

coupling (CDC)[11] between an olefin and acetonitrile.[12] Initial oxidation of an alkylnitrile 

forms the corresponding cyanoalkyl radical, which can add to an olefin to give alkyl radical 

A.[13–16] Radicals such as A have been implicated in olefin hydrocyanoalkylations[13] and 

bifunctionalizations, such as oxycyanoalkylation[14] and cyanoalkylation/arylation.[1516] In 

the presence of a copper(II) catalyst, Koichi first showed that radicals can be trapped to 

generate an alkylcopper(III) intermediate B.[17] Koichi’s kinetic studies suggest that alkyl 

radicals can be trapped by copper with rate constants in excess of 106 M−1s−1.[17] 

Theoretical studies on the CF3 allylic functionalization invoke a triflate counterion-assisted 

elimination.[4b] On the basis of these studies, we reasoned that the appropriate counterion 

would be critical for controlling regio-and stereochemistry in the final elimination.

With this mechanistic hypothesis in mind, we focused on the copper-catalyzed allylic 

cyanoalkylation of 1-dodecene in acetonitrile, using di-terf-butyl peroxide (DTBP) as the 

oxidant.

DTBP is a convenient and inexpensive radical initiator in synthetic and polymer chemistry, 

commonly used for generating radicals from acetonitrile.[13–16] [It might make more sense 

to move Zhu’s work here because you are saying that he also used copper and peroxides. 

Zhu demonstrated that Cu/peroxide can generate cyanoalkyl radicals from alkylnitriles, 

which can then add to alkenes through an intermolecular process.[14a,b,d,e,16] In Zhu’s work, 

the generated alkyl radical is typically trapped to afford hydrocyanoalkylations and 

bifunctionalizations, such as xxxx.. But we imagine diverting intermediate A to achieve 

dehydrogenative olefin-functionalization.

In the absence of copper, treatment of 1-dodecene with DTBP afforded the known 

hydrocyanoalkylation product 4a in 25% yield, with no desired cyanoalkene 3a. Copper(I) 

and copper(II) complexes bearing weak counterions provided 4a as the major product (28–

70% yields) (Table 1), in accordance with reported studies on hydrocyanoalkylation.[13] 
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Catalysts used by Zhu were not effective in our proposed allylic cyanoalkylation.[14a,b,d,e,16] 

In contrast, the (thiophene-2-carbonyloxy)copper(I) (CuTc) (previously used as catalyst in 

allylic trifluoromethylation[4b]) provided the cyanoalkene 3a as the major product in 30% 

yield. In comparison to copper(I) acetate, we found that copper(II) acetate showed higher 

efficiency and chemoselectivity by providing 3a in 47% yield, >20:1 regioselectivity. By 

replacing acetate with more basic pivalate, the desired alkene was obtained in 65% yield, 

>20:1 regioselectivity. Other oxidants such as terf-butyl hydroperoxide (TBHP) and dicumyl 

peroxide (DCP) were ineffective. Using an electron-rich benzonitrile derivative as an 

additive further improved efficiency, presumably by improving catalyst solubility. In the 

presence of one equivalent of veratronitrile, 3a was obtained in 90% yield, >20:1 rr and 4:1 

E/Z. Only trace amount of 4a was observed (<5% yield). These results support the notion 

that a carboxylate counterion facilitates the elimination and enables >20:1 regioselectivity to 

provide the γ,δ-unsaturated nitrile. A syn-elimination affords the E-isomer as the major 

product.[18]

With this protocol, we elaborated a wide-range of terminal olefins (Scheme 1). Unactivated 

linear terminal olefins gave the corresponding γ,δ-unsaturated nitriles (3a-c) in 80–86% 

yields with >20:1 rr and 4:1 E/Z ratio. For the substrates bearing ester (3d, 3e), amide (3f), 
cyano (3g) and ether (3h) groups, regioselective CDC reactions with acetonitrile provided 

the corresponding products in 75–82% yields. Increasing the steric hindrance at the 4-

position of the olefins slightly decreased the yields but increased the E/Z ratios of the 

products (3i 7:1 E/Z; 3j 11:1 E/Z; 3k >20:1 E/Z). With a tert-butyl group at the 3-position, 

we observed >20:1 regioselectivity and >20:1 E/Z selectivity (3k). The regioselectivity is 

unaffected by the increased steric hindrance at the 4-position of the olefins. 3-Aryl 

substituted substrates gave the corresponding nitriles (3l-n) in 40–46% yields with >20:1 

E/Z selectivity. A substrate with an electron-withdrawing group on the phenyl ring (3n) 

showed slightly higher reactivity than the one with an electron-donating group (3m). 

Trisubstituted-alkenyl nitriles were synthesized in 50–77% yields from 3,3- or 1,1-

disubstituted olefins (3o-r and 3t). A series of nitriles were also tested as coupling partners 

and solvent. Propionitrile and butyronitrile show decreased reactivity compared to 

acetonitrile, most likely due to steric effects and a lower solubility of the copper catalyst in 

these nitriles (3v, 3w). Only trace amount of hydrocyanoalkylation product 4 were observed 

with the olefins shown in Scheme 1. With facile access to various nitriles, we next focused 

on applying them as building blocks.

