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Original Investigation

Correlating Deep Learning-Based Automated Reference
Kidney Histomorphometry with Patient Demographics
and Creatinine

Nicholas Lucarelli,1 Brandon Ginley,2 Jarcy Zee ,3,4 Sayat Mimar ,5 Anindya S. Paul,5 Sanjay Jain,6,7

Seung Seok Han ,8 Luis Rodrigues ,9 Tezcan Ozrazgat-Baslanti,5 Michelle L. Wong,10 Girish Nadkarni,11,12

William L. Clapp,13 Kuang-Yu Jen ,10 and Pinaki Sarder 5

Key Points
c The authors leverage the unique benefits of panoptic segmentation to perform the largest ever quantitation of
reference kidney morphometry.

c Kidney features vary with age and sex; and glomeruli size may intricately link to creatinine, defying prior notions.

Abstract
Background Reference histomorphometric data of healthy human kidneys are largely lacking because of laborious
quantitation requirements. Correlating histomorphometric features with clinical parameters throughmachine learning
approaches can provide valuable information about natural population variance. To this end, we leveraged deep
learning (DL), computational image analysis, and feature analysis to associate the relationship of histomorphometry
with patient age, sex, serum creatinine (SCr), and eGFR in a multinational set of reference kidney tissue sections.

Methods A panoptic segmentation neural network was developed and used to segment viable and sclerotic
glomeruli, cortical and medullary interstitia, tubules, and arteries/arterioles in the digitized images of 79
periodic acid–Schiff-stained human nephrectomy sections showing minimal pathologic changes. Simple
morphometrics (e.g., area, radius, density) were quantified from the segmented classes. Regression analysis aided
in determining the association of histomorphometric parameters with age, sex, SCr, and eGFR.

Results Our DL model achieved high segmentation performance for all test compartments. The size and density
of glomeruli, tubules, and arteries/arterioles varied significantly among healthy humans, with potentially large
differences between geographically diverse patients. Glomerular size was significantly correlated with SCr and
eGFR. Slight, albeit significant, differences in renal vasculature were observed between sexes. Glomerulosclerosis
percentage increased, and cortical density of arteries/arterioles decreased, as a function of increasing age.

Conclusions Using DL, we automated precise measurements of kidney histomorphometric features. In the
reference kidney tissue, several histomorphometric features demonstrated significant correlation to patient
demographics, SCr, and eGFR. DL tools can increase the efficiency and rigor of histomorphometric analysis.
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Introduction
Diagnostic renal pathology relies on recognizing histologic
findings that deviate from the expected range for normal or
healthy tissue, hereby defined as reference tissue with
none to minimal histopathologic abnormality. Existing
morphometrics were commonly measured manually from
autopsy specimens, and living-donor samples of reference
kidney tissue remain difficult to obtain because tissue sam-
ples are not typically taken from healthy patients. In addi-
tion, detailed reference histomorphometric data of healthy
human kidneys are largely lacking because of laborious
quantitation requirements. With recent advances in the
technical capabilities and performance of deep learning
(DL)-based image analysis, computational pathology has
emerged as a potential feasible and scalable method to
automate histomorphometric quantitation and provide ac-
curate reference kidney histomorphometric data. If applied
to a large and diverse sample of healthy human kidneys,
this approach can provide insights into histomorphometric
natural variance within populations and subgroups, which
may correlate to clinical parameters and disease suscepti-
bility. Similar detailed quantitation in disease states may
provide additional diagnostic and prognostic information
that are not currently available or feasible for routine di-
agnostic renal pathology practice. However, the utility of
such data can only be recognized if reliable reference values
are available for comparison.
In this study, we developed a DL-based image analysis

model for conducting comprehensive segmentation of renal
histomorphometry and applied it to whole slide images
(WSIs) of reference kidney tissue to automate the measure-
ment of simple histomorphometric features. These quanti-
fied features were then correlated to patient demographics,
serum creatinine (SCr), and eGFR values to assess their
biological relevance.

Methods
This study was approved by the institutional review

board at the University of Florida with waiver of informed
consent.

Kidney Tissue Sections
All deidentified kidney tissue sections in this study were

obtained from the pathology archives of the University of
California, Davis, Centro Hospitalar e Universitário de
Coimbra, and Seoul National University Hospital. The
original tissue was formalin-fixed, paraffin-embedded,
and sectioned at 2–4 mm in thickness. The cases and stains
used are detailed below.

Image Data
WSIs were generated by scanning the glass slides with a

whole slide brightfield microscopy image scanner (Aperio,
Leica, CA). Spatial annotation of tissue sections was per-
formed in Aperio ImageScope and saved as ImageScope
compatible XML files.

Training Data
For segmentation training, 190 WSIs were collected, in-

cluding 53 diabetic nephropathy, 39 lupus nephritis, and 11
transplant surveillance needle core biopsies (total tissue

area, 1100 mm2), 58 large sub-WSIs manually cropped from
healthy portions of 33 reference kidneys (total tissue area
369 mm2), 23 small sub-WSIs of five hematoxylin and eosin
needle core biopsies (total tissue area 34 mm2), two small
sub-WSIs from a silver-stained biopsy (2 mm2), and four
sub-WSIs from a trichrome biopsy (1.4 mm2). Samples were
collected from a variety of institutions and disease types to
create a diverse image set for model training. Diverse
training data improve the robustness of the model to hold-
out slides from different institutions and disease states, such
as those included in this study. These slides were annotated
in their entirety for viable and sclerotic glomeruli, cortical
and medullary interstitia, tubules, and arteries/arterioles.
Overall, 1506 mm2 of kidney tissue was annotated.

