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Metabolic Signatures of Prostate Cancer and Renal Cell Carcinoma 

using High-Resolution NMR and Hyperpolarized 13C MRI 

Jinny Sun 

ABSTRACT 

Non-invasive techniques to assess metabolic reprogramming during cancer progression 

can be used to improve therapeutic selection and provide an early assessment of therapeutic 

response or resistance in individual patients. Prior studies have shown that metabolic 

reprogramming plays a key role in the development of prostate cancer and renal cell carcinoma 

(RCC). This dissertation further elucidates the metabolic alterations that occur in treatment-

resistant prostate cancer and in patient-derived models of RCC using high-resolution nuclear 

magnetic resonance (NMR) spectroscopy and hyperpolarized (HP) 13C magnetic resonance 

imaging (MRI), with the goal of identifying new non-invasive diagnostic imaging tools. 

Glycolysis, metabolism of pyruvate and glutamate via the tricarboxylic acid (TCA) cycle, 

glutaminolysis, and glutathione synthesis are upregulated in castration-resistant prostate cancer 

(CRPC) compared to their androgen-dependent counterparts, using human cell lines as well a 

treatment-driven transgenic murine model. These metabolic alterations were reversed in 

castration-resistant murine tumors by treatment with a secondary androgen pathway inhibitor, 

apalutamide, suggesting that early metabolic responses to treatment can be monitored using non-

invasive imaging techniques. Furthermore, treatment-emergent small cell neuroendocrine 

prostate cancer, a consequence of protracted treatment with primary androgen deprivation 

therapy and secondary androgen pathway inhibitors, exhibits significantly upregulated 

glycolysis, TCA cycle metabolism of pyruvate and glutamate, and glutaminolysis, as well as 
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significantly altered redox capacity compared to castration-resistant prostate adenocarcinoma 

using patient-derived xenograft models. Finally, the metabolic differences associated with the 

tumor microenvironment were compared between various patient-derived models of RCC, 

finding that RCC patient-derived xenografts (PDXs) displayed higher redox capacity and were 

more proliferative than cells and tissue slices derived from the PDXs and maintained ex vivo. 

The work presented in this dissertation suggests that a combination of HP [1-13C]pyruvate, [2-

13C]pyruvate, [5-13C]glutamine, and [1-13C]dehydroascorbate can be used to distinguish 

advanced prostate cancer and RCC subtypes in future HP 13C MRI of patients for improved 

treatment selection and monitoring. 
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CHAPTER ONE 

Introduction 
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Cancer Metabolism – NMR-based Metabolomics 

Metabolic reprogramming is a hallmark of oncogenic transformation that contributes to 

tumor growth, metastatic spread, and therapeutic resistance1-4. Alterations in metabolism reflect 

the combined effect of genomic, transcriptomic, and proteomic changes5, which include the 

dysregulation of growth signaling pathways (e.g., PI3K, MYC) and mutations in tumor 

suppressor genes (e.g., p53, PTEN, VHL). Given the wide array of factors that influence cellular 

metabolism, the metabolic changes that occur during the progression of cancer and its response 

to treatment are still being elucidated. Understanding the specific changes in metabolic pathways 

and the settings in which they are altered can improve diagnosis of disease, monitoring response 

to treatment, and identification of new therapeutic targets.  

Conventional metabolomic studies, also known as metabolic profiling, assess metabolic 

perturbations by measuring intracellular metabolite concentrations. However, this does not give a 

complete picture of the dynamics of cellular metabolism. In a simple A à B reaction scenario, 

increased flux through this pathway would result in measurable increased concentrations of the 

product. However, metabolic pathways are intrinsically interconnected, and the product may be 

used in several downstream reactions. Therefore, an increased pathway flux may not be 

detectable by measuring the concentration of the product metabolite if downstream pathway 

activities are also increased6. Furthermore, cellular homeostatic mechanisms regulate 

intracellular metabolite concentrations to be within nontoxic levels6 and close to the KM value of 

the associated enzymes to optimize reaction rates7. This greatly limits the ability of 

metabolomics, which relies on measurements of steady-state metabolite concentrations to detect 

metabolic perturbations. 
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 Advances in nuclear magnetic resonance (NMR) and mass spectrometry (MS)-based 

stable isotope tracing methods such as 13C isotopomer analysis, also known as metabolic flux 

analysis (MFA) and stable isotope-resolved metabolomics (SIRM), have improved our 

understanding of how changes in steady state metabolism and metabolic fluxes reflect oncogenic 

and microenvironmental changes during cancer progression and therapeutic response8,9. 

Ultimately, these techniques can be used to identify new metabolic biomarkers for the 

development of novel diagnostic and therapeutic targets10,11. However, there are major 

challenges in both acquiring the 13C isotopomer data and its subsequent analysis that first must 

be solved. Currently, isotopomer analysis is most often performed using direct detect 13C NMR 

spectroscopy, but this method is limited by the inherently low sensitivity of NMR and requires 

large quantities of tissue (>100 million cells or >200 mg tissue) that are infeasible to obtain for 

primary cell lines and patient tissue samples. Furthermore, 13C NMR isotopomer analysis is 

limited by the absence of glutaminolysis in the existing isotopomer flux models. Chapter 2 of 

this dissertation discusses the techniques used to characterize key metabolic pathways associated 

with cancer progression and therapeutic response, including: (1) NMR-based metabolic profiling 

to quantify the concentrations of metabolites, and (2) NMR-based stable-isotope tracing to 

determine metabolic activity by measuring the fractional enrichment of metabolites and (3) 

hyperpolarized (HP) 13C MRI to noninvasively assess metabolic fluxes and redox state. 

 

Metabolism of Prostate Cancer and Metabolic Changes Associated with Therapeutic 

Response and Resistance 

Prostate cancer is the most commonly diagnosed non-cutaneous cancer in men and the 

second leading cause of cancer death12. Due to over-diagnosis and over-treatment of indolent, 
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low-risk disease, active surveillance (AS) involving serial measurements of serum prostate-

specific antigen (PSA) and biopsies as well as multiparametric MRI (mpMRI) has been 

implemented in the clinic to monitor disease progression and reduce rates of over-treatment13,14. 

A pressing need in the clinical management of patients with prostate cancer at the time of 

diagnosis is an accurate method for distinguishing aggressive, potentially lethal prostate cancer 

from indolent disease in individual patients in order to assess whether active surveillance (AS) is 

appropriate or  aggressive treatment is needed15. Another important clinical need in the setting of 

advanced prostate cancer is the early assessment of therapeutic response and the development of 

therapeutic resistance in order to select new therapeutic approaches at an earlier and more 

effective time point16,17. This thesis focuses on determining metabolic changes associated with 

therapeutic response/resistance in order to identify HP 13C labeled metabolic probes that could be 

used to non-invasively image therapeutic response/resistance in men receiving therapy for 

advanced prostate cancer. 

Prostate metabolism is especially interesting due to the fact that normal prostate 

metabolism is quite unique. The prostate gland is responsible for producing and secreting large 

amounts of citrate. To do this, healthy prostate tissue accumulates very high levels of zinc due to 

upregulation of the zinc transporter hZIP-1 and down-regulates aconitase activity which inhibits 

citrate oxidation, resulting in a truncated TCA cycle18,19. The citrate is subsequently secreted 

from the prostate epithelial cell as a major component of semen. As a result, normal prostate 

exhibits an atypically higher glucose uptake as compared to other normal organs in order to fuel 

net citrate production and secretion.  

In prostate cancer, there is a dramatic reduction of zinc uptake due to down-regulated 

hZIP-1-mediated transport, resulting in an upregulation of aconitase activity. Citrate is 
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subsequently oxidized in the TCA cycle to contribute to the energetic and synthetic requirements 

of cancer evolution and progression20. Furthermore, previous studies have shown that the rate of 

aerobic glycolysis (“Warburg effect”) increases as prostate tumors become more aggressive21-24.  

Prostate cancer metabolism also changes in response to androgen deprivation therapy 

(ADT), which is the mainstay treatment for patients with advanced recurrent or metastatic 

prostate cancer. Initially all patients respond to ADT, which lowers serum testosterone to 

castration level and dramatically reduces tumor burden. A patient study also demonstrated that 

glycolytic activity was reduced after effective androgen deprivation therapy using HP 13C 

MRI25,26. Eventually patients stop responding to ADT and develop castration-resistant prostate 

cancer (CRPC)27,28. Unfortunately, current biochemical and clinical biomarkers cannot reliably 

predict the development of CPRC, or subsequent response to therapy29. Furthermore, the 

metabolic phenotype of CRPC has not been fully defined. Chapter 3 of this dissertation will 

identify the differences in metabolism between androgen-dependent prostate cancer (ADPC) and 

CRPC using human cell lines and a transgenic adenocarcinoma of the mouse prostate (TRAMP) 

model of CRPC. This project has been designed to have a significant clinical impact by 

investigating metabolic changes that inform on the early development of CRPC and thereby 

providing information on which HP 13C MRI probes should be used in patient studies. 

Furthermore, CRPC includes two main subtypes: castration-resistant prostate 

adenocarcinoma (aCRPC) and treatment-emergent small cell neuroendocrine prostate cancer (t-

SCNC). While small cell prostate cancer is typically a rare variant, presenting in less than 1% of 

all de novo prostate cancer cases, t-SCNC has become more prevalent due to the use of potent 

second-line androgen pathway inhibitors (APIs) such as enzalutamide, abiraterone, and 

apalutamide30-32. t-SCNC is an aggressive subtype of prostate cancer that is more lethal than 
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aCRPC and contributes to at least 25% of the 26,000 deaths from prostate cancer per year in the 

United States33,34. Both phenotypes often exist in the same patient, and patients with t-SCNC are 

expected to show poor response to new second-line androgen deprivation therapies. For example, 

Xtandi® (enzalutamide), which costs up to $129,000 for a year’s course of treatment, is expected 

to have up to a 50% initial failure rate in this patient population. This suggests the need for new 

diagnostic methods and therapeutic targets to manage these treatment-resistant subtypes. A 

preliminary study indicating an early metabolic response to apalutamide using a TRAMP model 

of CRPC is presented in Chapter 3.  

Recent genomic and metabolomic characterization of small cell neuroendocrine 

pancreatic35 and lung36 tumors have shown that a combined upregulation of the PI3K/AKT 

pathway and MYC expression lead to elevated aerobic glycolysis and glutaminolysis37. 

However, it is unknown whether t-SCNC utilizes glucose and glutamine differently from aCRPC 

tumors. Chapter 4 will investigate the metabolic alterations related to neuroendocrine 

transdifferentiation using patient-derived xenograft (PDX) models of CRPC and t-SCNC. 

 

Metabolism of Patient-Derived Renal Cell Carcinoma Models 

 Renal cell carcinoma (RCC) is the most common type of kidney cancer and one of the 

top 10 malignancies in the United States, with ~50,000 Americans diagnosed each year and 

~14,000 deaths12. Over the past 30 years, there has been a consistent increase in the diagnosis of 

RCC with no decline in mortality. This in part reflects over-diagnosis and over-treatment of 

clinically insignificant disease, as well as lack of reliable diagnostic tools to detect aggressive 

tumors at a curable stage38. Although several FDA-approved therapies have emerged for 
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treatment of metastatic RCC39, all patients eventually demonstrate resistance and metastatic RCC 

remains an incurable disease.  

Predictive preclinical RCC models such as PDXs, tissue slice cultures, and cell lines are 

needed to improve the diagnosis and treatment of RCC patients in the clinic. Each model has 

merits and drawbacks based on the representation of important biological features (intact stromal 

and epithelial architecture, microenvironment, tissue heterogeneity, gene expression and 

preservation of mutations). Traditional patient-derived cell lines and cell line-derived xenografts 

(CDXs) allow for high-throughput studies. However, these models generally do not accurately 

reflect the disease state found in patients and are a major factor in the low success rate of 

oncogenic drug development40,41. In contrast, PDXs and organoids better represent the 

composition of patient tumors and are preferred for preclinical drug development and biomarker 

discovery, but typically do not permit high-throughput studies. It is still unclear how 

fundamental biological processes in each preclinical model are altered by their respective 

experimental growth conditions, and a direct comparison of the metabolic phenotypes of these 

models has not yet been performed. Chapter 5 of this dissertation describes how metabolism is 

influenced by the respective environments and growth conditions of several patient-derived RCC 

models: in vivo PDXs, ex vivo culture of precision-cut tissue slices derived from PDXs, and in 

vitro culture of primary cells derived from PDXs.  

 

The dissertation chapters are organized in the following manner: 

Chapter 2 gives an overview of the methodologies used to study cancer metabolism and 

the optimization of each technique, including stable isotope tracer methods, cell and tissue 
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extraction techniques, high-resolution NMR acquisition and quantification of cell and tissue 

extracts, oxygen consumption measurements, 13C isotopomer analysis, and HP 13C MRI. 

Chapter 3 investigates metabolic changes associated with androgen-independence using 

human prostate cancer cell lines and a transgenic murine (TRAMP) model of prostate cancer. 

Chapter 4 examines metabolic alterations in treatment-emergent small cell 

neuroendocrine prostate cancer using patient-derived xenograft models. 

Chapter 5 compares the metabolic phenotypes of patient-derived tissue models of renal 

cell carcinoma. 
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CHAPTER TWO 

 

Optimization of Methods for NMR-based Metabolomics and 

Hyperpolarized 13C MRI 
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2.1. Metabolomics and fluxomics using stable isotope tracers 

 Conventional metabolomic studies, also known as metabolic profiling, identify altered 

metabolic pathways based on changes in steady-state metabolite concentrations. While these 

studies are high-throughput, static measurements of steady-state metabolite concentrations 

provide little insight into the dynamics of cellular metabolism, which is characterized by multiple 

parameters including nutrient uptake, metabolite efflux rates, intracellular metabolite 

concentrations, metabolic pathway fluxes, and nutrient source of metabolite synthesis42. Most 

intracellular metabolites are tightly regulated to remain at low concentrations (pM to mM range) 

and are involved in complex, highly interconnected networks of metabolic pathways. For 

example, pyruvate is a central carbon metabolite at the intersection of several key metabolic 

pathways, and its intracellular concentration is typically in the µM range. As shown in Figure 

2.1, pyruvate is the end product of glycolysis, but can also be produced from or converted into 

alanine and lactate. Pyruvate can be converted to acetyl-CoA through oxidative decarboxylation 

by the enzyme pyruvate dehydrogenase (PDH). Acetyl-CoA can either enter the TCA cycle, be 

utilized for fatty acid synthesis. Pyruvate can also undergo ATP-dependent carboxylation to 

oxaloacetate via pyruvate carboxylase (PC). In addition to pyruvate, the TCA cycle can also rely 

on other anaplerotic sources such as glutamine, which enters via glutamate, and odd-chain fatty 

acids undergoing β-oxidation, which enter via succinyl-CoA. Thus, the steady-state 

concentration alone identifies neither the source or the fate of pyruvate since it is involved in so 

many interconnecting metabolic pathways. 

The source and fate of any metabolite of interest can be assessed using stable isotope 

tracers, which delineate metabolic pathways by providing quantitative knowledge of their 

intracellular fluxes. The study of metabolic fluxes using stable isotope tracers, also known as 
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fluxomics, consists of the following steps: experimental design to determine choice of stable 

isotope tracer, isotopic labeling experiments, sample preparation, and measurement of isotopic 

labeling using NMR or mass spectroscopy (MS). Quantitative metrics that can be determined 

using stable isotope tracers include: (1) concentrations of steady-state intracellular metabolites as 

well as extracellular metabolites that are exported into media such as lactate, (2) the fractional 

enrichment (FE) of a given metabolite, which is a measurement of the relative contribution of the 

13C-labeled tracer to the production of the metabolite of interest, and (3) the 13C isotopomer 

labeling patterns and distribution, which are critical in the analysis of pathways such as the TCA 

cycle in which there is recycling of the metabolite of interest. 

 

Figure 2.1. Overview of anaplerotic reactions involved in the TCA cycle. The metabolites 
(black) and enzymes (red) involved in each metabolic pathway (green) are shown. Dashed lines 
indicate anaplerotic pathways. 
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2.2. Stable isotope labeling methods for preclinical research 

2.2.1. Stable isotope labeling methods for preclinical cell and mouse models 

The most common stable isotope tracers permit measurements of 13C FE of glucose, 

pyruvate, glutamine, and fatty acids (i.e., acetate, octanoate, palmitate)43,44. The best isotope 

tracers have high incorporation of the 13C-label in downstream metabolites, and high accuracy 

and reproducibility in flux estimations45,46. The optimal isotopic tracer depends on which 

metabolic pathways are of greatest interest. [1,2-13C2]glucose is the best tracer to assess 

glycolysis and the pentose phosphate pathway (PPP), [U-13C]glucose is ideal for analysis of 

pyruvate contribution to the TCA cycle, and [U-13C]glutamine is preferred for analysis of 

glutaminolysis and glutamate contribution to the TCA cycle45,46. In addition to having high 13C 

enrichment, the downstream metabolites also must be present in sufficient concentrations in 

order to be detected using NMR or MS. This is especially important for NMR-based methods  

 

Figure 2.2. Changes in metabolite fractional enrichment over 24 hours in [1,6-13C2]glucose-
labeled LNCaP cells. LNCaP cells labeled with [1,6-13C2]glucose for 2 hours (N=1) had the 
lowest alanine FE, lactate FE, and glutamate FE. No significant difference in %FE was observed 
between 6 hours (N=3) and 24 hours (N=4) of labeling. This suggests that steady-state isotopic 
labeling of [1,6-13C2]glucose was achieved after 6 hours. Significance was determined using 
Student’s t-test. Data is presented as average ± standard error. 
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which can measure high-abundance metabolites such as glutamate and aspartate, but not small-

abundance metabolites such as the intermediates of the TCA cycle.  

For in vitro tracer studies using cell lines, stable isotope labeling can be performed by 

replacing the standard growth medium with a medium containing a 13C-labeled compound of 

interest during the exponential growth phase of the cells. The 13C-labeling time is dependent on 

metabolic rate of the cells, which can be estimated based on the cell population doubling time, 

and the relative rates of the metabolic pathways. For fast processes such as glycolysis and 

oxidative metabolism, cells must be incubated with the 13C-enriched medium for a minimum of 6 

hours for labeling of metabolites with 13C-glucose and 13C-glutamine to reach steady-state 

isotopic labeling47,48, while slower pathways such as lipid synthesis require up to 96 hours of 

labeling. Here, LnCaP-FGC cells (doubling time of 36 hours) reached isotopic steady-state by 6 

hours of labeling as evidenced by the plateauing of FE of downstream metabolites (Figure 2.2). 

If the culture medium needs to be supplemented with L-glutamine, it is recommended to 

use L-glutamine instead of GlutaMAXä for metabolic studies. GlutaMAXä is a dipeptide of 

alanine and glutamate that is used as a less toxic alternative to L-glutamine to prevent buildup of 

ammonia in the medium. Cells cleave the dipeptide bond in order to release the glutamine. 

However, this results in a large excess of alanine in the medium that alters the metabolic 

phenotype of the cells, since alanine can be metabolized via glycolysis, gluconeogenesis, and the 

TCA cycle. For these reasons, L-glutamine is preferred for metabolic studies. 

For in vivo tracer studies, the method of administering stable isotope tracers is critical 

since metabolism can be altered due to anesthesia, physical trauma, and stress, which may 

confound the observed tumor metabolic signature. To reduce these effects, methods were 

adapted from Lane et al. (2015)49. In short, mice were briefly placed under anesthesia for bolus 
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injection via tail vein of either 80 µL of 25%wt/vol [U-13C]glucose or 200 µL of 35.7 mg/mL [U-

13C]glutamine at 15 minute intervals over a total infusion time of 45 minutes.  

 

2.2.2. Preclinical models of prostate cancer and renal cell carcinoma 

Preclinical models that accurately reflect human tumor biology, disease progression, and 

therapeutic response are essential to drug development and biomarker discovery. Cell models are 

ideal for high-throughput drug screening and metabolomic studies since they can be grown in 

sufficient quantities and enable accurate assessment of specific tumor phenotypes due to their 

cellular homogeneity. However, patient tumors are typically heterogeneous which is one of the 

primary causes for therapeutic resistance and eventual failure. Prostate cancer is a heterogeneous 

disease in patients, often presenting with multiple foci of adenocarcinomas of varying pathologic 

Gleason grade within a single prostate gland50 and, in the case of advanced disease, presence of 

small cell neuroendocrine as well as adenocarcinoma phenotypes. This results in spatial 

heterogeneity of genetic50, transcriptomic51,52, and metabolic53 alterations. Similarly, intratumoral 

heterogeneity in renal cancer patients results in genetic54,55, transcriptomic56, and metabolic57 

variability and is one of the primary causes for therapeutic resistance and eventual lethality54,55,58. 

Therefore, it is critical to use preclinical murine models, such as xenograft and transgenic 

models, that more accurately depict the tumor heterogeneity and microenvironment observed in 

patients.  

The tumor microenvironment also plays an important role in metabolism for mouse 

xenograft models59-61, and is dependent on the graft site of the tumor. Previous studies using 

prostate PDX tumors have shown that the subrenal capsule (SRC) is highly vascular and more 

supportive of engraftment than subcutaneous (SubQ) sites62. The SRC is also a favorable site for 
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RCC xenograft models since the kidney is the orthotopic site. To determine whether tumor 

metabolism changes based on the graft site, stable isotope labeling studies using [U-13C]glucose 

were performed to compare metabolism between SubQ and SRC xenografts derived from NCI-

H660 cells (a preclinical model of SCNC) (Figure 2.3). SubQ and SRC tumors had similar 

lactate FE, indicating that the microenvironments of these graft sites had similar glycolytic 

activity. Tumors implanted in the SRC had higher aspartate FE and glutamate FE, indicating an 

increasing trend in pyruvate metabolism through the TCA cycle compared to SubQ tumors. This 

is most likely because the highly vascularized SRC site allows for fast delivery of oxygen and 

nutrients to the tumor. Thus, the SRC graft site is preferred for 13C labeling studies of the TCA 

cycle.  

PDX models often retain cellular heterogeneity and microenvironment observed in 

patients and may have a different metabolic phenotype than xenografts established from cell 

lines. More details on the metabolic alterations associated with microenvironment and growth 

conditions using patient-derived RCC models will be discussed in Chapter 5, which will compare 

PDX tumors, PDX-derived cell cultures, and ex vivo cultures of PDX-derived tissues.  