Due to the versatility of the nitrile group, we can now use simple olefins to access a range of 

motifs, including an industrial flavor agent, a natural product, and a polymer precursor 

(Scheme 2). For example, treatment of 3b with TMSCl in ethanol provided the pear-flavored 

agent, ethyl 4-decenoate 7, in 85% yield.[19] The 4-alkyl γ-lactones are members of a large 

family of natural flavors, widely used in food industry.[20] From the same compound 3b, γ-

decalactone 8 was obtained in 73% yield by a one-pot, hydrolysis and intramolecular 

hydroacyloxylation. Our strategy provides an efficient route to fatty acids. For example, 

lyngbic acid, isolated from the marine cyanophyte Lyngbya majuscule,[21] exhibits 

antimicrobial activity.[22] By hydrolysis of the cyano group in compound 3h, lyngbic acid 9 
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can be obtained in 87% yield. Ru-catalyzed hydrogenation of 3d provided the nylon 9 

precursor 10 in 75% yield.[23]

Next, we examined internal olefins (Scheme 3). With (E)-5-decene, the reaction gave 

cyanoalkene 3x in 62% yield with with >20:1 rr and 12:1 E/Z ratio after 24 hours (Scheme 

3a). With (Z)-5-decene, (E)-isomer 3x was obtained as the major product in a similar yield 

and E/Z selectivity as the (E)-olefin substrate (60% yield, 11:1 E/Z) (Scheme 3b). The C–C 

bonds were formed at the 5-position of the substrates. No 3-propylnon-4-enenitrile 5 was 

observed from potential allylic radical F or π-allylcopper intermediate G by allylic C–H 

bond activation (Scheme 3c). We saw no carbocation rearrangement type products 6, which 

would arise from carbocation intermediate H (Scheme 3d).[24] Nor were these 1,2-hydride 

shift products detected in experiments yielding compounds 3o-q shown in Scheme 1. These 

observations suggest that an allylic radical or carbocation are most likely not key 

intermediates in our cross-coupling.

To gain more insight into the mechanism, we performed a radical trapping and radical clock 

experiments (Scheme 4). The allylic cyanoalkylation reactions were suppressed in the 

presence of radical inhibitors TEMPO or BHT (Scheme 4a). In addition, compound 12 was 

obtained in 60% yield from (1-cyclopropylvinyl)benzene 11 via sequential ring-opening of 

cyclopropylmethyl radical intermediate and cyclization (Scheme 4b).[13b] These 

observations suggest that a radical pathway is involved in this cross-coupling (Scheme 5).

Addition of the cyanoalkyl radical to the olefin generates radical intermediate A. To explain 

the regioselectivity, we propose that π-bonding of cyano group to copper(III)[25] shields the 

H at the β-position to direct the pivalate to abstract the H at the δ-position.

In summary, we have developed a copper catalyzed cross-dehydrogenative coupling of 

unactivated olefins with alkylnitriles by dual sp3 C–H bond cleavage. High chemo- and 

regioselectivity for an E2-type elimination was achieved by (1) the pivalate counterion and 

(2) the directing effect of cyano group. By using a catalyst derived from earth abundant salts, 

we can access 4-alkenylnitriles from simple olefins. Both terminal and internal olefins can 

be transformed into γ,δ-unsaturated nitrile, versatile synthetic building blocks. These studies 

contribute to the emerging use of radicals for catalytic cross-coupling.
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Figure 1. 
Allylic cyanoalkylation using alkylnitrile.
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Scheme 1. 
Allylic cyanoalkylation of terminal olefins. Reaction conditions: 1 (0.20 mmol), Cu(OPiv)2 

(20 mol%), DTBP (0.80 mmol) and veratronitrile (0.20 mmol) in alkylnitrile 2 (1.5 mL), 

110 °C, 6 h. E/Z ratios determined by NMR analysis of the unpurified reaction mixture are 

shown in parentheses. [a] 3t1 and 3t2 were isolated as a mixture. [b] 24 h.
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Scheme 2. 
Applications of the γ,δ-unsaturated nitriles.
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Scheme 3. 
Allylic cyanoalkylation of internal olefins.
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Scheme 4. 
Intermediate trapping and radical clock experiments.
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Scheme 5. 
Proposed rationale for regioselectivity.
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Table 1:

Counterion effects on Cu-catalyzed allylic cyanoalkylation[a,b]

[a]
Reaction conditions: 1a (0.20 mmol), CuXn (20 mol%) and DTBP (0.80 mmol) in acetonitrile 2a (1.5 mL), 110 °C, 6 h.

[b]
Yields were determined by NMR analysis of the unpurified reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. Isolated 

yield is shown in parentheses.

[c]
(CuOTf)2 PhMe (10 mol%).

[d]
With veratronitrile (0.20 mmol). A 4:1 E/Z ratio was determined by NMR analysis of the unpurified reaction mixture.
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