Performance Analysis and Ground-Truth Data
Ten periodic acid–Schiff (PAS) transplant surveillance

kidney biopsy sections (nine needle cores, one wedge) were
used for performance measurement. Five patients had SCr
at the time of biopsy of .2 mg/dl, and five patients were
selected to have histologically normal biopsy findings as
per the original case report to measure performance both in
diseased and healthy states. This choice was made to ensure
that the model performs well in a variety of holdout sam-
ples because none of these slides were included in training
the algorithm. Glomeruli ,1500 mm2 in the area and glo-
merular fragments that were not physically contiguous
with the biopsy core were not considered. Very small di-
ameter arterioles were difficult to discern from capillaries;
therefore, the smallest vessels annotated as arterioles for the
purpose of performance evaluation were those.200 mm2 in
area and displaying at least one full circumferential layer of
smooth muscle cells, barring the loss of smooth muscle to
disease. The smallest annotatable tubule was also defined as
those .200 mm2 in area because below this threshold, the
objects could not be confidently determined as tubules. The
area thresholds discussed herein were applied to the neural
network segmentation outputs to filter the structures for
performance evaluation.

Reference Kidney Data
The reference kidney tissue sections consisted of archived

glass slides of the renal parenchyma uninvolved and away
from the renal tumor of human tumor nephrectomy spec-
imens. These cases were screened to have no evidence of
hydronephrosis, infectious disease, or proteinuria. The re-
nal pathologist screened the slides to include only cases
with minimal pathologic changes (e.g., no tumor, no sig-
nificant preservation or processing artifact, and ,5% in-
terstitial fibrosis and tubular atrophy). These criteria were
implemented to ensure that only areas of tissue consistent
with reference morphometry were included. In total, refer-
ence sections from 79 unique participants were included,
with a tissue area totaling 17,208 mm2. eGFR was measured
using the 2021 CKD Epidemiology Collaboration eGFRcr
equation.1

Renal Multicompartment Segmentation
Tissue Detection
The renal tissue regions were detected from the back-

ground by creating a low-resolution thumbnail (163 down-
sample) of the entire WSI and transforming it to the hue,
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saturation, and value color space. From the resultant image,
the total tissue area was measured by thresholding the
saturation channel at 0.05, summing all the pixels in the
resultant binary mask, and converting the output to mm2.
To identify image regions of tissue for DL processing, the
saturation channel was further blurred with a Gaussian
filter (s55) to create a loose buffer zone around the tissue
edge. The blurred saturation image was converted to a
binary mask by thresholding at 0.05. This low-resolution
mask was gridded into a set of tiles on the basis of
the desired training or testing patch size for renal multi-
compartment segmentation, amount of overlap between
patches, and tolerable percent of nontissue per patch. For
training, image size was specified as 120031200 pixels, and
an overlap of 50% between adjacent tiles was allowed. For
testing, image size was specified as 204832048 pixels, with
10% overlap between patches. For both training and testing,
any tile with .99% background was excluded from further
processing.

Data Loading for DL
Network training was orchestrated using the Detectron2

library for PyTorch, which implements convenient func-
tions for training and evaluating a panoptic feature pyra-
mid architecture. A custom data loader to extract image
crops and associated labels from WSIs and XMLs was
designed to feed network training on the fly rather than
saving image crops to disk, resulting in reduced memory
overhead and disk usage, as well as allowing the added
convenience of implementing balanced data sampling rou-
tines both at the whole-slide and target-class levels.
Given that the cross-sectional area of kidney tissue sec-

tions consists of mostly tubules, a data selection routine for
class balance was required to prevent an underfit classifier
on nontubule targets and performed as follows: For each
patch requested during training, one slide from the training
set was selected randomly. Next, with a 50% probability,
either a random slide tile was extracted from the tissue area
or the tile was selected to be centered on a randomly
selected artery/arteriole or glomerulus. All random sam-
pling was performed using a uniform distribution.

Training
Network weights were initialized to a model pretrained

on the Common Objects in COntext (COCO) dataset avail-
able in the Detectron2 library, which had a ResNet-50
backbone and was originally trained with the 33 learning
rate schedule. The following modifications were made to
the network architecture, which differed from the stock
configuration of Detectron2: The anchor generator sizes
were specified as 32, 64, 128, 256, 512, and 1024; the re-
spective region proposal network’s input layers for these
anchors were specified as p2, p3, p4, p5, p6, and p6; the
anchor generator aspect ratios were specified as 0.1, 0.2,
0.33, 0.5, 1, 2, 3, 5, and 10; and the anchor generator angles
were specified as290,260,230, 0, 30, 60, and 90. No image
resizing was performed, and training was performed with
batch size four and region of interest head batch size 64.
Several image augmentations were performed to improve
network robustness to unseen test variations (further dis-
cussed in the Supplemental Material). A similar training
schedule was followed as was laid out in the original

implementation2 for training on the COCO dataset. Starting
from the COCO pretrained model, the network was trained
for a total of 350 thousand steps, with a step learning rate
policy starting at 0.0025 and dropping by one tenth on
reaching 100 thousand, 200 thousand, and 300 thousand
steps. Glomeruli (viable and sclerotic), tubules, and ar-
teries/arterioles were specified as instance-type segmenta-
tion objects, and the interstitium and slide background were
specified as semantic-type segmentation objects.