 

Figure 2.3. Metabolic comparison of [U-13C]glucose-labeled NCI-H660 xenografts in 
subcutaneous and subrenal capsule sites. Metabolite fractional enrichments of subcutaneous 
(SubQ) (N=1) and subrenal capsule (SRC) (N=3) NCI-H660 tumors after [U-13C]glucose 
labeling. Data is presented as average ± standard error (N=3 per group). 
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2.3. Crude cell and tissue extraction methods  

2.3.1. Quenching and harvesting of cells and tissues 

 Rapid quenching of metabolism and harvesting of cells or tissues are essential to 

inactivate intracellular enzymes, halt metabolism, and avoid metabolite degradation and ex vivo 

alteration of the metabolic composition of the sample. In conventional quenching methods for in 

vitro 13C-labeling studies, adherent cell lines are first detached using trypsin prior to quenching 

with solvents such as methanol. However, cells can undergo many metabolic changes during 

trypsinization, which occurs while cells are metabolically active at 37°C. Trypsin degrades 

membrane proteins that interact with intracellular metabolic enzymes, and the buffering solution 

in which trypsin is solubilized lacks essential nutrients required to maintain basal metabolism63. 

The labeling medium and culture medium should be saved if tracer consumption and 

extracellular metabolites that are exported into the medium need to be analyzed. After steady-

state isotopic labeling has been reached, the cell culture dishes should be kept over ice to slow 

residual cellular activity. Cells should be rinsed with ice cold PBS to minimize contamination of 

metabolites originating from the culture medium. Optimal recovery of metabolites was obtained 

by directly quenching metabolism with cold methanol and then scraping cells off the surface of 

the cell culture dish. Based on protein quantification, scraping cells grown in tissue culture 

dishes results in higher recovery of cells than cells grown in tissue culture flasks, likely due to 

better access to the cells. 

 The speed of tissue collection and the temperature of sample storage can affect the 

measured metabolic profile64. For in vivo 13C-labeling studies, tumor tissue is quickly harvested 

after euthanization of mice and either flash-frozen in liquid nitrogen for metabolic and 

biochemical studies or fixed with formalin, embedded in paraffin and sectioned for 
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immunohistochemical staining. Freezing of tissue should be prioritized over formalin-fixation 

since tissues remain metabolically active after euthanasia. To minimize metabolic perturbations 

associated with sample handling time and hypoxia, rapid freezing can be achieved by either 

freezing small amount of tissue (~30 mg) or using cryogenic tissue clamps, which quickly 

freezes tissue in thin (1-2 mm) sections. Freezing of bulk tissue sections is not recommended 

since the core of the tissue freezes at a slower rate than the surface of the tissue and will 

therefore remain metabolically active until complete freezing has occurred.  

 

2.3.2. Homogenization of cells and tissue 

The method of tissue homogenization plays an important role in the quality, efficiency, 

and reproducibility of metabolomic and fluxomic studies, biochemical assays, and gene 

expression analyses. Several homogenization techniques exist, including shearing methods (e.g., 

Dounce homogenizer, Potter-Elvehjem with PTFE pestle, rotor-stator homogenizer) and beating 

methods such as high-throughput homogenizers like the TissueLyser LT65. The Dounce 

homogenizer and Potter-Elvehjem with PTFE pestle require the most manual labor and have 

poor lysing efficiency for solid tissues since membrane fragments and organelles are oftentimes 

left intact. The rotor-stator homogenizer is one of the more popular methods and has similar 

lysing efficiency as the Dounce homogenizer and Potter-Elvehjem with PTFE pestle. However, 

this method is limited by the difficulty of cleaning the rotor, which increases the risk of cross-

contamination, and heat generated during the lysing process65. In this dissertation, the 

Tissuelyser LT was used for almost all studies due to its high efficiency of lysis, minimal sample 

loss and cross-contamination, high-throughput, and ease of cleaning. To minimize heating during 
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the lysis process, cold reagents should be used and the homogenizer should be kept cool either 

by pre-cooling the insert or placing the entire setup in a cold room. 

 

2.3.3. Extraction of cells and tissue for metabolomics 

Cell and tissue extraction methods that remove macromolecules such as lipids and 

proteins are crucial for obtaining high-quality NMR and MS data. These macromolecules 

contribute to background signal or large peaks that may contaminate signals from the metabolites 

of interest. Extraction methods typically fall under two categories: (1) strong acid or base 

extraction methods using trichloroacetic acid and perchloric acid that denature and precipitate 

proteins, and (2) two-phase methods such as the Folch method66 using mixtures of methanol, 

water, and chloroform to simultaneously separate aqueous and nonpolar metabolites and 

denature proteins which accumulate at the solvent interface67. Certain metabolites may be 

extracted preferentially depending on the specific method. For example, perchloric acid 

extraction results in higher concentrations of glutamate and other metabolites68, while 

trichloroacetic acid extraction can degrade metabolites such as glutamine due to its highly acidic 

endpoint69.  

 To determine which extraction method to use, perchloric acid and m/c/w extraction 

methods were compared using tumor tissue from the TRAMP model. No significant differences 

in metabolite concentrations were observed. However, the m/c/w extract had better solvent 

suppression, with a single water peak at 4.7ppm that was fully suppressed using presaturation 

pulses, while the perchloric acid extract had two large peaks at 4.7ppm and 4.9ppm (Figure 2.4). 

As a result, the perchloric acid extract had reduced spectral quality since the presaturation pulse 

was unable to fully suppress both peaks. The perchloric acid method was also not as high- 
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Figure 2.4. Effects of tissue extraction methods on spectral quality of 1D proton NMR.  
[U-13C]glucose-labeled TRAMP tumor tissue was extracted using (blue) 1:1:1 
methanol:chloroform:water (m/c/w) or (red) 8% perchloric acid. 1D proton spectra were 
acquired at 800 MHz and normalized to wet tissue weight. Some peaks have different chemical 
shifts due to differences in pH. 
 

throughput due to the steps required (e.g., manual titration of potassium carbonate, removal of 

the sodium perchlorate precipitate, and pH adjustment) to neutralize and purify each sample. For 

the reasons listed above, the m/c/w extraction method was used in all subsequent cell and tissue 

studies. 

An additional concern is the salinity of the sample after resuspension of the lyophilized 

extract, particularly for studies using >30 million cells, in the small volumes of solvent (200-600 

µL) used for NMR. The high isotonicity of these extracts not only affects the quality of NMR 

acquisition but also the stability of the extract over time. The higher electrical conductivity of 

high salt concentrations can make it impossible to properly tune and match particularly for 
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cryogenic probes with low tolerance to salt. High salt samples also require longer 1H 90° pulse 

durations and higher radiofrequency (RF) power for broadband 13C-decoupling, resulting in 

sample heating, line broadening, dephasing artifacts, and possible damage to the probe. Together 

this results in lower signal-to-noise ratio (SNR) due to the reduced Q-factor of the probe and 

additional spectral noise introduced by the salt. The high salt content also affects the stability of 

the extract. White particulates precipitated out of solution after the lyophilized extract was 

solubilized, and the quality of the NMR spectra visibly deteriorated over time. The salinity of the 

cell extracts can be reduced by resuspending the lyophilized extract in subsequently smaller 

volumes of ice-cold water. This creates a supersaturated solution in which the excess salt 

remains crystallized and can be easily removed.  For example, if the original extract was 

resuspended in 100 mL of water, it would be repeatedly lyophilized and resuspended in 10-fold 

smaller volumes of water (10 mL, 1 mL, 100 µL). For the final resuspension, approximately 20 

µL of deuterated water (D2O) was added to the lyophilized powder and the supernatant was then 

collected and diluted to a final volume of 600 µL with D2O for NMR analysis.  

 

2.3.4. Solvent considerations for NMR 

For aqueous metabolites, D2O was found to give the best lock signal and stability over 

time. For lipid quantification, deuterated chloroform (CDCl3) was ideal for 1H spectroscopy since 

it has a strong lock signal and stability over time. If 31P NMR is of interest to detect phosphorylated 

lipids, then the lipid fraction should be resuspended in a buffered solvent such as a 2:1 mixture of 

CDCl3 and 40 mM methanolic Cs-EDTA (200 mM EDTA in D2O adjusted to pH 6.0 with CsOH, 

and further diluted five-fold with MeOH-d3)70. Cation chelators such as Cs-EDTA can greatly 
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decrease NMR peak linewidths by removing metal cations such as magnesium and calcium that 

would otherwise cause peak broadening.  

In order to quantify metabolite concentrations using NMR, an internal reference standard 

of 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS), tetramethylsilane (TMS), or 3-

(trimethylsilyl)propionic (TSP) is typically used for biological samples. However, DSS and TSP 

can bind to proteins, nucleic acids and other macromolecules, which can affect quantification 

accuracy if these macromolecules are present. To prevent this, an external standard can be used 

by placing a coaxial insert (2.52 mm O.D. x 1.5 mm I.D.) filled with the standard inside a 

standard 5mm NMR sample tube to prevent mixing with the analyte. Standardless methods such 

as ERETIC (electronic reference to access in vivo concentrations)71 or PULCON (pulse length 

based concentration determination)72 can also be used to quantify metabolite concentrations with 

high accuracy and reproducibility. 

 

2.4. High-resolution NMR acquisition of cell and tissue extracts 

2.4.1. Advantages of high-field NMR for metabolomics and fluxomics 

Crude extracts of cells and tissues are mixtures of small-molecule metabolites (<1500 

Da), with over 40,000 metabolites identified in the Human Metabolome Database (HMDB)73. As 

such, the number of resolvable metabolite peaks that can be quantified using NMR is heavily 

limited by spectral crowding and sensitivity (detection limit is ~100 µM).  

Metabolomic 1H and 13C NMR studies are typically conducted using spectrometers with 

magnetic field strengths ranging from 9.4T to 14.1T, with proton frequencies ranging from 400 

MHz to 600 MHz. As shown in Table 2.1, spectral resolution, sensitivity, and quality can be 

improved by using high field spectrometers, inverse probes, cold preamps, and cryogenic probes.  
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Table 2.1. High-field NMR spectrometers available at the University of California, San 
Francisco.  

 600 MHz Bruker 
AvanceIII 

500 MHz Bruker 
AvanceDRX 

800 MHz Bruker 
AvanceI 

Field Strength 14.1 T 11.7 T 18.8 T 

Probe Double-resonance 
BBFO SmartProbe 

Quad-resonance QCI 
cryoprobe 

Triple-resonance TXI 
cryoprobe 

Coil Direct, Warm Inverse, Cold Inverse, Cold 

1H/13C Preamp Warm/Warm Cold/Cold Cold/Warm 

1H SNR 875:1* 3800:1* 7000:1* 

13C SNR 235:1** 700:1** 700:1** 
* 1H SNR was measured using 1%Ethylbenzene in Chloroform-d  
** 13C SNR was measured using 40% Dioxane in Benzede-d6 

  

Here, the spectral quality of one-dimensional (1D) 1H and 1D 13C spectroscopy was 

compared between two NMR systems equipped with cryoprobes: the 500 MHz Bruker 

AvanceDRX and the 800 MHz Bruker AvanceI. The 800 MHz spectrometer had superior 

spectral resolution and quality due to higher field strength and better water suppression. While 

the 13C sensitivity was similar in both systems, the 800 MHz spectrometer was better at resolving 

complex 13C isotopomer patterns due to the improved resolution at higher magnetic field 

strengths (Figure 2.5). For the reasons listed above, the 800 MHz spectrometer was used for all 

studies presented in this dissertation. 

 

2.4.2. Quantitative 1H NMR of 13C-labeled cell and tissue extracts  

Conventional NMR-based metabolic profiling relies on 1D 1H water presaturation pulse 

and acquire spectroscopy to quantify metabolite concentrations in crude cell and tissue extracts,  
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Figure 2.5. Representative 1D carbon spectra of [U-13C]glucose acquired at 500 MHz and 800 
MHz. 1D 13C spectra of 25 mM [U-13C]glucose in D2O was acquired at (top) 500 MHz Bruker 
DRX equipped with quad-resonance QCI cryoprobe with cold 1H and 13C preamps and (bottom) 
800 MHz Bruker AvanceI equipped with a triple-resonance TXI cryoprobe. The spectrum 
collected at 500 MHz has higher SNR than the spectrum collected at 800 MHz because more 
averages were collected. 

 

which are complex mixtures that can contain thousands to millions of different small-molecule 

metabolites. This technique allows for high-throughput studies due to its short acquisition time 

and high sensitivity, with a detection limit in the µM range. Metabolite concentrations can be 

quantified based on an internal reference (Ref) standard using Equation 2.174: 

𝑀𝑜𝑙𝑒𝑠&'( =
*+',-./
*+',0.1

∗ 345,0.1
345,-./

∗ 𝑀𝑜𝑙𝑒𝑠7'8  (Equation 2.1) 
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where AreaMet and AreaRef are the fitted peak areas in the 1H spectrum for the metabolite of 

interest (Met) and the reference (Ref) compound, respectively; N1H,Met and N1H,Ref are the number 

of equivalent protons in Met and Ref; MolesRef is the number of moles of the reference 

compound. For 1D NMR, electronic standards such as ERETIC or PULCON can also be used to 

represent the MolesRef. 

However, the low spectral resolution along the 1H frequency dimension limits the 

accuracy of quantification and the number of quantifiable metabolites. This is further 

complicated for NMR-based 13C isotopomer analysis, which requires quantification of the 13C 

FE by dividing the area of the 13C-1H satellites (split based on the JCH couplings) by the sum of 

the unlabeled and satellite peaks (Equation 2.2).  

𝐹𝐸 = &;<'=4>?
&;<'=4@?A&;<'=4>?

   (Equation 2.2) 

This requires that the unlabeled and satellite peaks are resolvable. Extracts labeled with [U-

13C]glutamine are particularly challenging, in that the labeled and unlabeled glutamate, 

glutamine, and glutathione peaks have significant overlap with one another (Figure 2.5).  

To more accurately quantify the total metabolite pool sizes, 13C-decoupled 1H water 

presaturation pulse and acquire spectra were acquired by applying adiabatic broadband 13C-

decoupling using a frequency-modulated compressed high intensity radiated pulse (CHIRP) with 

a 54kHz bandwidth (equivalent to 200ppm @ 800 MHz) and a shaped pulse power level of +2dB 

with respect to the power level determined for 13C-GARP (globally-optimized alternating-phase, 

rectangular pulse). It was critical to cover the entire carbon bandwidth since long-range 13C-1H 

coupling was observed between carbonyl carbons and methyl protons in the beta-carbon position 

(i.e., lactate 13C1 with lactate 13C3 methyl protons). This collapses the 13C-satellites to the central 

peak corresponding to unlabeled 12C-1H signal and enables quantification of overcrowded  
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Figure 2.6. Representative 1D proton spectra with and without 13C-decoupling of a  
[U-13C]glutamine-labeled cell extract. Identification of 13C-labeled and unlabeled glutamine, 
glutamate, and glutathione peaks in (top) 1H spectra and (bottom) 13C-decoupled 1H spectra of 70 
million PC-3 cells labeled with [U-13C]glutamine for 24 hours.  
 

regions such as glutamate, glutamine, and glutathione multiplets at ~2.4 ppm that are otherwise 

unresolvable (Figure 2.6). To minimize sample heating, an optimal acquisition time of 0.5 

seconds with a repetition time of 12 seconds was found to maximize sensitivity without affecting 

spectral quality.  

Interestingly the 13C-satellites are not perfectly centered on the central peak 

corresponding to the unlabeled metabolite chemical shift because of the 13C isotope effects on 1H 

chemical shifts. This effect is typically not an issue since isotope shifts on 1H are small (1-2ppb) 

and the natural abundance of 13C nuclei is ~1.1%. However, the 13C isotope shift is more 

noticeable in 13C-enriched samples at high magnetic field strengths and can affect the accuracy 

of metabolite quantification, particularly for methods involving subtraction of 1H spectra with 

and without 13C-decoupling. Experimentally, the collapsed 13C satellites for lactate (-CH3) and  
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Figure 2.7. 1D proton spectra of [U-13C]glucose-labeled tissue extract demonstrate 13C isotope 
effects on 1H chemical shifts. 13C-decoupling collapses 13C-1H satellite peaks ~2 Hz upfield of 
the unlabeled 12C-1H peaks of alanine and lactate from LuCaP145.1 PDX tumor labeled with [U-
13C]glucose. 
 
alanine (-CH3) were ~2 Hz upfield of the central unlabeled 12C-1H chemical shifts (Figure 2.7), 

similar to literature findings75. 

Quantification of nonpolar lipids also provides essential and complimentary information 

on cellular metabolism. Conventionally this is extensively done using MS due to its high 

sensitivity and ability to distinguish individual molecular species of lipids. The main advantage 

of NMR-based methods is that metabolites are easily and reproducibly identified and 

quantified76,77. Representative 1D 1H spectrum of the lipid phase is shown in Figure 2.8. 

 

2.4.3. 1D and 2D NMR methods for 13C isotopomer analysis 

Isotopomer analysis is required to determine flux through complex metabolic pathways such as 

the TCA cycle, which recycles downstream metabolites and further complicates 13C isotopomer  
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Figure 2.8. Representative 1D proton spectrum of the lipid fraction of LNCaP cells. The lipid 
fraction was isolated using m/c/w extraction. Peaks were assigned based on previous 
publications76,77: 1. Total cholesterol (C18 H3), 2. Lipid (-CH3), 3. Total cholesterol (C26 
H3/C27 H3), 4. Total cholesterol (C21 H3), 5. Free cholesterol (C19 H3), 6. Esterified cholesterol 
(C19 H3), 7. Multiple cholesterol protons, 8. Lipid (-CH2-CH2-CH2-)n, 9. Lipid (-CH2-CH2-CO),  
10. Lipid (-CH2-CH2=CH), 11. Lipid (=CH-CH2=CH), 12. Phosphatidylcholine, 13. Methanol, 
14. Free cholesterol (C3 H3), 15. Glycerophospholipid backbone, 16. Glycerol backbone,  
17. Lipid (-HC=CH-).  
 

patterns (Figure 2.9). Isotopomer peaks for 13C-labeled metabolites have JCC coupling constants 

that are unique to each metabolite (Table 2.2). Since NMR is not sensitive enough to detect the 

isotopomers of TCA cycle intermediates, NMR-based isotopomer analysis relies on modeling of 

the glutamate and aspartate isotopomers to model flux through glutaminolysis and the TCA cycle 

since (1) glutamate is found at high intracellular concentrations due to its compartmentalization 

in both the mitochondria and cytosol, (2) glutamate and aspartate multiplets are well resolved 

from other metabolites, (3) glutamate is assumed to be in rapid exchange with α-ketoglutarate, 

and (4) aspartate is assumed to be in rapid exchange with oxaloacetate. 
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Figure 2.9. Schematic of possible 13C isotopomer patterns resulting from metabolism of  
(a) [U-13C]glucose and (b) [U-13C]glutamine into the TCA cycle. Isotopomer patterns resulting 
from other anaplerotic pathways (e.g., pyruvate to oxaloacetate conversion via pyruvate 
carboxylase and reverse reactions (e.g., backconversion of α-ketoglutarate to citrate via IDH2) 
Reoccurring isotopomer patterns in subsequent turns of the TCA cycle are not shown. Solid 
circle=13C-labeled carbon, open circle=unlabeled carbon. 
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Figure 2.10. Representative 1D carbon spectra of a [U-13C]glucose-labeled cell extract. Direct 
detect 1H-decoupled 13C spectra (6 hour acquisition) of 70 million PC-3 cells labeled with [U-
13C]glucose acquired using an 800 MHz spectrometer equipped with a cryoprobe. Peaks were 
assigned as: 1. Alanine C3, 2. Lactate C3, 3. Glutamine C3, 4. Glutamate C3, 5. Glutamine C4, 
6. Glutamate C4, 7. Alanine C2, 8. Glutamine C2, 9. Glutamate C2, 10. Glucose, 11. Lactate C2, 
12. Malate C2 

 

NMR-based isotopomer analysis has conventionally used direct detect 13C (Figure 2.10) 

to quantify 13C-labeled metabolite concentrations and their relative 13C isotopomer areas (Fan 

and Lane, 2016; Sherry and Malloy, 2002). The main advantage of direct detect 13C NMR is that 

it is quantitative and can easily meet the resolution required to fully resolve all 13C isotopomer 

peaks. For example, a digital resolution of at least 2 Hz is required to resolve the 7 Hz separation 

between glutamate C2 isotopomer peaks 2D12 and 2D23 (Figure 2.11). However, direct detect 
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13C NMR requires large samples (~100 million cells) and high metabolite concentrations (>250 

µmol) in order to obtain sufficient SNR (>10:1) within a reasonable scan time (< 24 hours). In 

this dissertation, several 1D and tw-dimensional (2D) NMR methods were developed on a high 

field 800 MHz NMR spectrometer equipped with a cryoprobe (Table 2.1) to reduce spectral 

overlap in overcrowded regions, improve quantification of the total metabolite pool sizes, and 

improve detection sensitivity of 13C-labeled metabolites. 

To measure isotopomers from low-concentration metabolites and small tissue samples, 

2D indirect detection methods were optimized. 2D NMR spectroscopy has several advantages 

over 1D NMR spectroscopy that greatly benefit metabolomic and fluxomic applications43. The 

biggest advantage of 2D NMR for metabolomic analyses is its ability to resolve overlapping  

 
Table 2.2. JCC coupling constants for glutamate and aspartate 

Metabolite J12 J23 J34 J45 
Aspartate 53 Hz 37 Hz 50 Hz – 
Glutamate 54 Hz 34 Hz 34 Hz 52 Hz 

Figure 2.11. Schematic of NMR-detectable glutamate isotopomer patterns and representative 
1D carbon spectra of a [U-13C]glucose-labeled cell extract. Glutamate isotopomer patterns 
resulting from 60 million PC-3 cells labeled with [U-13C]glucose were detected using 1H-
decoupled 13C NMR with 6 hour scan time using an 800 MHz spectrometer. 
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Figure 2.12. 2D 1H -1H TOCSY spectra of a [U-13C]glutamine-labeled cell extract. Spectrum 
was acquired from 60 million PC-3 cells labeled with [U-13C]glucose using an 800 MHz 
spectrometer. Acquisition time was 2 hours 45 minutes. Identification of 13C-labeled satellites 
(dotted lines) and unlabeled central metabolite peaks (arrows) of glutamate (red), glutamine 
(magenta), and glutathione (green).  
 

resonances in the direct dimension (i.e., 1H) by allowing chemical shifts and coupling constants 

to develop across the indirect dimension (i.e., 1H, 13C). However, quantification of metabolite 

concentrations using 2D peak volumes is challenging since the magnetization transfer efficiency 

for each 2D cross-peak is non-uniformly influenced by several factors such as non-uniform 

excitation, non-uniform relaxation, evolution times, and mixing times. 

2D TOCSY is commonly used to confirm metabolite identity and resolve overlapping 

resonances. The advantage of TOCSY is its potential to quantify more metabolites than 1D 1H 

spectroscopy, which is limited by spectral overlap. Furthermore, the 13C fractional enrichment 

can also be accurately quantified using TOCSY since each isotopomer has a unique cross peak 

pattern78. This makes TOCSY an attractive method for metabolomics and fluxomics. Absolute 

quantification of 1H-12C and 1H-13C peak volumes is challenging without calibration using 
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metabolite standards of known concentration due to the non-uniform factors influencing 

magnetization transfer efficiency. However, FE is quantifiable using TOCSY since the unlabeled 

and 13C-labeled peaks of the same resonance are similarly influenced. As shown in Figure 2.12, 

TOCSY is particularly useful for the quantification of glutathione FE, since glutathione is not 

easily quantifiable using 1D 1H spectroscopy due to spectral overlap and unresolvable 

isotopomer multiplets, particularly in samples labeled with [U-13C]glutamine. Since the majority 

of metabolites have small spin systems (3-6 carbons) in crude extracts, a mixing time of 60 

milliseconds was used for all 1H -1H TOCSY studies presented in this dissertation. 

As HSQC is one of the most widely used 2D pulses, several variants exist. The most 

basic HSQC sequence on Bruker NMR spectrometers (hsqcgpph) is limited because (1) there is 

signal loss at the edges of the spectrum due to the inversion profile to transfer magnetization 

 

Figure 2.13. 2D 1H-13C HSQC spectrum of a [U-13C]glucose-labeled cell extract. Spectrum was 
acquired from 60 million PC-3 cells labeled with [U-13C]glucose using an 800 MHz 
spectrometer. Acquisition time was 4 hours. 13C-labeled metabolites related to glycolysis, 
glutaminolysis and the TCA cycle were assigned as follows: 1. Lactate C3 H3, 2. Alanine C3 H3, 
3a. Glutamate C3 H2, 3b. Glutamate C4 H2, 4a. Glutamine C3 H2, 4b. Glutamine C4 H2,  
5. Glutathione C6 H2, 6. Aspartate C3 H2, 7. Malate C3 H2. 
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Figure 2.14. 13C-glutamate and 13C-asparate isotopomer regions from 1H-13C HSQC spectrum of 
a [U-13C]glucose-labeled cell extract. Spectrum was acquired from 60 million PC-3 cells labeled 
with [U-13C]glucose using an 800 MHz spectrometer. Acquisition time was 4 hours. 
 
Table 2.3. JCH constants of key metabolites.  

Metabolite Carbon position JCH (Hz) 
Alanine C3 13074 
Aspartate C2 14479 
 C3 129,13074,79 
Glutamate C2 14579 
 C3 13074,79 
 C4 12774,79 
Glutamine C2 14579 
 C3 13179 
 C4 12879 
Glutathione C8 (Glutamate C2) 143.5 
 C7 (Glutamate C3) 132 
 C6 (Glutamate C4) 130 
Lactate C3 12874 
Glucose C1α 16980 
 C1β 16280 
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Figure 2.15. Inversion efficiency of conventional 180° pulses and adiabatic pulses. Intensity 
profile of HSQC acquired using (black) conventional 180° pulses shows reduced inversion 
efficiency for peaks further away from the frequency offset and (grey) adiabatic CHIRP pulses 
have consistent intensities within a typical 1H sweep width of 6 ppm (4800 Hz at 800 MHz) and 
13C sweep width of 100 ppm (20,000 Hz at 800 MHz). 
 

from the proton to carbon nuclei (Figure 2.15), (2) the SNR is lower than other HSQC sequences 

since the z-filter removes half the spins (antiecho), and (3) it has a long acquisition time due to 

the high resolution (<3 Hz for glutamate C2 isotopomers) and large 13C spectral width required 

to detect and resolve 13C multiplets for isotopomer analysis. 

Here several HSQC sequences were compared to optimize SNR and minimize scan time (Figure 

2.16). First, adiabatic inversion pulses allow for uniform transfer of magnetization across the 

sweep width, resulting in improved SNR for peaks such as lactate (58% higher lactate SNR) that 

are located further from the frequency offset compared to the conventional inversion pulse. 

Second, echo-antiecho gradient selection, which refocuses the antiecho spins, resulted in a two-

fold boost in SNR for lactate (210% higher lactate SNR) compared to using a conventional z-

filter gradient, which purges the antiecho spins. Though faster than traditional 13C NMR, 2D 

NMR is still limited by its long acquisition time which makes it difficult to analyze large 

quantities of samples. Non-uniform sampling (NUS) was evaluated since NUS acquisition and 

processing is widely implemented in vendor-supplied software and easy to customize. While the 
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Figure 2.16. 1D projections of 1H-13C HSQC pulse sequences. Comparison of positive 
projection of all 2048 rows of phase-sensitive, gradient-enhanced HSQC acquisition with a JXH 
of 135 Hz (based on an average JCH of 127, 130, and 145 Hz for glutamate C2, C3, and C4, 
respectively) using (blue) HSQCGPPH (z-filter and selection before t1), (red) HSQCGPPHSP 
(z-filter and selection before t1, and adiabatic pulses for inversion), (green) HSQCETGPSP 
(echo-antiecho with adiabatic pulses for inversion), and (purple) HSQCETGPSP with 25% Non-
Uniform Sampling (NUS) of a [U-13C]glucose-labeled PC-3 cell extract. 
 

SNR of HSQC acquired with NUS is not directly comparable with conventional HSQC, HSQC 

acquired with 25% sparsity resulted in enhanced sensitivity (175% increase in lactate SNR) with 

the same scan time. While NUS may be useful for other metabolomic applications, it is 

unsuitable for 13C isotopomer analysis which requires high resolution in the indirect dimension 

to resolve 13C isotopomer patterns. Together, implementation of these pulse parameters greatly 

improved sensitivity and throughput of 2D HSQC for metabolomic studies. 

Traditionally, quantification of 2D HSQC peak volumes has relied on analytical 

approaches that require a reference standard and calibration using metabolite standards of known 

concentrations74,81. Standardless methods such as the ERETIC can also be used for 2D NMR82. 
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Table 2.4. Comparison of 13C-metabolite quantification using 1D 1H with presaturation versus 
2D 1H-13C HSQC.  

 
Concentration  (nmol/million cells) 

1H 1H-13C HSQC 
13C-Aspartate 0.29 .306 
13C-Glutamate 4.86 4.92 
13C-Lactate 8.00 8.10 

 

Several acquisition approaches such as quantitative HSQC (Q-HSQC)83, quick quantitative 

HSQC (QQ-HSQC)84, quantitative offset-compensated CPMG-adjusted HSQC (Q-

OCCAHSQC)85, extrapolated time-zero HSQC (HSQC0)86, and perfect-HSQC87 have been 

proposed for highly accurate quantification of metabolite concentrations using 2D HSQC. Here, 

an analytical approach was used to quantify 13C-labeled metabolites from 2D HSQC with [2-

13C]glycine as an internal reference standard. Peak volumes were corrected for JCH filtering, 

inversion efficiency, and number of equivalent protons, using Equation 2.3, adapted from 

Heikkinen et al. (2003)83: 

𝑀𝑜𝑙𝑒𝑠&'( =
B;<-./
B;<0.1

∗ 345,0.1
345,-./

∗ C

DEF@	(
IJ?5,-./
@J?5,5KL?

)
∗ C
(NOP,-./)@

∗ 𝑀𝑜𝑙𝑒𝑠7'8    (Equation 2.3) 

where VolMet and VolRef are the peak volumes in the HSQC spectrum for the metabolite of 

interest (Met) and the reference (Ref), respectively; N1H,Met and N1H,ref are the number of 

equivalent protons for Met and Ref; JCH,Met and JCH,HSQC are the J-coupling in hertz for Met and 

for the HSQC experiment; IEν,Met is the inversion efficiency of at the resonance frequency (ν) of 

Met. 

The enhanced sensitivity and resolution of 2D 1H-13C HSQC enables quantification of 

13C-metabolite concentrations of mass-limited samples. Experimentally, conventional 1H-13C 

HSQC (hsqcgpph) had a sensitivity gain of 24-fold (theoretical (γ1H/γ13C)5/2 = 32-fold sensitivity 

gain) compared to conventional 13C direct detection. 13C glutamate isotopomers were resolvable 
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using both direct detect 13C (Figure 2.11) and 1H-13C HSQC with no 13C decoupling during 

acquisition (Figure 2.14). Quantification using 2D 1H-13C HSQC produced similar 

concentrations of 13C-aspartate, 13C-glutamate, and 13C-lactate as quantification using 1D 1H 

presaturation with and without 13C-decoupling (Table 2.4).  

 
2.5. NMR-based 13C isotopomer analysis  

 Isotopomer analysis can measure flux through intricate pathways such as the TCA cycle, 

which can give complex isotopomer patterns due to substrate recycling and multiple entry 

points88,89. Several 13C isotopomer models exist, including TCACALC88,90,91, 13CFLUX292, 

INCA93, FiatFlux94, NMR2Flux+95, Metran96, and OpenFlux97. As seen in Table 2.5, the 

isotopomer models that have been developed are diverse, encompassing various types of 

mathematical models, programming languages, statistics, and biological models. Some models 

such as tcaCALC90 and 13CFLUX98 solve the isotopomer balance equations using individual 

isotopomers. However, it can be difficult to solve the nonlinear isotopomer balance equations 

using this method if a large number of isotopomers and metabolic pathways are being studied. 

To address this, several methods have been used to reduce the number of variables, including 

cumomers99, bondomers95, and elementary metabolite units (EMU)100. This makes the 

isotopomer analysis heavily dependent on the model and makes it difficult to validate multiple 

models or adapt models to include new pathways such as glutaminolysis.  

In this dissertation, 13C isotopomer analysis was performed using TCACALC, which uses 

algebraic equations to describe the 13C isotopomer patterns based on the metabolic (pathway 

map) and experimental (FE of the 13C tracer and relative isotopomer areas) parameters. This 

model was originally validated for liver and cardiac metabolism, so the assumptions and allowed 

pathways in the model must be carefully considered when using it for cancer metabolism. 
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Figure 2.17. TCACALC GUI interface 
 

As seen in Figure 2.17, glucose can only be used as an output variable since 

gluconeogenesis of glycogen or lactate is a key pathway in liver metabolism. Therefore, for 13C-

glucose labeling studies, the 13C-glucose tracer entered via the “lactate” input variable in the 

model. The model that gave the best fit to the experimental isotopomer data was calculated based 

on (1) experimentally-derived relative isotopomer ratios of glutamate C2, C3, and C4 quantified 

using high-resolution 2D 1H-13C HSQC, (2) relative fluxes through PDH, (3) anaplerosis leading 

to succinyl-CoA relative to citrate synthase (YS)101,102, (4) enrichments of the 13C-glucose tracer, 

(5) unlabeled “fatty acids” to represent all metabolites that convert to acetyl-CoA other than 

glucose (such as acetate and other ketone bodies), and (6) unlabeled “anaplerotic substrate”.  

To validate the model, the metrics that must be assessed include: (1) statistical fit of 

individual parameters, (2) statistical fit of the overall pathway model, and (3) the measured and 

simulated relative isotopomer areas should not be significantly different from each other. The 

most basic pathway should be modeled first, and additional pathways can then be added 
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iteratively. Additional pathways should only be kept in the model if the model fit improves 

significantly.  

 

2.6. Oxygen consumption rate of cells and tissues 

Oxygen consumption is an important marker of energy metabolism and indirectly 

assesses mitochondrial oxidative phosphorylation function and activity. While the TCA cycle 

does not directly require oxygen, it does rely on byproducts of the electron transport chain, 

which requires oxygen. Therefore, for 13C isotopomer studies, oxygen consumption is required to 

calculate absolute pathway flux and determine how many turns of the TCA cycle were 

completed during the 13C-labeling timeframe. In this section, three different systems are 

described: a custom in-house bioreactor adapted from previously published setups103-106 and 

equipped with a fluorescence-based fiber optics oxygen sensor (Ocean Optics), a Clark-type 

oxygen electrode Oxygraph+ (Hansatech Instruments), and the Seahorse XFe24 Extracellular 

Flux Analyzer (Agilent).  

The fluorescence-based fiber optics oxygen sensor can measure the partial pressure of 

dissolved or gaseous oxygen in gas or aqueous solutions continuously without consuming 

oxygen. It is insensitive to changes caused by pH, ionic strength, and salinity, making it ideal for 

measuring oxygen in cell culture growth media. However, this system is sensitive to temperature 

fluctuations and requires time (>30 min) to reach equilibrium. To use this system, cells must be 

electrostatically encapsulated in 3.5% alginate microspheres (300-450 uL diameter) at a density 

of 100 million cells/mL into a 150 mM CaCl2 bath as previously described107. The cell 

microspheres are then placed into the sample chamber of the bioreactor and oxygen consumption 

rates are measured by the fiber optics oxygen sensor as depicted in Figure 2.18. 
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Figure 2.18. Bioreactor schematic for oxygen consumption rate measurements of living cells and 
tissue in real time. PAO2(in) and PAO2(out) indicate measurements of partial pressure of 
dissolved oxygen. 
 
 

A flow rate of 0.25 mL/min gave the highest oxygen consumption rate (OCR) for cells 

encapsulated in alginate (not shown), which indicates that this flow rate may be optimal for cell 

viability and maintenance of representative metabolic activity. 

A Clark-type oxygen electrode is the traditional method to measure oxygen. These 

systems are sealed during the measurement of OCR so that the decay of oxygen within the 

chamber is directly related to biological oxygen consumption. Cheap and easy-to-use, the 

Oxygraph+ allows OCR of cells and tissues to be measured in any growth medium and only 

requires small amounts of specimen to obtain robust, reproducible results. Cells can be loaded 

into the sample chamber within the Oxygraph+ in suspension. While sensitive, the Oxygraph+ 

system can only measure one sample at a time. Furthermore the electrode itself consumes a small 

amount of oxygen during the measurement, so it is critical to measure the background OCR 

particularly for mass-limited samples with low OCR. 
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Figure 2.19. Oxygen consumption rate measurements using fiber optics oxygen sensors, 
Oxygraph+, and Seahorse XFe24. LNCaP oxygen consumption rate was measured using a 
homebuilt bioreactor system equipped with a fiber optics oxygen sensor (n=1), Oxygraph+ 
(n=3), and the Seahorse XFe24 Extracellular Flux Analyzer (n=17). 

 

The Seahorse XFe24 Extracellular Flux Analyzer is a sensitive, high-throughput system 

that can simultaneously measure OCR and extracellular pH to assess metabolic perturbations. 

This system has a semi-closed design such that the sample chamber is temporarily sealed during 

the OCR measurement. However, oxygen can slowly diffuse into the sample chamber during the 

OCR measurement since the sample chamber is not tightly sealed off from the rest of the fluid 

space and the plate material is not impervious to oxygen108. In order to assess OCR, cells must 

remain adhered to the microplate throughout the entire study. Due to the weak adherence of 

LNCaP cells, which were easily dislodged by turbulence from gentle pipetting and mixing, 

several adherence substrates were tested, including Cell-Tak, 10 ug/mL fibronectin, 10 ug/mL 

collagen, combination of fibronectin and collagen at 10 ug/mL each, and 50 mg/mL 3,4-

dihydroxy-L-phenylalanine (L-DOPA). While the Seahorse manual recommends Cell-Tak to 

improve adherence, it did not improve adherence for LNCaP cells. The L-DOPA coating was the 

only method that resulted in robust adherence and allowed cells to withstand gentle pipetting and 

mixing throughout the Seahorse protocol.  
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 Here the OCR of LNCaP cells was measured using the fluorescence-based fiber optics 

oxygen sensor, Oxygraph+, and Seahorse XFe24 (Figure 2.19). The variability in OCR provided 

by each system may be due to the sensitivity of each technique, the growth phase of the cells 

during assessment, and the solvent volume in the sample chamber. The low OCR measurement 

from the fiber optics oxygen sensors may be due to the large solvent volume (~5-10 mL between 

sensors) within the bioreactor. The encapsulation of the cells in alginate microspheres may also 

affect perfusion of nutrients and oxygen. Furthermore, the fiber optics bioreactor setup requires a 

long time to reach temperature equilibrium, making it unreasonable to compare its OCR 

measurement to the Oxygraph or Seahorse which are closed systems that can measure OCR 

within seconds to minutes of sealing off the sample chamber. For the Seahorse measurement, 

cells were seeded 24 hours prior to the OCR measurement so it is possible that the higher OCR 

may be due to differences in cell survival and proliferation. The adherent state of the cells in the 

Seahorse assay may also contribute to metabolic differences compared to the other two 

techniques, which require the cells to be in suspension.  

 

2.7. Hyperpolarized 13C NMR and MRI of cell, tissue, and murine models 

 HP 13C MRI is a new noninvasive molecular imaging technique that enables real-time 

surveillance of pathway-specific metabolic and physiologic processes that are central to a variety 

of diseases, including cancer, cardiovascular disease, and metabolic diseases of the liver and 

kidney26,109. This technique is currently undergoing clinical translation26.  

Hyperpolarization via dynamic nuclear polarization (DNP)110, can be achieved via 

microwave irradiation of 13C-labeled compounds with a radical at high-magnetic field strengths 

(3.35T - 5T) and cold temperatures (1 - 1.6°K). The resulting signal enhancement of >10,000-
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fold enables noninvasive imaging of 13C-labeled biomolecules that are endogenous, nontoxic, 

and nonradioactive. For biological and clinical studies, dissolution DNP (dDNP) is essential in 

order to adjust the hyperpolarized solution to physiological pH and temperature. The detected 

signal of downstream metabolites is dependent on several factors described in Equation 2.4111: 

𝑆𝑖𝑔𝑛𝑎𝑙 = %	𝑃𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 × 𝑃𝑜𝑜𝑙	𝑆𝑖𝑧𝑒 × 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡        (Equation 2.4) 

In addition to these parameters, the transport rate of the tracer also plays an important role in 

signal sensitivity. This is because HP 13C is limited by the short T1 of the 13C nuclei, which 

ranges between 45-90 sec for carbonyl carbons (i.e., [1-13C]pyruvate).  

 The simplest HP 13C studies can be performed on cell slurries. Conventionally, cells are 

placed in cold phosphate-buffered saline (PBS) prior to the study, then immediately placed into 

an NMR spectrometer upon injection of HP solution. However this method suppressed that 

cellular metabolism of HP [1-13C]pyruvate since cells are metabolically inactive at 4°C and PBS 

is nutrient-free. To study biologically-relevant metabolism of HP 13C pyruvate, cells were 

resuspended in cold serum-free DMEM medium and then warmed to 37°C during the dissolution 

step (~1-2 min) prior to injection of the HP solution and subsequent data acquisition. This 

allowed cells to recover to a metabolically active state in nutrient-rich medium.  

 A more clinically-relevant method to assess metabolism of cells or tissues is the use of an 

NMR-compatible bioreactor that maintains physiologically-relevant conditions by circulating 

medium at 37°C with 95%air/5%CO2 using a gas exchanger103,107,112-115. The advantage of 

bioreactors over slurries is better control over the effects of cell density, oxygen, temperature, 

and flow rate (i.e., delivery of the HP 13C probe) that may otherwise complicate the observed 

metabolic activity. For cell-based bioreactor studies, cells must be immobilized in 3D-substrates 

to prevent them from flowing out of the sensitive region of the NMR probe. This can be done via 
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electrostatic encapsulation in alginate or conjugation to polystyrene beads. Similarly, tissue 

slices also need to be immobilized using 3D-printed scaffolds. 13C data is acquired using 1D 13C 

NMR. Use of an NMR-compatible bioreactor for HP 13C studies of PDX-derived RCC tissue 

will be discussed in Chapter 5. 

Finally, in vivo HP 13C MRI studies can be performed on animal models. In these models, 

HP solution is injected via tail vein catheter into anesthetized mice and the HP probe and its 

metabolites can be observed via spectroscopic or frequency-specific imaging approaches109,116. 

Several imaging sequences have been developed such as 1D slice-selective spectroscopy117-119, 

2D CSI120, 3D GRASE121,122, echo-planar spectroscopic imaging123-125, echo planar 

imaging121,126, compressed sensing24, steady-state free procession127,128, and spiral imaging with 

real-time calibration129 to provide sufficient spatial resolution and coverage, and temporal 

resolution for in vivo metabolic flux measurements. 
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CHAPTER THREE 

 

Resistance to Androgen Deprivation Therapy Leads to Altered 

Metabolism in Human Prostate Cancer Cell and Murine Models  
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3.1. Abstract 

Androgen deprivation therapy (ADT) is the cornerstone of treatment for patients with 

advanced prostate cancer. However, almost all patients will eventually stop responding to ADT 

and develop castration-resistant prostate cancer (CRPC). Currently there are no clinical or 

imaging methods that can reliably predict the development of CRPC. Hyperpolarized (HP) 13C 

magnetic resonance imaging (MRI) is a new metabolic imaging method that could provide a 

non-invasive means to image the emergence of CRPC based on early metabolic changes. In this 

study, 1D and 2D high-field NMR metabolomic approaches were used to determine the 

metabolic flux of [U-13C]glucose and [U-13C]glutamine through glycolysis, tricarboxylic acid 

(TCA) cycle, glutaminolysis, and glutathione synthesis, initially using human prostate cancer cell 

lines that are androgen-dependent (LNCaP) and castration-resistant (PC-3), and then using the 

TRAMP murine model in order to establish the metabolic phenotype of CRPC. Steady-state 

metabolite concentrations and fractional enrichment measurements demonstrated that CRPC was 

associated with upregulation of glycolysis, TCA metabolism of pyruvate and glutamine, 

glutaminolysis, and glutathione synthesis in castration-resistant PC-3 cells and in treatment-

driven CRPC TRAMP tumors. These findings are further supported by (1) 13C isotopomer 

modeling using TCACALC showing increased flux through pyruvate dehydrogenase (PDH) and 

anaplerosis, (2) enzymatic assays showing increased lactate dehydrogenase (LDH) activity, PDH 

activity, and glutaminase (GLS) activity, (3) oxygen consumption measurements showing 

increased dependence on anaplerotic fuel sources for mitochondrial respiration correlating with 

resistance to catration, and (4) gene set enrichment analysis of glycolysis, oxidative 

phosphorylation (OXPHOS), and lipid synthesis. These results support the use of hyperpolarized 

[1-13C]pyruvate to assess glycolysis, [2-13C]pyruvate to assess TCA metabolism, [5-
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13C]glutamine to assess glutaminolysis, and [1-13C]dehydroascorbate to assess glutathione redox 

potential as non-invasive imaging biomarkers of CRPC in future in vivo studies. 

 

3.2. Introduction 

Primary androgen deprivation therapy (ADT), which lowers serum testosterone to 

castration level, is the cornerstone of treatment for patients with advanced recurrent or metastatic 

prostate cancer. However, almost all patients will eventually stop responding to androgen 

deprivation and develop castration-resistant prostate cancer (CRPC)27. Clinical diagnosis of 

CRPC is based on a significant increase in tumor burden or metastasis detected using CT or MRI 

and/or rising serum prostate-specific antigen (PSA) levels130. Advances in the understanding of 

the biology of CRPC have led to the development of new second-line androgen pathway 

inhibitors (API), enzalutamide, apalutamide and abiraterone, that bind to androgen receptor (AR) 

with much higher affinity than the clinically used first-line antiandrogens, such as bicalutamide, 

thereby effectively retarding the growth of CRPC30. Once a patient develops CRPC, the current 

sequence of treatment is to start with an API and move to chemotherapy, which is often 

combined with a targeted biologic agent27. Currently no reliable clinical or non-invasive imaging 

methods can predict the development of CRPC, which is critical in guiding treatment decisions 

in men with advanced prostate cancer. 