Testing
The custom data loader described in section Data Load-

ing for DL was repurposed for prediction on test biopsy
data by converting its output to yield each tile in a WSI grid
once. Tiles were sent to the trained DL network for pre-
diction, and the corresponding predictions filled into a
high-resolution segmentation mask within the WSI. Predic-
tions in overlapped regions of tiles were resolved by clip-
ping the trailing and leading edges of overlap halfway. In
addition, the panoptic network’s region of interest head (see
refs. 2 and 3 for further details) threshold was set to 0.01 to
maximize the number of detected instances. All objects in
the final high-resolution mask were converted to their
corresponding boundary contour vertices and stored in
an XML file compatible with Aperio ImageScope (Leica
Biosystems, Nussloch, Germany) or in JSON files compat-
ible with HistomicsUI.

Segmentation Performance Analysis
Multicompartment segmentation performancewas assessed

both pixel-wise and instance-wise for a comprehensive per-
formance evaluation of our DL pipeline.

Pixel-wise Performance Analysis
Whole-slide manual annotations of the instance segments

were compared pixel-wise against network output whole-
slide predictions for each class using a one-versus-all
approach. Manual annotations for all test slides were com-
pleted by one renal pathologist. The true/false positive/
negative pixels were pooled across the entire dataset to
calculate the final reported performance values, including
sensitivity, specificity, precision, negative predictive value,
Matthew correlation coefficient, and Dice coefficient.

Instance-Wise Performance
Instance performance calculations were evaluated in the

cortex of each WSI only because medulla is not used rou-
tinely for diagnostic purposes. Network-predicted instances
were annotated with a dot marker if the prediction was
incorrect for any reason. The types of error for each instance
prediction were broken down into fused instances, partially
detected instances, missed instances, and wrong classifica-
tions and counted at the WSI level. Partial, fused, and
false class percentage error rates were calculated as

errors
predictions. Missed percentage error rates were calculated as

misses
misses1 predicted. Total error rate was calculated as total  errors

predicted1misses,
where #total errors were defined as the sum of #errors and
#misses.

Reference Kidney Morphometry
Reference kidney morphometrics were quantified using the

saved contour representation of segmented object boundaries
for each WSI. The full list of tested features is available in the
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Supplemental Material. A generic overview of our object
feature quantification strategy is discussed below. Note that
any glomerular predictions contained within medulla were
algorithmically eliminated.

Object Diameter
Calculation of diameters for segmented spherical objects

(i.e., glomeruli) is straightforward. Diameter measurements
of nonspheroid objects (e.g., tubules and vessels) are com-
plex and subject to bias. Thus, an automated method that
can measure object diameters and minimize sampling bias
but maximize application to various sectioned orientations
of histologic structures was developed, reliant on a
morphometric processing method called distance trans-
form. The distance transform takes each object pixel and
measures the distance to the closest boundary point. The
result at every pixel describes the largest radius of a circle
centered at that pixel and inscribed within the object. The
maximum of all these pixel values is the radius of the largest
circle that is inscribed within the object. We defined tubular
and vessel diameter using the diameter of the largest circle.
The Supplemental Figure 1 discusses examples of the dis-
tance transformation for varied tubule segments.

Object Area
Segmented object areas were calculated from contour ver-

tices using Green’s theorem.4 To compute the cortical inter-
stitial area, the aggregate area of objects contained within the
cortex (i.e., glomeruli, tubules, and arteries/arterioles) was
subtracted from the total cortical area. Similarly, the medul-
lary interstitial area was calculated by subtracting the aggre-
gate area of medullary tubules from the total medullary area.

Object Densities
Enumeration and quantification of segmented objects

were normalized to the total tissue area that contained
the objects, which represents respective object densities.
The simplest of these metrics was the division of the num-
ber of counted glomeruli, tubules, or arteries/arterioles or
their summed areas, by the observed area over which they
were distributed (either cortical area, medullary area, or
both). To compute the interstitial density, the calculated
cortical or medullary interstitial areas were divided by the
total cortical or medullary contour areas, respectively.

Arterial/Arteriolar Luminal Ratio
Arterial/arteriolar luminal ratio was calculated as the

radius of the artery/arteriole lumen divided by the radius
of the entire segmented vessel. To identify the luminal area,
the corresponding red green blue image region for each
artery/arteriole segmentation was extracted, transformed
to LAB colorspace, and the lightness channel of the LAB
colorspace was thresholded at 70, yielding a segmentation
of the white regions in the vessel. Vessels with overall
image width or height .5000 pixels were excluded from
this analysis because of the network commonly detecting
these vessels as fragments, limiting the ability to properly
segment lumina.