Hyperpolarized 13C MRI (HP 13C MRI) is a powerful new metabolic imaging method that 

can be used to image metabolic fluxes through key pathways associated with cancer progression 

and therapeutic response in patients125. Genomic analysis of prostate cancer cell lines has shown 

that the AR is still active in CRPC131,132 despite castration levels of testosterone and that its 

binding profile changes with disease progression to CRPC133. Expression of AR-regulated genes 
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such as those involved in glucose uptake and glycolysis, glutaminolysis, and anabolic 

metabolism have been shown to be altered in CRPC133,134. Furthermore, AR binding sites found 

only in CRPC tissue were enriched for MYC133, which has been shown to regulate glycolysis and 

glutaminolysis135. Together these findings suggest that glucose and glutamine metabolism should 

be altered in CRPC. Previous preclinical HP 13C MRI studies have shown that glycolytic activity, 

as measured by the pyruvate-to-lactate ratio and the rate of conversion of 13C pyruvate to 13C 

lactate (kpl), increases as prostate tumors become more aggressive21,24. Additionally, a patient 

study demonstrated an early reduction in kPL after effective ADT25. While initial preclinical and 

patient studies focused on using [1-13C]pyruvate to investigate changes in glycolysis, HP probes 

that provide insight into other metabolic pathways, such as [2-13C]pyruvate, [5-13C]glutamine, 

and [1-13C]dehydroascorbate, are being investigated and clinical translation of these probes is in 

progress. However, to date, the metabolic phenotype of CRPC has not been fully defined. 

To determine the metabolic phenotype of CRPC, an appropriate model must be used. In 

vitro models are useful for identifying the predictors of treatment response and resistance due to 

their fast growth rate and robustness. The most commonly studied prostate cancer cell lines are 

the androgen-dependent LNCaP136 and castration-resistant PC-3137. Here, LNCaP and PC-3 cells 

were used to optimize experimental parameters and fully characterize the metabolic alterations 

associated with resistance to castration.  

Although cell lines are easy to grow and study, they lack the cellular heterogeneity 

observed in patient tumors and often do not fully reflect human disease. The development and 

progression of the transgenic adenocarcinoma of the mouse prostate (TRAMP) model from an 

androgen-dependent to castration-resistant state closely mimics disease pathogenesis and 

metabolism observed in patients138-141Similar to human prostate cancer, TRAMP tumors are 
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initially androgen-dependent and progress to CRPC upon resistance to orchiectomy, which is 

equivalent to chemically-induced primary ADT used in the clinic142,143. These features make 

TRAMP an ideal model to use for this study. 

 

3.3. Materials and Methods 

Cell Culture and 13C-labeling 

LNCaP (clone FGC, ATCC CRL-1740) and PC-3 (ATCC CRL-1435) cells were 

obtained from American Type Culture Collection (ATCC) and grown to 70-80% confluency in a 

37°C incubator with 95% air/5% CO2. For steady-state metabolism studies, LNCaP cells were 

cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin-streptomycin for 6 hours, and PC-3 cells were cultured in Ham’s F-12K medium 

supplemented with 10% FBS and 1% penicillin-streptomycin for 6 hours. For 13C-glucose 

labeling studies, media was replaced with RPMI supplemented with 25 mM [U-13C]glucose, 10 

mM glutamine, 10% FBS, and 1% penicillin-streptomycin for 6 hours. For 13C-glutamine 

labeling studies, media was replaced with RPMI supplemented with 10 mM [U-13C]glutamine, 

25 mM glucose, 10% FBS, and 1% penicillin-streptomycin for 24 hours. Cultured media was 

collected after labeling was completed in order to quantify glucose consumption rate, glutamine 

consumption rate, and lactate export rate. 

 

Treatment of TRAMP Mice 

Adult male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were 

obtained from Roswell Park Cancer Institute. Mice with a solid tumor mass between 0.1 – 1 cc 

underwent orchiectomy. Mice with <25% increase in tumor volume one-week post-orchiectomy 
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were defined as androgen-dependent prostate cancer (ADPC), and mice with ³25% increase in 

tumor volume were defined as CRPC. An additional cohort of CRPC TRAMP that underwent 

daily treatment with apalutamide (ARN-509) at 30 mg/kg/day administered via oral gavage144 for 

seven days were defined as CRPC+ARN. Tumor volume was monitored using T2-weighted spin 

echo MRI prior to orchiectomy, one-week post-orchiectomy, and one-week post-ARN-509. 

 

13C Labeling of TRAMP Mice 

Either 80 µL of 25%wt/vol [U-13C]glucose or 200 µL of 35.73 mg/mL [U-13C]glutamine 

were injected in the tail vein every 15 minutes for a total labeling time of 45 minutes49. To 

minimize the effects of stress and anesthesia on metabolism, mice were briefly anesthetized 

using isoflurane for 2-3 minutes to perform 13C-injection, then allowed to wake in between 

injections. Tissue was collected immediately upon euthanasia and flash-frozen in liquid nitrogen 

for metabolomic analysis.  

 

Extraction of Prostate Cells 

Prior to extraction, cells were rinsed with cold PBS. Cellular metabolism was quenched 

by direct addition of cold methanol, and intracellular metabolites were extracted using cold 1:1:1 

methanol:water:chloroform68. The aqueous fraction was isolated, lyophilized, and resuspended in 

600 µL D2O with TSP for NMR analysis. The lipid fraction was isolated, evaporated and 

resuspended in 400 µL of a 2:1 mixture of CDCl3 and 40 mM methanolic Cs-EDTA (200 mM 

EDTA in D2O adjusted to pH 6.0 with CsOH, and further diluted five-fold with MeOH-d3)70. For 

lipid samples, an external standard of TSP in D2O in a 1.5 mm NMR tube was used for 

quantification. 
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Extraction of TRAMP Tumors 

Frozen tissue was homogenized using a Tissuelyser LT in 400 µL cold methanol at 4°C. 

Intracellular metabolites were extracted using cold 1:1:1 methanol:water:chloroform68. The 

aqueous fraction was isolated, lyophilized, and resuspended in 400 µL D2O for NMR analysis. 

For aqueous samples, an external standard of TSP and [2-13C]glycine in a 1.5 mm NMR tube 

was used for quantification.  

 

NMR Acquisition 

NMR spectra were acquired on an 800 MHz Bruker AvanceI equipped with a 5 mm triple 

resonance TXI cryoprobe. 13C-decoupled 1H water presaturation: α=90, TD=24k, SW=15 ppm, 

TR=12 seconds, AQ=0.5 seconds, NS=32. Solvent signal was suppressed using a presaturation 

pulse. Adiabatic decoupling was applied during acquisition using a CHIRP pulse with 54 kHz 

sweep width (equivalent to 200 ppm @ 800 MHz), and shaped pulse power level of +2 dB with 

respect to the power level determined for 13C-GARP. Total scan time was 6 minutes. 1H-1H 

TOCSY: 2D TOCSY with water presaturation was used with the following parameters: 

TD=4096x512, SW=12x12 ppm, TR=2 seconds, AQ=0.239 seconds, NS=8, tmix=60 

milliseconds. Total scan time was 2 hours and 45 minutes. Data was zero-filled in both 

dimensions to a final digital resolution of 9.4 Hz/point in the F2 dimension.  1H-13C HSQC: A 

phase-sensitive 2D HSQC (hsqcgpph) with no 13C decoupling during acquisition was used with 

the following parameters: TD=2048x4096, SW=6x120 ppm, TR=1.5 seconds, AQ = 0.297 

seconds, NS=2, JCH = 135 Hz (average JCH of 127, 130, and 145 Hz for glutamate C2, C3, and 
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C4). Data was zero-filled in both dimensions to a final digital resolution of 2.9 Hz/point in the F2 

dimension. Total scan time was 4 hours. 

 

NMR Quantification 

1D NMR datasets were processed using ACD/1D NMR Processor (version 9). The 1D 

datasets were zero-padded by a factor of 2, apodized with a 0.5 Hz exponential filter, and 

manually phased and baseline corrected. Peaks of interest were automatically fit using a 

Lorentzian-Gaussian shape function. 2D NMR datasets were processed using TopSpin (version 

3.5). 2D datasets were zero-padded by a factor of 2, manually phased, and peak volumes were 

integrated. 

For cells, intracellular and extracellular metabolite concentrations were quantified from 

1H water presaturation 1D spectra of unlabeled cell extracts and media respectively. For tissues, 

total metabolite concentrations were quantified from 13C-decoupled 1H water presaturation 1D 

spectra of 13C-labeled tissue extracts. 

Fractional enrichment (FE) was quantified as [13C-labeled metabolite]HSQC/[total 

metabolite]{13C}1H. Total metabolite concentration for all other metabolites was quantified using 

13C-decoupled 1H spectra by manually fitting peaks of interest using a Lorentzian-Gaussian 

shape. The concentration of 13C-labeled metabolites was quantified using 1H-13C HSQC by 

integrating the volumes of the cross-peaks and correcting for polarization transfer efficiency 

using Equation 2.3 as previously described in Chapter 2. Glutathione FE from [U-13C]glutamine 

labeling studies was quantified using 1H-1H TOCSY by integrating the peak volumes of the 13C-

satellites and the central unlabeled peak. 
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13C Isotopomer modeling  

For [U-13C]glucose-labeled cell extracts, relative peak volumes of glutamate C3 and 

glutamate C4 isotopomer multiplets were quantified from high resolution 2D 1H-13C HSQC 

spectra using Topspin (version 4.0.6). Glutamate C2 was not included since it has the lowest 

SNR and its doublets (2D12 and 2D23) were not fully resolved. Data was then analyzed using 

TCACALC90,145,146. Parameters examined include relative fluxes through glycolysis (LDH), 

pyruvate dehydrogenase (PDH), pyruvate carboxylase (YPC), acetyl-CoA synthase (ACS), and 

anaplerosis leading to succinyl-CoA relative to citrate synthase (YS). The model that gave the 

best fit to our NMR data included the following parameters: LDH, PDH, YS, isotopic 

enrichment of the 13C-tracer, unlabeled “fatty acids” pool to represent all metabolites that convert 

to acetyl-CoA other than glucose (such as acetate and other ketone bodies), and unlabeled 

“anaplerotic substrate”. The isotopomer model was validated using the following metrics: (1) 

statistical fit of individual parameters, (2) statistical fit of the overall pathway model, and (3) 

comparison of measured and simulated relative isotopomer areas. 

 

LDH Activity Assay 

Cells and tissues were homogenized using a Tissuelyser LT in cell lysis buffer (Cell 

Signaling). LDH activity of cell and tissue lysates was measured spectrophotometrically by 

quantifying the linear decrease in NADH absorbance at varying pyruvate concentrations at 339 

nm using a microplate reader. The maximum velocity (vmax) and the Michaelis–Menten constant 

(Km) were estimated using the Lineweaver–Burk plot.  
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PDH Activity Assay 

PDH activity of cell and tissue lysates was measured spectrophotometrically using the 

PDH enzyme activity microplate assay kit (Abcam) according to manufacturer’s instructions. In 

brief, cells and tissues were homogenized using a Dounce homogenizer in PBS containing 

protease inhibitor cocktail (Abcam) and 20 mM NaF to preserve endogenous PDH 

phosphorylation state and activity. PDH enzyme was immunocaptured in the microplate supplied 

by the kit, and activity was determined by quantifying the reduced reporter dye at 450 nm using a 

microplate reader. 

 

GLS Activity Assay 

GLS activity of cell lysates was measured fluorometrically using the PicoProbeTM 

glutaminase activity assay kit (Biovision) according to manufacturer’s instructions. In brief, cells 

were homogenized using a Tissuelyser LT in lysis buffer provided by the kit. GLS activity was 

determined by fluorometrically at Ex/Em 535nm/587nm with a glutamic acid standard curve 

using a microplate reader. 

 

ATP Quantification 

ATP content of cell lysates was measured using the CellTiter-Glo® luminescent cell 

viability assay kit (Promega) according to manufacturer’s instructions. Luminescence of the 

luciferase reaction with ATP was measured using a luminometer.  
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NAD/NADH Assay 

NAD/NADH ratio of cell lysates was measured spectrophotometrically using the 

NAD/NADH assay kit (Biovision) according to manufacturer’s instructions. Cells were 

homogenized in lysis buffer provided by the kit using a Tissuelyser LT. NAD, NADH, and their 

ratio were determined by measuring the reaction of reporter dye with NADH at 450 nm using a 

microplate reader. 

 

NADP/NADPH Assay 

NADP/NADPH ratio of cell lysates was measured spectrophotometrically using the 

NADP/NADPH assay kit (Abcam) according to manufacturer’s instructions. Cells were 

homogenized using a Tissuelyser LT in lysis buffer provided by the kit. NADP, NADPH, and 

their ratio were determined by monitoring NADP formation fluorometrically at Ex/Em 

540nm/590nm using a microplate reader. 

 

Glutathione Assay 

Reduced glutathione (GSH) and total glutathione of cell lysates were measured 

spectrophotometrically using the glutathione colorimetric assay kit (Biovision) according to 

manufacturer’s instructions. Cells were lysed in buffer provided by the kit. GSH, total 

glutathione, and their ratio were determined by measuring reaction of reporter dye with GSH at 

405 nm using a microplate reader. 
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Oxygen Consumption 

Basal oxygen consumption rate (OCR) was measured using a Clark-type O2 electrode 

(Oxygraph+, Hansatech Instruments). Cells or tissue were placed in a chamber with 1 mL serum-

free DMEM medium at 37°C and respiration was assessed over 1 minute. Control traces using 

medium alone were acquired after each sample to assess oxygen consumption attributed by the 

electrochemistry of the Clark electrode.  

 

Seahorse Analysis 

OCR was measured using a Seahorse XFe24 Extracellular Flux Analyzer. Cells were 

seeded in Seahorse XFe24 microplates at ~60k cells/well and incubated overnight. Medium was 

then replaced with Seahorse XF Assay Medium, and cells were incubated in a CO2-free 

incubator at 37°C for 1 hour prior to loading into the XFe24. The measurement protocol 

consisted of 3 minutes mix, 2 minutes wait, and 3 minute measurement cycles at 37°C, allowing 

for OCR measurements every 8 minutes. OCR measurements were normalized to protein 

concentration using the Bradford Assay. For the Mito Fuel Flex Kit, optimal concentrations of 

BPTES (3 µM), etomoxir (4 µM), and UK5099 (2 µM) were used.  

 

Gene Set Enrichment Analysis 

Raw RNA sequencing data (.fastq files) of LNCaP and PC-3 cells from GEO Accession 

GSE106305147 were downloaded and aligned to the human reference genome (GRCh38.p12) 

using STAR v2.7.3. The, the DESeq2 R package was used to normalize read counts between 

samples and perform differential gene expression analysis between LNCaP and PC-3 cells. 

Ranked lists of genes that were enriched in either LNCaP cells or PC-3 cells were generated by 
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sorting the differential expression results by average log2foldchange. These ranked gene lists 

were imported into the gene set enrichment analysis (GSEA) software from the Broad Institute 

(version 4.0.1) and analyzed for Hallmark pathway gene set enrichment using the default settings 

(weighted enrichment statistic, 1000 permutations). 

 

Statistics 

Student’s t-test was used to compare prostate cancer models using Prism version 8.3. For 

steady-state metabolite concentrations, statistical significance was corrected for multiple 

comparisons using the Holm-Sidak method. All statistics are reported as mean ± standard error. 

P values less than 0.05 (*p <0.05, **p <0.01 and ***p <0.001) were considered significant. 

 

3.4. Results 

The goal of this research was to metabolically assess the development of CRPC in order 

to identify hyperpolarized 13C imaging probes that can be used to detect the presence of CRPC at 

an early time-point in order to better select subsequent treatment in individual patients. Two 

human prostate cancer cell lines, LNCaP (androgen-dependent) and PC-3 (androgen-

independent), were studied to identify metabolic changes associated with resistance to castration. 

To accomplish this, NMR-based metabolomic approaches were used to determine the flux of [U-

13C]glucose and [U-13C]glutamine through glycolysis, TCA cycle, glutaminolysis, and 

glutathione synthesis. Metabolic alterations associated with the development of CRPC were 

characterized initially using human prostate cancer cell lines that are androgen-dependent 

(LNCaP)136 and androgen-independent (PC-3)137, and then using a treatment-driven TRAMP 

model that is known to develop CRPC138.   
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3.4.1. Glycolysis, TCA cycle metabolism, glutaminolysis and redox capacity is increased in 

PC-3 versus LNCaP cells 

Representative 1D 1H with water presaturation NMR spectra (Figure 3.1A) clearly 

highlight the differences arising from the 13C flux of metabolites between the two human prostate 

cancer cell lines, LNCaP (androgen-dependent) and PC-3 (castration-resistant). Total metabolite 

concentrations and 13C-labeled metabolite concentrations were quantified using 13C-decoupled 

1H spectroscopy (Figure 3.1B) and 2D 1H-13C HSQC (Figure 3.1C), respectively. Glutathione 

FE was quantified using 2D 1H-1H TOCSY (Figure 3.1D). A combination of steady-state 

metabolite concentrations, fractional enrichment (FE), and enzymatic activity was used to assess 

metabolic fluxes through key pathways.  

 

Figure 3.1. High-resolution NMR spectra of LNCaP and PC-3 cell extracts. (A) Comparison of 
lactate and glutamate regions using conventional 1D 1H presaturation in extracts labeled with [U-
13C]glucose. (B) Comparison of lactate and glutamate regions using 1H presaturation with and 
without 13C-decoupling in extracts labeled with [U-13C]glucose. (C) High resolution 2D 1H-13C 
HSQC of extracts labeled with [U-13C]glucose for quantification of 13C-labeled metabolites that 
are typically found in overcrowded 1H regions, such as glutamate, glutamine, and glutathione, as 
well as low concentration metabolites such as aspartate and malate, and (D) 2D 1H-1H TOCSY 
of extracts labeled with [U-13C]glutamine with unlabeled metabolite center peak and 13C-
satellites of glutamate, glutamine, and glutathione. 
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Table 3.1. Steady-state intracellular metabolite concentrations (nmol/million cells) of unlabeled 
LNCaP and PC-3 cell extracts (N=4). 

 LNCaP PC-3   

Metabolite Average  SE Average  SE 
Raw 

p-value 
Adjusted 
p-value 

Acetate 7.6 ± 1.2 4.1 ± 1.4 0.1167 0.4377 
Alanine 24.5 ± 1.9 29.6 ± 0.3 0.0365 0.2452 

Aspartate 18.9 ± 1.3 31.5 ± 0.5 
< 

0.0001 0.0016 
Choline 2.2 ± 0.3 2.3 ± 0.1 0.7080 0.9061 

Citrate 22.3 ± 1.0 3.5 ± 0.2 
< 

0.0001 < 0.0001 

Creatine 23.0 ± 1.0 5.2 ± 0.2 
< 

0.0001 < 0.0001 

Creatine phosphate 31.5 ± 1.9 7.3 ± 0.4 
< 

0.0001 0.0003 
Glucose 19.6 ± 1.1 10.5 ± 1.3 0.0021 0.0234 
Glutamate 62.3 ± 3.0 82.2 ± 1.0 0.0007 0.0105 
Glutamine 65.1 ± 2.9 60.6 ± 3.7 0.3760 0.7570 
Glutathione 16.2 ± 1.2 30.2 ± 4.0 0.0155 0.1448 
Glycine 31.7 ± 2.0 16.0 ± 5.3 0.0326 0.2452 
Lactate 11.2 ± 0.3 18.7 ± 1.4 0.0017 0.0203 
Phosphocholine 40.8 ± 2.0 60.7 ± 1.6 0.0002 0.0030 
Pyruvate 3.1 ± 0.1 2.3 ± 0.4 0.0763 0.3789 
Succinate 1.0 ± 0.1 1.6 ± 0.3 0.1087 0.4377 
Threonine 7.8 ± 0.4 6.9 ± 2.1 0.6935 0.9061 

myo-Inositol 11.7 ± 1.9 84.8 ± 1.1 
< 

0.0001 < 0.0001 
Glycerophosphocholine 17.8 ± 1.5 23.9 ± 1.6 0.0307 0.2452 
Total Choline* 60.8 ± 3.2 86.9 ± 3.0 0.0009 0.0126 

*Total choline was defined as the summed concentrations of choline, phosphocholine, 
and glycerophosphocholine. 

 
Glycolysis: Glucose consumption was not significantly different between the two cell lines 

(Figure 3.2A). Steady-state metabolite concentrations indicated that PC-3 cells had a 

significantly higher lactate concentration (18.7±1.4 vs 11.2±0.3 mmol/million cells, N=4, 

p<0.05) (Table 3.1) and lactate efflux (197±20 vs 81±13 nmol/hr/million cells, N=4, p<0.01) 

(Figure 3.2B) compared to LNCaP cells. In [U-13C]glucose labeling studies, PC-3 cells had  
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Figure 3.2. Metabolic comparison of LNCaP and PC-3 cells. (A) Steady-state consumption rates 
of [U-13C]glucose and [U-13C]glutamine, (B) lactate export rate, and (C, D) steady-state 
fractional enrichment of downstream metabolites associated with glycolysis, TCA metabolism, 
and glutaminolysis of LNCaP and PC-3 cells labeled with (C) [U-13C]glucose or (D) [U-
13C]glutamine. 
 

significantly increased lactate FE compared to LNCaP cells (48±6.2 vs 32±5.7, N=3, p<0.05), 

indicating increased glucose flux through glycolysis (Figure 3.2C). This finding was supported 

by the significantly elevated LDH activity (12500±2880 vs 6300±974 mM NADH/min/million 

cells, N=9, p<0.05) in PC-3 cells compared to LNCaP cells (Figure 3.3A). Together, these data 

indicate that glucose flux through glycolysis is upregulated in PC-3 cells relative to LNCaP cells. 

 

TCA cycle activity: The TCA cycle plays an important role in prostate metabolism. Traditionally 

the healthy prostate gland is responsible for producing large amounts of citrate, which is then 

secreted into prostatic fluids. While this effect is drastically reduced in prostate cancer, citrate is 

an intermediate of the TCA cycle that is a precursor for lipid synthesis. In this study, LNCaP 

cells had a significantly higher steady-state intracellular concentration of citrate (22.3±1 vs  
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Figure 3.3. Key enzymes and associated cofactors were assessed in LNCaP and PC-3 cells using 
biochemical assays. Enzymatic activity of (A) LDH, (B) PDH, and (C) GLS were normalized to 
cell count. Glutathione redox balance was assessed based on (D) intracellular NADP+/NADPH 
and (E) ratio of reduced glutathione relative to total glutathione. Cellular bioenergetics of LNCaP 
and PC-3 cells was assessed based on (F) ATP content and (G) intracellular NAD+/NADH.  
 

3.5±0.2 mmol/million cells, N=4, p<0.0001) compared to PC-3 cells. In contrast, PC-3 cells 

compared to LNCaP cells have significantly higher concentrations of aspartate (31.5±0.5 vs 

18.9±1.3 mmol/million cells, N=4, p<0.01) and glutamate (82.2±1 vs 62.3±3 mmol/million cells, 

N=4, p<0.05), both of which are in fast exchange with α-ketoglutarate and oxaloacetate and 

inform on TCA activity downstream of citrate. This suggests that LNCaP cells favor a truncated 

TCA cycle in order to use intermediates of the TCA cycle for macromolecule synthesis, while 

PC-3 cells prefer a fully functional TCA cycle in order to maximize energy production. This is 

further strengthened by the [U-13C]glucose labeling results, which revealed that PC-3 cells 

compared to LNCaP cells had increased glutamate FE (45±5.8 vs 28±3.9, N=3, p<0.05) and 

aspartate FE (56±2.5 vs 38±7.3, N=3, p<0.05), suggesting increased glucose utilization through  
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Figure 3.4. 13C Isotopomer modeling of [U-13C]glucose-labeled LNCaP and PC-3 cells using 
TCACALC. (A) Measured and simulated relative 13C isotopomer areas of the glutamate C3 and 
C4 multiplets. (B) Calculated values for relative 13C-glucose flux into TCA cycle (PDH) and the 
relative anaplerotic contribution per glucose (YS). 
 

the TCA cycle. PC-3 cells also had higher PDH activity (29.5±3.8 vs 24.8±1.0 OD/min/million 

cells, N=3) than LNCaP cells (Figure 3.3B). To corroborate these findings, 13C isotopomer 

modeling was performed on cell extracts labeled with [U-13C]glucose using TCACALC. A good 

model fit was observed as reflected by the simulated isotopomer ratios closely matching 

experimental values (Figure 3.4A). 13C isotopomer modeling of [U-13C]glucose labeled cell 

extracts indicated significantly upregulated PDH flux in PC-3 cells (Figure 3.4B). These results 

clearly illustrate that glucose flux through the TCA cycle is upregulated in PC-3 cells.  

 
Glutaminolysis: PC3 cells had elevated glutamine consumption (27±7 vs 9±3 nmol/hr/million 

cells, N=4, p=0.056) compared to LnCaP cells (Figure 3.2A). As mentioned in the previous 

paragraph, PC-3 cells compared to LNCaP cells have significantly higher concentrations of 

glutamate, which is generated from glutamine via fast exchange with α-ketoglutarate and 

oxaloacetate and informs on TCA activity downstream of citrate. In [U-13C]glutamine labeling 

studies, PC-3 cells had a significant increase in aspartate FE (65±4.6 vs 40±7.4, N=3, p<0.05), 

and glutamate FE (50±1.5 vs 32±4.4, N=3, p<0.05) compared to LNCaP cells, suggesting 

increased glutamine flux through glutaminolysis and anaplerosis into the TCA cycle (Figure 

3.2D). Correspondingly, PC-3 cells also had significantly increased GLS activity compared to 
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LNCaP cells (250±15 vs. 154±5pmol/min/cell, N=3, p<0.05) (Figure 3.3C), in accord with the 

significantly increased activity through glutaminolysis observed after [U-13C]glutamine labeling. 

This was corroborated by 13C isotopomer modeling which indicated that PC-3 cells had 

significantly higher relative anaplerotic flux compared to LNCaP cells (Figure 3.4B). Together, 

these results indicate that glutaminolysis and glutamate anaplerosis are upregulated in PC-3 cells. 

 

Redox capacity: Interestingly glutathione redox balance was significantly different between  

LNCaP and PC-3 cells. PC-3 cells had significantly higher levels of glutathione (30.2±4 vs 

16.2±1.2 mmol/million cells, N=4, p<0.05) than LNCaP cells. Furthermore, [U-13C]glutamine 

labeling studies revealed that PC-3 cells had significantly increased glutathione FE (81±7.5 vs 

45±1.3, N=3, p<0.05) compared to LNCaP cells, suggesting increased glutamine flux through 

glutathione synthesis to support redox balance (Figure 3.2D). This also correlates with the 

significantly increased NADP+/NADPH ratio in PC-3 compared to LNCaP cells (18.2±0.1 vs 

8.0±0.4, N=3, p<0.0001) (Figure 3.3E) and significantly increased ratio of reduced glutathione 

relative to total glutathione (23.3±0.3 vs 17.1±0.2, N=3, p<0.0001) (Figure 3.3F), which 

supports previous observations in CRPC cell models148. Taken together, these results suggest that 

PC-3 cells have increased glutathione redox capacity compared to LNCaP cells.  

 

Differential lipid composition between the PC-3 and LNCaP cells 

Lipid metabolite concentrations quantified from 800 MHz 1H NMR of the lipid extract 

fraction (Figure 3.5) are listed in Table 3.2. PC-3 cells had significantly lower concentrations of 

total esterified cholesterol (0.008±0.001 vs 0.21±0.002, N=4, p<0.05), indicating less lipid for 

fatty acid oxidation, compared to LNCaP cells (Table 3.2). PC-3 cells had significantly elevated 
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levels of phosphocholines (60.7±1.6 vs 40.8±2.0, N=4, p<0.05) (Table 3.1), which is an 

intermediate of phosphatidylcholine metabolism, compared to LNCaP cells. While PC-3 cells 

had a higher phosphatidylcholine concentration than LNCaP cells (Table 3.2), it was not 

significantly different between the two cell lines. PC-3 cells had significantly elevated levels of 

glycerophospholipids (0.082±0.017 vs 0.017±0.009, N=4, p<0.05), (Table 3.2) suggesting 

higher phospholipid membrane turnover and proliferation compared to LNCaP cells. This 

finding is supported by the faster doubling time of PC3 cells compared to LNCaP cells (24 vs 36 

hours). These results suggest that lipid metabolism and composition are different between the 

androgen-dependent LNCaP cells and castration-resistant PC-3 cells. 

 

 
Figure 3.5. 1D 1H spectrum of the lipid fraction of LNCaP (blue) and PC-3 (red) cell extracts. 
Peaks were assigned based on previous publications76,77: 1. Total cholesterol (C18 H3), 2. Lipid 
(-CH3), 3. Total cholesterol (C26 H3/C27 H3), 4. Total cholesterol (C21 H3), 5. Free cholesterol 
(C19 H3), 6. Esterified cholesterol (C19 H3), 7. Multiple cholesterol protons, 8. Lipid (-CH2-
CH2-CH2-)n, 9. Lipid (-CH2-CH2-CO), 10. Lipid (-CH2-CH2=CH), 11. Lipid (=CH-CH2=CH), 
12. Phosphatidylcholine, 13. Methanol, 14. Free cholesterol (C3 H3), 15. Glycerophospholipid 
backbone, 16. Glycerol backbone, 17. Lipid (-HC=CH-).  
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Table 3.2. Steady-state lipid concentrations (nmol/million cells) of unlabeled LNCaP and PC-3 
cell extracts (N=4). 

 LNCaP PC-3   

Metabolite Average  SE Average  SE 
Raw 

p-value 
Adjusted 
p-value 

Total Cholesterol 0.256 ± 0.056 0.345 ± 0.045 0.263 0.913 
Free Cholesterol 0.225 ± 0.056 0.386 ± 0.052 0.080 0.633 
Esterified Cholesterol 0.021 ± 0.002 0.008 ± 0.001 0.003 0.043 
Multiple Cholesterol 
Protons 1.559 ± 0.373 2.625 ± 0.444 0.116 0.741 
Lipid(-CH3) 1.309 ± 0.354 2.536 ± 1.017 0.298 0.916 
Lipid (-CH2-CH2-CH2-) 8.551 ± 2.194 10.614 ± 1.548 0.471 0.946 
Lipid (-CH2-CH2-CO-) 0.814 ± 0.217 1.271 ± 0.470 0.411 0.946 
Lipid (-CH2-CH2=CH-) 0.968 ± 0.260 1.243 ± 0.211 0.443 0.946 
Lipid (-CH=CH2=CH-) 0.570 ± 0.156 0.696 ± 0.085 0.504 0.946 
Lipid (-HC=CH-) 1.396 ± 0.381 1.888 ± 0.361 0.386 0.946 
Total Lipid 13.609 ± 3.544 18.248 ± 3.502 0.388 0.946 
Phosphatidylcholine 1.453 ± 0.486 2.487 ± 0.367 0.140 0.779 
Glycerophospholipid 
Backbone 0.017 ± 0.009 0.082 ± 0.011 0.016 0.043 
Glycerol Backbone 0.198 ± 0.065 0.316 ± 0.054 0.212 0.882 

 

Differential Substrate Utilization of LNCaP and PC-3 cells 

To better understand the relative utilization of glucose, long-chain fatty acids, and 

glutamine in the TCA cycle, OCR was measured using the Oxygraph+, and substrate preferences 

were assessed using the Seahorse XFe24 Extracellular Flux Analyzer. LNCaP cells displayed 

higher basal OCR compared to PC-3 cells (Figure 3.6A), suggesting that LNCaP cells have 

overall higher TCA activity compared to PC-3 cells. This is in line with the observation of higher 

contribution of OXPHOS of glucose in LNCaP cells (Figure 3.6B).  This highlights the 

contribution of other substrates (besides glucose and glutamine) to the TCA activity. While 

glucose was the primary fuel source for OXPHOS in both cell lines when measured using the  
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Figure 3.6. Oxygen consumption rate and relative substrate utilization for TCA metabolism of 
LNCaP and PC-3 cells. (A) Oxygen consumption rate of LNCaP and PC-3 cells was measured 
using a Clark-type O2 electrode. (B) The relative contributions of glucose, long-chain fatty acid, 
and glutamine to the TCA cycle in prostate cancer cells was assessed using the Seahorse XFe24 
Mito Fuel Flex assay. 

 

Seahorse Mito Fuel Flex kit, PC-3 cells had significantly higher net anaplerosis (61±1 vs 49±1, 

N=3, p<0.01) than LNCaP cells (Figure 3.6B). PC-3 cells relied more on glutamine (15±1 vs 

7±1, N=3, p<0.01) and long-chain fatty acids (34±1 vs 18±1, N=3, p<0.001) as anaplerotic fuel 

sources compared to LNCaP cells. Alternatively, LNCaP cells relied more on other anaplerotic 

contributors to mitochondrial respiration (23.8±2 vs 11±2, N=3, p<0.05) than PC-3 cells. This 

encompasses other anaplerotic substrates such as: short and medium chain fatty acids (e.g., 

proprionate, butyrate, octanoate), amino acids that enter through oxaloacetate (e.g., aspartate, 

asparagine), and branched-chain amino acids that enter through succinyl-CoA (e.g., leucine, 

isoleucine, and valine)149.  

Cellular bioenergetics were also assessed to understand the differential upregulation of 

glycolysis and the TCA cycle to meet the energy needs of LNCaP and PC-3 cells. PC-3 cells had 

significantly higher total ATP content (80±8 fmol/million cells vs 44±3 fmol/million cells, N=3, 

p<0.05) than LNCaP cells, suggesting that PC-3 cells have a higher energy capacity (Figure 

3.3F) and supporting the observed upregulation of both glycolysis and the TCA cycle. 
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Figure 3.7. Relative mass contribution of 13C-glucose to downstream metabolites. 

 

Furthermore, PC-3 cells had a significantly lower NAD+/NADH ratio (0.33±0.07 vs 1.0±0.2, 

N=3, p<0.05) compared to LNCaP cells (Figure 3.3G), which is consistent with the significantly 

upregulated glycolysis in PC-3 cells150-152. This is further supported by the mass balance analysis 

of 13C-glucose-labeled metabolites, which demonstrated that PC-3 cells utilized the majority of 

glucose consumed to produce lactate (Figure 3.7).  

 

Gene set enrichment analysis supports correlation of altered metabolic pathways in PC-3 

and LNCaP cell lines 

Gene set enrichment analysis (GSEA) on LNCaP and PC-3 cells grown under normoxic 

conditions was assessed using publicly available RNAseq data147. PC-3 cells had positive 

enrichment of glycolysis pathway genes compared to LNCaP using the MsigDB Hallmark 

pathway gene sets, consistent with the metabolic findings of this study (Figure 3.8A). 

Inconsistent with metabolic findings which indicated a truncation of the TCA cycle and 

OXPHOS, LNCaP cells had greater enrichment of genes involved in OXPHOS (Figure 3.8B) 

and fatty acid metabolism (Figure 3.8C) compared to PC-3 cells.  
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Figure 3.8. Gene expression pathway analysis of LNCaP (red) and PC-3 cells (blue). RNA 

sequencing data of LNCaP and PC-3 cells was acquired from GEO Accession GSE106305. 

Hallmark metabolic pathways of (A) glycolysis, (B), oxidative phosphorylation (i.e., TCA 

metabolism) and (C) fatty acid metabolism were assessed. 

 

3.4.2. Changes in glucose and glutamine metabolism in the TRAMP model in response to 

primary androgen deprivation therapy 

To verify that the metabolic alterations occurring in castration-resistant PC-3 cells versus 

androgen-dependent LNCaP cells are recapitulated in vivo in a murine model mimicking the 

development of CRPC in patients, metabolic changes were assessed after ADT in the TRAMP 

murine model. In this study TRAMP mice received orchiectomy, which significantly reduces 

serum testosterone levels and is equivalent to chemically-induced ADT in patients (Figure 

3.9A). Response or resistance to ADT was based on changes in tumor volume one-week post-

orchiectomy, in which mice with <25% increase in tumor volume were defined as androgen-

dependent prostate cancer (ADPC), and mice with ³25% increase in tumor volume were defined 

as CRPC (Figure 3.9B) similar to the clinical RECIST criteria153. Representative NMR spectra 

shown in Figure 3.10 highlight the differences arising from the 13C flux of metabolites between 

ADPC and CRPC in the TRAMP mice. 
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Figure 3.9. TRAMP treatment timeline and tumor volume changes in response to orchiectomy. 
(A) Treatment and study timeline for TRAMP mice. (B) Therapeutic response was determined 
based on tumor volume changes one-week post-orchiectomy (N=6 per group).  

 

 

 
 
Figure 3.10. High-resolution NMR spectra of TRAMP tumor extracts. NMR spectra were 
acquired from of [U-13C]glucose-labeled TRAMP tumor extracts using (A) conventional 1D 
proton, (B) 1D 13C-decoupling 1H, and (C) 2D 1H-13C HSQC. (D) 2D 1H-1H TOCSY was used to 
quantify glutathione FE in TRAMP tumor extracts labeled with [U-13C]glutamine. 
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Table 3.3. Steady-state aqueous metabolite concentrations (nmol/mg wet tissue) of androgen-
dependent and castration-resistant TRAMP tumors (N=3).  

 ADPC CRPC  
Metabolite Average SE Average SE p-value 
Acetate 5.6 ± 3.7 2.6 ± 0.6 0.4666 
Alanine 12.8 ± 7.1 16.2 ± 1.3 0.6587 
Aspartate 7.2 ± 2.0 4.9 ± 0.3 0.3377 
Choline 1.6 ± 0.1 2.5 ± 1.7 0.6141 
Citrate 2.6 ± 0.2 1.4 ± 0.3 0.0268 
Creatine 20.7 ± 1.2 11.3 ± 2.2 0.0198 
Creatine phosphate 1.9 ± 0.7 1.0 ± 0.3 0.2664 
Glucose 21.1 ± 1.1 10.9 ± 4.0 0.0714 
Glutamate 26.0 ± 11.6 21.1 ± 1.4 0.6936 
Glutamine 7.3 ± 3.3 5.2 ± 0.6 0.5800 
Glutathione 5.0 ± 0.5 6.8 ± 0.7 0.0969 
Lactate 30.7 ± 9.3 77.8 ± 2.0 0.0078 
Phosphocholine 13.3 ± 2.7 10.2 ± 2.3 0.4379 
Glycerophosphocholine 11.9 ± 2.9 13.2 ± 4.1 0.8028 
Myo-Inositol 14.7 ± 5.4 3.7 ± 0.3 0.1120 
Total Choline* 26.8 ± 5.5 26.0 ± 7.8 0.9356 

*Total choline was defined as the summed concentrations of choline, phosphocholine, 
and glycerophosphocholine. 

 

Glycolysis: The TRAMP model of progression from ADPC to CRPC demonstrated similar 

trends in steady-state metabolite concentrations to that observed in the cell models, such as 

decreased creatine, creatine phosphate, and citrate in CRPC compared to ADPC (Table 3.3).  

CRPC TRAMP tumors had significantly elevated levels of lactate (77.8±2 vs 30.7±9.3 nmol/mg 

tissue, N=3, p<0.01) compared to ADPC TRAMP tumors. In [U-13C]glucose-labeling studies, 

CRPC TRAMP tumors also had a significant increase in lactate FE (81±4 vs 46±8, N=3, p<0.05) 

(Figure 3.11A), indicating increased flux through glycolysis compared to ADPC TRAMP 

tumors. CRPC TRAMP tumors had significantly elevated LDH activity (7.7±1.2 vs 2.0±0.6 µM 

NADH/min/µg protein, N=3, p<0.05) compared to ADPC TRAMP tumors (Figure 3.12A). 

Together this indicates that glycolysis is upregulated in treatment-driven CRPC TRAMP tumors. 
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Figure 3.11. Fractional enrichment profiles of TRAMP tumors labeled with (A) [U-13C]glucose 
(N=3) or (B) [U-13C]glutamine (N=3). 
 

TCA Cycle Activity: CRPC TRAMP tumors had increased glutamate FE (53±12 vs 16±0.5, N=3, 

p<0.05) and aspartate FE (60±12 vs 21±5, N=3, p<0.05) compared to ADPC TRAMP  

tumors, suggesting increased pyruvate flux through TCA metabolism (Figure 3.11A). CRPC 

TRAMP tumors also had higher PDH activity (4.24 vs 2.28 µOD/min/µg protein) compared to 

ADPC TRAMP tumors (Figure 3.12B). Together these findings suggest that CRPC TRAMP 

tumors have elevated TCA metabolism of glucose compared to ADPC TRAMP tumors. 

 

Glutaminolysis: Glutamine-dependent pathways such as glutaminolysis, anaplerosis into TCA 

cycle, and glutathione redox balance were then assessed using the TRAMP model. While the 

steady-state concentrations of aspartate and glutamate were not significantly different between 

ADPC and CRPC TRAMP tumors, [U-13C]glutamine studies revealed that CRPC TRAMP 

tumors had significantly increased aspartate FE (16±2.3 vs 7±1.5, N=3, p<0.05) and glutamate 

FE (24±3.2 vs 9±3.8, N=3, p<0.05) compared to ADPC tumors, demonstrating increased flux 

through glutaminolysis and increased anaplerosis into the TCA cycle (Figure 3.11B). The 

upregulation of glutaminolysis is further supported by significantly higher GLS activity (6.4±0.4 

vs 4.9±0.1 pmol/min/ug protein, N=3, p<0.05) observed in CRPC versus ADPC TRAMP tumors 

(Figure 3.12C). 
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Figure 3.12. Key enzymes were assessed in TRAMP tumors using enzymatic assays. (A) LDH 
activity (N=3), (B) PDH activity (N=1) and (C) GLS activity (N=3) was determined from 
TRAMP tumors after orchiectomy. 
 

Redox Capacity: [U-13C]glutamine-labeling studies also showed that CRPC TRAMP tumors had 

significantly elevated glutathione FE (24±6 vs 7±1.8, N=3, p<0.05) compared to ADPC tumors, 

suggesting increased flux through glutathione synthesis to support redox balance (Figure 3.10B). 

Together, these results indicate that CRPC TRAMP tumors have significantly increased glucose 

and glutamine flux through glycolysis, TCA metabolism, glutaminolysis, and glutathione redox 

potential. Future work will assess NADP/NADPH ratio and ratio of reduced glutathione (GSH) 

relative to total glutathione (GSH+GSSG) in the TRAMP model to corroborate our metabolic 

findings. 

 

3.5. Discussion 

In this study, the metabolic flux of [U-13C]glucose and [U-13C]glutamine through 

glycolysis, TCA metabolism, and glutaminolysis was characterized, initially using androgen-

dependent (LNCaP) and castration-resistant (PC-3) human cell lines, and then using the TRAMP 

murine model to assess the metabolic changes associated with the development of CRPC 
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.(Figure 3.13). Steady-state metabolite concentrations and FE were measured using high-

resolution 1D and 2D NMR techniques, which revealed that CRPC was associated with  

 

Figure 3.13. Schematic detailing the metabolic alterations observed between ADPC and CRPC. 
 

increased flux through glycolysis, TCA metabolism of pyruvate and glutamine, glutaminolysis, 

and glutathione synthesis in both the prostate cell line and TRAMP models. These findings were 

further supported by (1) 13C isotopomer modeling using TCACALC showing increased PDH and 

anaplerosis, (2) enzymatic assays showing increased LDH activity, PDH activity, GLS activity, 

(3) measurements of OCR showing increased dependence on anaplerotic fuel sources for 

mitochondrial respiration correlating with androgen-independence, and (4) gene set enrichment 

analysis of glycolysis, OXPHOS, and lipid synthesis.  

Overall, our findings using human and mouse models are consistent with our hypothesis 

that castration-resistant growth would alter the behavior of AR-regulated metabolic pathways, 

including upregulation of glycolysis, glutaminolysis, TCA metabolism, and glutathione redox 

capacity. Results from studies of prostate cancer cell lines showed that both LNCaP and PC-3 

cells have similarly high rates of glucose consumption, in accordance with other studies that 

showed upregulation of glycolysis despite no significant difference in glucose consumption in 

castration-resistant cell models154-158 and mouse xenograft models158.  
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The traditional 'Warburg effect’ proposed that cancer cells highly favored glycolysis and 

reduced mitochondrial OXPHOS for generation of ATP for energy159. As discussed by Zheng 

(2012)160, this occurs for several reasons. Rapidly proliferating tissues favor glycolysis to meet 

energetic demands since glycolysis generates ATP faster than OXPHOS. Furthermore, the 

intermediates of glycolysis and a truncated TCA cycle can provide nucleic acids, lipids, and 

amino acids required for cancer growth and proliferation160. Warburg concluded that the 

observed upregulation of glycolysis and downregulation of OXPHOS was due to mitochondrial 

dysfunction161. However, OXPHOS has been shown to reactivate in aggressive, metastatic 

cancers in order to support higher proliferation rates and the higher nutrient and energy demands 

of advanced prostate cancer160. This is evidenced by the key signaling pathways commonly 

upregulated in patients with aggressive prostate cancer, including the LKB1-AMPK-p53 and  

PI3K-Akt-mTOR pathways, as well as MYC-mediated glutaminolysis162. The shift in glycolysis 

to reactivation of OXHPHOS has also been evidenced in cancers as they adapt and differentiate 

into new subtypes. Studies have also shown that rapidly proliferating tissues rely more on 

glycolysis for ATP production while tissues that are undergoing differentiation rely primarily on 

OXPHOS for energy production160.  