Statistical Analysis
Instance-level features were aggregated to the subject

level by calculating density, averages, and SDs. Differences
in subject-level features across institutions are shown in

Table 1 and Supplemental Table 1. The Fisher’s exact test
was used to test independence for categorical variables,
while the ANOVA was used to test differences across
institutions for continuous variables. Bonferroni correction
was used to adjust for multiple comparisons.5

Multivariable linear regression analyses were performed to
assess adjusted associations between each subject-level
morphometric feature and age, sex, and SCr. Additional
models were used to assess associations between each feature
and eGFR after controlling for age and sex. Standard errors
were calculated using a cluster robust method to account for
individuals being clustered within institutions.6 Fixed effects
per institution were included in all models. All statistical
analyses were performed in R. Coefficients, 95% confidence
intervals, and their significance are shown in Table 2.

Hardware and Computational Time
Computational processing was performed on a Linux

distribution (Ubuntu 16.04) computer with an Intel(R)
Xeon(R) Silver 4114 CPU with 40 cores at 2.20 GHz,
64 GB of random access memory, and 64 GB of swap
memory. Network operations were performed on a Geforce
RTX 2080 Ti GPU (11 GB memory). Multicompartment
segmentation of a typical biopsy section image of size
2 mm2 using our pipeline takes 10 minutes, and a typical
nephrectomy of size 100 mm2 takes 4 hours. Computation of
all morphometric data from one section takes roughly be-
tween 30 seconds and 4 minutes, heavily depending on the
time spent calculating features on tubules, which varies be-
tween 7K and 82K in our dataset.

Results
Segmentation Model Performance
To assess the performance of the segmentation model, a

holdout test set of ten PAS-stained human kidney trans-
plant biopsies was used, comprised five cases from patients
with.2 mg/dl SCr at the time of biopsy and five cases with
minimal to no histologic abnormalities as determined by the
renal pathologist. This strategy was used to evaluate the
network performance for both normal and diseased states.
Examples of the kidney segmentation output in the test
biopsies are shown in Figure 1. To quantitate the model
performance, every slide was manually reviewed, and all
instances of incorrect predictions were tabulated. Slides
were adjudicated by one renal pathologist. Possible sources
of instance error included incomplete segmentation of the
full boundary (partial), complete nondetection (missed),
fusion of two boundaries that should be distinct (fused),
or correct placement of the boundary with incorrect class
assignment (false class). The prediction errors across the ten
slides are detailed in Table 3.
For the viable glomerulus class, the network identified

every glomerulus while making no false detections. The
network also performed well on tubule segmentation with a
1.8% total error rate. Most tubule segmentation errors were
due to the fusion of tubular boundaries, which occurred
when two or more tubules were in very close proximity,
often showing essentially no appreciable intervening inter-
stitium (Figure 2A). An appreciable minority of tubule
segmentation errors were missed tubules; however, these
tended to be very small atrophic tubules, very small caliber
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tubules in the medulla, or extremely tangentially sectioned
tubules (Figure 2B). Errors in the segmentation of arteries/
arterioles mainly consisted of missed instances, typically of
very small vessels that were bordering on the size of capil-
laries (Figure 2C).
The network was least performant in detecting sclerotic

glomeruli, although the error rate is misleading because
only one sclerotic glomerulus was missed of a total 16
present in the ten test cases. The one missed instance
was a sclerotic glomerulus cut in half at the biopsy edge.
After the detection of erroneous instances, their boundaries

were manually corrected to measure a pixel-by-pixel perfor-
mance of the segmentation output. These values are reported
in Table 4 and essentially reflect the instance error rate results.
As compared with previous renal pathology segmenta-

tion studies, our network outperforms other methods across
all classes. These comparisons are shown in Supplemental
Table 2.8–10 Examples of additional holdout segmenta-
tions in H&E, trichrome, and silver biopsies are shown in
Supplemental Figures 2, 3, and 4, respectively.

Reference Kidney Morphometrics
Using the panoptic segmentation model, measurement of

histomorphometric parameters was performed for a set of

reference kidneys. Because kidney tissue from individuals
with no kidney disease is typically not available, this study
was performed on sections of renal parenchyma uninvolved
and away from the renal tumor of human tumor nephrec-
tomy specimens. Inclusion and exclusion criteria of the ref-
erence kidney are detailed in section Reference Kidney Data
and were designed to minimize the presence of abnormal
histologic findings. In total, 79 multinational nephrectomy
cases were included, derived from three international insti-
tutions, and each kidney section was stained with PAS.
Quantified features for the reference kidney cases are tabu-
lated in Table 1. Examples of whole-slide segmentation for
reference kidneys are shown in Figure 3.
All three institutional patient cohorts displayed similar

proportions of male patients versus female patients and age
distributions. SCr values, albeit varied between the institu-
tions, were measured to be in normal range. For the histo-
morphometric parameters, the vast majority were similar
between institutions, with a few notable exceptions as we
discuss below.
For glomeruli, the average number of glomeruli per mm2

of cortical tissue was 2.5, of which the average number of
sclerotic glomeruli per mm2 was 0.2. These values equate
to a glomerulosclerosis rate of 7.3%, which matches

Table 1. Reference morphometrics (N579 participants; one whole-slide image per participant)

Reference Morphometrics Institution 1
(n543)

Institution 2
(n58)

Institution 3
(n528)

Combined
(N579)

Patient characteristics
Male sex, n (%) 29 (67.44) 5 (62.50) 20 (71.43) 54 (68.35)
Age, yr 59.16611.95 60.63613.32 53.68611.94 57.37612.25
SCr, mg/dl 1.0760.24 0.8160.28a 0.8660.14a 0.9760.24

Glomerular histomorphometric
Glomeruli, per cortical mm2 2.5960.64 1.8660.57a 2.5760.80b 2.5160.72
Sclerotic glomeruli, per cortical mm2 0.1960.14 0.0860.06 0.2460.21 0.2060.17
Glomerular proportion of cortex 0.0560.01 0.0460.01 0.0560.01 0.0560.01
Average glomerular area, mm2 18,83363765 23,83666113a 19,24863361b 19,48764134
SD glomerular area, mm2c 965363879 10,86362699 845161846 935063242
Average glomerular radius, mm 63.866.81 72.08610.73a 65.9365.98 65.3967.33
SD glomerular radius, mm 17.0862.63 19.6263.74 16.8862.94 17.2762.93
Average sclerotic glomerular area, mm2 825261712 922261883 778061579 818861713
SD sclerotic glomerular area, mm2 415961325 529363085 279761319a,b 380461751
Average sclerotic glomerular radius, mm 42.0464.66 44.6965.13 42.6264.68 42.5164.72
SD sclerotic glomerular radius, mm 11.5662.03 13.0363.45 8.3363.89a,b 10.5963.37
Glomerulosclerosis ratio 0.0760.06 0.0460.04 0.0860.07 0.0760.06

Tubular morphometrics
Tubules, per cortical mm2 173.53634.40 132.92638.17a 189.58650.16b 175.10643.57
Tubular proportion of cortex 0.5560.05 0.5260.07 0.4560.09a,b 0.5160.08
Average cortical tubular area, mm2 32696612 421961141a 24766722a,b 30846885
SD cortical tubular area, mm2 349561002 575263652a 280961232b 348161719
Average cortical tubular radius, mm 20.9561.53 23.4362.39a 17.9262.31a,b 20.1362.62
SD cortical tubular radius, mm 7.6561.02 8.9361.67a 7.0061.38b 7.5561.33
Cortical glomerulus to tubule ratio 0.0960.02 0.0860.02 0.1160.02a,b 0.0960.02

Vascular morphometrics
Arteries(ioles), per cortical mm2 5.9661.59 4.0461.14a 6.5461.98b 5.9761.82
Arter(iole) proportion of cortex 0.0460.02 0.0360.01 0.0460.02 0.0460.02
Average lumen to wall ratio 0.2760.05 0.3760.05 0.2360.04a,b 0.2760.06

Data are represented as mean6SD, if not indicated otherwise. SCr, serum creatinine.
aAdjusted P value # 0.05 compared with institution 1.
bAdjusted P value # 0.05 compared with institution 2.
cSD for the population of glomeruli within a single case.
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Table 2. Association of reference morphometrics to age, sex, serum creatinine, and eGFR

Outcome (R2)
Age Sex SCr eGFR

b (95% CI) P Value b (95% CI) P Value b (95% CI) P Value b (95% CI) P Value

Glomerular histomorphometric
Mean glomerular area, mm2 (0.31) 14.2 (268.6 to 97.1) 0.733 1685.5 (774.2 to 2596.7)a ,0.001a 5826.4 (4258.3 to 7394.5)a ,0.001a 251.0 (274.0 to 228.1)a ,0.001a

Mean glomerular radius, mm (0.31) 0.02 (20.14 to 0.18) 0.805 2.96 (1.10 to 4.82)a 0.002a 10.94 (7.53 to 14.35)a ,0.001a 20.101 (20.149 to 20.053)a ,0.001a

SD glomerular area, mm2 (0.09) 17.8 (214.9 to 50.6) 0.282 1486.9 (1164.2 to 1809.5)a ,0.001a 21300.7 (21746.1,2855.3)a ,0.001a 23.6 (20.81 to 47.92)b 0.058b

Glomerular area density (0.05) 0 (20.0001 to 0.0001) 0.876 0.001 (20.003 to 0.005) 0.581 20.006 (20.008 to 20.005)a ,0.001a 0 (0.000 to 0.001)a ,0.001a

Glomeruli, per cortical cm2 (0.21) 20.001 (20.430 to 0.430) 0.996 217.53 (237.53 to 2.47)b 0.085b 290.7 (2120.7 to 260.7)a ,0.001a 0.640 (0.313 to 0.967)a ,0.001a

Sclerotic glomeruli, per cortical cm2 (0.23) 0.570 (0.090 to 1.051)c 0.021c 1.728 (22.002 to 5.458) 0.359 0.372 (227.956 to 28.699) 0.979 0.015 (20.248 to 0.278) 0.909
Mean sclerosed glomerular radius, mm (0.05) 0.046 (20.096 to 0.187) 0.523 20.407 (21.92 to 1.1) 0.593 2.735 (2.555 to 2.914)a ,0.001a 20.013 (20.017 to 20.009)a ,0.001a

Glomerulosclerosis ratio (0.18) 0.0018 (0.0007 to 0.0021)a 0.002a 0.013 (0.002 to 0.025)a ,0.001a 0.031 (20.062 to 0.123) 0.511 20.0002 (20.001 to 0.001) 0.600
Tubular morphometrics
Cortical tubular area density (0.34) 0.0003 (20.0022 to 0.0028) 0.806 20.008 (20.044 to 0.027) 0.642 0.084 (0.035 to 0.133)a 0.001a 20.001 (20.001 to 0.000)c 0.016c