Interestingly, PC-3 cells had lower OCR and lower enrichment of OXPHOS pathway 

genes than LNCaP cells despite having higher PDH activity. This matches published 

studies154,155, which concluded that LNCaP cells rely mainly on OXPHOS for ATP generation 

while PC-3 cells rely mainly on glycolysis. Previous studies have shown that AR signaling 

promotes a truncated TCA cycle by stimulating anabolism of glucose to citrate, resulting in 

significantly higher citrate levels but no change in succinate levels134. This is supported by the 

significantly higher citrate concentration but no change in aspartate or glutamate concentration 
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observed in castration-resistant PC-3 and TRAMP CRPC tumors compared to the androgen-

dependent LNCaP and TRAMP ADPC tumors. Glucose flux to citrate production could not be 

observed in this study due to the low concentration of citrate and its associated 13C-labeled 

counterpart. Future studies using mass spectrometry, which is more sensitive than NMR, to 

quantify 13C isotopologue enrichments would further elucidate this phenomenon. Studies have 

also shown that the mitochondrial PDH complex provides cytosolic citrate for lipid synthesis to 

sustain anabolism required for tumorigenesis163. Further studies should be performed to dissect 

how post-transcriptional regulation of TCA metabolism is altered as prostate cancer transitions 

from an androgen-dependent to a castration-resistant phenotype. 

Although glutamine consumption was not significantly different between PC-3 and 

LNCaP cells, the [U-13C]glutamine-labeling showed that the castration-resistant PC-3 cells had 

increased glutamine utilization through glutaminolysis, anaplerosis through the TCA cycle, and 

glutathione synthesis compared to LNCaP cells. This supports other studies showing that several 

proteins involved in glutamine metabolism were upregulated in castration-resistant cell lines164, 

and further demonstrates the importance of glutaminolysis in cancer growth and therapeutic 

resistance. Studies have shown that increased glutaminolysis is required for activation of the 

mTORC1 signaling pathway, which upregulates metabolism of glucose, glutamine and other 

amino acids, and lipids165.  

Interestingly, glutathione synthesis was significantly upregulated in both castration-

resistant PC-3 cells and treatment-emergent CRPC mouse models. Several studies have shown 

that CRPC has higher redox capacity based on increased expression of glutathione-related 

antioxidant genes such as glutathione peroxidase (GPX2) and glutathione synthase (GSS)148,166. 

This may be a critical step in the development of CRPC since glutathione prevents apoptosis by 
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neutralizing free-radicals and reactive oxygen species (ROS) that would otherwise cause 

oxidative damage to DNA, proteins, and lipids167. 

Limitations of this study include the inherent insensitivity of NMR, which prevents 

characterization of low-concentration intermediates of glycolysis, TCA cycle, and fatty acid 

metabolism. Another limitation is the lack of NMR-based 13C isotopomer models that can model 

metabolic fluxes of [U-13C]glutamine through glutaminolysis and the TCA cycle. Furthermore, 

many 13C isotopomer models require that 13C-labeling reaches steady-state, as determined by 

stable fractional enrichments over time. While this was achieved in our cell labeling studies, the 

TRAMP labeling study does not meet this criterion and would require non-steady state models. 

Future work will focus on using mass spectrometry to address both of these concerns and 

validate our initial NMR-based findings. 

In conclusion, unique metabolic alterations in glucose and glutamine metabolism were 

associated with progression to CRPC. Specifically, glycolysis, TCA metabolism of pyruvate and 

glutamine, glutaminolysis, and glutathione synthesis are upregulated in castration-resistant 

human prostate cancer cells and in treatment-driven CRPC TRAMP tumors. These results 

support the use of hyperpolarized [1-13C]pyruvate to assess glycolysis, [2-13C]pyruvate to assess 

TCA metabolism, [5-13C]glutamine to assess glutaminolysis, and [1-13C]dehydroascorbate to 

assess glutathione redox potential as non-invasive imaging biomarkers. These pathways may also 

serve as candidate drug targets for the treatment of CRPC in patients. Future work will focus on 

correlating our metabolic findings with gene expression of key transporters and enzymes 

involved in glycolysis, glutaminolysis, TCA metabolism, and lipid metabolism. Characterizing 

fatty acid oxidation would also compliment this work since this is considered to be a dominant 

bioenergetic pathway in prostate cancer168. 
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3.6. Future Directions 

Early metabolic response to apalutamide (ARN-509), a second-line androgen pathway 

inhibitor 

Treatment options for men with CRPC start with hormonal therapies that target the 

androgen receptor pathway followed by chemotherapy, which is often combined with a targeted 

biologic agent27. Second-line androgen pathway inhibitors (API) such as enzalutamide, 

apalutamide and abiraterone, have been shown to bind to AR with much higher affinity than 

first-line antiandrogens such as bicalutamide, thereby effectively retarding the growth of 

CRPC30. Currently no reliable clinical or noninvasive imaging methods can predict the 

therapeutic response to API, which is critical in guiding treatment decisions for patients with 

CRPC.  

In order to identify biomarkers that can monitor therapeutic response in individual 

patients, the early metabolic response of CRPC TRAMP tumors to apalutamide (ARN-509), a 

second-line API, was assessed. CRPC TRAMP that underwent daily treatment with apalutamide 

(ARN-509) at 30 mg/kg/day administered via oral gavage144 for seven days were defined as 

CRPC+ARN. No significant difference in tumor growth rate was observed between CRPC 

TRAMP and CRPC+ARN TRAMP (Figure 3.14). 

An early metabolic response was observed in CRPC TRAMP tumors after ARN-509 

treatment. CRPC+ARN TRAMP tumors had lower levels of choline metabolites (choline, 

phosphocholine, glycerophosphocholine, and total choline), indicating reduced proliferation  
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Figure 3.14. Tumor growth rate of CRPC TRAMP tumors treated with apalutamide. TRAMP 
tumors that grew ≥ 25% in tumor volume one-week after orchiectomy were defined as CRPC. 
An additional cohort of CRPC TRAMP that underwent one week of daily apalutamide (ARN-
509) treatment was defined as CRPC+ARN. Data is presented as average ± standard error (N=3 
per group). 
 

 
Figure 3.15. Relative changes in metabolite concentration in CRPC TRAMP tumors treated with 
apalutamide. Relative metabolite concentrations are presented as average ± standard error (N=3) 
after normalization to wet tissue weight. Total choline was defined as the summed concentrations 
of choline, phosphocholine, and glycerophosphocholine. 
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Figure 3.16. Relative changes in fractional enrichment of [U-13C]glucose-labeled CRPC 
TRAMP tumors treated apalutamide. Bar graph is presented as average ± standard error (N=3). 
 

compared to CRPC TRAMP (Figure 3.15). No significant changes in steady-state concentrations 

were observed for the other metabolites listed in Figure 3.15. 

[U-13C]glucose labeling studies showed a drastic reduction in glycolysis and glucose 

contribution to TCA metabolism in CRPC TRAMP tumors after API treatment. CRPC+ARN 

TRAMP tumors had 56% lower lactate FE (p<0.001, N=3), indicating downregulation of 

glycolysis compared to CRPC TRAMP tumors (Figure 3.16). CRPC+ARN tumors also had 65% 

lower aspartate FE (p<0.05, N=3) and 47% lower glutamate FE (p=0.10, N=3), indicating 

downregulation of TCA metabolism compared to CRPC tumors (Figure 3.16). In fact, the FE 

levels of aspartate, glutamate, and lactate of CRPC+ARN TRAMP tumors had reverted back to 

FE levels observed in ADPC TRAMP tumors. No difference in alanine FE was observed 

between the two treatment groups. 

In conclusion, glucose utilization through glycolysis and TCA cycle metabolism was 

downregulated in CRPC TRAMP tumors treated with ARN-509. This reduction in metabolism is 

consistent with what was observed in recently published hyperpolarized [1-13C]pyruvate MR 

imaging studies of patients with prostate cancer after primary ADT26. As this metabolic response 

was observed prior to a decrease in tumor growth rate, biomarkers of these pathways could be 
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used to monitor therapeutic response in patients. These results support the use of hyperpolarized 

[1-13C]pyruvate and FDG-PET to assess glycolysis and hyperpolarized [2-13C]pyruvate to assess 

TCA metabolism. One caveat of this study is that the CRPC TRAMP tumors were collected one-

week post-orchiectomy, while CRPC+ARN TRAMP tumors were collected two-weeks post-

orchiectomy. The metabolic assessment of CRPC tumors two-weeks post-orchiectomy treated 

with vehicle as well as stable isotope labeling studies using [U-13C]glutamine is currently 

ongoing. Future work will assess the long-term metabolic adaptations and tumor growth 

inhibition of prolonged API treatment using the TRAMP model.  
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CHAPTER FOUR 

 

Metabolic Adaptations of Treatment-Emergent Small Cell 

Neuroendocrine Prostate Cancer using Patient-Derived Xenograft 

Models 
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4.1. Abstract 

 Treatment-emergent small cell neuroendocrine cancer (t-SCNC) is an increasingly 

prevalent and lethal subtype of castration-resistant prostate cancer (CRPC). There is an unmet 

clinical need to develop a non-invasive imaging technique to identify the presence of t-SCNC for 

improved treatment of metastatic CRPC patients. Hyperpolarized 13C MRI (HP 13C MRI) is a 

new metabolic imaging method that could provide a non-invasive means to image the presence 

of t-SCNC in vivo. The goal of this study was to identify metabolic differences between CRPC 

and t-SCNC patient-derived xenografts (PDXs) in order to identify HP 13C MR probes that can 

discriminate between CRPC and t-SCNC in future patient studies. CRPC and t-SCNC PDXs 

labeled with either [U-13C]glucose or [U-13C]glutamine were differentiated with 95% confidence 

using untargeted principal component analysis. Fractional enrichment analysis of the same PDXs 

demonstrated that t-SCNC PDXs had significantly elevated flux of glucose through glycolysis 

and tricarboxylic acid (TCA) metabolism, as well as elevated flux of glutamine through 

glutaminolysis and TCA metabolism as compared to CRPC PDXs. This data suggests that a 

combination of HP 13C]pyruvate, [2-13C]pyruvate and [5-13C]glutamine could distinguish t-

SCNC from CRPC in future HP 13C MRI patient exams for improved treatment selection for 

patients with metastatic CRPC. 

 

4.2. Introduction 

Treatment-emergent small cell neuroendocrine cancer (t-SCNC) is an increasingly 

prevalent, lethal subtype of castration-resistant prostate cancer (CRPC) that arises as an adaptive 

response to protracted treatment using primary androgen deprivation therapy (ADT) and second-

generation potent androgen pathway inhibitors (APIs)31,32. Potent inhibitors of the androgen 
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receptor (AR), such as abiraterone, apalutamide and enzalutamide, have recently been approved 

for management of patients with metastatic CRPC (mCRPC). While these therapies have greatly 

improved progression-free survival and overall survival in patients with mCRPC169,170, half of 

patients relapse within one year, and chronic AR inhibition by these therapies can lead to the 

outgrowth of t-SCNC, also known as aggressive variant and neuroendocrine prostate cancer 

(NEPC) in the literature.  

Morphologically, t-SCNC is similar to de novo small cell neuroendocrine prostate cancer 

(SCNC), a highly aggressive and lethal subtype found in less than 2% of treatment-naïve patients 

with prostate cancer at time of diagnosis171. The t-SCNC subtype is more lethal than CRPC and 

contributes to at least 25% of the 26,000 cases of lethal prostate cancer per year in the United 

States33,34, with a median survival rate of only 7 months after diagnosis34,172. Significant 

heterogeneity underlies the biology of CRPC, with frequent admixture of adenocarcinoma 

(aCRPC) and small cell (t-SCNC) histology within and across CRPC patients. 

New therapies are required to effectively treat t-SCNC. Patients with t-SCNC are 

expected to show poor response to second-generation APIs. For example, Xtandi® 

(enzalutamide), which costs up to $129,000 for a year of treatment, is expected to have up to a 

50% initial failure rate in this patient population. Several therapies are currently available and 

being developed for t-SCNC, including platinum-based chemotherapy, inhibitors of glutamine 

metabolism (e.g., CB-839), and other MYC-directed treatment strategies (e.g., bromodomain 

inhibitors). However, there is currently no clear method to identify the presence of t-SCNC or 

monitor its response to treatment. Therefore there is an unmet need to develop a non-invasive 

imaging modality to identify the presence of t-SCNC and enable improved treatment selection 

for patients with metastatic CRPC173,174. 
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The only definitive method to clinically diagnose t-SCNC is immunohistochemical (IHC) 

staining of tumor biopsies using neuroendocrine markers such as chromogranin A and 

synaptophysin32. However, intra-tumoral heterogeneity, sampling errors and the impracticality of 

serial sampling underscore the limitations of these biopsies. Neither blood tests (such as prostate-

specific antigen or neuroendocrine markers) or standard imaging metrics (such as 1H MRI and 

FDG PET) can reliably distinguish t-SCNC from aCRPC or monitor its response to therapy. 

Therefore, identifying metabolic biomarkers that reliably capture the heterogeneity of advanced 

prostate cancer, particularly the presence of SCNC, are of importance for selecting the 

appropriate therapy for individual patients and for the development of new therapeutic strategies.  

Hyperpolarized 13C MRI (HP 13C MRI) is a powerful new imaging method that can be 

used to observe metabolic fluxes through key pathways associated with cancer progression and 

therapeutic response in patients125. Several studies have found significant overexpression and 

gene amplification of N-MYC in SCNC compared to prostate adenocarcinomas171,175. MYC 

overexpression may be an oncogenic driver leading to a t-SCNC phenotype in patients175,176 and 

in immortalized human prostate cancer cell lines176,177. Overexpression and gene amplification of 

AURKA and N-MYC was found in 40% of patients with t-SCNC compared to only 5% of 

patients with pre-existing prostate adenocarcinoma171. Overamplification of N-MYC has been 

shown to be predictive of poor outcome in patients178. The MYC family of genes regulates 

transcription, nucleotide biosynthesis and lipid synthesis, glycolysis, and glutaminolysis179,180. 

Dysregulation of N-MYC is known to increase the expression of glucose and glutamine 

transporters, alter single-carbon metabolism, enhance anaplerosis, and increase expression of 

LDH, GLS and the lactate exporter MCT4. While the effects of MYC overexpression in t-SCNC 

are unknown, recent genomic and metabolomic data of neuroendocrine pancreatic35 and lung36 
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tumors have shown that a combined upregulation of the PI3K/AKT pathway and MYC 

expression lead to elevated aerobic glycolysis and glutaminolysis37. Several therapies have been 

developed to target MYC and its downstream metabolic effects181, including aurora kinase 

inhibitors182 and CB-839, a potent and selective GLS inhibitor that is currently in several phase 

I/II trials for treating RCC, non-small cell lung cancer, and colorectal cancers183. Together this 

indicates that glucose and glutamine metabolism may be altered in t-SCNC and that 

characterization of the metabolic phenotype of t-SCNC may identify new biomarkers of t-SCNC 

and its response to therapy. While initial pre-clinical and patient studies have focused on using 

[1-13C]pyruvate to investigate changes in glycolysis, HP probes that provide insight into other 

metabolic pathways, such as [2-13C]pyruvate and [5-13C]glutamate, have been investigated pre-

clinically, and clinical translation of these probes is in progress. However, to date, the metabolic 

phenotype of t-SCNC has not been fully defined. 

While several preclinical models of treatment-naïve prostate adenocarcinoma and aCRPC 

have been published, few preclinical models of SCNC exist. Patient-derived xenograft (PDX) 

models are considered the most representative biological model since they preserve the 

molecular and genetic features of the original patient disease. Several CRPC and t-SCNC PDXs  

have been established184,185. However, the metabolic features of these models have not been fully 

characterized. The goal of this study was to understand the metabolic differences between CRPC 

and t-SCNC PDXs in order to identify HP 13C MR probes that can discriminate between CRPC 

and t-SCNC in future patient studies. To accomplish this goal, principal component analysis 

(PCA) and [U-13C]glucose- and [U-13C]glutamine- labeling methods were performed to 

characterize flux through glycolysis, the tricarboxcylic acid (TCA) cycle, alanine synthesis and 

glutaminolysis in CRPC and t-SCNC using PDX models. 
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4.3. Materials and Methods 

PDX Models 

Detailed information about the origin and generation of PDXs  has previously been 

published184,185. PDXs were transplanted under the subrenal capsule of male NSG mice obtained 

from the Jackson Laboratory. All CRPC PDXs (LTL-313HR, LuCaP 77CR, Table 4.1) used in 

this study were experimentally-derived castration-resistant sublines. All t-SCNC PDXs (LTL-

352, LTL-610, LuCaP 93, Table 4.1) were derived from patients who underwent prolonged 

androgen deprivation therapy. 

 

In vivo 13C-infusion 

Mice with tumors were injected with a bolus of either 80 µL 25%wt/volume [U-

13C]glucose or 200 µL 35.73 mg/mL [U-13C]glutamine via tail vein every 15 minutes for a total 

labeling time of 45 minutes49. To minimize the effects of stress and anesthesia on metabolism, 

mice were briefly anesthetized using isoflurane for 2-3 min to perform 13C-injection and then 

allowed to wake in between injections. Tissue was collected immediately upon 

euthanasia and either flash-frozen in liquid nitrogen for metabolomic analysis or fixed in 

formalin for histological analysis.  

 

Cell and tissue extraction 

Cells and frozen tissue was homogenized in 600 µL cold methanol using a bead 

homogenizer at 4°C. Metabolites were extracted using cold 1:1:1 methanol:water:chloroform 

protocol68. Aqueous fractions were isolated, lyophilized, and resuspended in 600 µL D2O for 

NMR analysis. An internal standard of TSP was used for quantification. 
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Table 4.1. List of CRPC and t-SCNC PDX lines used in this study. 

PDX Phenotype Site of Origin Nglucose Nglutamine 

LTL-313HR CRPC Primary AdenoPC 3 3 

LuCaP 77CR CRPC Femur Metastasis 3 3 

LTL-352 t-SCNC Urethral Metastasis 3 3 

LTL-610 t-SCNC Primary t-SCNC 3 3 

LuCaP 93 t-SCNC Primary t-SCNC 3 3 

LuCaP 145.1 t-SCNC Liver Metastasis 3 3 

 

NMR acquisition 

High-resolution NMR spectra were acquired on an 800 MHz Bruker AvanceI equipped 

with a 5 mm triple resonance TXI cryoprobe. 13C-decoupled 1H presaturation pulse: α=90, 

TD=24k, SW=15 ppm, TR=12 seconds, AQ=0.5 seconds, NS=32. Water signal was suppressed 

using a presaturation pulse. Adiabatic decoupling was applied during acquisition using a CHIRP 

pulse with 54 kHz sweep width (equivalent to 200 ppm @ 800 MHz), and shaped pulse power 

level of +2dB with respect to the power level determined for 13C-GARP. Total scan time was 6 

minutes. 1H-13C HSQC: A phase-sensitive 2D HSQC using echo-antiecho, adiabatic inversion 

pulses (hsqcetgpsp) and no 13C decoupling during acquisition was acquired with the following 

parameters: TD=2048x4096, SW=6x120 ppm, TR=1.5 seconds, AQ = 0.297 seconds, NS=2, JCH 

= 135 Hz (average JCH of 127, 130, and 145 Hz for glutamate C2, C3, and C4). Data was zero-

filled in both dimensions to a final digital resolution of 2.9 Hz/point in the F2 dimension. Total 

scan time was 4 hours. 
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NMR quantification 

1D NMR datasets were processed using MestreNova (version 12). The datasets were 

zero-padded by a factor of 2, apodized with a 0.5 Hz exponential filter, and manually phased and 

baselined. Peaks of interest were automatically fit using a Lorentzian-Gaussian shape function. 

2D NMR datasets were processed using TopSpin (version 4.0.6). 2D datasets were zero-padded 

by a factor of 2, manually phased, and peak volumes were integrated. 

Total metabolite concentrations were quantified from 1D 13C-decoupled 1H water 

presaturation spectra of 13C-labeled tissue extracts. Fractional enrichment (FE) was quantified as 

[13C-labeled metabolite]HSQC/[total metabolite]{13C}1H. Total metabolite concentrations for all 

other metabolites were quantified using 13C-decoupled 1H spectra by manually fitting peaks of 

interest using a Lorentzian-Gaussian shape. The concentration of 13C-labeled metabolites was 

quantified using 1H-13C HSQC by integrating the volumes of the cross-peaks as previously 

described using Equation 2.3, and the lactate concentration quantified from 1D 13C-decoupled 

1H water presaturation spectra was used as the reference compound. 

 

Principal Component Analysis 

Multivariate data analysis and principal component analysis (PCA) were performed on 

1D 1H spectra without 13C-decoupling pre-processed in MestreNova as described above. The 

spectral regions corresponding to water (4.6–4.9 ppm) and TSP (0.00–0.70 ppm) peaks were 

excluded, and the remaining spectral regions were normalized using probabilistic quotient 

normalization (PQN) and subsequently divided into 0.03 ppm bins. The binning table contained 

the spectral region of 0.7 to 5.8 ppm. Classical PCA was performed with mean centering and 

Pareto scaling using the ChemoSpec R package (version 5.1.48)186.  
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Statistics 

Nested t-test was used to compare steady-state metabolite concentrations and fractional 

enrichment comparisons of aCRPC and t-SCNC using Prism. All statistics are reported as mean 

± standard error. P-values less than 0.05 (*p <0.05, **p <0.01 and ***p <0.001) were considered 

significant. 

 

4.4. Results 

Steady-state lactate concentration significantly increased in t-SCNC versus aCRPC  

 Representative high-resolution NMR spectra of aCRPC and t-SCNC PDX tumor extracts 

shown in Figure 4.1A illustrate the similarity in metabolic profile and pool sizes between the 

two groups. Quantification of these metabolite pools indicated that only lactate concentration in 

t-SCNC compared to aCRPC tumors was significantly elevated (80±6 vs 44±6.5 nmol/mg tissue, 

N=4, p<0.01) (Figure 4.1B).  

 

Untargeted PCA of 1D 1H spectra of PDX tumors labeled with [U-13C]glucose and  

[U-13C]glutamine demonstrated metabolic changes between t-SCNC and aCRPC  

Global changes in glucose and glutamine metabolism were initially assessed between 

aCRPC and t-SCNC using PCA followed by an in-depth analysis of 1D and 2D heteronuclear 

spectroscopic data. First, alterations in glucose metabolism of aCRPC and t-SCNC PDXs were 

assessed using [U-13C]glucose -labeled tumor extracts by analyzing spectra with 1D 13C-

decoupled 1H spectra. aCRPC and t-SCNC PDXs were differentiated with 95% confidence using 



 91 

 

Figure 4.1. Quantification of aqueous metabolites in aCRPC and t-SCNC PDX tumor extracts 
using 1D 13C-decoupled proton NMR. (A) Representative 1D proton spectra of aCRPC (LuCaP 
77CR) and t-SCNC (LuCaP 145.1) PDX tumor extracts normalized to tissue weight. (B) 
Metabolite concentrations of aCRPC (LuCaP 77CR, LTL-313HR, N=6) and t-SCNC (LTL-352, 
LTL-610, LuCaP 93, LuCaP 145.1, N=12) extracts were quantified from 1D 13C-decoupled 1H 
spectra. Data are presented as mean ± standard error. **p<0.01. 
 