Mean cortical tubular area, mm2 (0.43) 25.84 (230.87 to 19.20) 0.643 12.20 (2554.5 to 578.9) 0.966 1018.9 (470.9 to 1566.9)a ,0.001a 27.52 (216.00 to 0.96)b 0.081b

Mean cortical tubular radius, mm (0.55) 0.007 (20.067 to 0.080) 0.860 0.291 (21.245 to 1.827) 0.707 2.978 (2.596 to 3.361)a ,0.001a 20.023 (20.033 to 20.014)a ,0.001a

SD cortical tubular radius, mm (0.26) 0.012 (20.039 to 0.063) 0.637 20.002 (20.912 to 0.908) 0.997 1.673 (1.096 to 2.251)a ,0.001a 20.013 (20.023 to 20.004)c 0.006c

Mean medullary tubular radius, mm (0.61) 20.0007 (20.015 to 0.03) 0.920 0.058 (20.252 to 0.369) 0.709 1.598 (0.854 to 2.341)c ,0.001c 20.008 (20.014 to 20.001)c 0.020c

SD medullary tubular area, mm2 (0.22) 210.0 (218.0 to 22.0)c 0.015c 487.0 (112.9 to 861.1)a 0.011a 2388.2 (21211.8 to 435.4) 0.351 1.33 (27.85 to 10.52) 0.773
Glomerulus to cortical tubule area ratio (0.31) 20.0005 (20.0024 to 0.0013) 0.547 20.023 (20.037 to 20.009)a 0.001a 0.012 (20.055 to 0.080) 0.717 0.000 (20.001 to 0.001) 0.726

Vascular morphometrics
Mean arterial(olar) lumen to wall ratio (0.42) 0 (20.0003 to 0.0002) 0.716 0.003 (20.001 to 0.008) 0.170 20.024 (20.031 to 20.016)a ,0.001a 0.0002 (0.0001 to 0.0002)a ,0.001a

Artery(ioles), per cortical cm2 (0.18) 1.403 (0.691 to 2.116)a ,0.001a 46.46 (24.37 to 68.55)a ,0.001a 2148.73 (2300.42 to 2.96)b 0.055b 1.131 (20.891 to 3.153) 0.269
Cortical artery(iole) area density (0.05) 0.0002 (0.0002 to 0.0003)a ,0.001a 0.002 (20.007 to 0.012) 0.640 20.002 (20.011 to 0.006) 0.628 0 (20.0001 to 0.0001) 0.933

Women were coded with 0 and men with 1 in this study. b, regression coefficient; CI, confidence interval; SCr, serum creatinine.
aSignificance ,0.005.
bSignificance ,0.05.
cSignificance ,0.1.
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expectations for an age range of 50–60 years. Glomerular
area and radius ranged between approximately 18,800 and
23,800 mm2 and 64 and 72 mm, respectively. Of note, the
glomerular density varied slightly when comparing insti-
tutions in a pattern that was inversely proportional to the
measured average glomerular size.
For tubules, the average number per cortical mm2 also

varied significantly across institutions, ranging from
approximately 130 to approximately 190, again being
inversely proportional with the measured average tubule
size. The average area and radii of tubules ranged from
2476 to 4219 mm2 and 17.92 to 23.43 mm, respectively.
Similarly, the number of observed arteries and arterioles

per mm2 ranged from 4 to 6 and is found to be inversely
proportional with average glomerular size. That is, kidneys
with larger glomeruli have lower densities of arteries and
arterioles. However, we also found those arteries and ar-
terioles to have proportionally much wider lumens because
the ratio of luminal width to overall vessel width was
higher, namely 0.37 as quantified for institution 2 versus
0.23 and 0.27 for institution 1 and 3, respectively.

Histomorphometric Variation across Patient Demography,
SCr, and eGFR
We next used a series of adjusted linear regressions to

determine whether histomorphometric measurements
made on our reference kidney cohort were associated with
basic patient information. This part of the study incorpo-
rated patient age, sex, and either SCr or eGFR as input
variables, morphometric measurements as output values,
and institutional data source as fixed effects. Table 2 sum-
marizes model parameters for this regression analysis.
Several kidney histomorphometric parameters, especially

those related to glomerular and tubular size as well as
glomerular density, were significantly associated with
SCr. For instance, patients with lower SCr (presumably
better renal function) tended to have smaller glomeruli
(i.e., smaller glomerular area and radii) but higher numbers
of glomeruli per renal cortical area (i.e., high glomerular
density). Similarly, tubular radii were larger in patients
with higher SCr levels. Interestingly, when looking at the
SD for the distribution of glomerular and tubular sizes
within a kidney tissue section, glomerular size distribution

Table 3. Instance error rates on the test set

Class Predicted Partial Missed Fused False Class Total Errors

Viable glomeruli 259 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Sclerotic glomeruli 15 0 (0%) 1 (6.3%) 0 (0%) 0 (0%) 1 (6.3%)
Tubules 16,710 45 (0.27%) 86 (0.51%) 171 (1.02%) 7 (0.04%) 309 (1.8%)
Arteries/arterioles 552 1 (0.18%) 22 (3.83%) 2 (0.36%) 4 (0.72%) 29 (5.0%)

Values reported as absolute count (%).

A B

C D

Figure 1. Panoptic segmentation of test set kidney biopsies. (A) Instance predictions in a kidney biopsy showing healthy/normal parenchyma.
(B) Instance predictions in a kidney biopsy from a patient with creatinine .2 mg/dl. (C) Low-resolution demonstration of corticomedullary
semantic segmentations. (D) Zoomed inset from the top core in (C). Green: cortex; cyan: medulla; yellow: viable glomerulus; red: sclerotic
glomerulus; blue: tubule; orange: artery/arteriole. Scale bars: (A) 150 mm; (B) 150 mm; (C) 1.5 mm; (D) 500 mm.
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varied less when patients had high SCr levels, while tubular
size distribution varied more with higher SCr levels.
In addition, several kidney histomorphometric parame-

ters were associated with patient eGFR. Most of the same
histomorphometric parameters that were associated with
SCr were also associated with eGFR, but with an inverse in
the magnitude of the associations. For instance, patients
with higher eGFR tended to have smaller glomeruli and
higher numbers of glomeruli per cortical area. The same

trend was apparent in the tubular radius. This is to be
expected because higher SCr measurements directly lead
to a lower calculation of eGFR.
Fewer significant associations were seen for patient sex

and age. The glomerulosclerosis ratio (essentially the per-
centage of glomerulosclerosis) and the density of arteries/
arterioles were significantly higher for men than women. In
addition, the SD for the glomerular area of any given patient
tended to be higher for men than women. Regarding age,
one of the only parameters that showed significant associ-
ation was cortical arterial/arteriolar area density, which was
positively correlated to age, meaning that with an increase in
age, the total area of arteries and arterioles occupying a
given amount of cortex increases. The percentage of glo-
merulosclerosis also showed a positive trend with age.
The distribution of histomorphometric parameters within

each patient’s kidney tissue section was also examined
using kernel density estimations coded by color reflecting
the patient’s SCr (Figure 4). As illustrated in Figure 4A, the
average and spread (i.e., SD) of cortical tubular radii were
both higher in patients with higher SCr values. Similarly,
the average glomerular radii (Figure 4B) were higher in
patients with higher SCr, but the SDs were slightly lower in
patients with higher SCr. This observation suggests that as
glomeruli hypertrophy compensates for increased creati-
nine, they may reach an expansion limit of approximately
100 mm in radius. Interestingly, the average sclerotic glo-
merulus radius was also dependent on creatinine.

Discussion
Image segmentation allows for the detection and clas-

sification of histologic structures and is considered a
foundational step in the development of computational
pathology and an absolute requirement for automated
histomorphometric analysis. Generally, segmentation
methods can be classified as either semantic segmentation
or instance segmentation. In semantic segmentation, a
classification label is assigned to every pixel in the image,
but this method is limited in that it cannot distinctly
recognize two same-class entities that are abutting or
overlapping. By contrast, instance segmentation is the task
of distinctly recognizing abutting/overlapping objects as
unique entities. However, such algorithms are typically
unable to model multiple classes. Numerous studies have
shown the undeniable utility of deep neural networks
for segmentation tasks in digital pathology datasets. Yet,
most prior networks were constrained either for semantic
segmentation or instance segmentation alone, unable to
leverage the strengths of each method in combination.
More recently, the development and maturation of pan-
optic architectures has led to the ability to segment both
semantic and instance objects simultaneously, allowing
for a comprehensive approach to histomorphometric im-
age analysis. In this work, we demonstrate the feasibility
of using a panoptic segmentation neural network–based
pipeline to accurately quantify a variety of histomorpho-
metric parameters from WSIs of reference kidney tissue
sections. The high segmentation performance of our
model allowed us to take the first steps in defining
reference morphometrics for healthy human kidneys
on over three million nephrons.

A

B

C

Figure 2. Network errors. Dots indicate missed structure. (A) Net-
work fusion of tubular boundaries when basement membranes abut
and morphologies are grossly dissimilar. (B) Network misses on small
atrophic tubules. (C) Network miss on small arteriole bordering
capillary size. Blue: tubule; orange: artery/arterioles.
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Although a large amount of histomorphometric data can
be extracted using our automated DL-based image analysis
pipeline, the measurements are only useful if they have
some type of biological or clinical relevance. Thus, we
subsequently used simple regression analysis to identify
relationships between histomorphometric parameters of
healthy kidneys to patient age, sex, SCr, and eGFR. Several
histomorphometric parameters that reflect glomerular and
tubular size and glomerular density significantly associated
with patient SCr levels. Our observations are consistent
with previous studies, which indicate that glomerular and

tubular size tends to be directly associated with SCr levels,
while glomerular density (as estimated by the number of
glomeruli per renal cortical area) is typically inversely
associated with SCr levels.
Previous studies quantified reference kidney morphom-

etrics in both a manual and automated fashion. As com-
pared with previous works, our study involves a larger and
more diverse sample set and leverages computational meth-
ods to improve scalability. Samuel et al.11 investigated 24
kidney samples, with 12 coming from patients aged 20–30
years and 12 coming from patients aged 51–69 years. These

Table 4. Pixel-wise performance metrics compared against renal pathologist

Class Sensitivity Specificity Precision NPV MCC Dice

Glomeruli 0.998 1 1 1 0.999 0.999
Sclerotic glomeruli 0.948 1 0.996 1 0.972 0.972
Tubules 0.995 1 0.999 1 0.997 0.997
Arteries/arterioles 0.984 1 0.994 1 0.989 0.989

Dice: dice coefficient (F1 score); MCC, Matthew’s correlation coefficient; NPV, negative predictive value.