PCA analysis of tumors labeled with [U-13C]glucose (Figure 4.2A). PCA loading plots (Figures 

4.2B and 4.2E) show the influence of each spectral bin in differentiating aCRPC and t-SCNC. 

The s-shaped loading plots indicated the top 10% spectral bins that contributed the most in 

differentiating the groups, starting from those with the greatest influence: 3.21, 3.24, 3.55, 3.22, 

3.02, 1.33, 3.43, 3.74, 3.93, 1.30, 3.96, 4.18, 4.02, 1.93, 1.46, 2.33, 2.58, 1.58, and 5.38 ppm 

(Figure 4.2C). These spectral bins correspond to metabolites such as unlabeled lactate, 13C-

lactate, alanine, 13C-alanine, glutamate and 13C-glucose. aCRPC and t-SCNC groups were again 

differentiated with 95% confidence using PCA (Figure 4.2C) for PDX extracts labeled with [U-

13C]glutamine. Based on the PCA loading plots (Figure 4.2E) and s-shaped loading plots 

(Figure 4.2F), the top 10% spectral bins that had the greatest contribution in differentiating the 

tumor groups, starting from those with the greatest influence, were: 3.93, 3.27, 3.62, 3.05, 3.24, 

3.55, 3.68, 2.15, 2.46, 3.30, 4.18, 4.02, 2.05, 2.30, 2.99, and 5.22 ppm (Figure 4.2F). These 

spectral bins include resonances from metabolites such as glutamate, 13C-glutamate, glutamine, 
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Figure 4.2. Principal Component Analysis performed on 1D proton spectra of aCRPC (LuCaP 
77CR, LTL-313HR, N=6) and t-SCNC (LTL-352, LTL-610, LuCaP 93, LuCaP 145.1, N=12) 
extracts labeled with [U-13C]glucose (top row: A,B,C) and [U-13C]glutamine (bottom row: 
D,E,F). (A,D) PCA score plots with dotted ellipses indicate 95% confidence interval for 
classification, (B,E) PCA loadings score plots, and (C,F) PCA loading s-shaped plots.  
 

13C-glutamine, and glucose. Some of these spectral bins contained metabolites whose steady-

state concentrations had been quantified in Figure 4.1A.  

 

[U-13C]glucose and [U-13C]glutamine labeling studies demonstrate elevated glycolysis, TCA 

cycle metabolism, and glutaminolysis in t-SCNC compared to aCRPC 

To understand which metabolic pathways were responsible for the PCA metabolic 

discrimination of aCRPC from t-SCNC, 2D 1H-13C HSQC spectra were acquired from t-SCNC  

versus aCRPC PDXs after [U-13C]glucose- (Figure 4.3A) and [U-13C]glutamine-labeling. The 

FE of glucose and glutamine metabolites was then calculated and summarized in Figures 4.3B 

and 4.3C, respectively.  
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Figure 4.3. Fractional enrichment profiles of aCRPC and t-SCNC PDXs labeled with [U-
13C]glucose and [U-13C]glutamine. (A) Representative spectra of 2D 1H-13C HSQC of aCRPC 
(LuCaP 77CR) and t-SCNC (LTL-352) tumor extracts after [U-13C]glucose labeling. (B) After 
[U-13C]glucose infusion, t-SCNC (LTL-352, LTL-610, LuCaP 93, LuCaP 145.1, N=12) tumors 
had significantly elevated alanine FE, glutamate FE, and lactate FE compared to aCRPC (LuCaP 
77CR, LTL-313HR, N=6) tumors. (C) After [U-13C]glutamine infusion, t-SCNC (LTL-352, 
LTL-610, LuCaP 93, LuCaP 145.1, N=12) tumors had significantly elevated aspartate FE and 
glutamate FE compared to aCRPC (LuCaP 77CR, LTL-313HR, N=6) tumors.  

 

Following [U-13C]glucose infusion, t-SCNC tumors compared to aCRPC tumors had 

elevated lactate FE (46±2 vs 30±2, p<0.05), glutamate FE (23±2 vs 9±3, p<0.05) and aspartate 

FE (19±2 vs 12±2, p=0.06) (Figure 4.3B), suggesting that t-SCNC has significantly increased 

glycolytic flux and up-regulated utilization of glucose in TCA metabolism. These findings are 

consistent with published transcriptomic and proteomic studies which show that t-SCNC PDXs 
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have elevated glycolysis and OXPHOS compared to prostatic adenocarcinoma PDX 

models187,188.  

Following [U-13C]glutamine infusion, t-SCNC compared to aCRPC tumors had elevated 

aspartate FE (20±2 vs 9±2, p<0.05) and glutamate FE (30±3 vs 14±2, p<0.05) (Figure 4.3C), 

suggesting that t-SCNC tumors have elevated glutaminolysis and glutamine utilization in TCA 

metabolism. 

 

4.5. Discussion 

In this study, NMR-based 13C-labeling studies and principal component analysis were 

performed to compare the metabolic profile of aCRPC and t-SCNC using LuCaP and LTL PDX 

models. As depicted in Figure 4.4, t-SCNC PDXs had significantly elevated flux of glucose 

through glycolysis and TCA metabolism, as well as elevated flux of glutamine through 

glutaminolysis and TCA metabolism, compared toa CRPC PDXs. This is consistent with our 

hypothesis that these pathways are upregulated in t-SCNC due to increased MYC 

expression171which upregulates both glutamine transport into the cell via SLC1A5 as well as 

glutaminase conversion of glutamine to glutamate via glutaminase189,190. The increase in 

glutamine metabolism is also partially driven by the need for anaplerotic substrates to replenish 

TCA cycle intermediates being used to support biosynthesis of macromolecules (e.g,. 

nucleotides, proteins, and lipids) that are necessary for rapid cellular proliferation149,191. 

An interesting finding is that PCA of 1D proton spectra can be used to differentiate the 

two phenotypes. Furthermore, the influence of glucose and glutamate bins played an important 

role in differentiating aCRPC from t-SCNC using PCA analysis even though the steady-state 

concentrations of these metabolites were not significantly different. This suggests that PCA is 



 95 

 

Figure 4.4. Schematic detailing the metabolic alterations observed between aCRPC and t-SCNC 
tumors. 

 

better at differentiating aCRPC from t-SCNC than steady state metabolic profiling, likely due to 

the ability of PCA to pick up more information with less bias than manual spectral processing. 

Future work will integrate other pre-processing techniques such as peak alignment to correct for 

peak shifts due to variations in pH and temperature between samples. Instead of traditional fixed 

binning used in this work, adaptive binning methods will be used to minimize the variability in 

integrated bin intensities by preventing peaks from different metabolites within each bin and 

ensuring that the same peaks are consistently within the same bin boundaries between samples. 

Additional PCA analysis on unlabeled PDX tissues will also provide further insight into the 

robustness of our findings. 

 A limitation of this study was that only two aCRPC PDX models were studied in 

comparison to four t-SCNC models. Ongoing work is being performed to include additional 

aCRPC PDX models to the analysis. Another limitation is the inherent insensitivity of NMR, 

which prevents characterization of low-concentration intermediates of glycolysis, pentose 

phosphate pathway, the TCA cycle, and fatty acid metabolism. Future studies will use mass 

spectrometry, which is several orders of magnitude more sensitive than NMR, in order to fully 
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characterize the metabolic alterations associated with small cell neuroendocrine differentiation in 

prostate cancer. 

In conclusion, unique metabolic alterations in glucose and glutamine metabolism were 

identified between aCRPC and t-SCNC PDXs. Stable isotope labeling methods demonstrated 

that glycolysis, TCA metabolism of pyruvate and glutamine, and glutaminolysis was upregulated 

in t-SCNC PDXs. These results support the use of hyperpolarized [1-13C]pyruvate to assess 

glycolysis, [2-13C]pyruvate to assess TCA metabolism, and [5-13C]glutamine to assess 

glutaminolysis as non-invasive imaging biomarkers. Imaging biomarkers or drugs targeting these 

pathways could greatly improve the diagnosis and treatment of patients with aCRPC and t-

SCNC. Future work will focus on whole transcriptome analysis as well as an integrated 

metabolomic and transcriptomic models to confirm the underlying basis of the metabolic 

alterations observed in this study. 
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CHAPTER FIVE 

 

Metabolic Comparisons of Patient-Derived Models of Renal Cell 

Carcinoma using NMR and Hyperpolarized 13C MRI 
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5.1. Abstract 

This pilot study investigated the metabolic changes that occur when tissues or cells from 

a renal cell carcinoma (RCC) patient-derived xenograft (PDX) are propagated in culture. High-

resolution NMR and hyperpolarized 13C MRI studies showed that RCC PDX tumors and tissue 

slice cultures (TSCs) had similar metabolic flux profiles, with the majority of glucose being 

converted to lactate via glycolysis and less glucose being converted to glutamate via the TCA 

cycle. PDX tumors appeared to be more proliferative than TSC and cell cultures based on 

elevated choline concentration, and had higher redox capacity based on elevated glutathione and 

3-hydroxybutarate concentrations. Furthermore, PDX-derived cells grown in hypoxic conditions 

had elevated glucose flux through glycolysis and alanine synthesis and reduced glucose flux 

through the TCA cycle compared to cells grown in normoxic conditions. Finally, hyperpolarized 

[1-13C]pyruvate and [1-13C]dehydroascorbate can be used to assess glycolysis and redox capacity 

in real time by performing dynamic HP 13C MR studies using a NMR-compatible TSC bioreactor 

and a PDX model. The results of this study increase our understanding of the attributes and 

limitations of each of the model systems for studying the metabolic underpinnings of RCC.  

 

5.2. Introduction 

Renal cell carcinoma (RCC) is the most common type of kidney cancer and one of the 

top 10 malignancies in the United States, with ~50,000 Americans diagnosed each year and 

~14,000 deaths12. Over the past 30 years, there has been a consistent increase in the diagnosis of 

RCC with no decline in mortality. Metastatic RCC remains an incurable disease due to over-

diagnosis and over-treatment of clinically insignificant disease and lack of reliable diagnostic 

tools to detect aggressive tumors at a curable stage38. While several therapies targeting VEGF 
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and mTOR signaling pathways and an immune checkpoint inhibitor are FDA-approved for the 

treatment of metastatic RCC39, all patients eventually develop resistance. Therefore, there is a 

clinical need for early diagnosis of treatable disease, effective therapeutic targets, and diagnostic 

biomarkers of therapeutic response. 

Hyperpolarized 13C MRI is a new molecular imaging technique that allows rapid, safe 

and noninvasive surveillance of dynamic pathway-specific metabolic and physiologic processes. 

Hyperpolarization via dynamic nuclear polarization (DNP)110, which provides >10,000-fold 

increase in sensitivity, enables noninvasive imaging of 13C-labeled biomolecules that are 

endogenous, nontoxic, and nonradioactive. In order to develop novel diagnostic imaging 

biomarkers of disease progression, the metabolic phenotype of RCC must be characterized to 

understand which pathways are altered in RCC metabolism. This is typically done using 

preclinical models. However, a complete investigation of preclinical models is essential to ensure 

that preclinical findings are clinically relevant since metabolic regulation checkpoints that 

include cellular membrane transport, substrate activation as well as biochemical conversions can 

vary across tissues. Characterizing metabolic fluxes through glycolysis, glutaminolysis, and the 

tricarboxylic acid (TCA) cycle in patient-derived RCC models using HP 13C MRI will therefore 

provide valuable data for clinical translation of HP molecular imaging for the care of RCC 

patients. In order to understand the mechanistic underpinnings of the changes in metabolic fluxes 

observed via HP 13C MRI and to understand the complexity of changes in fluxes through 

metabolic pathways, which exist in varying stages of progression of renal cancer and their 

responses to therapy, good preclinical models and full supporting biologic data 

(immunohistochemical measurements, steady state metabolite labeling patterns, and 

corresponding enzyme expression and activity profiles) are necessary. 
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5.2.1. Metabolic alterations of renal cell carcinoma  

Metabolic reprogramming is strongly implicated in the development and progression of 

RCC192,193 and reflects the combined effect of genomic, transcriptomic, and proteomic 

alterations. Understanding how metabolism is dysregulated in RCC can help identify new 

diagnostic, prognostic, and therapeutic approaches to improve patient care. Most gene mutations 

commonly observed in RCC have a fundamental role in the regulation of cellular metabolic 

processes, including dysregulation of oxygen sensing, energy sensing and nutrient sensing 

signaling cascade pathways194.  

The most common type of RCC is clear cell RCC (ccRCC), accounting for ~80% of 

cases. This subtype is a genetically heterogeneous and complex disease195,196, with high 

frequency of von Hippel-Lindau (VHL) gene mutations, leading to normoxic stabilization of 

hypoxia inducible factors (HIFs), and ubiquitous loss of fructose-1,6-biphosphatase (FBP1)197. 

These genetic aberrations result in upregulation of aerobic glycolysis, also known as the 

“Warburg effect”198. The extracellular acidification caused by this increased lactate production 

and export is hypothesized to promote tissue invasion and metastasis199,200. Additionally, 

expression of lactate dehydrogenase A (LDHA), which catalyzes the conversion of pyruvate to 

lactate, is a predictor of poor prognosis in ccRCC201. Similarly, the monocarboxylate transporter 

MCT4, which is responsible for lactate efflux, is a prognostic marker in ccRCC patients and 

correlates with pathological grade202-204. Together these findings suggest that evaluation of 

glycolytic metabolites may inform on ccRCC aggressiveness. 

Other metabolic pathways are also altered in ccRCC. An ex vivo 1H NMR study showed 

that ccRCC had elevated lactate, glutamate, pyruvate, glutamine and creatine, and decreased 
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acetate, malate and amino acids compared to normal kidney tissue, with stage-related 

differences205. Metabolomic profiling by LC/MS and GC/MS also showed grade-specific 

metabolic reprogramming206-208. Furthermore, The Cancer Genome Atlas (TCGA) identified 

several active transcriptional hubs in ccRCC that interlinked many of the transcriptional 

programs promoting glycolytic shifts based on gene mutation, copy number and mRNA 

expression data209. Specifically, cross-platform analyses indicated a correlation between worse 

prognosis and a metabolic shift toward increased dependence on the pentose phosphate shunt, 

decreased AMPK, decreased Krebs cycle activity, and increased glutamine transport and fatty 

acid production. This mirrors the Warburg metabolic phenotype (increased glycolysis, decreased 

AMPK, and glutamine-dependent lipogenesis) typically observed in cancer.  

 

5.2.2. Preclinical models of renal cell carcinoma 

Predictive preclinical RCC models including patient-derived xenografts (PDXs), tissue 

slice cultures (TSCs), and primary cell culture models are useful for to improving diagnosis, 

prognosis, and treatment of RCC patients in the clinic. Each model has its merits and drawbacks 

based on its utility and representation of important biological features (intact stromal 

architecture, microenvironment, tissue heterogeneity, gene expression and perseveration of 

mutations). Patient-derived models such as PDXs and organoids better represent patient disease 

and are preferred for preclinical drug development and biomarker discovery, but have low 

throughput. Traditional patient-derived cell lines and cell line-derived xenografts allow for high-

throughput studies. However, these models often do not accurately reflect the disease state found  
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Figure 5.1. Model propagation from murine orthotopic tumors to tissue slice culture and primary 
cell culture. (A) Tissue core (8-mm diameter) aseptically bored from fresh nephrectomy 
specimen. (B) Core removed from specimen. (C) Tissue core mounted in Krumdieck tissue slicer 
and precision-cut at 300-µm. (D) RCC tissue slices ready for culture or implantation into mice. 
(E) RCC tissue slice implanted into the subrenal capsule of the mouse kidney. (F) RCC tissue 
slice culture in a specialized angled rotating plate. (G) Harvested PDX tumors were digested into 
single cells then established in primary culture. Cells were placed in incubators with 2%, 5%, 
and 20% oxygen overnight prior to 13C-labeling studies. 
 

in patients and are a major factor in the low success rate of oncogenic drug development40,41. 

Biological characterization of each model derived from the same parental tissue will help 

determine which in vitro and/or in vivo preclinical models to use for preclinical drug 

development and biomarker discovery studies. 

This pilot study assessed the metabolic phenotypes of PDX, TSC, and primary cell 

culture models that were all derived from the same ccRCC patient tissue (Figure 5.1). These 

comparisons were performed to understand how key metabolic phenotypes are influenced by the 

microenvironment and growth conditions for each patient-derived RCC platform. Metabolism 

was assessed using NMR-based metabolomics and 13C-glucose-labeling techniques as well as 
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hyperpolarized 13C MRI. The results of this study can help accelerate studies on drug screening 

and biomarker discovery targeting metabolic pathways.  

 

5.3. Materials and Methods 

PDX Model 

An RCC PDX was established from a fresh sample of a ccRCC metastasis to the colon 

with a VHL gene mutation as previously described210. Thin (~300-um), precision-cut tissue 

slices from cores of the fresh surgical specimen were implanted under the subrenal capsule 

(SRC) of RAG2-/-γC-/- mice (Figure 5.1). Second generation subrenal ccRCC PDX tumors were 

grown to ~0.8 cc (from T2-weighted MRI) for [U-13C]glucose labeling studies (N=3) and 

hyperpolarized 13C MRI using [1-13C]pyruvate (N=3) and [1-13C]dehydroascorbate (N=4).  

 

PDX-derived TSC Model 

Second generation PDX tumors were precision-cut into thin (300-µm thick, 8-mm 

diameter) slices using a Krumdieck slicer, then cultured on grids in 6-well dishes on an angled 

rotator as previously described (Figure 5.1-F). TSCs were cultured in an atmospheric incubator 

(20% oxygen) in specialized medium210,211 overnight for at least 12 hrs prior to 13C-glucose 

labeling (N=3) and hyperpolarized 13C bioreactor studies using [1-13C]pyruvate (N=2).  

 

PDX-derived Primary Cell Culture Model 

Cells were harvested from second generation ccRCC PDX tumors using a protocol 

adapted from Young et al. (2013)212. Freshly harvested tissue was washed in phosphate-buffered 

saline (PBS), minced with scissors, and enzymatically digested for 30 min in DMEM 
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supplemented with 200 units/mL collagenase type I, 1 U/mL DNase I, 2 uM Y027632, 10% fetal 

bovine serum, and 1% penicillin-streptomycin. Tissue solution was pipetted every 10 min to aid 

dissociation. Tissue digestion was halted once clusters of cells were visible under the microscope 

prior to complete digestion to single cells. Digested tissue was incubated with Red Cell Lysis 

buffer and filtered through 40 um cell strainers. RCC cells recovered after enzymatic digestion 

were established in primary culture under 2% oxygen using previously-described medium213. At 

passage 10, cells were placed in incubators with 2%, 5% and 20% oxygen overnight prior to 13C-

glucose labeling studies. 

 

13C-Glucose Labeling and Extraction of Cells and Tissue 

For the PDX model, mice received bolus injection of 80 uL 25%wt/volume [U-

13C]glucose via tail vein every 15 min for a total of 45 min as previously described49. Tumor 

tissue was collected and flash-frozen in liquid nitrogen. For the TSC model, TSCs were cultured 

in specialized medium supplemented with 25 mM [1,6-13C2]glucose for 2 hrs, gently rinsed in 

cold PBS, then flash-frozen in liquid nitrogen. Frozen tissues from PDXs (33.6±3.2 mg) and 

TSCs (104±3.3 mg) were homogenized in 400 µL cold methanol using a Tissuelyser LT at 4°C. 

For the primary cell culture model, cells (3.5±0.2 million) were incubated in DMEM containing 

25 mM [1,6-13C2]glucose for 6 hrs at 37°C with 2%, 5%, and 20% oxygen. Cells were rinsed in 

cold PBS then directly quenched using cold methanol then scraped. Metabolites were extracted 

from the aqueous layer of cold 1:1:1 methanol:water:chloroform68,214. The aqueous layer was 

separated, lyophilized and resuspended in D2O for NMR analysis. The protein layer was frozen 

at -80°C for protein quantification using a standard Bradford assay. 
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NMR acquisition 

High-resolution NMR spectra were acquired on an 800 MHz Bruker AvanceI equipped 

with a 5 mm triple resonance TXI cryoprobe. 13C-decoupled 1H presaturation pulse: α=90, 

TD=24k, SW=15 ppm, TR=12 seconds, AQ=0.5 seconds, NS=32. Water signal was suppressed 

using a presaturation pulse. Adiabatic decoupling was applied during acquisition using a CHIRP 

pulse with 54 kHz sweep width (equivalent to 200 ppm @ 800 MHz), and shaped pulse power 

level of +2 dB with respect to the power level determined for 13C-GARP. Total scan time was 6 

min. 1H-1H TOCSY: 2D TOCSY with presaturation was used with the following parameters: 

TD=4096x512, SW=12x12 ppm, TR=2 seconds, AQ=0.239 seconds, NS=8, tmix=60 

milliseconds. Total scan time was 2 hours 45 minutes. Data were zero-filled in both dimensions 

to a final digital resolution of 9.4 Hz/point in the F2 dimension.  1H-13C HSQC: A phase-

sensitive 2D HSQC (hsqcgpph) with no 13C decoupling during acquisition was used with the 

following parameters: TD=2048x4096, SW=6x120 ppm, TR=1.5 seconds, AQ = 0.297 seconds, 

NS=2, JCH = 135 Hz (average JCH of 127, 130, and 145 Hz for glutamate C2, C3, and C4). Data 

were zero-filled in both dimensions to a final digital resolution of 2.9 Hz/point in the F2 

dimension. Total scan time was 4 hours. 

 

NMR quantification 

1D NMR datasets were processed using ACD/1D NMR Processor (version 9). The 

datasets were zero-padded by a factor of 2, apodized with a 0.5 Hz exponential filter, and 

manually phased and baselined. Peaks of interest were automatically fit using a Lorentzian-

Gaussian shape function. 2D NMR datasets were processed using TopSpin (version 3.5). 2D 

datasets were zero-padded by a factor of 2, manually phased, and peak volumes were integrated. 
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For cells, intracellular and extracellular metabolite concentrations were quantified from 

1H presaturation spectra of unlabeled cell extracts. For tissues, total metabolite concentrations 

were quantified from 13C-decoupled 1H presaturation spectra of 13C-labeled tissue extracts. 

Fractional enrichment (FE) was quantified as [13C-labeled metabolite]HSQC/[total 

metabolite]{13C}1H. Total metabolite concentrations for all other metabolites were quantified 

using 13C-decoupled 1H spectra by manually fitting peaks of interest using a Lorentzian-Gaussian 

shape. The concentration of 13C-labeled metabolites was quantified using 1H-13C HSQC by 

integrating the volumes of the cross-peaks, and correcting for incomplete polarization transfer 

using Equation 2.3 as previously described in Chapter 2. Glutathione FE from [U-

13C]glutamine-labeling studies was quantified using 1H-1H TOCSY by integrating the peak 

volumes of the 13C-satellites and the central unlabeled peak.  

 

Hyperpolarized 13C MRI of RCC TSC model using NMR-compatible bioreactor 

 Tissue slices were maintained at physiological conditions in a NMR-compatible bioreactor 

in circulating medium at 37°C perfused with 95% air/5% CO2 using a gas exchanger as 

previously described107. All bioreactor experiments were performed using a 500 MHz Varian 

Inova (Varian, Palo Alto, CA, USA) with a 5 mm tripe-resonance direct-detect probe at 37°C. 

Approximately 7.5 µL of 14.2 M [1-13C]pyruvate with 15 mM trityl radical (GE Healthcare, 

Waukesha, WI, USA) was polarized on a Hypersense polarizer (Oxford Instruments, 

Oxfordshire, England) for 1 hr followed by dissolution in 5 mL of 50 mM phosphate buffer with 

0.3 mM EDTA, as previously described215, to obtain physiologic temperature of 37°C and pH of 

7.5. Dynamic 13C NMR (30°flip, TR 3s) was acquired after infusion of 750 µL solution into the 

bioreactor over 90 sec injection time. Peak areas were fitted using MestreNova to calculate the 
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lactate-to-pyruvate (Lac/Pyr) ratio. 

 

Hyperpolarized 13C MRI of RCC PDX model 

 MR imaging of mice bearing PDXs was performed on a 3T Bruker BioSpec (Bruker). T2-

weighted 1H anatomical MR images were acquired in sagittal, axial, and coronal views. 

Approximately 24 µL of 14.2 M [1-13C]pyruvate with 15 mM trityl radical (GE Healthcare, 

Waukesha, WI, USA) was polarized on a Hypersense polarizer (Oxford Instruments, 

Oxfordshire, England) for 1 hr as described previously21 followed by dissolution in 4.5 mL 50 

mM phosphate buffer with 0.3 mM EDTA and equivalents of NaOH (80 mM) to obtain 

physiologic temperature and pH. The 13C data were acquired 15 sec after start of injection of 500 

µL hyperpolarized solution over 12 sec using 2D dynamic chemical shift imaging (CSI) with 

spiral encoding (8mm slab thickness, 10° flip, TR 4s, 32mm FOV). Approximately 32 µL of 2.2 

M [1-13C] dehydroascorbate (DHA) containing 15 mM trityl radical was polarized on a 

Hypersense polarizer (Oxford Instruments, Oxfordshire, England) for 1 hr as described 

previously216 followed by dissolution in 3.5 mL distilled water with 0.3 mM EDTA. The 13C data 

were acquired 20 sec after start of injection of 500 µL hyperpolarized solution over 12 sec using 

2D dynamic CSI (8 mm slab thickness, 30° flip, TR 4s, 32x32 mm2 FOV). Peak areas were fitted 

using MestreNova to calculate the lactate-to-pyruvate (Lac/Pyr) ratio for [1-13C]pyruvate studies 

and the ascorbate-to-DHA (VitC/DHA) ratio for [1-13C] DHA studies. 

 

Histopathological Analysis  

Tissues were fixed in 10% buffered formalin overnight, transitioned into ethanol and 

embedded in paraffin blocks. Tissue blocks were cut on a Leica microtome then dried onto glass 
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slides and stained using standard protocols for hematoxylin- and -eosin (H&E) and 

immunohistochemistry for a human-specific marker (Ku70) and ccRCC biomarkers (CAIX, 

PAX8, CD10, and CD117) (Figure 5.2). 

 

Oxygen Consumption 

Basal oxygen consumption rate (OCR) was measured using a Clark-type O2 electrode 

(Oxygraph+, Hansatech Instruments). Freshly harvested PDX (10.3±.5 mg) and TSC (33±2.4 

mg) tissues was placed in a chamber with 1 mL serum-free DMEM at 37°C and respiration was 

assessed over 1 min. Control traces of medium without tissue were acquired after each sample to 

assess oxygen consumption attributed to the electrochemistry of the Clark electrode.  

 

Statistics 

Student’s t-test was used to compare RCC models using Prism version 8.3. All statistics 

are reported as mean ± standard error. P-values less than 0.05 (*p <0.05, **p <0.01 and ***p 

<0.001) were considered significant. P-values above 0.05 were considered non-significant (n.s.). 

 

5.4. Results  

5.4.1. Validation of PDX models 

The immunohistologic phenotypes and VHL gene mutation status of PDX, TSC, and cell 

culture models derived from the same RCC tumor were characterized. As shown in Figure 5.2, 

each model maintained similar histologic phenotypes and retained the same VHL gene mutation 

as the parental tumor. All models stained positive for Ku70, confirming the human origin of 

each. The ccRCC phenotype was confirmed based on positive stain of CAIX, PAX8 and CD10  
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Figure 5.2. Immunohistology and VHL gene mutation status of patient-derived RCC models.  
 

and negative stain of CD117, which are standard clinical markers of ccRCC. PDX and TSC 

models preserved the native tissue architecture and functional differentiation, maintained cellular 

heterogeneity and an intact microenvironment.  

 

5.4.2. Characterization of 13C-glucose metabolism using high-resolution NMR 

The metabolic changes that occurred as the PDX model was propagated in TSC and 

primary cell culture at varying O2 levels was assessed using high-resolution NMR techniques 

and hyperpolarized 13C MRI. The following metabolic parameters were studied: steady-state 

metabolite concentrations, 13C fractional enrichment in tissues labeled with 13C-glucose, OCR, 

hyperpolarized Lac/Pyr ratio, and hyperpolarized VitC/DHA ratio. 

 

Metabolic profiling showed significant differences between patient-derived RCC models  

First, steady-state metabolite concentrations quantified from 1D proton NMR spectra 

(Figure 5.3) indicated large differences between the RCC PDX orthotopic tumor tissues, PDX- 
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Figure 5.3. Representative 1D proton NMR spectra of patient-derived RCC models. Spectral 
intensity was normalized to mg protein. Metabolite peaks were assigned as follows:  
1. 3-Hydroxybutyrate, 2. 13C-Lactate, 3. Lactate, 4. Alanine, 5. 13C-Alanine, 6. Acetate, 7. 
Glutamate, 8. Glutamine, 9. Glutathione, 10. Succinate, 11. Creatine, 12. Choline, 13. 
Phosphocholine, 14. Glycerophosphocholine 
 
 

derived tissues sliced and cultured in an atmospheric incubator, and primary cell cultures derived 

from the PDX and grown in varying pO2 levels. (Table 5.1).  

 

PDX vs. TSC: Compared to the PDX-derived TSC, the PDX had increased concentrations of 3-

hydroxybutyrate (5-fold, p<0.05), aspartate (2-fold, n.s.), choline (1.5-fold, n.s.), creatine (25-

fold, p<0.05), creatine phosphate (4-fold, n.s.), glutamate (3-fold, n.s.), glutathione (2-fold, n.s.), 

glycerophosphocholine (1.75-fold, n.s.), lactate (1.3-fold, n.s.), and phosphocholine (1.9-fold, 

n.s.) concentrations. In addition, the PDX had reduced concentrations of acetate (5-fold, p<0.05), 
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glutamine (25-fold, p<0.05), isoleucine (4-fold, n.s.), leucine (4-fold, n.s.), succinate (2-fold, 

n.s.), and valine (1.3-fold, n.s.) compared to the PDX-derived TSC.  

 

PDX vs. cells: Compared to PDX-derived primary cell cultures grown at atmospheric oxygen 

level (20%), the PDX had higher concentrations of 3-hydroxybutyrate (1.5-fold, p<0.05), 

aspartate (2-fold, n.s.), choline (2-fold, p<0.05), creatine (40-fold, p<0.05), creatine phosphate 

(5-fold, n.s.), glutamate (1.3-fold, n.s.), glutathione (5-fold, n.s.), glycerophosphocholine (1.75-

fold, n.s.), lactate (3-fold, p<0.05), and phosphocholine (1.3-fold, n.s.). Compared to cultured 

cells grown in low oxygen conditions, the PDX had higher concentrations of hydroxybutyrate (4-

fold, p<0.05), choline (2-fold, p<0.05), creatine (40-fold, p<0.05), creatine phosphate (5-fold, 

n.s.), glutamate (2-fold, n.s.) glutathione (7-fold, n.s.), glycerophosphocholine (1.75-fold, n.s.), 

lactate (4-fold, p<0.05), and phosphocholine (1.5-fold, n.s.). 

 

TSCs vs. cells: Compared to cells grown at atmospheric oxygen levels, TSCs had higher 

concentrations of acetate (3-fold, n.s.), glutamine (16-fold, p<0.05), choline (3-fold, n.s.), 

glutathione (3-fold, p<0.01), isoleucine (3-fold, n.s.), lactate (2.5-fold, n.s.), leucine (5-fold, n.s.), 

succinate (4-fold, n.s.), and valine (1.5-fold, n.s.). 

 

Cells cultured in varying oxygen levels: Cells grown at 2% oxygen had 50% lower glutamine 

concentration (p<0.05), 60% lower glycerophosphocholine (n.s.) and 66% lower total choline 

(p<0.05) levels than cells grown at 5% and 20% oxygen. This reduction in oxidative metabolism 

(glutamate) and proliferation (choline compounds) is consistent with what has been observed in  
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 cells grown in hypoxic conditions214,217-219. Interestingly, cells grown at 2% oxygen had lower 

lactate concentration (3-fold, p<0.05) than cells grown at 20% oxygen.  

 

[U-13C]glucose labeling studies of patient-derived RCC models  

Stable isotope tracing using 13C-glucose was used to compare the utilization of glucose 

between each model. Although the FE of metabolites measured in PDXs cannot be directly 

compared with that of TSC and cell models due to the differences in duration/mode of labeling, 

the metabolic flux profile can provide insight on the metabolic phenotypes of each model. PDX 

(Figure 5.4A) and TSC (Figure 5.4B) models had similar metabolic flux profiles. Lactate had 

the highest FE in both PDX (60±1, N=3) and TSC (13±4) models. Alanine FE was the second 

highest in PDX (26±7, N=3) and TSC (8±3) models. TSCs had relatively lower glutamate FE 

(1.6±0.4 vs 13±5, N=3) and OCR (0.10±0.003 vs 0.59±0.16 nmol O2/mL/min/mg tissue, N=3) 

than the PDX model, indicating a significant reduction in oxidative metabolism in the TSC 

model (Figures 5.5).  

The primary cell model had a different metabolic flux profile compared to the PDX and 

TSC models, with alanine having higher fractional enrichment than lactate (Figure 5.5C). This 

may indicate that alanine synthesis may be important in supporting biosynthesis of  

 

Figure 5.4. Fractional enrichment profiles of patient-derived RCC models. Fractional 
enrichment was quantified from (A) PDX labeled with [U-13C]glucose for 45 minutes, (B) PDX-
derived TSC labeled with [1,6-13C2]glucose for 2 hours, and (C) PDX-derived cells labeled with 
[1,6-13C2]glucose for 6 hours. N=3 for all groups. *p<0.05 
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Figure 5.5. Oxygen consumption rate of TSC and PDX tissues. OCR was measured using a 
Clark-type O2 electrode and normalized to wet tissue weight. **p<0.01 N=3 for all groups. 
 

macromolecules in cell culture models compared to PDX and TSC models. Metabolic changes in 

response to hypoxic conditions were also observed using the primary cell model. Cells grown in 

2% oxygen had significantly higher lactate FE (42±1 vs 36±1, N=3, p<0.05), indicating 

increased glycolytic activity, and significantly lower glutamate FE (6±4 vs 25±5, N=3, p<0.05), 

indicating suppressed TCA metabolism, compared to cells grown in 20% oxygen. Cells grown in 

5% oxygen also had significantly higher lactate FE (42±1 vs 36±1, N=3, p<0.05) and lower 

glutamate FE (10±2 vs 25±5, N=3, p<0.10) than cells grown in 20% oxygen. No significant 

differences in fractional enrichment were observed between cells grown in 5% or 2% oxygen. 

 

5.4.3. Characterization of glycolysis and redox capacity using hyperpolarized 13C MRI 

Hyperpolarized (HP) molecular imaging was used to noninvasively assess metabolism in 

real-time using RCC PDX and TSC models. Hyperpolarized studies on the TSCs were conducted 

using a homebuilt bioreactor (Figure 5.6A). Viability of the TSC model was confirmed by 

comparing the OCR of tissues in the bioreactor versus incubator. No significant difference in 

OCR was observed between the TSC perfused in the bioreactor and conventional culture in an  
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Figure 5.6. Hyperpolarized [1-13C]pyruvate metabolism of RCC tissue slices in an NMR-
compatible TSC bioreactor. (A) Schematic of NMR-compatible TSC bioreactor setup. (B) 
Oxygen consumption rates of tissue slices perfused in a homebuilt bioreactor and tissue slices 
cultured in a conventional incubator. Oxygen consumption was normalized to wet tissue weight. 
(C) Dynamic 13C spectra after injection of [1-13C]pyruvate into the TSC bioreactor acquired on a 
500 MHz Varian Inova spectrometer. 
 

incubator (Figures 5.7B). Hyperpolarized 13C studies of TSC bioreactor revealed an average 

Lac/Pyr of 0.0048 (N=2) (Figure 5.6C).  

Glycolysis was noninvasively assessed using hyperpolarized [1-13C]pyruvate (Figure 

5.7A). Pyruvate and lactate peaks within a tumor voxel were well resolved using 2D CSI (Figure 

5.7B). There was a trend in correlation of Lactate/Pyruvate ratio (0.51±0.12, N=3) with LDH 

activity (48±8, N=2), which was independent of tumor volume (Figure 5.7C). 
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Figure 5.7. Hyperpolarized [1-13C]pyruvate MRI and LDH activity using a RCC PDX model. A) 
Schematic of hyperpolarized [1-13C]pyruvate conversion to [1-13C]lactate. (B) T2-weighted 
image with axial projection of 2D CSI of hyperpolarized [1-13C]pyruvate in a mouse bearing a 
ccRCC PDX with corresponding spectrum of a tumor voxel with pyruvate (pyr) and lactate (lac) 
peaks labeled. (C) Lac/Pyr ratio and the corresponding LDH activity were measured to assess 
glycolytic activity. All tumors were ~0.85 cc. Lac = lactate, Pyr = pyruvate. 

 

Redox capacity was noninvasively assessed using hyperpolarized [1-13C]DHA. As 

depicted in Figure 5.8A, DHA is transported into cells and converted to ascorbate, also known 

as Vitamin C (VitC). Both DHA and VitC were resolvable using 2D CSI (Figure 5.8B). The 

VitC/DHA ratio was dependent on the tumor volume, indicating a need for higher redox capacity 

in larger tumors (Figure 5.8C). 
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Figure 5.8. Hyperpolarized [1-13C] dehydroascorbate MRI using a RCC PDX model. A) 
Schematic of hyperpolarized [1-13C]dehydroascorbate (DHA) conversion to [1-13C]ascorbate 
(VitC). (B) T2-weighted image with axial projection of 2D CSI of hyperpolarized [1-
13C]dehydroascorbate (DHA) in an ccRCC PDX mouse with corresponding spectrum of a tumor 
voxel (red) with DHA and VitC peaks labeled. Tumor region of interest (ROI) is outlined in 
yellow. (C) Correlation between tumor volume and VitC/DHA ratio in mice bearing PDXs 
(N=3) was used to assess tumor redox capacity. VitC = ascorbate (Vitamin C). VitC/DHA ratio 
from each tumor voxel is displayed for each animal. DHA = dehydroascorbate.  
 
 

5.4. Discussion and Conclusion:  

In this study, NMR-based stable isotope tracing and hyperpolarized 13C MRI were used 

to quantify the metabolic profile and assess redox capacity in several patient-derived RCC 
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preclinical models that had previously not been characterized nor directly compared with one 

another. Marked differences in metabolite concentrations and metabolic flux through glycolysis, 

alanine synthesis, and TCA cycle were observed among models. Some novel aspects of this 

study include the use of 3-D tissue slice culture and implementation of an NMR-compatible 

bioreactor for hyperpolarized 13C studies. 

Steady-state metabolic profiling showed that PDX tumors, with intact 

microenvironments, were more proliferative than TSC and cell models based on the significantly 

higher levels of total choline, which is a marker of proliferation, and creatine, which is a marker 

of energetic status that is catabolized to maintain elevated proliferation. The PDX model also had 

higher redox capacity based on the significantly elevated levels of glutathione, which is essential 

for protection against oxidative and nitrosative stress that arises from tumor microenvironment-

related aggression or radiation. The PDX model also had elevated levels of 3-hydroxybutyrate, a 

ketone that serves as an alternative fuel source and indirectly protects against oxidative stress via 

inhibition of histone deacetylation and results in increased expression of oxidative stress 

resistance factors220. Together, this indicates that the PDX model is more suitable for testing the 

effects of radiation and other treatments targeting the redox pathway compared to the cell model, 

which has low redox capacity and thus is more susceptible to radiation. Stable isotope tracing 

with [U-13C]glucose indicated that the PDX model was metabolically dependent on glycolysis 

instead of the TCA cycle. This may indicate that the PDX model is more dependent on 

anaplerosis to replenish TCA cycle intermediates191. 

An important finding of this study was that PDX and TSC models behaved similarly 

based on metabolic profiling and stable isotope tracing studies. The abnormally high levels of 

glutamine, isoleucine, lactate, and leucine in the TSC model may be an artifact of the culture 
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environment since the glutamate concentration is similar with the other models. The abnormally 

high levels of creatine and creatine phosphate may be an artifact of the subrenal capsule 

xenograft model since the kidney can absorb creatine from primary urine221. The low absolute 

fractional enrichments in TSCs compared to PDXs may be due to the lack of perfusion in the 

TSC model. However, the overall flux profile between PDXs and TSCs is similar with the 

majority of glucose being converted to lactate via glycolysis and very little glucose being 

converted to glutamate via TCA cycle. Compared to the PDX and TSC models, the primary cells 

had a drastically altered metabolic profile. This reflects the lack of cellular heterogeneity and 

microenvironment in the cell model.  

Oxidative stress is often heterogenous in tumors in vivo. Tumors are hypometabolic 

under conditions of hypoxia and transform to highly oxidative under atmospheric conditions, 

with tumor metabolism rapidly switching between anaerobic glycolysis to carbohydrate 

oxidation222. This metabolic adaptation is also demonstrated in RCC cells grown in vitro under 

varying oxygen conditions. From the 13C-glucose labeling study, cells grown in hypoxic 

conditions had elevated flux through glycolysis and alanine synthesis and suppressed glucose 

flux through the TCA cycle compared to cells grown in normoxic conditions. These metabolic 

alterations are consistent with the hypoxia-induced changes in glucose metabolism mediated by 

HIF1, which includes upregulation of almost all enzymes involved in glycolysis as well as the 

lactate transporter MCT4, and inactivation of the pyruvate dehygrogenase (PDH) complex and 

decreased pyruvate oxidation223. Cells grown under hypoxic conditions has suppressed levels of 

energy metabolites (acetate, alanine, glutamine, and lactate) and lower levels of total choline and 

creatine compared to cells grown in normoxic conditions, suggesting that the cells grown in 

hypoxic conditions had lower proliferation. Interestingly, it was necessary to culture primary 
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cells under hypoxic conditions (2% oxygen) to obtain efficient growth in early passages, with 

cells grown under atmospheric conditions only becoming viable in later passages. However, the 

metabolism of PDX tissues is better recapitulated by cells grown under atmospheric conditions, 

indicating maintenance of common metabolic pathways under these conditions.  

Based on this study, the PDX model with its intact microenvironment is ideal for studies 

involving oxidative stress and perfusion, whereas the more high-throughput TSC and cell models 

may be more suitable for studies involving genetic alterations, hypoxia, and therapeutic drug 

screening. One caveat of the PDX model is that it lacks adaptive immune cells given its 

implantation into immunocompromised mice. Future work will focus on correlating these results 

with gene expression and biochemical assays. The genomic drivers underlying these metabolic 

changes are currently being investigated to further understand the metabolic transformations that 

occur in the different model systems. Based on the metabolic data and what has been shown in 

the literature, the PDX and TSC models may have similar global gene expression profiles, while 

the primary cell model will have the most altered gene expression profile. A key interest will be 

to integrate metabolomic and transcriptomic data to better understand the metabolic pathway 

alterations of each model. 

Ongoing studies are extending the RCC primary cell culture model to RCC cell culture-

generated xenograft models and characterizing several more RCC PDXs from a wide range of 

RCC subtypes, pathologic grades and clinical stages. Previous studies on orthotopic RCC 

xenografts derived from immortalized human RCC cell lines have shown that tumor cellularity 

varies between the models based on quantitative image analysis of H&E-stained tissue sections 

and ADC values from 1H diffusion-weighted MRI224. Since cellularity can greatly affect the 

metabolic activity observed using NMR-based metabolomics and hyperpolarized 13C MRI, it will 
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be critical to assess cellularity in the RCC PDX models in future studies. Characterization of 

hyperpolarized 13C urea with other perfusion markers such as dynamic contrast enhancement 

(DCE) studies can also enhance our understanding of cellularity in these RCC models. 

 Limitations of this study include the inherent insensitivity of NMR, which prevents 

characterization of low-concentration intermediates of glycolysis, TCA cycle, and fatty acid 

metabolism. In this study, the metabolic activity of hyperpolarized 13C pyruvate activity was 

assessed using Lac/Pyr ratio from a single-timepoint CSI data. However the Lac/Pyr ratios 

cannot be directly compared between TSC bioreactor and PDX studies since the TSC bioreactor 

model has an excess of HP [1-13C]pyruvate in the medium over the course of the dynamic 13C 

NMR acquisition that is not present in the PDX model. Future work will fit dynamic 2D CSI to 

kinetic models225 to compare the apparent HP 13C pyruvate-to-lactate conversion rate (kPL) 

between the TSC bioreactor and PDX models using an input-less two-compartment model. 

Further metabolic comparisons can be obtained from hyperpolarized 13C studies on the cell 

model for direct comparison with the PDX and TSC models, despite challenges to obtain 

sufficient cells (~20 million) cells for HP 13C cell slurry or bioreactor studies. 

 In summary, an initial assessment of metabolism in patient-derived RCC models was 

performed by combining HP 13C MR imaging studies with metabolomic profiling of steady-state 

concentrations of metabolites in aerobic glycolysis, glutaminolysis, and the TCA cycle. The 

results of this study also provide insight into the limitations associated with using these model 

systems for metabolic studies. Future work will integrate our metabolic findings with lipid 

metabolism and whole transcriptome profiling.  
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