A B

C D

Figure 3. Whole-section segmentations for PAS-stained kidney nephrectomies. (A) Thumbnail of whole-segmentation mask for a reference
kidney. Tubules are rendered in the background to prevent them from overwhelming the visibility of other structures. (B) Thumbnail of patchy
interstitial segmentation in a kidney with many tubules flush back to back. (C) Zoomed region from (A) showing segmentation of viable
glomeruli, tubules, arterioles, and cortical interstitium. (D) Zoomed region from B showing interstitium at left fused by contour retrieval after
tile stitching process, where interstitium at right is patchy due to flushly abutting tubules. Green: cortical interstitium; cyan: medullary
interstitium; yellow: viable glomerulus; red: sclerotic glomerulus; blue: tubule; and orange: artery/arteriole. Scale bar, 150 mm. PAS, periodic
acid–Schiff.
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patients were previously reported as healthy, but they died
unexpectedly from nonrenal causes. Glomerular number
and glomerular volume were measured using the dissec-
tor/Cavalieri method.12 To extend our glomerular area
measurements to volume, we used the Weibel–Gomez
method.13 Glomeruli were assumed to be spherical, using
1.38 as the shape coefficient and 1.01 as the size distribution
coefficient, assuming a 10% variation in glomerular volume,
similar to previous studies.14 A comparison with the study
of Samuel et al. is shown in Supplemental Table 3A. Our
average estimates for glomerular volume are smaller than

previously reported, which may be attributable to differ-
ences in measurement techniques. Estimations of three-
dimensional volumes from a single 2-dimensional cross-
section are likely less accurate than the dissector/Cavalieri
method, which uses multiple cross-sections to estimate
volume. However, as compared with the cohort of patients
aged 51–69 years, which more accurately reflects the age
range of our cohort, a two-sample Student’s t test proved
the measurements of percentage glomerulosclerosis are not
significantly different.
In the study of Hölscher et al., computational methods

were also used to analyze renal WSIs and report morphom-
etrics.10 These measurements were reported from 17 sam-
ples from an internal biopsy cohort from the Institute of
Pathology in Aachen that were classified as histologically
normal. Glomeruli and tubules, along with other renal
structures, were segmented through a DL pipeline and
quantified from their associated segmentation masks. These
results are reported as median and interquartile range in
Supplemental Table 3B. Our results are similar to those
reported in the previous study. The relative similarity is to
be expected because reference samples are being quantified
in a similar manner. Most other features quantified in this
study are not comparable with previous studies.
Our study has a few major limitations. First is the def-

inition and use of reference kidneys. Depending on the
stringency of defining the criteria for reference kidney
samples, true reference kidney samples are difficult to
obtain given the ethical considerations. One alternative
would be using autopsy kidneys; however, these samples
typically have prominent degradation/decomposition arti-
fact, which would likely confound histomorphometric anal-
ysis. In our study, we used kidney parenchyma from tumor
nephrectomy specimens distanced from the tumor foci and
screened for minimal abnormalities by a pathologist. Such
specimens are likely the most readily available, although
the age of the patients is skewed to older individuals. In
addition, analysis of a tumor that could potentially result
in a mass effect–related issue like obstruction could con-
found the data even after a pathologist has screened for
normal-appearing sections. Another limitation is that we
used large tissue sections from nephrectomy specimens that
may not easily translate to equivalent histomorphometric
values seen on biopsy. Typical biopsies have a much
smaller surface area, which results in significantly lower
numbers of glomeruli, tubules, and vessels, as well as a high
proportion of transected structures at the edge of the bi-
opsy. Whether reference kidney histomorphometric values
need to be re-established in smaller biopsy specimens to be
useful in the clinical setting needs to be evaluated. Further-
more, we used specimens from three different institutions,
which likely resulted in an institutional-specific batch effect.
Further evaluation to examine in detail the histomorpho-
metric effects of processing tissue at different institutions
must be determined.
To our knowledge, our work is the most comprehensive

study to tabulate large-scale reference renal morphometry
features with clinical significance using a large, diverse,
multinational, highly quality controlled cohort of renal
tissue biopsy images. Ultimately, reference kidney histo-
morphometric values require examination of a large cohort
from various populations, which will likely be achievable
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by upscaling our current strategy. Such data would allow
eventual quantitative or statistical definitions for certain
types of pathologic entities. For instance, tubular atrophy
could 1 day be defined as tubules with radii below a certain
statistical threshold. Similarly, defining glomerulomegaly
may be more straightforward, and diagnosis may be aided
by automated morphometry.
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run the plug-in at DSA, is available at https://github.com/Sarder-
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puting the morphometric features from segmented compartments
that we quantified in this work are available in the github repository,
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Augmentation Strategy.
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participant).
Supplemental Table 2A. Segmentation accuracy comparison with

previous study.
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Supplemental Figure 5. Digital slide archive (DSA).
Supplemental Figure 6. Digital slide archive (Cont.).
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